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Abstract. Peak wind gust (Wp) is a crucial meteorological variable for wind farm planning and operations. However, for many

wind farm sites, there is a dearth of on-site measurements of Wp. In this paper, we propose a machine-learning approach

(called INTRIGUE) that utilizes numerous inputs from a public-domain reanalysis dataset, and in turn, generates multi-year,

site-specific Wp series. Through a systematic feature importance study, we also identify the most relevant meteorological

variables for Wp estimation. The INTRIGUE approach outperforms the baseline predictions for all wind gust conditions.5

However, the performance of this proposed approach and the baselines for extreme conditions (i.e., Wp > 20 m s−1) is less

satisfactory.

1 Introduction

Wind gust or gusty wind is a common household term. However, there has yet to be a consensus on its exact scientific definition.

For example, according to the Glossary of Meteorology (AMS, 2023), a wind gust can be defined as:10

“A sudden, brief increase in the speed of the wind. It is of a more transient character than a squall and is followed

by a lull or slackening in the wind speed. [...] According to U.S. weather observing practice, gusts are reported

when the peak wind speed reaches at least 16 knots and the variation in wind speed between the peaks and lulls is

at least 9 knots. The duration of a gust is usually less than 20 s.”

A somewhat different definition has been suggested by the U.S. National Oceanic and Atmospheric Administration (NOAA,15

2023):

“A rapid fluctuation of wind speed with variation of 10 knots or more between peaks and lulls.”

As opposed to these quantitative definitions, the World Meteorological Organization (WMO, 2021, page 227) describes wind

gusts in a very generic way:

“The extent to which wind is characterized by rapid fluctuations is referred to as gustiness, and single fluctuations20

are called gusts.”

Despite these vast differences in the definition of wind gusts, most sources seem to agree on the meaning of ‘peak’ wind gusts

(Wp):
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“The maximum observed wind speed over a specific time interval.” (WMO, 2021, page 227)

On the basis of this definition, it is appropriate to assert that “peak gust need not be a true gust of wind” (AMS, 2023). For25

quiescent atmospheric settings, within certain time periods, peak wind gusts may very well be close to near-calm conditions.

While in the presence of certain meteorological phenomena (e.g., downbursts, tornadoes), they may attain severe, hazardous

intensities. The focus of the current study is on the estimation of a wide range of peak wind gusts using a decision tree (DT)-

based machine learning (ML) approach.

Measurements of Wp require high-frequency observations. Typically, cup, propeller, and sonic anemometers record wind30

speeds with sampling rates of O(1–10) Hz. First, block averaging is performed on these measured time series with a window

length of τ seconds. Subsequently, for a specific time period T , the maximum (or peak) of the τ -sec-averaged values is esti-

mated, which is known as the τ -sec peak wind gust (Panofsky and Dutton, 1984; Holmes, 2001; Solari, 2019). The magnitude

of Wp strongly depends on the selected values of τ and T (Brook and Spillane, 1968; Beljaars, 1987). Most commonly, τ is

chosen to be equal to a few seconds. Depending on the application, the value of T can be as small as a few minutes to sev-35

eral hours. For example, the Automated Service Operations System (ASOS) employed by the U.S. National Weather Service

measures 5-sec peak wind gusts and considers a time period of one minute. In contrast, in the wind energy literature (Rohatgi

and Nelson, 1994), the combination of τ = 3-sec and T = 10-min are more prevalent. From a wind engineering perspective, a

historical account of 3-sec Wp has recently been documented by Lombardo (2021).

If the mean and peak gust wind speeds during T are denoted by W and Wp, respectively, then one can write (Holmes, 2001):40

Wp =W + cσW . (1)

Here σW is the standard deviation of wind speed. If the high-frequency wind speed data follows a Gaussian distribution during

T , then c can be approximately equal to 3.5 (≈99.98 percentile). Eq. (1) can be re-written as:

Wp =W
(
1+ c

σW

W

)
, (2a)45

or,

G=
Wp

W
=
(
1+ c

σW

W

)
. (2b)

The ratio G is the so-called gust factor. Whereas the ratio
(
σW

W

)
is known as the turbulence intensity (TI).

In the wind energy literature, several studies (Sumner and Masson, 2006; Wharton and Lundquist, 2012; Hedevang, 2014;

Siddiqui et al., 2015; St Martin et al., 2016; Lee et al., 2020) have reported on the (negative) impacts of high TI on power50

production. Given the linear relationship between G and TI, it is expected that high value gust factors may also be responsible

for sub-optimal wind power production. Highly fluctuating power production due to wind gusts may also cause problems for

electrical grid balancing (Milan et al., 2013). In addition to power production, high TI (or G) also induces significant fatigue

loading on wind turbines (Kelley et al., 2000; Hansen and Larsen, 2005; Dimitrov et al., 2017; Ebrahimi and Sekandari, 2018;

Ren et al., 2018; Asadi and Pourhossein, 2021).55
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Contemporary wind turbine design standards (e.g., IEC, 2019) include provisions for extreme weather conditions. Some of

them are related to extreme wind gusts (e.g., extreme coherent gust with direction change, extreme operating gust). Severe

meteorological phenomena, such as thunderstorm downbursts, tornadoes, and hurricanes, can generate extreme wind gusts. We

document a few historical events of relevance. One of the highest-ever recorded gusts was recorded at the Andrews Air Force

Base on August 1, 1983 (Fujita, 1985). Due to the passage of a microburst, near-surface gust speed reached approximately 13060

knots (≈ 67 m s−1). The airplane of U.S. President Ronald Reagan landed just six minutes earlier than this extreme gust event.

This extreme event provided the necessary stimulus to mobilize extensive research on microburst phenomena in the 1980s.

Petersen et al. (1998) documented an even stronger gust event in a review paper on wind power meteorology. They analyzed

wind data during a storm event on the Faroe Islands. There, prior to collapsing, one of the instrumented met-towers registered

a gust value of 76.7 m s−1. It is entirely possible that these types of severe gust events might hamper the structural integrity of65

modern-day wind turbines. About twenty years ago, one such event took place on Miyakojima island in Japan. The recorded

maximum gust speed was 74.1 m s−1. Out of six turbines, three turbines entirely collapsed, and the other ones sustained

significant damage (Ishihara et al., 2005). A more recent event was documented by Hawbecker et al. (2017). A thunderstorm

producing multiple downbursts and tornadoes passed through the Buffalo Ridge Wind Farm, Minnesota (USA) in 2011. The

resulting wind gusts caused damage to turbine blades and also caused buckling of a turbine tower.70

Based on the aforementioned published studies and other anecdotal evidence, we can conclude that both nominal and extreme

wind gusts are critical for wind energy. Therefore, during the wind farm planning and operation stages, the (detrimental) effects

of wind gusts should be adequately accounted for. However, it is widely known in the literature that wind gusts are spatially

and temporally highly intermittent. Thus, the long-term statistical characterization of such events utilizing on-site wind sensors

is rather challenging and expensive. As an alternative, mesoscale meteorological models (MMMs) can be used to predict and75

forecast peak wind gusts (Goyette et al., 2003; Ágústsson and Ólafsson, 2009; Stucki et al., 2016; Kurbatova et al., 2018).

Typically, different physical parameterizations are used for convective and non-convective gusts (refer to Sheridan, 2011, and

the references therein). Although these physical parameterizations have improved over the years, considerable improvements

can still be made. It is also important to note that MMMs are computationally expensive, especially when sub-kilometer grids

and gray-zone physical parameterizations (Boutle et al., 2014; Shin and Hong, 2015) are used. In this paper, we propose a data-80

based alternative approach that leverages a decision tree-based technique for peak wind gust estimation from a global reanalysis

dataset. We name the proposed approach: INTRIGUE (decIsioN TRee-based wInd GUst Estimation). It requires limited (say

one year) on-site Wp data for training and can generate a multi-year Wp time-series for that specific site. It also performs

reasonably well for generating Wp data for neighboring sites. Most importantly, separate parameterizations for convective and

non-convective events are not required.85

The structure of this paper is as follows. Since the proposed INTRIGUE approach uses various meteorological input features

(e.g., friction velocity, CAPE), we briefly summarize a few relevant physical parameterizations in Section 2. In Section 3, we

include a concise literature review on various applications of ML in wind gust-related research. Descriptions of the study area

and relevant datasets are provided in Sections 4 and 5, respectively. Various technical details pertaining to the INTRIGUE

approach (e.g., data splitting, hyperparameter turning) are elaborated in Section 6. In Section 7, we report all the results90
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including a discussion on feature importance. The limitations of the INTRIGUE approach for extreme wind gusts are mentioned

in Section 8. Concluding remarks and future perspectives are provided in Section 9.

2 Physical Parameterizations of Peak Wind Gusts

In a technical report, Sheridan (2011) provided a comprehensive review of various physical parameterizations for peak wind

gusts. A few years later, Kurbatova et al. (2018) investigated the capabilities of seven of these parameterizations in forecasting95

gusts in Russia. Here, we briefly mention a few well-known (and simple) parameterizations. Unless stated explicitly, we assume

W and Wp are defined at the height of 10 m above ground level.

It is well-known in the literature that the gust factor (G) depends on τ , T , measurement height, wind direction, surface

roughness, and other factors (Wieringa, 1973; Ashcroft, 1994; Weggel, 1999; Choi and Hidayat, 2002; Harris and Kahl, 2017).

However, for simplicity, in constant gust factor parameterization, G is assumed to be equal to a constant cGF :100

G=
Wp

W
= cGF . (3)

A few climatological studies have found that even though G varies significantly with respect to underlying topography, the

spatially averaged value of G is not site-specific. For example, Harris and Kahl (2017) analyzed multi-year, high-resolution

ASOS data from Milwaukee (USA) and reported an average value of cGF = 1.74. While analyzing Santa Ana winds in Southern

California (USA), Fovell and Cao (2017) found cGF = 1.6-1.7 to be representative for two locations. Based on multi-year105

observational data from more than thirty stations in Switzerland, Stucki et al. (2016) estimated cGF to be equal to 1.67.

The following surface layer similarity-based formulation is also often used for non-convective conditions (Sheridan, 2011;

Stucki et al., 2016):

Wp =W + cu∗u∗. (4)

Here u∗ is the so-called surface friction velocity. The coefficient cu∗ is on the order of 7.5. Sometimes, in Eq. 4, a nonlinear110

function of the stability parameter is used in conjunction with the cu∗u∗ term (e.g., ECMWF, 2020).

Certain non-convective formulations make use of boundary layer height (H , in m) and/or wind speed at boundary layer

height (WH ) in a semi-empirical manner. Stucki et al. (2016) reported one such formulations:

Wp =W +(WH −W )

(
1− H

2000

)
. (5)

Brasseur (2001) proposed an interesting physically-based approach for gust estimation. It assumes that the gusts at the115

surface originate from the upper part of the boundary layer. Since the formulation is somewhat involved, we do not include it

here. However, we do point out that it includes vertically-averaged turbulent kinetic energy (e) as a key variable.

In the proposed INTRIGUE approach, we use W , u∗, H , and several other relevant meteorological variables (e.g., surface

sensible heat flux, CAPE). If a relevant variable is not available as an input feature, we use our domain knowledge to include

a surrogate variable. For example, e is not available in the global reanalysis dataset that we used. Hence, as a substitute, we120
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Figure 1. Top left panel: digital elevation map of the study area. The symbols denote the locations of three West Texas Mesonet stations.

Photographs of the stations at the REESE Technology Center (Lubbock county), MACY (Garza county), and FLUVANNA (Borden county)

are shown at top-right, bottom-left, and bottom-right panels, respectively. These photographs are downloaded from: https://www.mesonet.

ttu.edu/

.

make use of the average energy dissipation rate (ε) in the boundary layer. The relationship between e and ε has been studied in

the literature (e.g., Basu et al., 2021). In Section 7 of this paper, we perform a systematic feature importance study and show

that most of the variables included in well-known physical parameterizations (e.g., Eqs. 3–5) also turn out to be very important

from a purely data-based ML standpoint.
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3 Applications of ML in Wind Gust Research125

To the best of our knowledge, only a handful of studies (Mercer et al., 2008; Sallis et al., 2011; Chaudhuri and Middey, 2011;

Carcangiu et al., 2014; Patlakas et al., 2017; Wang et al., 2020; Spassiani and Mason, 2021; Schulz and Lerch, 2022; Wang

et al., 2022) have incorporated machine-learning approaches for wind gust-related research. Several of these studies focused on

extreme wind gusts. For example, Mercer et al. (2008) studied downslope windstorms in Colorado (USA). They compared the

performance of stepwise linear regression, support vector regression, and multilayer perceptrons in short-term forecasting of130

extreme wind gusts. They utilized various meteorological variables (e.g., 700 hPa wind speed, mountaintop relative humidity)

and parameters derived from radiosondes (e.g., integrated Scorer parameter, Sangster parameter) as input features. In another

study, Chaudhuri and Middey (2011) used ML approaches for predicting peak wind gusts associated with pre-monsoon thun-

derstorms near Kolkata (India). Their newly developed adaptive neuro-fuzzy interference system outperformed multiple linear

regression, radial basis function network, and multilayer perceptrons.135

Various ML approaches (e.g., Kalman filtering, Gaussian Process regression) were also utilized for short-term forecasting

of wind gusts. Some of these studies post-processed numerical weather prediction data (e.g., Patlakas et al., 2017; Schulz and

Lerch, 2022; Wang et al., 2022). In contrast, Wang et al. (2020) only used observed time-series data from Jiangsu province

(China) for forecasting. They used an ensemble learning method comprising of Random Forest, Long Short-Term Memory, and

Gaussian Process regression. In order to mitigate wind turbine loads, Carcangiu et al. (2014) proposed a multilayer perceptron140

for gust detection followed by an innovative turbine control strategy.

Numerous studies (e.g., Enloe et al., 2004; Azorin-Molina et al., 2016; Brázdil et al., 2017; Lombardo and Zickar, 2019)

have reported climatologies and in-depth statistical analysis of wind gusts in various countries. However, they do not leverage

any ML approaches. An exception is the study by Spassiani and Mason (2021). They used Self-Organizing Maps (Kohonen,

1990, 2013) to perform automated classification of wind gusts in Australia in order to identify their dynamical origins.145

It is important to stress that the scope of the present study is different from these past ML-based investigations. We are

interested in generating long-term, site-specific peak wind gust (Wp) series based on a global reanalysis dataset. Our proposed

INTRIGUE approach, described in Section 7, can be described as an advanced Measure-Correlate-Predict (MCP) approach for

peak wind gusts. MCP is well-established in wind resource estimation (e.g., Rogers et al., 2005; Carta et al., 2013). However,

its usage in peak wind gust estimation is not known to us.150

4 Study Area

This study focuses on the West Texas Panhandle region, one of the largest semi-arid regions in the world. This region’s major

distinguishing topographical feature is the Caprock Escarpment (see top-left panel of Fig. 1), a precipitous cliff with an average

height of ∼90 m. Otherwise, this region is very flat, homogeneous, and sparsely vegetated. Owing to the frequent occurrence

of strong nocturnal low-level jets, the wind resource of this region is very good (wind class 3-5). This fact has led to the155

construction of numerous wind farms in this region, some of which (e.g., Roscoe, Horse Hollow, Buffalo Gap, Sweetwater)

are among the largest operating wind farms in the U.S.
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Table 1. A partial list of ERA5 and derived variables utilized as input features for the INTRIGUE approach. The most important variables,

identified via permutation feature importance analysis, are printed in bold.

Type Variable Equation Description Units

Raw W i
p10 Instantaneous wind gust at 10 m AGL (called i10fg in ERA5) m s−1

Raw Wm
p10 Mean wind gust at 10 m AGL since previous post-processing (called 10fg in ERA5) m s−1

Derived W10

√
U2

10 +V 2
10 Wind speed at 10 m AGL computed from zonal and meridional components m s−1

Derived W100

√
U2

100 +V 2
100 Wind speed at 100 m AGL computed from zonal and meridional components m s−1

Derived α log(W100/W10)/ log(100/10) Power-law exponent of wind profile within 10–100 m AGL –

Derived β Change in wind direction between 10 m and 100 m AGL degrees

Raw T2 Air temperature at 2 m AGL (called t2m in ERA5) K

Raw T0 Skin temperature (called skt in ERA5) K

Raw Ts Upper-level soil temperature (called stl1 in ERA5) K

Raw Td2 Dewpoint temperature at 2 m AGL (d2m) K

Derived ∆T1 T2 −T0 Difference of air and skin temperatures K

Derived ∆T2 T0 −Ts Difference of skin and soil temperatures K

Derived ∆T3 T2 −Td2 Temperature dew point spread K

Raw u∗ Surface friction velocity (called zust in ERA5) m s−1

Raw τew Instantaneous X surface stress (called iews in ERA5) N m−2

Raw τns Instantaneous Y surface stress (called inss in ERA5) N m−2

Raw ε Energy dissipation rate in boundary layer (called bld in ERA5) J m−2

Raw εm Mean energy dissipation rate in boundary layer (called mbld in ERA5) W m−2

Raw HS Instantaneous surface sensible heat flux (called ishf in ERA5) W m−2

Raw HL Instantaneous moisture flux (called ie in ERA5) Kg m−2 s−1

Raw H Boundary layer height (called blh in ERA5) m

Raw P0 Mean sea level pressure (called msl in ERA5) Pa

Raw TCC Total cloud cover (called tcc in ERA5) –

Raw LCC Low-level cloud cover (called lcc in ERA5) –

Raw CAPE Convective available potential energy (called cape in ERA5) J kg−1

Raw CIN Convective inhibition (called cin in ERA5) J kg−1

Derived HRSin sin(2πHour/24) Sine-encoding of hours –

Derived HRCos cos(2πHour/24) Cosine-encoding of hours –

Derived DYSin sin(2πDay/365) Sine-encoding of Julian days –

Derived DYCos cos(2πDay/365) Cosine-encoding of Julian days –

Derived MOSin sin(2πMonth/12) Sine-encoding of months –

Derived MOCos cos(2πMonth/12) Cosine-encoding of months –

The West Texas Mesonet (henceforth WTM) is a high-density network of automated surface meteorological stations which

spans the West Texas Panhandle region and extends to some parts of New Mexico and Colorado. This network (www.mesonet.

ttu.edu) was established in 1999 by the Atmospheric Science Group at Texas Tech University (Schroeder et al., 2005).160
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For the purpose of this study, we have selected three WTM stations (called REESE, MACY, and FLUVANNA) which

are located in areas of varying topographical complexities. Their locations are demarcated by various symbols in the digital

elevation map of Figure 1. The station at the REESE Technology Center is located at latitude 33◦ 36′ 26′′ N, longitude

102◦ 02′ 55′′ W, and elevation 1021 m, about 19 km west of the city of Lubbock, Texas. The topography is very flat surrounding

this station (see the photograph in the top-right panel of Figure 1). The MACY station is located at the edge of the Caprock165

Escarpment (bottom-left panel of Figure 1). Given the complex topographical surroundings, more gusty wind conditions are

prevalent at this site. The latitude, longitude, and elevation of this station are: 33◦ 4′ 53′′ N, 101◦ 30′ 58′′ W, 874 m, respectively.

The FLUVANNA station is situated on a relatively flat area off the Caprock (refer to the bottom-right panel of Figure 1).

However, a few kilometers away from the station, the ruggedness of the topography increases substantially. This station is

located at latitude 32◦ 53′ 57′′ N, longitude 101◦ 12′ 7′′ W, and at an elevation of 826 m, about 105 km south-east of Lubbock,170

Texas.

5 Description of Observed and Reanalysis Datasets

Each station in the WTM network measures a multitude of meteorological variables. However, in this study, we only utilize

the 3-sec peak wind gust (Wp) data from the REESE, MACY, and FLUVANNA stations. The associated anemometers (R. M.

Young propeller type) are located at 10 m above ground level. Technical details about the measuring instruments, data quality175

control, sensor calibration, and other aspects can be found in Schroeder et al. (2005).

In conjunction with these observed Wp data, we make use of several meteorological variables (including simulated wind

gusts) from a global reanalysis dataset known as ERA5 (Hersbach et al., 2020). ERA5 is the fifth-generation reanalysis prod-

uct of the European Centre for Medium-Range Weather Forecasts. Soon after its introduction, the ERA5 dataset became

the preferred reanalysis dataset in the wind power meteorology community. Olauson (2018), Ramon et al. (2019), Gualtieri180

(2022), among others discuss its superior accuracy, lower uncertainty, and higher reliability compared to other global reanalysis

datasets.

The horizontal resolution of the ERA5 reanalysis dataset is approximately 32 km. For each of the three WTM stations (i.e.,

REESE, MACY, and FLUVANNA), we have extracted ERA5 data from the corresponding nearest grid points. The distances

between the REESE, MACY, FLUVANNA stations and their corresponding ERA5 grid points are 14 km, 9 km, and 12 km,185

respectively. In Table 1, we list some of the extracted ERA5 variables as well as a few derived ones. In total, 265 input features

are used in the INTRIGUE approach.

In the ERA5 dataset, snapshots of most of the meteorological variables are output every hour. Whereas, in the case of

the WTM, the variables are temporally averaged with a sampling rate of 5 minutes. Direct comparison of point measurements

against atmospheric model-generated gridded-data is an ill-posed problem. We do not attempt to resolve this issue in this paper.190

However, to avoid the sampling rate mismatch between the WTM and the ERA5 datasets, we preprocess the WTM data with a

moving-maxima filter with a non-overlapping window of one hour. For example, we compute the maximum of contiguous 12

Wp samples measured during 13:30–14:30 CST to estimate the corresponding ‘hourly’ value of Wp at 14:00 CST.
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Figure 2. Bi-variate histograms of several meteorological variables. In the x axis, the predictor variables from the ERA5 dataset are plotted.

The predictor variables are: W i
p10 (left panels), u∗ (middle panels), and H (right panels). The predictand variable, Wp, is plotted in the y

axis. The top, middle, and bottom panels correspond to the REESE, MACY, and FLUVANNA stations, respectively. To enhance the clarity

of these plots, we do not show the data points where Wp > 25 m s−1. In the bottom-right corner of each plot, we report the square of the

Pearson’s correlation coefficient (r). The dashed black lines in these plots represent the linear regression fits.
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Table 2. Hyperparameter search spaces of the bagging and boosting ML models. For each WTM station, different optimized models are

constructed. In the last three columns, the best configurations of the models are reported when data from the year 2003 are used for training.

Algorithm Hyperparameter Range REESE MACY FLUVANNA

Random Forest (RF) tree num [4, min(2048, # instance)]] 276 827 45

max_features [0.1, 1] 0.260 0.280 0.730

leaf num [4, 32768] 3454 3259 321

Extremely Randomized Trees (ERT) tree num [4, min(2048, # instance)]] 28 146 25

max_features [0.1, 1] 0.780 0.330 0.990

leaf num [4, 32768] 597 2721 3454

Extreme Gradient Boosting (XGB) tree num [4, min(32768, # instance)]] 393 712 73

leaf num [4, min(32768, # instance)]] 44 17 480

min child weight [0.001, 128] 5.540 0.009 54.000

learning rate [0.001, 0.1] 0.022 0.017 0.084

subsample [0.1, 1.0] 0.950 0.540 1.000

reg alpha [0.001, 1024] 0.410 0.001 0.400

reg lambda [0.001, 1024] 16.430 11.220 0.001

colsample by level [0.01, 1.0] 0.840 0.270 0.210

colsample by tree [0.01, 1.0] 0.850 0.800 0.640

Light Gradient Boosting Machine (LGBM) tree num [4, min(32768, # instance)]] 6909 473 439

leaf num [4, min(32768, # instance)]] 24 29 162

min child samples [2, 129] 2.000 13.000 3.000

learning rate [0.001, 0.1] 0.002 0.017 0.020

reg alpha [0.001, 1024] 3.350 0.001 0.001

reg lambda [0.001, 1024] 0.002 0.096 0.011

max bin [3, 11] 5 7 6

colsample by tree [0.01, 1.0] 0.610 0.920 0.510

In Figure 2, we plot several bi-variate histograms. In the x-axes, we have the predictor variables – i.e., the meteorological

variables from the ERA5 dataset. In y-axes, the peak wind gusts (i.e., Wp) from the WTM stations are shown as predictands.195

It is evident that both instantaneous wind gusts (W i
p10) and friction velocity (u∗) from ERA5 are strongly correlated with the

measured Wp data (r2 is on the order of 0.8). In contrast, the correlations between boundary layer heights (H) from ERA5

and Wp values are much weaker (r2 ≈ 0.5). The proposed INTRIGUE approach, described in Section 7, exploits not only the

strong correlations but also the weaker ones in a systematic manner to provide a more accurate prediction of Wp.

6 Proposed INTRIGUE Approach200

In the following sub-sections, we describe various technical details associated with the proposed INTRIGUE approach.
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6.1 Strategy for Splitting of Available Data

In this study, we have eleven years (2003 to 2013) of WTM and ERA5 datasets at our disposal. Instead of training various

ML models with lots of data, for practical reasons, we have opted for a not-so-abundant training data scenario. In typical wind

resource assessment projects, one has access to merely one or two years of on-site data. The wind data analysts are then tasked205

to build MCP models with such a limited amount of data. To mimic this situation, we train ML models with only one year of

training data and, subsequently, make predictions for ten years. We repeat this process in a round-robin manner by changing

the training and testing years. For example, in the schematic shown in Figure 3, we use data from the year 2003 for training

and make predictions for the years 2004–2013.

Figure 3. Our strategy of splitting the entire dataset into training, validation, and testing sets.

In ML training, it is customary to hold out a portion of the training data, called a validation set, for hyperparameter tuning.210

Often an 80%-20% randomly shuffled split is made between training and validation sets. However, meteorological data are

temporally correlated. Thus, random shuffling causes information leakage into the validation set. To minimize this undesirable

leakage problem, we use the first twenty-four days of each month (i.e., ∼ 80%) for training and the rest for validation as

depicted in Figure 3.

6.2 ML Models215

In this study, we have used four different decision tree-based ML models. Two of them, Random Forest (Breiman, 2001) and

Extremely Randomized Trees (Geurts et al., 2006), use the so-called bagging approach. The other two approaches, XGBoost

(Chen and Guestrin, 2016; Wade, 2020) and LightGBM (Machado et al., 2019), are built on the gradient-boosting technique

(Freund and Schapire, 1999; Friedman, 2002). For a comprehensive treatise on decision trees, bagging, and boosting, the

following references are suggested: Rokach and Maimon (2008), Hastie et al. (2009), Géron (2022), and Murphy (2022). We220

also encourage the readers to peruse the concise tutorial on decision-trees by Spiliotis (2022).

It is important to point out that we are interested in comparing the relative performance of various ML approaches for wind

gust prediction and identifying if there is a clear winner. It is entirely possible that by combining some of these techniques

(e.g., via a stacking regressor), one can get enhanced performance. However, we do not investigate this strategy in this paper.
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6.3 Hyperparameter Tuning225

Each DT-based model contains several hyperparameters (e.g., number of trees, number of tree levels). We include the most

relevant ones in Table 2. Technical descriptions of these hyperparemeters are beyond the scope of this paper. The readers are

encouraged to peruse the original publications and associated code repositories for more information.

In order to achieve high-level predictive performance, all the hyperparameters should be highly optimized. Quite often,

random search or grid search approaches are used (Géron, 2022). These strategies are very time-consuming and may require230

sophisticated hardware support. As an alternative, in this study, we have used FLAML (A Fast and Lightweight AutoML

Library), developed by Microsoft (https://microsoft.github.io/FLAML/). Instead of performing the grid search, the FLAML

library takes the available computing time as a parameter and tries to find the optimal hyperparameters within the allotted time.

FLAML optimizes hyperparameters using effective search strategies. During the search process, the learner decides on the

hyperparameter, sample size, and resampling strategy while taking advantage of the combined effects on both cost and error.235

The design of the FLAML is presented in Figure 3 of Wang et al. (2021). It consists of two layers, an ML layer, and an

AutoML layer. In the present study, since each ML model (i.e., RF, XGB) is optimized individually, the ML layer contains

only the relevant model. The AutoML contains a learner proposer, a hyperparameter and sample size proposer, a resampling

strategy proposer, and a controller. While the proposers are used to decide the variables, the controller is used to initiate the

experiment using the learner selected in the ML layer. These steps are repeated during the allotted time. The algorithm uses the240

random direct search method to decide hyperparameters (Wu et al., 2021).

In this study, we are focusing on three different WTM stations (REESE, MACY, and FLUVANNA). For each station, we have

eleven distinct training sets (one for each year). For each training set, we have four DT-based candidate models. In summary,

we have a total of 3× 11× 4 = 132 cases of distinct hyperparameter optimizations. To limit the overall computing time, each

case is optimized for one hour on a windows workstation equipped with an Intel Core i7 3.5 GHz CPU and NVIDIA GeForce245

GTX 1070 (8 GB) GPU. The total computing time was 132 hours. As an example, we provide the best configuration values for

the year 2003 in Table 2. In addition, we also provide the search range of each hyperparameter in this table.

6.4 Performance Evaluation Metrics

For model evaluations, we have used bias, mean absolute error (MAE), mean squared error (MSE), and the coefficient of

determination (R2) as performance metrics. They are defined as follows:250

Bias=
1

N

N∑
i=1

(ŷ− yi) (6a)

MAE =
1

N

N∑
i=1

|yi − ŷ| (6b)
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MSE =
1

N

N∑
i=1

(yi − ŷ)
2 (6c)255

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
(6d)

where yi and ŷi, are the ith measured and the corresponding predicted values of Wp. The average of the measured Wp values

is denoted by ȳi. The total sample size in the test set is N . Since the overall test set consists of ten years of hourly data, N is

approximately equal to 8760 for each year.260

7 Results

In this section, the predictive performances of four DT-based algorithms are evaluated for the three WTM stations (REESE,

MACY, and FLUVANNA). In addition to these ML models, we use two ERA5 wind gust variables (W i
p10, Wm

p10) as baseline

predictors for Wp. Intuitively, we expect the ML models to outperform the ERA5 predictions as it uses more input features.

We first report the results for self-prediction cases where training and testing are performed using the WTM and ERA5 data265

from the same location. In the following sub-section, we discuss a cross-prediction scenario. Specifically, data from one of

the WTM stations is used for training, and the fitted model is used to make predictions for the other two locations. In the last

sub-section, we discuss the importance of various input features.

7.1 Self-Prediction

As mentioned earlier, one year of training data for each WTM station is used to build four DT-based models (optimized via270

FLAML). Out of these samples, 72 days’ worth of data are used for hyper-parameter tuning for each case, following Section

6.1. These site-specific tuned models are then used to predict Wp for the other ten years for the same site. We repeat the

procedure in a round-robin manner for the other years. The mean prediction scores of all the models, in terms of Bias, MAE,

MSE, and R2 metrics, are given in Figures 4, 5, 6, and 7, respectively.

As an illustrative example, let us consider the random forest (RF) model at REESE. First, ten distinct RF models are trained275

using data from 2003 to predict Wp for the years 2004, 2005, ..., and 2013. Next, we use the data from 2004 to predict for the

years 2003, 2005, 2006, ..., and 2013. We repeat this procedure for all the possible ten combinations. The average MAE from

these ten predictions is 1.39 m s−1.

According to Figure 4, the ML models have a tendency to overestimate the wind gusts; however, the bias values are typically

much lower than 0.5 m s−1. The performance of the baseline predictors from ERA5 are much poorer. At MACY, both W i
p10280

and Wm
p10 variables excessively underestimate wind gusts.

From Figures 5 - 7, it is clear that the performance of ERA5’s W i
p10 and Wm

p10 variables as surrogates for Wp exhibits an

inter-annual variability. For example, for the W i
p10 variable, the MAE at REESE ranges from 1.53 m s−1–1.68−1 with an

13
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Figure 4. Bias (m s−1) scores of two baseline ERA5 variables and four DT-based models

average of 1.59 m s−1. These figures also attest to the superior performance of the ERA5 baseline at REESE and FLUVANNA

stations in comparison to MACY. Given the complex location of MACY and the coarse effective resolution of ERA5, such a285

deterioration in performance at MACY is expected.

All the performance metrics are considerably improved when using the DT based models instead of the ERA5 baseline.

According to Figure 7, the XGB model improves the average R2 scores for REES, MACY, and FLUVANNA stations by 0.08,

0.11, and 0.11, respectively, in comparison to the ERA5-Wm
p10 baseline. The performances of the four DT-based ML models

are pretty similar. In the case of REESE, the XGB model provides 12%, 13%, and 23% improvements in terms of R2, MAE,290

and MSE, respectively.

In Figures 5– 7, all the scores of the ML models are averaged over ten years. Due to averaging, the perceived inter-annual

variability of all these models is much lower in comparison to the ERA5 baseline. For example, in the context of the XGB

model, the R2 score at MACY has a narrow range of 0.68–0.70. In order to investigate the year-to-year variability and per-

formance of an ML model, we report the annual R2 scores at the MACY station in Table 3. As an illustrative example, we295

only tabulate the results of the XGB model. The results of the other ML models are very similar and, thus, are not shown. It

14



2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Mean
0.0

0.5

1.0

1.5

2.0
MA
E(
ms

−1
)

REESE

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Mean
0.0

0.5

1.0

1.5

2.0

MA
E(
ms

−1
)

MACY

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Mean
Years

0.0

0.5

1.0

1.5

2.0

MA
E(
ms

−1
)

FLUVANNA

W i
p10 Wm

p10 RF ERT XGB LGBM

Figure 5. MAE (m s−1) scores of two baseline ERA5 variables and four DT-based models.

is satisfying to see that the inter-annual variability of the R2 score is not more pronounced than the ERA5 baseline. In other

words, with only one year of training data, the XGB model can estimate Wp values for other years with R2 scores ranging

from 0.63 to 0.73. These scores are considerably higher than the corresponding values (R2 = 0.52–0.61) from the ERA5-Wm
p10

baseline.300

7.2 Cross-Prediction

In order to demonstrate the potential generalizability of the ML models, the optimized models for the REESE station are

utilized for predictions at MACY and FLUVANNA stations. The R2 scores are reported in Figure 8. In the case self-prediction,

the R2 scores for the ML models were around 0.66–0.69 for MACY and 0.72–0.73 for FLUVANNA (refer to Figure 7). In

the case of cross-prediction, the results are slightly poorer. In the case of MACY, the R2 values are approximately equal to305

0.64; whereas, the corresponding R2 values are around 0.70–0.71 at FLUVANNA. These results are encouraging and imply

that the proposed INTRIGUE approach might be used for cross-predictions as long as the training and testing locations are not
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Figure 6. MSE (m2 s−2) scores of two baseline ERA5 variables and four DT-based models

too far apart and experience similar regional climatic conditions. Along this direction, more studies are needed for rigorous

validations.

7.3 Feature Importance310

In the INTRIGUE approach, we have used 265 input features. It is likely that not all these features are equally important for

peak wind gust predictions. One way to rank the input features is via using the “permutation feature importance” strategy

(Breiman, 2001; Molnar, 2022). To describe this simple algorithm, we closely follow Section 7.5 of Molnar (2022).

First, an ML model (say XGB) is trained using one year of data from a specific station (e.g., REESE). Then, we make a

prediction for another year for the same station. Both the training and testing data contain 265 input features. Using the observed315

and predicted Wp values, we compute prediction errors (e.g., using R2) and denote this error as eo. Next, we randomly shuffle

only one of the input features (say the i-th feature) of the test data and keep the ordering of all other features the same. Now,

we make a new prediction. The error associated with this new prediction is denoted as eip. Since we have randomized only one

input feature, that feature no longer has any association with the other input features. Thus, we expect eip to be worse than eo;
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Figure 7. R2 scores of two baseline ERA5 variables and four DT-based models

in the case of R2, eip ≤ eo. To achieve converged statistics, we repeat the randomization process for the same i-th feature a few320

times (typically 5 or more) and compute an averaged value of eip. The net reduction in R2 score due to the randomization of

i-th feature is:
(
eo − eip

)
.

One at a time, we repeat the random shuffling exercise for all 265 input features and compute the reduction in R2 corre-

sponding to each input feature. If an input feature is very important for peak wind gust estimation, the reduction in R2 for that

feature will be large. On the other hand, the irrelevant input features marginally impact the R2 scores.325

In Figure 9, the importance (in terms of reduction in R2) of all the input features is plotted for the XGB and RF models. For

computation, we use the ELI5 library (https://eli5.readthedocs.io/en/latest/overview.html). We average the statistics over ten

years for robustness.

Although there are differences in the magnitude of the feature importance depending on the stations, the following input

features are found to be very relevant for all three stations: W10, Wm
p10,W i

p10, u∗, τns, W100, ε, εm, and α. Interestingly, both330

the XGB and RF models capture the same behavior. These input features are also the ones that are commonly used in physical

parameterizations (see Section 2).
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Table 3. Detailed R2 scores of the XGB model at the MACY station for each year

Training Testing Years

Years 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

2003 - 0.67 0.69 0.67 0.67 0.74 0.69 0.69 0.74 0.68 0.70

2004 0.70 - 0.68 0.65 0.66 0.73 0.67 0.68 0.71 0.67 0.70

2005 0.70 0.67 - 0.66 0.66 0.73 0.69 0.68 0.74 0.69 0.71

2006 0.71 0.66 0.69 - 0.66 0.74 0.69 0.68 0.74 0.69 0.71

2007 0.71 0.66 0.69 0.66 - 0.73 0.70 0.69 0.74 0.69 0.70

2008 0.69 0.65 0.68 0.66 0.66 - 0.68 0.70 0.73 0.68 0.71

2009 0.69 0.63 0.68 0.63 0.65 0.72 - 0.67 0.69 0.66 0.70

2010 0.68 0.64 0.67 0.65 0.65 0.72 0.68 - 0.74 0.68 0.70

2011 0.69 0.66 0.68 0.67 0.66 0.73 0.70 0.70 - 0.69 0.71

2012 0.70 0.66 0.70 0.67 0.66 0.73 0.70 0.71 0.74 - 0.71

2013 0.69 0.66 0.69 0.66 0.67 0.74 0.69 0.70 0.74 0.68 -

W i
p10 0.52 0.47 0.52 0.50 0.52 0.58 0.54 0.55 0.62 0.53 0.57

Wm
p10 0.58 0.52 0.56 0.54 0.55 0.61 0.58 0.59 0.65 0.57 0.60

Some of the input features (e.g., related to the time of day, temperature, cloud cover) are not relevant for peak wind gust

predictions. Thus, one can remove these input features from future ML models and achieve a similar level of prediction

accuracy with reduced computational costs.335

8 Limitations of the INTRIGUE Approach

The WTM dataset contains a handful of extreme wind gust events. In Figure 10, a few illustrative cases measured at the REESE

station are shown. One of these cases is related to a supercell thunderstorm, while the others are produced by non-supercell

thunderstorm events. These cases and a few others were studied in-depth by Lombardo et al. (2014). On these plots, we have

overlaid W i
p10 values from the ERA5 and also the predictions from two of the ML models (i.e., RF and XGB). It is apparent that340

the W i
p10 variable has not captured the extreme wind gusts in a faithful manner. This failure is likely due to the coarse effective

resolution of the ERA5 data, which cannot resolve thunderstorms. The ML models are unable to make any improvement to

these extreme wind gust predictions.

To further investigate this limitation of the INTRIGUE approach, we provided several confusion matrices in Figure 11. We

classified peak wind gusts into extreme (1) and nominal (0). When Wp exceeds 20 m s−1, we denote the event as an extreme.345

From these matrices, it is evident that the INTRIGUE approach leads to numerous false positives and false negatives.

In Figure 12, we show scatter plots of a few input features (or predictors) and the predictand (Wp). While discussing feature

importance, we demonstrated that overall W10, W i
p10, and Wm

p10, are very important features. However, these features are

barely correlated with Wp for extreme conditions. Furthermore, ERA5’s CAPE variable (typically related to thunderstorm

development) is also not well-correlated with Wp values. In lieu of adequate input features, the INTRIGUE approach fails to350
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Figure 8. R2 scores of the two baseline ERA5 variables and four DT-based models at MACY and FLUVANNA. Models are trained using

data from the REESE station.

perform satisfactorily for the extreme wind gust conditions. We speculate that parameters derived from vertical profiles of the

ERA5 reanalysis (e.g., deep-layer wind shear, storm relative helicity, integrated Scorer parameter, Sangster parameter) as input

features might improve the predictions.

In this study, we have utilized the INTRIGUE approach for Wp predictions at 10 m heights. The availability of Wp for

higher altitudes is rather limited, and only a few studies (e.g., Deacon, 1955; Brook and Spillane, 1970; Suomi et al., 2015;355

Hu et al., 2018; Shu et al., 2021) exist in the literature. However, high-altitude (say 100 m) Wp data is highly relevant from

a wind energy perspective. The contemporary physical parameterizations (see Suomi et al., 2013, and the references therein)

use surface friction velocity, sensible heat flux, and boundary layer height as input for the estimation of hub-height Wp values.

Since the INTRIGUE approach already uses these input features (among others), it should be applicable for Wp predictions

for turbine hub-heights. Undoubtedly, more work is needed in this arena.360
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Figure 9. Feature importance scores of the ERA5 parameters for REESE (left panel), MACY (middle panel), and FLUVANNA (right panel).

The results from two ML models, XGB and RF, are shown for comparison.

9 Conclusions

In this study, we proposed a decision tree-based MCP approach (called INTRIGUE) for peak wind gust estimation. This

approach utilizes several meteorological variables (including the instantaneous wind gust variable) from the ERA5 reanalysis

dataset as input features. For non-extreme (i.e., nominal) cases, the INTRIGUE approach-predicted peak wind gust values are

closer to the observed ones than the baseline approaches. This approach can also make predictions for neighboring stations365

where training data is not available. In addition to site assessments, our proposed INTRIGUE approach can be used in wind

gust forecasting. Instead of a reanalysis dataset, predicted meteorological fields from a numerical weather prediction model

can be used as input features for the ML models.

However, there is room for significant improvements as the INTRIGUE approach drastically underestimates extreme wind

gust events of magnitudes higher than 20 m s−1. For these cases, none of the 265 input features, that we considered in this370

study, correlate with Wp. Clearly, we need more relevant input features. In our future work, we will also analyze meteorological

profiles from ERA5 and compute various thunderstorm-related parameters as input features. In addition, we will add input

features extracted from radar reflectivity fields using autoencoders. We speculate that the addition of such input features will

enable the INTRIGUE approach to capture extreme wind gusts in a more faithful manner.

We would like to remind the readers that we intentionally use only one year of training data in this study. As a result, only a375

few such extreme cases (on the order of 60-80 samples) are included in the training process. In the ML literature, this problem
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Figure 10. Examples of extreme wind gust events measured at the REESE station on June 19, 2008 (top-left panel; non-supercell thunder-

storm), August 14, 2008 (top-right panel; non-supercell thunderstorm), June 4, 2009 (bottom-left panel; bow-echo/supercell thunderstorm),

and August 12, 2009 (bottom-right panel; non-supercell thunderstorm). On these figures, the instantaneous (W i
p10) and mean (Wm

p10) wind

gust values from the ERA5 dataset are overlayed for comparison. In addition, we have plotted the predictions from the RF and XGB models.

is known as the imbalance data problem. In the future, we will explore various ML strategies (e.g., isolation forest) to tackle

this challenging problem.

In typical wind energy projects, one does not have access to on-site long-term wind gust datasets. Thus, increasing the

sample size from a single site is not a viable solution. However, it will be possible to increase the sample size by aggregating380

observational data from different sites across the world with comparable climatic conditions. By doing so, we will be able to

come up with a more generalized ML model for wind gust prediction. We will pursue this line of research in the near future.

Code availability. The Code is available at https://github.com/serkankartal/PeakWindGustEstimation.

Data availability. The ERA5 reanalysis data are provided by the European Centre for Medium- Range Weather Forecasts (https://cds.climate.copernicus.eu).

Data availability. The mesonet datasets are available from West Texas Mesonet (www.mesonet.ttu.edu).385
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Figure 11. Confusion matrices for extreme wind gust (Wp > 20 m s−1) prediction. The top and bottom panels represent XGBoost and RF

models, respectively. The left, middle, and right panels correspond to REESE, MACY, and FLUVANNA stations, respectively.
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Figure 12. Scatter plots of W10 (top panels), W i
p10 (middle panels), and CAPE (bottom panels) against Wp measured at REESE station. The

Wp values greater than 20 m s−1 are only included in these plots. The left, middle, and the right panels correspond to years 2003, 2008, and

2013, respectively. There are only 77, 78, and 63 samples in the left, middle, and the right panels, respectively. It is clear that the correlations

between the predictors and the predictand are very low for all the cases. In the bottom-right corner of each plot, we report the Pearson’s

correlation coefficient (r). The black lines in these plots represent the linear regression fits.
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