
Page 1 of 21 
 

Wind speed time series synthesis  

using a parametrized power spectral density function  

Ram C. Poudel1, Dave Corbus2, Ian Baring-Gould 2 

1Appalachian State University, Boone, North Carolina 28607, USA 
2National Renewable Energy Laboratory, Golden, Colorado 80401, USA 5 

Correspondence to: Ram C. Poudel (poudelrc@appstate.edu) 

Abstract. We propose a new method to synthesize 1 Hz wind speed and wind power time series data from the industry 

standard 10-minute wind turbine performance data. The method is based on a parameterized power spectral density 

(PSD) function decomposed into trend and random components. We illustrate the intra-timestep data synthesis 

utilizing 1 Hz data from two distributed wind turbines. 10 

1 Introduction 
The wind energy industry adopted the standard 10-minute aggregation of resource and operational data 

sampled at 1 Hz following the seminal work of Hoven (Lopez-Villalobosa et al., 2021; Hoven, 1957). The 

10-minute aggregation practice has been a norm of the industry for a reason. This aggregation practice is 

optimal for describing the relationship between the wind speed and the power output of a wind turbine (DO 15 
& BERTHAUT-GERENTES, 2018). Many engineering tools and financial models rely on 10 minutes 

(IEC, 2017) or hourly data. However, such an industry-standard practice comes with significant information 

loss (Beretta et al., 2021). The 10-minute resource data is inadequate for sizing and dispatch of integrated 

storage (Poudel et al., 2021), and the power system simulation study requires data at a resolution of 1 second 

or better. High-resolution (one-second) input data is critical for various integration studies (Quiroz & Reno, 20 
2012) but such a dataset is scarce for many operational wind turbines and wind farms. The legacy 10-minute 

averaged operational data are not quite enough to answer site-specific design questions that involve smaller 

time scales interaction such as power system simulation must deal with under high renewable energy 

contribution scenarios.   

Wind energy assessment and wind farm design practice rely both on historic and forecasted data.  Because 25 
of the inherent uncertainty in the forecast, the industry still relies heavily on the historically measured 

dataset to estimate the long-term wind speed, annual energy production (AEP), and P50, P90, P95 values 

of AEP, etc. Historical data sets are generally in order of hourly time scales. Such datasets work quite well 

in estimating AEP or capacity factor due to the spectral gap between 6 hr to 1 minute (Lopez-Villalobosa 

et al., 2021). Such an hourly resolution dataset is not good enough to characterize variability in wind power 30 
P(t) that distributed energy resources (DER) must comply with for grid integration (IEEE, 2018).     

The wind energy industry could take advantage of the high-resolution data acquisition capabilities many 

data loggers offer nowadays. In the past, data measurement efforts were limited by tools and computation 

capabilities (speed and storage). Popular data analysis tools such as spreadsheets were limited by the 

number of rows and columns1, and data aggregation, slicing and dicing of data, and mining capabilities 35 
were limited to some custom software and applications.  Industry-standard tools have now evolved to 

 
1 [Excel 2003: 65,536 rows and 256 columns] 
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converge on methods as a result of concerted efforts the industry made to standardize the energy assessment 

process and quantify uncertainty.     

To make the legacy 10 minutes dataset work for the wider site-specific design questions, we need to develop 

better data synthesis capabilities based on information/statistics unique to the data in question. Such 40 
capabilities might complement the industry-standard practice.  Here, the data in question is the time series 

of wind speed, and the unique characteristic is the energy spectra of turbulence. In recent study has 

demonstrated wind resource power may be possessing unique one-dimensional power spectral density 

(PSD), and kinetic energy spectra (of horizontal velocity). The PSD seems to be a robust description that 

varies a little with the spatial aggregation of wind turbines. We utilize this unique characteristic signature 45 
of PSD to synthesize data at a 1-second resolution. This study might also inform what additional parameters 

of data sampling and aggregation of wind resources and wind power might complement the industry-

standard 10-minute aggregation practice. 

2 Problem Description 
Let u(t, x) be the instantaneous value of wind speed along the horizontal x direction. Following Reynolds’ 50 
decomposition, we may write u(t, x) = u(t)  + u’(t, x), where, u is an average over a time t, and u’ = 0. The 

wind flow field is often inhomogeneous hence Reynolds average has been formulated in terms of time 

averages. Industry-standard practice reports the average (u) of wind speed and wind power P(u) time series 

at t = T = 10 minutes along with the standard deviation (u), max(u), and min(u). These four statistics, one 

measure of central tendency and three measures of dispersion, may be called 4S   = [u, u, u(max), u(min)].  55 

Figure 1 depicts some representative cases of variations of u’, [P(u)]’, the time of max(u), and min(u) based 

on data collected at 400 Hz for the CART3 (Fingersh & Johnson, 2002; Anderson et al., 2022) research 

wind turbine at the National Renewable Energy Laboratory (NREL) Flatiron Campus. The lower subplot 

depicts the inter-timestep probability density function (PDF) and cumulative density function (CDF) for 

the period (T=10 minutes) of aggregation.   60 

 

a) Case # 1  b) Case # 9  b) Case # 13  d) Case # 15 

Figure 1: Intra-timestep variations in wind speed and statistics 

There are not any discernible characteristics of u’ in the time domain. The inter-timestep PDFs are all over 

the maps. The first one (Case # 1) looks unimodal, the second (Case # 9) is bimodal, the third is negatively 65 
skewed, and the fourth (Case # 15) has a relatively flat peak. These PDFs have kurtosis values of various 

degrees. It may not be possible to guess the distribution solely based on 4S and reconstruct the time series 

to simulate the inter-timestep variability of wind speed.  

Previous studies have established some characteristic features of u’ in the frequency domain. Kolmogorov's 

hypothesis led to a universal form for the energy spectrum, known sometimes also as the 5/3 rule. There 70 
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are power spectrum models listed in IEC 61400-1 (IEC, 2019) including Karman and Kaimal models. The 

power output of a wind turbine or wind farm seems to possess some unique characteristic signature in terms 

of the power spectral density (PSD) (Apt, What has been learned from frequency-domain analysis of wind 

and solar power, 2019). We utilize this characteristic and reverse engineer the time series using the inverse 

Fourier transformation.  The input to the data synthesis application is a 10 minutes time series along with 75 
4S and the output of the data synthesis method is a 1-second resolution time series of wind speed or wind 

power dataset.  

3 Literature Review 
Recreating actual time series from statistics is an indeterminate problem. However, we can synthesize time 

series for practical engineering applications. The method of synthesis could be bounded in the time domain 80 
or frequency domain or a combination of artifacts from both domains. Some tools can synthesize wind 

speed in space and time. TurbSim (Jonkman, 2009) utilizes stochastic methods based on the spectrum to 

generate a wind velocity field across the rotor plane for aeroelastic study. Many time-domain methods rely 

on the central moments. There is the moment-based Monte-Carlo (MC) (Zhao et al., 2002) and Markov-

Chain Monte-Carlo (MCMC) time series synthesis. However, wind industry-standard data only reports the 85 
first two moments – mean and standard deviations. For intra-timestep, the statistic of interest is 3rd order 

(skewness) and 4th order (kurtosis) central moments. There are only a few data loggers (e.g. NOMAD by 

SecondWind) that also report skewness and kurtosis. 

There are two classes of time series synthesis: interpolation (estimating within values) vs extrapolation 

(forecast). Such synthesis could be informed either by physical process or by some temporal statistics. The 90 
physical approach uses atmospheric/meteorological data to capture non-stationarity whereas statistical 

approaches are based on the statistic of time series such as moments, PDF, CDF, etc. The statistical 

approach can generate an instance of time series as well as scenarios representative of the statistics.  

HOMER (HOMER, n.d.) uses an academic exercise to generate synthetic wind speed data without many 

site-specific considerations.  It does not resolve the timescale relevant to the power system study. Hybrid2 95 
(E.Baring-Gould, 1996) uses the MC method based on the transition probability matrix (Kaminsky et al., 

1990). 

Time series models based on Box- Jenkins methods (Browna et al., 1984) are being used for the simulation 

of wind speed/power for a while but with partial success. Hybrid methods combine the time series technique 

(ARIMA) with the frequency-domain-based technique. A time series model may furnish parameters for the 100 
spectrum (Broersen & Waele, 2013). Once the spectrum is known, we can generate an ARMA process, but 

the turbulence model requires an order of the model quite high (~1000). Data-driven technique (Stengel et 

al., 2020) have been recently popular, but these methods can be as good as training datasets.  The scope of 

these methods is limited to a coarse temporal (Daily to Hourly) scale and such datasets are suitable mainly 

for regional grid integration study and planning purposes.  105 

Frequency-domain-based methods use PSD and wavelets. These methods can help identify some useful 

information about seasonal (Chen & Rabiti, 20217), and cyclic components of the time series. The wind 

industry has used PSD to get a better sense of the variation of wind resources and power. Studies (Apt, The 

spectrum of power from wind turbines, 2007) have revealed some unique characteristics of wind power 

aggregation. The variable renewable resources seem to have some unique characteristic signatures visible 110 
only in the frequency domain. Turbulence characteristics in wind speed approximated by spectrum 

proportional to f-5/3 (Reiteration of turbulence spectrum of wind). The PSDs for three renewables (Solar PV, 

Wind, Solar Thermal) are similar at very long frequencies (periods greater than about 6 hours, 4x10−5 Hz), 
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but there are significant differences at shorter timescales (Apt, What has been learned from frequency-

domain analysis of wind and solar power, 2019). The PSD signature is supported by several studies and 115 
utilized to understand variability (and uncertainty). Lee (Lee & Baldick, 2014) used piecewise Affine 

Function Approximation of the PSD (Lee & Baldick, 2014) to synthesize future wind power. There is a 

hybrid method (Rose & Apt, 2012) to synthesize long-term data at 1 Hz that utilized both the measured and 

simulated data. This method, however, proposes resampling of the 10 minutes data at 1 Hz using linear 

interpolation which does not work for wind speed time series as shown in Figure 1. We need a better method 120 
to capture intra-timestep variability. We are interested in a practical method simple enough but still can 

capture variability associated with the aggregated wind and solar power (Piwko et al., 2012) for integration 

studies, battery sizing, and likewise. We utilize the unique frequency-domain signature, PSD specific to the 

time step, and synthesize high-resolution (600x) time series by inverse Fourier Transformation. The method 

we propose automatically encapsulates some physics of turbulence (spectrum, TKE, similarities of scales) 125 
by design. 

4 Methodology 
Wind resource measurement typically reports four statistics, 4S = [ u, u, u(max), u(min)] of time series 

u(k) over some aggregation period T. Wind speed is normally sampled at 1 Hz and aggregated at T = 10 

minutes or an hour, following IEC 61400-1.  130 

We convert the time domain wind speed signal u(k) to frequency domain u(n) using the FFT. The spectrum 

in the frequency domain is  

𝐹𝑢(𝑛) =  ∑ [
𝑢(𝑘)

𝑁
] 𝑒−𝑖2𝜋𝑛𝑘/𝑁𝑁−1

𝑘=0       (1) 

Assuming u(t) = x(t) is ergodic, the power spectral density can be defined as:  

𝑆𝑥𝑥(𝑓) =  lim
𝑇→∞

1

𝑇
|𝑥𝑇(𝑓)|2 = �̂�𝑥𝑥(𝑓) ; where 𝑥𝑇 = 𝑥(𝑡)𝛿(𝑡), 𝛿(𝑡) is the Kronecker delta function, and   135 

�̂�𝑥𝑥 is the autocorrelation function. Using Parseval's theorem, the variance (average power) can be 

calculated by integrating the power spectrum over all frequencies of interest. The power spectrum 𝑆𝑥𝑥(𝑓) 

is converted to dB/Hz by changing the scale of PSD to 10 log10 𝑆𝑥𝑥(𝑓). We use the one-sided frequency 

spectrum PSD(f) because the wind speed is a real-valued function and the dataset used was sampled at 

equal intervals.  140 

The simulation of the random processes such as horizontal component u(t, x) of the wind velocity can be 

described as (Shinozuka, 1971; Veers, 1983): 

u(t, x) = u(t) + u’(t, x) = u(t) + ∑ 𝐴𝑗  sin 2𝜋 𝑓𝑗𝑡 +  𝐵𝑗  cos 2𝜋 𝑓𝑗𝑡𝑛
𝑗=1   (2) 

Here 𝐴𝑗 and 𝐵𝑗 are Fourier coefficients corresponding to frequency 𝑓𝑗. The wind energy industry uses 

sampling at a regular interval (1Hz), hence the second term of Equation (2) can be synthesized using the 145 

Fast Fourier Transformation (ℱ) as 

   u(t, x) = u(t) + ℱ𝑢′
−1 ∑ (𝐴𝑗 + 𝑖 𝐵𝑗)𝑛

𝑗=1 .     (3) 

Our contribution to this literature is that we present an efficient engineering method to recreate the PSD, a 

function of the Fourier coefficients, practically from the four statistics 4S the wind energy industry reports 

of the wind resource or wind turbine performance measurement.  We recreate PSD by decomposition as 150 
follows.   
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4.1 PSD decomposition  

We decompose the PSD of u(k) into trend and random components.  

PSD = PSD (T) + PSD (R)         (4) 

Analyzing the measured data, we establish that PSD (R) can be estimated using stochastic techniques with 155 
an appropriate choice of PSD (T). We present two cases of PSD (T) that use the regular and constrained 

optimization passing through a fixed point (PSD(Max), fi). The trend PSD (T) and the random component 

PSD (R) are estimated as follows.   

 

 160 

 

Figure 2: Power spectral density decomposition 

 

(PSD(Max), fi) 

(PSD(T), 0) 
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Figure 3: Sample autocorrelation of PSD(R) 165 

Looking at the autocorrelation function in Figure 3, the regular (unconstrained) method of 

estimating the trend PSD(T) leads to a better estimate of PSD(R) as a stochastic process. It is 

however difficult to estimate the corresponding PSD(at f   0) of the best-fit trend line from the 

four statistics 4S. A few larger order moments, beyond those included in 4S, might be necessary 

to estimate PSD(at f  0). 170 

4.2 Trend of PSD Estimate 

The power spectrum is distributed exponentially for a time series that is formed from a sequence of 

measurements of a normally distributed random variable with mean zero and variance unity, N(0,1), [20]. 

Accordingly, we estimate the trend component of PSD by an exponential function:  

PSD (T) = 𝑎1 𝑒𝑥𝑝𝑎2∗𝑛 + 𝑎3;       (5) 175 

where ai (i= 1, 2 3) are parameters, and n is the frequency in Hz.  

We use both the regular (unconstrained) and constrained least square best-fit methods to estimate ais. In 

the case of the latter method, PSD(T) must meet additional constraints. The PSD(T) has to pass closely 

through a fixed point (PSD(Max), fi) which is an additional constraint of the non-linear optimization to 

come up with the parameters (ai). We choose the constrained method option for PSD(T)  because the one 180 
of inputs, the standard deviation, is the direct predictor of the PSD(Max) as presented in Figure 4, which 

may be following Parseval's theorem.    
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Figure 4: Relationship between PSD(T) and Standard Deviation 

4.3 Random Component of PSD Estimate 185 

The random components PSD(R) are estimated based on the lower and upper envelope of the PSD(Trend).   

Based on the analysis of measurement data, we used an envelope of the PSD as [PSD (T) + ue, PSD (T) - 

2*ue]. We are arbitrarily using ue = 10 by the hit and trial methods.  

We model PSD(R) as a stochastic variable. A random number r was generated as follows:  

r = lb + (ub-lb).* randn(N,1); with lb = -ue, ub = ue; 190 

We then rescaled r with constants [ks, ke] = [0.3, 0.4] as follows.  

r  = (r - ue)*ks   if |r| > ue and the sign of r is positive,  (6) 

= (r + ue)*ke  if |r| > ue and the sign of r is negative 

= r   otherwise 

Figure 5 presents PSD(R) derived from the uniformly distributed random numbers RAND().  For 195 
comparison, we have overlaid the synthesized PSD(R) with the derived PSD(R) from the CART wind 

turbine.  

y = 13.977x + 9.1427
R² = 0.8243

y = 6.289x - 1.5047
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Figure 5: Actual and Modeled PSD(R) derived from the random numbers 

The range (or envelop) of PSD(R) seems to have comparable magnitude and randomness with the actual 200 
data.  

4.4 Data synthesis 

Here we present data synthesis for the t = 10 minutes, and t > 10 minutes for which our proposed method 

requires addressing discontinuity at the border of the two timestamps.  

A) 10-minute time stamp at f = 1 Hz 205 

The PSD is now constructed following Equation 4. The PSD is used to synthesize the time series 

using the inverse FFT.  The transformed output signal (from ifft) was rescaled to the standard 

deviation and extremums of u’ based on 4S. 

B) Connecting two timestamps 

The method described above helps synthesize 1-second resolution data for 10 minutes from one timestamp 210 
say at t. To create a time series spanning the multiple timestamps, we need to repeat the process for t-1, t 

timestamps and juxtapose them in the order of the timestamps.  These timestamps, however, are synthesized 

without considering previous (t-1) or succeeding (t+1). Hence it is natural to anticipate the discontinuity at 

the border. To synthesize data for a duration T > 600 sec (i.e. 10 minutes) we must address the discontinuity 

at the border where two 10-minute timestamps join. We connect these two consecutive timestamps using 215 
the simple algorithm presented in Section 8.2.  

4.5 Metrics for time series comparison 

The method we propose here does not resolve the phase angle among various frequencies comprising the 

time domain signal u(t, x). Instead, we use a randomized phase angle sequence while creating time series 

from the PSD.  Accordingly, this PSD decomposition technique is to capture the variability of wind speed 220 
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not the temporal accuracy of the variations within the time T = 10 of synthesis. We rescale the synthesized 

u’(t, x) to match the required standard deviation u of 4S input. Hence, the coefficient of variation which 

is the ratio of u/ u matches well between synthetic and actual data by design. We can also use the root 

mean squared (RMS) value as a metric to compare �̂� with y. The RMS value, however, does not add much 

information a time series of u’ scaled to the targeted u. 225 

An alternative metric to compare time series is the goodness of fit (GFIT).  Here GFIT is computed of the 

actual time series (y) and synthesized time series (�̂�) using Equation 7, which is based on the L2 -norm:  

GFIT = [1 −
𝑁𝑂𝑅𝑀(𝑦−�̂�)

𝑁𝑂𝑅𝑀 (𝑦−�̅�)
]  ×  100 %     (7) 

For time-series comparison it is ideal to compare the higher-order central moments: 𝐸[(𝑢 − 𝐸(𝑢))𝑛]. We 

know the synthetic time series has lost its temporal accuracy as a result of the randomized phase introduced 230 
during the FFT. Accordingly, the metrics for the test of reverse-engineered time series can't be the higher-

order central moments. Hence, we use the two-sample Kolmogorov-Smirnov test (KS2) that infer if time 

series data are from the same continuous distribution.  The test statistic result h is 1 if the test rejects the 

null hypothesis (Ho:  the two time series data are from the same continuous distribution) at the 5% 

confidence level, and 0 otherwise. p is the probability the test statistic h is as extreme as the observed value 235 
under the null hypothesis.  

5 Measurement and Validation Dataset 
We use an archived dataset of CART3 at the NREL’s Flatirons Campus. The original data for CART3 was 

collected using LabView DAQ at 400 Hz and involves over 50+ channels capturing the state of the wind 

turbine and corresponding wind resource measurement synchronized over the GPS clock. We aggregate the 240 
measured 400 Hz field data at T = 1 sec, 1 minute, and 10 minutes and illustrate the concept underlying the 

intra-timestep wind speed synthesis.   

The second dataset used in this study is from NPS 100-21C (Broyhill Wind Turbine) at Appalachian State. 

This 100 kW wind turbine manufactured by the Northern Power System (NPS) is in operation since 2009. 

We use one day of rolling operational data sampled approximately at 1 Hz. 245 

Table 1: Metadata of the two datasets used for validation. 

Dataset Site 

Name 

Location Sampling 

Frequency 

Measurement  

Hub Height 

Data Span 

CART3 NWTC, 

NREL 

Aurora, 

Co 

400 Hz 36.6 m 1 Day  

( August 21, 2017) 

NPS100 Broyhill, 

Appstate 

Boone, 

NC 

~ 1 Hz 37.4 m 1 Day  

(March 30, 2022) 

 

6 Parameters estimation for PSD 
We present some analytical equations to estimate parameters ai (i= 1, 2 3) from 4S. These 

equations are based on the correlation observed in the field data (400 Hz). We aggregated the 250 

CART3 field data at 1 second and computed 10 minutes statistics following the industry standard 

practice stipulated in IEC 61400-1.  Figure 7 presents PSD(Max) plotted against u, and the slope 

a2 of PSD(T) with a1. At frequency n =0, from Equation (4), PSD(T) = a1 + a3. This is the maximum 

value of the best fit exponential function PSD(T) which is different from PSD(max). 
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Based on empirical evidence present in measured data, there is a linear relationship between u 255 

and PSD(max) as illustrated in Figure 4: 

PSD(Max): y = 13.977 u + 9.1427  [with R² = 0.8243]  (8) 

PSD(Fit): y = 6.289 u - 1.5047 [with R² = 0.4666]  (9) 

We found a better correlation of PSD(Fit) with the extremums. Figure 6 presents a chart of 

PSD(Fit) as a function of [(u(max) - u(min))]n, where n = 1, ½  and ¼ .  260 

 

Figure 6: PSD(Fit) as function of range of u(max) and u(min) 

Accordingly, we used the following relationship to estimate PSD(Fit) in this paper, 

PSD(Fit): y = 21.74[(u(max) - u(min))]1/4 - 27.195   (10) 

The slope (a2) of the PSD (Trend) is found to be related to a1 by a power relationship as: 265 

a2 = 1993.9 a1
-1.793    [with R² = 0.7713]  (11) 

Also, a2 relates to a1 * a3 as following an exponential relationship as below: 

a2 = 7.1356e0.0006(a
1

 * a
3

)  [with R² = 0.7439]  (12) 

and, a1 and a3 are related to each other by a linear relationship.  

a3 = -1.0752 a1 + 6.0873  [with R² = 0.8716]  (13)  270 

These empirical relationships among the parameters are depicted in Figure 7.  
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Figure 7: Parameter estimation and mapping 275 

 

7 Steps to synthesize a time series 
In this section, we present steps to synthesize a 10-minute time series using the empirical relation 

we propose among various parameters comprising the PSD function. It is assumed that we have 

4S (at 10 minutes) for the timestamp for which we want to synthesize 1 Hz wind speed or wind 280 

power data. Here are the sequential steps we propose to reverse engineer the time series.  

1) Estimate PSD(Fit) following Equation 10. PSD(Fit) is a measure of a1 + a3. You can also 

use the standard deviation to estimate PSD(Fit) as presented in Equation 9. 

2)  Determine the exponent a2 using Equation 11. 

3) Estimate the trend: PSD(T) = 𝑎1 𝑒𝑥𝑝𝑎2∗𝑛 + 𝑎3 285 
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4)  Model the PSD(R) as described in Section 4.3.  

5) Sum these two functions; PSD = PSD(T) + PSD(R) 

6) Convert the one-sided PSD in (5) to two-sided PSD, say PSD2. 

7) Generate a random number between [0 1] from the uniform distribution. 

8) Use iFFT to generate the time series of u, u(k) = ifft[fft(rn).*sqrt(PSD2)]; 290 

9) Scale the u(k) to zero mean and extremums first and then to the targeted standard deviation. 

10)  Make sure the range of u(k) confirms the extremum values of u. Replace any outliers of 

u(k) by u (max) or u (min) as necessary and repeat step 9 to confirm the targeted standard 

deviation. You should now have u’(t, x) of Equation (2).  

8 Results and Discussion 295 

8.1 Time series synthesis 

Figure 8 compares synthesized time series for one of four cases illustrated in Figure 1 of Section 

2. This is case # 15. By observation, we may tell that the variability of the wind speed looks 

comparable. A pitfall of the method is that the two dataset does not compare well in the temporal 

dimension. This deviation may be attributed to the lost phase information of frequency components 300 

comprising the signal. We don’t know how those frequencies are spaced apart relative to each 

other.  

 

Figure 8: Actual and synthesized wind speed time series 
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8.2 Connecting two timestamps 305 

We assume continuity at the border to come up with a simple logic to connect two 10-minute timestamps. 

Assuming u(t) is the 10-minute average wind speed at t and �̂�(t, i) is the synthesized fluctuating component 

of 10-minute where index i of �̂�(t, i) goes from 1 to 600 for 1 Hz data. Here, uf is the first value 

corresponding to i = 1 and ul is the last value i = 600 of the �̂�(t).    

 310 

Figure 9: Discontinuity at the border of two synthesized timestamps 

By its design, this method embodies a discontinuity at the border, see the ends marked by two black 

circles in Figure 9. To avoid sharp discontinuity at the border, it demands 

u(t-1) + �̂� (t-1, i = 600)   u(t) + �̂� (t, i = 1)  

or  u(t-1) + �̂�l(t-1)   u(t) + �̂�f(t) 315 

or  �̂�f(t) - �̂�l(t-1)   u(t-1) – u(t)        (14) 

We looked at the distribution of u = u (t+1) – u(t) to estimate the parameter to connect two 

timestamps. We present the data from CART3 in Figure 10 and Table 2 presents two distributions, 

normal and logistic, fitted to the u and corresponding distribution parameters.  

Table 2: Distribution parameters of u   320 

Distribution Normal Logistic  

parameter value standard error value standard error 

mu ()       -0.0008 0.0015 -0.0062 0.0014 

Sigma ()            0.2061 0.0011 0.1095 0.0007 
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Figure 10: Distribution of Wind speed difference in 1 Hz data 

Following Equation 14, one can evaluate the difference of 10-minute average wind speed between two 

timestamps. If the absolute value of the difference between LHS and RHS of Equation 10 is greater than a 325 
parameter  (a function of sigma Table 2), we may use a moving average filter for u at the border. The 

window of the moving average filter is a parameter that can be set based on the magnitude of discrepancy 

at the border of the two timestamps.  

For the result presented in the following section, we checked if |u| = |uf(t) - ul(t-1)| > 0.5,  which 

corresponds to about  2.5 and represents about 80.26% of all measured variations u at 1 Hz). If yes, we 330 
averaged the two values at the border. For all other cases, the time series are juxtaposed as it is they come 

out of the inverse FFT and are scaled to the 4S.   

8.3 Comparison with a similar method   

We compare the time series generated by the PSD decomposition method with a method that takes similar 

inputs. Here, we compare results with the Hybrid method proposed by Rose and Apt (Rose & Apt, 2012) 335 
using the Kaimal spectrum where u is explicit. The industry standard 10-minute averaged statistics 4S 

should be known apriori for both methods.  

We evaluated different filters including the Butterworth method they propose for the slowly varying 

measured wind speed. The Piecewise Cubic Hermite Interpolating Polynomial (pchip) and the cubic spline 

interpolation method seem to match the result they presented (Rose & Apt, 2012) in Figure 1 (c).  340 
Accordingly, a comparison presented here uses the "u(T=10-min): Trend(pchip)” value as shown in Figure 

11. Please note that the PSD decomposition method uses the measured aggregated value u(T = 10-min) to 

calculate u(t) whereas the Hybrid method uses the Trend(pchip) which varies within the 10-minute 

timestamp. 

https://doi.org/10.5194/wes-2023-45
Preprint. Discussion started: 9 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Page 15 of 21 
 

 345 

a) Average value and trend value for comparison   b) Measured and simulated u’ 

Figure 11: Comparison of u and u for the Hybrid and PSD Decomposition methods 

It was observed that both methods have a possibility of resulting in a negative wind speed, especially for 

the time stamp where the standard deviation is larger and the mean value is low.  The case in point here is 

presented in Figure 12 (b), the time stamp starting at 10:20 am with 4S = [ u = 5.536; u = 1.803, u(max) 350 
= 9.036 , u(min) = 2.024 ] m/s. Hence, we had to use an additional constraint (i.e. u(t) > 0) while scaling 

the standard deviation to the measured value u = 1.803. 

Figure 12 compares the synthesized time series for an hour with the measured CART3 data. For a better 

visual comparison, we present a zoomed-in version of the initial 10-minute timestamp in Figure 12 (b).  

   355 

 

Figure 12: Comparison of the PSD Decomposition technique with the Hybrid Method (Rose & Apt, 

2012)  

The PSD decomposition method seems to follow the actual data better than the Hybrid method. Figure 13 

compares the PDF and CDF of synthetic data by these two methods with that of the measured CART3 360 
dataset. We also compare the PSDs to check how closely this method is reversible. A data synthesis may 

be called reversible it has both forward and backward compatibility. In our case, the synthetic data should 

produce the PSDs and vice versa without significant loss of information. This is not the case as presented 

in Figure 15. There is a significant loss of information while trying to recreate the measured PSD from the 

method discussed in this paper.   365 
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Figure 13: Distributions of Actual and Synthetic Data. 

 

Figure 14: Probability Plot and Bin-wise Density Function. 

 370 
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Figure 15: Power spectrum comparison with the measured CART3 data. 

 

The comparisons of PDFs presented in Figure 13, the probability plot in Figure 14, and the power 

spectrum in Figure 15 may imply that the PSD decomposition method outperforms the Hybrid 375 

method. It is however premature to draw any final conclusion based on the limited dataset used in 

this study.     

8.4 Discussion 

In Section 2 we identified a few study cases and assigned them a case number. Table 3 presents these cases 

with some statistics to compare the synthesized time series with the measured data. For the two-sample 380 
Kolmogorov-Smirnov test, we present the test statistics h and p-value. The p-value is a scalar in the range 

(0,1) which indicates whether the test results are significant. The test statistic result h is 1 if the test rejects 

the null hypothesis (Ho: data in the two time series are from the same continuous distribution) at the 5% 

significance level, and 0 otherwise. 

Table 3: Metrics for the time series comparison 385 
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The RMS values match closely with the measured data because of the rescaling of the synthesized data by 

the target standard deviation. When  = 0, which is always true for u’ by the virtue of Reynold's 

decomposition, the RMS value and standard deviation differ slightly because of a difference in the degree 

of freedom. The negative value of GFIT implies mathematically that 𝑁𝑂𝑅𝑀(𝑦 − �̂�) >  𝑁𝑂𝑅𝑀 (𝑦 − �̅�), 390 

which physically means that the directions of y and �̂� are not well correlated because we used the 

randomized phase during the inverse FFT. However, the two-sample Kolmogorov-Smirnov test suggests 

that the method we propose is able to recreate the distribution of the measured data for Cases # 1, 15, and 

17. The PSD decomposition method seems not to capture the variation of u' if it is bimodal (Cases # 9) or 

heavily skewed positively or negatively. This result suggests that we need to measure some additional 395 
parameters, higher order moment functions such as skewness and kurtosis or phase sequence of the 

underlying FFT, to completely inform this 1 Hz data synthesis process.  

Given the technological advancement in data acquisition and data storage, does it worth exploring the next 

optimal timestep to archive/aggregate wind data? Is the current practice of 10-minute aggregation good 

enough or should we aspire for data aggregation at a higher resolution (say for example, 1-minute or 5-400 
minute)?  These questions may demand a larger discussion in order to attempt consensus among diverse 

stakeholders of the wind energy industry. As part of the broader research questions, we proposed a 

temporary fix for data synthesis, from 10 minutes to 1 second, to capture inter-timestep variability of wind 

speed or wind power. The PSD decomposition method we detailed in this article seems to be a practical 

solution but not general enough to capture a wider range of distribution u may follow. We aspire to come 405 

up with additional parameters based on data sampling of wind resources and wind power that might 

complement the wind energy industry-standard 10-minute aggregation practice.  

9 Conclusion 
We present an engineering method to synthesize a high resolution ( f = 1 Hz) wind speed time series based 

on the industry standard four standard statistics (i.e. average, standard deviation, maximum, and minimum) 410 
recorded at 10 minutes. We utilize the unique signature embedded in power spectral density (PSD) to 

synthesize a high-resolution (600x) dataset. This data synthesis method by PSD decomposition 

encompasses some physics of horizontal wind speed inherent in the power spectral density signature by its 

design but this method is not general enough to approximate all possible variations of u' within the 10-

minute aggregation time. 415 

We have not explored the forward and backward compatibility of the PSD decomposition technique for 

data synthesis. Future works may pinpoint what additional parameters we may need to collect during the 

wind resource assessment phase for an accurate representation of the spectrum and facilitate interoperability 

of data synthesis such that industry-standard 10 minutes data can still be utilized to inform applications 

requiring high-resolution data such as grid integration and power system studies. 420 

Competing interests 
The contact author has declared that none of the authors has any competing interests. 

Acknowledgment 
Andy Scholbrock (NREL) and Chris Conner (NPS) for their support with the validation dataset. We 

benefited from comments we received at the 2022 NAWEA/WindTech Conference at the University of 425 
Delaware. 

  

https://doi.org/10.5194/wes-2023-45
Preprint. Discussion started: 9 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Page 19 of 21 
 

 

References 
Anderson, B., Poudel, R., Reilly, J., Koralewicz, P., Krishnan, V., & Rane, J. (2022). Advanced Distributed 430 

Wind Turbine Controls Series: Part 1‒. Golden, CO: National Renewable Energy Laboratory. 

Retrieved from https://www.nrel.gov/docs/fy22osti/81338.pdf 

Apt, J. (2007). The spectrum of power from wind turbines. Journal of Power Sources, 169, 369–374. 

Apt, J. (2019). What has been learned from frequency-domain analysis of wind and solar power. FISE-

IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE), (pp. 1-4). 435 

https://doi.org/10.1109/FISECIGRE48012.2019.8984982 

Apt, J. (2019). What has been learned from frequency-domain analysis of wind and solar power. 2019 

FISE-IEEE/CIGRE Conference-Living the energy Transition (FISE/CIGRE) (pp. 1-4). IEEE. 

Beretta, M., Pelka, K., Cusidó, J., & Lichtenstein, T. (2021). Quantification of the Information Loss 

Resulting from Temporal Aggregation of Wind Turbine Operating Data. Applied Sciences, 11(17), 440 

8065. 

Broersen, P. M., & Waele, S. d. (2013). Generating Data With Prescribed Power Spectral Density. IEEE 

TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 52(4), 1061-1067. 

Browna, B. G., Katzb, R. W., & Murphyc, A. H. (1984). Time Series Models to Simulate and Forecast Wind 

Speed and Wind Power. Journal of Applied Meteorology and Climatology, 23, 1184–1195. 445 

Chen, J., & Rabiti, C. (20217). Synthetic wind speed scenarios generation for probabilistic analysis of 

hybrid energy systems. Energy, 120(1), 507-517. 

DO, M.-T., & BERTHAUT-GERENTES, J. (2018). Optimal time step of SCADA data for the power curve of 

wind turbine. Global Wind Summit 2018. 1102. IOP Conf. Series: Journal of Physics: Conf. Series. 

https://doi.org/10.1088/1742-6596/1102/1/012025 450 

E.Baring-Gould, I. (1996). Hybrid2: The hybrid system simulation model, Version 1.0, user manual. 

Golden, CO (United States): National Renewable Energy Laboratory. 

Fingersh, L. J., & Johnson, K. (2002). Controls Advanced Research Turbine (CART) Commissioning and 

Baseline Data Collection. Golden, CO: National Renewable Energy Laboratory. 

HOMER. (n.d.). Generating Synthetic Wind Data. (HOMER) Retrieved 7 1, 2021, from 455 

https://www.homerenergy.com/products/pro/docs/latest/generating_synthetic_wind_data.ht

ml 

Hoven, I. V. (1957). Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 

cycles per hour. Journal of Atmospheric Sciences, 14(2), 160-164. 

IEC. (2017). Wind energy generation systems - Part 12-1: Power performance measurements of 460 

electricity producing wind turbines. International Electrotechnical Commission. 

https://doi.org/10.5194/wes-2023-45
Preprint. Discussion started: 9 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Page 20 of 21 
 

IEC. (2019). Wind energy generation systems - Part 1: Design requirements. International 

Electrotechnical Commission. 

IEEE. (2018). 1547-2018 - Standard for Interconnection and Interoperability of Distributed Energy 

Resources with Associated Electric Power Systems Interfaces. IEEE Standard Association. 465 

Jonkman, B. J. (2009). TurbSim user's guide: Version 1.50. Golden, CO (United States): National 

Renewable Energy Laboratory (NREL). 

Kaminsky, F. C., Kirchhoff, R. H., & Syu, C. Y. (1990). A statistical technique for generating missing data 

from a wind speed time series. Annual Conference of the American Wind Energy Association. 

Washington, DC. 470 

Lee, D., & Baldick, R. (2014). Future Wind Power Scenario Synthesis Through Power Spectral Density 

Analysis. IEEE Transcations on Smart Grid, 5(1), 490-500. 

Lopez-Villalobosa, C. A., Rodriguez-Hernandeza, O., Martinez-Alvaradob, & Hernandez-Yepesc, J. G. 

(2021). Effects of wind power spectrum analysis over resource assessment. Renewable Energy, 

167, 761-773. 475 

Manwell, J. F., Rogers, A., Hayman, G., Avelar, C. T., McGowan, J. G., Abdulwahid, U., & Wu, K. (2006). 

Hybrid2–a hybrid system simulation model–theory manual. Amherst, MA: Renewable Energy 

Research Laboratory, University of Massachusetts Amherst. 

Piwko, R., Roose, L., Orwig, K., Matsuura, M., Corbus, D., & Schuerger, M. (2012). Hawaii solar 

integration study: Solar modeling developments and study results. 2nd Annual International 480 

Workshop on Integration of Solar Power in Power Systems Conference. Lisbon, Portugal. 

Poudel, R., Krishnan, V., Reilly, J., Koralewicz, P., & Baring-Gould, I. (2021). Integration of Storage in the 

DC Link of a Full Converter-Based Distributed Wind Turbine. 2021 IEEE Power & Energy Society 

General Meeting. Washinton DC (United States): National Renewable Energy Laboratory. 

Retrieved from https://www.nrel.gov/docs/fy21osti/78347.pdf 485 

Quiroz, J. E., & Reno, M. J. (2012). Detailed Grid Integration Analysis of Distributed PV. IEEE Photovoltaic 

Specialists Conference. https://doi.org/10.1109/PVSC.2012.6317683 

Rose, S., & Apt, J. (2012). Generating Wind Time Series as a Hybrid of Measured and Simulated Data. 

Wind Energy, 15(5), 699-715. 

Shinozuka, M. (1971). Simulation of Multivariate and Multidimensional Random Processes. The Journal 490 

of the Acoustical Society of America, 49(357). 

Stengel, K., Glaws, A., Hettinger, D., & King, R. N. (2020). Adversarial super-resolution of climatological 

wind and solar data. Proceedings of the National Academy of Sciences, 117(29), 16805-16815. 

Sturrock, P. A., Scargle, J. D., Walther, G., & Wheatland, M. S. (2005). Combined and comparative 

analysis of power spectra. Solar Physics, 227(1), 137-153. 495 

Veers, P. S. (1983). Modeling Stochastic Wind Loads on Vertical Axis Wind Turbines. Sandia National 

Laboratories. 

https://doi.org/10.5194/wes-2023-45
Preprint. Discussion started: 9 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Page 21 of 21 
 

Zhao, Y.-G., Ono, T., & Ishii, K. (2002). Monte Carlo Simulation Using Moments of Random Variables. 

Journal of Asian Architecture and Building Engineering, 1(1), 13-20. 

https://doi.org/10.3130/jaabe.1.13 500 

 

 

https://doi.org/10.5194/wes-2023-45
Preprint. Discussion started: 9 May 2023
c© Author(s) 2023. CC BY 4.0 License.


