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Abstract. The interest in trading intraday markets has been increasing due to the growth of renewable intermittent energy

production. With the growing renewable energy capacity, which mostly comes from wind energy, the intraday market volume

has been continuously increasing every year. In Europe, countries work with different lead times ranging from 5 to 90 minutes

and trading blocks of 15 minutes. Several countries, including Sweden, use 15-minute trading blocks with 60 minutes lead time.

Market participants use the intraday market to optimize their position after the day-ahead market closes. Since new methods5

become available, such as better forecasts on short-term renewable energy power output and demand, the intraday market has

become more important for energy traders in order to maximize their profit. The primary objective of this study is to enhance

the intraday forecasting of wind power by improving the forecasting methods using machine learning. A hybrid approach that

combines a mode decomposition method, Empirical Mode Decomposition (EMD), with Support Vector Regression (SVR),

is used. In addition, the forecasting with the SVR method is improved by applying a cross-validation method that tunes the10

parameters used. The study utilized three months (92 days) of wind turbine power data from 21 June 2017 to 20 September 2017.

80% of the data was used for training, and the remaining data were used for predictions. The results showed that combining

SVR with a hybrid method that incorporates EMD predictions can lead to higher prediction accuracy. Furthermore, our results

stress that parameter-tuning algorithms can improve machine-learning methods. We believe that the methods proposed in this

study will be beneficial for the planning of dispatchable energy generation and pricing for the intraday electricity market.15

1 Introduction

The Nordic market is one of the oldest market-based electricity systems and is widely regarded as well-functioning and effective.

The Nordic economy has many market structures, including a day-ahead so-called "spot" market, and an hour-ahead intraday

market (Hu et al., 2021).20
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Interest in trading intraday markets is growing as the amount of renewable intermittent energy production grows. Being

balanced on the network closer to delivery time benefits both market participants and power systems by reducing the need

for reserves and related costs. Furthermore, the intraday market is a critical instrument for market participants to prepare for

unforeseen shifts in consumption and outages (Zavala and Messina, 2016).

The intraday market volume increased by 57% in 2019. This is explained by the increase in the share of variable renewable25

generation, mostly the increase in wind energy capacity. Since new knowledge, i.e. better renewable energy power output and

demand forecasts, become available after the day-ahead market closes, market participants use the intraday market to optimize

their place. In Europe, countries work with different lead times ranging from 5 to 90 minutes and trading blocks of 15 minutes.

Many countries including Sweden are working with 15-minute trading blocks and 60 minutes lead time. Therefore it is crucial

to use a minute-scale forecast of wind power in the electricity market (Würth et al., 2019).30

Wind power forecasting is an important aspect of renewable energy systems, as it helps to optimize the operation of wind

farms and improve their efficiency. Various methods have been proposed for wind power forecasting, including physical methods

that use atmospheric descriptions, numerical weather prediction data in statistical forecasting models (Huang and Kuo, 2018),

and time-series analysis (Santamaría-Bonfil et al., 2016). The forecasting methods include autoregressive models, ARIMA

models, artificial neural network models, and support vector regression models Yang (2015); Tan et al. (2020); Huang et al.35

(2017). However, few researchers have paid attention to the forecasting problem about the wind power capacity, which plays an

important role in wind power construction plans, investment, operation, and as well as energy trading plan (Yang, 2015).

Therefore, wind power forecasting is a critical aspect of renewable energy systems, and various methods have been proposed

to forecast wind power output. These methods include autoregressive models, ARIMA models, artificial neural network models,

and also support vector regression models. Recently, hybrid methods have promised improvements in short-term wind power40

forecasting and uncertainty analysis (Huang et al., 2017; Liu et al., 2018). However, further research is needed to enhance the

accuracy of wind power capacity forecasting.

The main objective of this study is to improve the intraday forecasting of wind power by improving the forecasting method

using machine learning. A hybrid approach, which combines a mode decomposition method, Empirical Mode Decomposition

(EMD), with Support Vector Regression (SVR), is used (Altıntaş and Davidson, 2021; Altıntaş et al., 2023). The data used in45

this study are obtained from the Röbergsfjället wind farm which is located at Vansbro in Sweden and consists of eight Vestas

V90-2MW horizontal axis wind turbines. The three months (92 days) of power data have been used from 21 June 2017 to 20

September 2017, 80% of the data has been used for training and the rest is used for the predictions. The data are available

in seconds and averaged over 15 minutes for this study. The results imply that combining SVR with a hybrid method that

incorporates EMD predictions can lead to higher prediction accuracy. The planning of dispatchable energy generation and50

pricing for the intraday electricity market is expected to improve with higher accuracy of wind power forecasting.
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2 Theory and Method

This study focuses on improving the accuracy of wind power forecasting through the application of machine learning methods.

In this context, the Support Vector Regression (SVR) method was utilized as the base method for forecasting, and to improve

the performance of the SVR method, the empirical mode decomposition (EMD) method was employed as a pre-processor55

(EMD-SVR). The forecasting results are compared to evaluate the contribution of the mode decomposition method.

In addition, a cross-validation (CV) method is applied to optimize the SVR method by tuning its parameters (SVR-CV). The

forecasting accuracy of the SVR-CV method is compared with that of the SVR method.

Overall, this study aims to provide insights into how machine learning methods can be used to improve the accuracy of wind

power forecasting and the potential benefits of combining multiple techniques for even better performance. A more detailed60

description of the methods is given below.

2.1 Support Vector Regression (SVR) Method

SVR is an algorithm for machine learning, which is a variant of Support Vector Machine (SVM). (Altıntaş et al. (2022)). SVR

has widely been applied to forecasting problems. For a time-series data,

� = (-8 , H8),1 ≤ 8 ≤ #,

where -8 represents the 8th element and H8 corresponds the target output data. The SVR function, 5 , is a linear function that is

issued to formulate the nonlinear relation between input and output data as 5 (-8) = l
)q(-8) + 1, where l, 1, and q(-8) are

the weight vector, bias, and the function that maps the input vector - into a higher dimensional feature space, respectively. l65

and 1 are obtained by solving the optimization problem:

<8=
1

2
‖ l ‖2 +�

#
∑

8=1

(b8 + b
∗
8 ) (1)

subject to:

H8 −l
) (k(G)) − 1 ≤ n + b8

l) (k(G)) + 1 − H8 ≤ n + b8

b8 , b
∗
8 ≥ 0.

(2)

The first term of Eq. 1 measures the flatness of the function. The parameter � balances the trade-off between the complexity of70

the model and its generalization ability. The cost of error is measured by the variables, b8 and b∗8 .

The final SVR function is obtained as:

H8 = 5 (-8) =

#
∑

8=1

((U8 −U
∗
8 ) (-8 , - 9 )) + 1 (3)

where  (-8 , - 9 ) is the Kernel function Qiu et al. (2017) and U8 and U∗8 are the Lagrange multipliers.
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Python programming language and scikit-learn 1.1.2 package have been used for SVR. The radial basis function (RBF) is75

chosen as the kernel function for the base method (SVR), then the Kernel function is written as:

 (-8 , - 9 ) = 4G?(−W‖-8 − - 9 ‖
2), (4)

where the parameter W, defines the degree to which the effect of a single example of training reaches. In this study, the base

method parameters are set to, W = 0.96, � = 1.0, which balances the trade-off between the complexity of the model and its

generalization ability, and the maximum error, n , is set to 0.03, and are used for all the predictions.80

2.1.1 Tuning parameters with cross-validation

In the first part of the study, the process of finding the best parameters by trying many possible combinations of the SVR param-

eters was performed once only for the first simulation, and the parameters are kept fixed for the rest of the study. In the second

stage, a parameter tuning application is applied, and the best combination of the parameters suggested by the cross-validation

method is applied in the SVR method. The parameter tuning method is applied as below:85

The GridSearchCV function from the scikit-learn library was used for cross-validation in the parameter tuning process. The

parameters used in the cross-validation are shown in Table 1.

Table 1. Parameter Grid for tuning Support Vector Regression

Parameters used in cross validation

Kernel ’rbf’, ’linear’

C 1, 2, 3, 4, 4.3, 5, 10, 100

Epsilon 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.27, 0.3, 0.5, 0.8, 1.0

Gamma 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 0.95, 0.96, 1.0

The kernel options used in cross-validation are ’rbf’ and ’linear’, while the values for C, epsilon, and gamma are varied to

find the best combination of parameters. The values for C range from 1 to 100 with increments of 1 or specific values like 4.3,90

and the values for epsilon range from 0.01 to 1.0 with various increments. The values for gamma range from 0.01 to 1.0 with

specific values like 0.95 and 0.96.

The linear kernel function is:

 (-8 , - 9 ) = i(-8).i(- 9 ). (5)

The next step is evaluating the combinations of the parameters for the best performance. To achieve this, make_scorer95

function of the (28:8C − ;40A= library has been used. A score metric value is generated according to the lower mean squared
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error. Finally, the model with the best parameters which is obtained by using the best_params_ attribute of the GridSerachCV

has been used to fit the model using the training set data.

This parameter-tuning process is applied in the second stage of the study, and the best combination of parameters suggested

by the cross-validation method is used in the SVR method for each prediction.100

2.2 Scale decomposition by Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is based on the concept that any data signal can be decomposed into a set of fundamental

intrinsic oscillations, where the original signal is a combination of these oscillations. Each of these oscillations is referred to

as an Intrinsic Mode Function (IMF), which satisfies two conditions: (1) the local extrema and zero-crossing numbers must

be equal or differ by at most one, and (2) the mean of the curve formed by connecting the maxima and minima should be105

zero Huang et al. (1998); Altıntaş et al. (2019).

To apply EMD to a continuous time series - (C), an algorithm can be written as follows. Fluctuations are obtained by

subtracting the time-averaged data, resulting in the time history data oscillating around zero.

1. Obtain all the local maxima and minima, see Fig. 1(a).
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(a) All local maxima (red points), and local minima

(green points).
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(b) Construction of the mean curve by applying a

cubic spline.

Figure 1. Finding maxima, minima, and constructing a curve.

2. Construct an envelope curve for maxima and minima, and calculate the mean curve of these two envelope curves denoted110

as <11 (C), as shown in Fig. 1(b).

3. Compute ℎ11 (C) = ℎ10 (C) −<11(C), where ℎ10 (C) represents the first IMF constructed from the raw data - (C). The indices

8 and 9 in ℎ8 9 (C) denote the number of the IMF in construction and the number of iterations, respectively.
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4. Repeat steps (i), (ii), and (iii) recursively to obtain ℎ1: (C) = ℎ1(:−1) (C) −<1: (C), where : denotes the iteration number.

The stopping criterion is defined as follows for 0 ≤ C ≤ ) :

B3= =

)
∑

C=0

(

�

�ℎ=(:−1) (C) − ℎ=: (C)
�

�

2

ℎ2
=(:−1)

(C)
)

Empirically, a number B3= < n is defined as the stopping criterion, where n is a number between 0.1 and 0.3.

5. Once the first IMF, i.e. ℎ1: (C) is found, it is subtracted from ℎ10 (C) to obtain ℎ20 (C). The process then restarts from (i) to115

find the second IMF.

6. Set 28 (C) = ℎ8: (C), where 28 (C) is the 8Cℎ. IMF. The process continues until subtraction at step (v) yields monotonic or

constant data (residue), indicating that all the IMFs have been obtained.

Upon applying the Empirical Mode Decomposition (EMD) process, a set of Intrinsic Mode Functions (IMFs) are obtained as

a result. For instance, considering the signal - (C) as depicted in Figure 2(a), which can be mathematically expressed as:

- (C) = 42>B(10C) + 22>B(C) + 3

. The resulting IMFs from the EMD process will represent the frequency components of the original signal - (C). The first IMF

corresponds to the highest frequency component, which is 4cos(C), while the second IMF is 2cos(C). The residual component,120

also known as the residue, is represented by the constant term 3. This is illustrated in Figure 2(b).
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(a) G (C ) = 42>B (10C ) + 22>B (C ) + 3.
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(b) IMF1 = 42>B (10C ) , IMF2 = 22>B (C ) , residual = 3.

Figure 2. EMD divides raw data into the IMFs.

3 Wind Power Data

The data are from the Röbergsfjället wind farm which is situated at Röbergskullen in the southernmost section of the Swedish

municipality of Vansbro (60160 49.8"N, 14120 59.6"E)(see Fig. 3). The wind farm was constructed in 2007, with its highest
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point being 543 meters above sea level. There are 284 meters between the wind farm’s highest and lowest elevations. It consists125

of eight Vestas V90-2MW horizontal axis wind turbines (Abedi et al., 2021). The wind turbine that has been used for this study

is highlighted with the red pin in Fig. 3(a) and also the area is highlighted in a larger map in Fig. 3(b).

The data consist of a list of records including power, hub direction, pitch angle, rotor RPM, temperature, wind direction, and

wind speed for the period of 21 June 2017 to 3 February 2019. The data are recorded every second.

(a) Röbergsfjället wind farm. The data is from the

wind turbine pointed with the red pin. The map is

taken from Vindbrukskollen (see Ref. (Vin)).

(b) Location of the windfarm Röbergsfjället.

The map is taken from Vindbrukskollen (see

Ref. (Vin)).

Figure 3. Wind farm and turbine location.

The wind turbines measure the wind speed with an anemometer which is installed at a specific location on the nacelle. This130

anemometer is installed behind the blades and thus exposed to turbulence generated by the rotor blades. Therefore we can not

trust the wind speed measured in the downstream wake area, and the wind direction is also not trusted for the same reason.

Moreover, it is a pointwise measurement, however, the wind speed field that creates power is the rotor plane area which is far

from homogeneous. For these reasons, we can not use wind speed from the anemometer. In this study, output power history

data has been used.135

The three months of data were used from 21 June 2017 to 20 August 2017. Thus we try to capture seasonal wind behavior.

For the same reason, the data between 11 : 00 to 17 : 00 have been used.

In the intraday electricity market in Sweden, trading is conducted in 15-minute intervals, with a lead time of 60 minutes. To

forecast the future output power of wind farms, historical wind power data are utilized. These data are divided into time-windows

that are averaged over 15-minute intervals. For instance, the window 11 : 00−11 : 15 represents the data that has been averaged140

over 15 minutes in the given interval. There are missing records, meaning that for some seconds the turbine has generated no

power, which are excluded. To make accurate predictions, the previous four time-windows are used as input to forecast the wind

power output for a time-window that is 60 minutes ahead. This approach allows for a more precise and informed prediction of

the future wind power output, taking into account the historical data and the 15-minute trading blocks with a 60-minute lead

7

https://doi.org/10.5194/wes-2023-48
Preprint. Discussion started: 13 June 2023
c© Author(s) 2023. CC BY 4.0 License.



time used in the intraday electricity market in Sweden. An illustration of the prediction for the time-window 13:00-13:15 is145

illustrated in Figure 4.

Figure 4. The power prediction for the time-window 13:00-13:15 is illustrated. The four previous time-windows have been used as an input

with 60 minutes leading time, similar to the intraday market working timeline in Sweden.

4 Results

4.1 Base method, (SVR), compared to the hybrid method (EMD-SVR)

The results of applying Support Vector Regression (SVR), to forecast the future power output of wind turbine data are compared

with a hybrid method called EMD-SVR. The test data used for evaluation corresponds to the last 19 days, which is approximately150

20% of the total 92 days of data. It should be noted that all parameters for both SVR and EMD are kept the same for all predictions.

SVR is applied using the original data, without any decomposition, as the feature. On the other hand, EMD-SVR uses

Empirical Mode Decomposition (EMD) as a preprocessor to SVR, where the original data is decomposed into its Intrinsic

Mode Functions (IMFs), and each IMF is used as a feature for SVR.

Figure 5 presents a total of 16 predictions for 15-minute averaged time-windows in the time interval of 13:00 - 17:00. The first155

predicted time-window is 13:00-13:15, in accordance with the intraday market timeline, as illustrated in Fig. 4. Fig. 5 provides

a visual representation of the power prediction error (RMSE) for the different time-windows, and the comparison between SVR

and EMD-SVR in terms of their accuracy in forecasting the future power output of the wind turbine. Table 1 displays these

errors together with the mean values of the 19 days of power generation and predictions, with the best approximation provided

in a separate column and highlighted in red. The errors are calculated using the formula:160

'"(� =

√

∑=
8=1(H8 − H

∗
8
)

=
, (6)

where H8 , and H∗8 are 8Cℎ real and predicted data, respectfully.

The comparison of SVR and EMD-SVR reveals that for the time-windows 13:00 - 13:15, 13:15 - 13:30, 14:15 - 14:30,

14:45 - 15:00, and 15:15 - 15:30, EMD-SVR performs better than SVR. This indicates that in approximately 31% of the cases,

using the IMFs as features in EMD-SVR yields better predictions compared to using the raw data as the feature, as shown165
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in Fig.5 and Table2. Among the IMFs, IMF 1, which represents the highest frequency mode of the real data, shows better

agreement with the real data in 14 out of 16 time-windows. This can be explained by the concept of mode decomposition,

where high-frequency modes represent short-term changes and low-frequency modes represent long-term changes. Since this

study focuses on short-term predictions for the intraday market, IMF 1 outperforms the lower frequency components.

The minimum and maximum errors obtained in the predictions are 6% and 16%, respectively, indicating the performance of170

the forecasting methods.
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Figure 5. The power prediction error for the time-windows 13:00-13:15 to 16:45-17:00. 80% of the data has been used for the training and

the rest of the data is used for the predictions that are compared with the real data. SVR compared to EMD-SVR.
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Table 2. The power prediction errors for the time-windows between 13:00-17:00. RMSE = root mean square error. SVR compared to

EMD-SVR.

SVR compared to SVR-EMD

Window Real data Raw prediction () IMF prediction Raw prediction RMSE IMF RMSE Best performed IMF

13:00-13:15 436.6414 431.1161 433.7931 0.1284 0.1126 IMF 1

13:15-13:30 454.2678 437.7086 414.6955 0.1383 0.1168 IMF 1

13:30-13:45 513.9758 450.5968 424.7050 0.1378 0.1687 IMF 1

13:45-14:00 466.5867 468.1083 451.2093 0.1125 0.1184 IMF 1

14:00-14:15 463.8826 495.3884 596.7382 0.1116 0.1404 IMF 1 + 2

14:15-14:30 455.6234 539.7051 473.4623 0.1006 0.1003 IMF 1

14:30-14:45 465.4522 517.7594 419.2350 0.0789 0.1120 IMF 1

14:45-15:00 412.4164 624.0937 539.3825 0.1716 0.1493 IMF 1

15:00-15:15 419.6866 508.4634 598.2410 0.1083 0.1695 IMF 1

15:15-15:30 420.9805 582.9539 271.1095 0.1832 0.1687 IMF 1

15:30-15:45 424.9075 509.5947 343.4454 0.1226 0.1482 RESIDUAL

15:45-16:00 454.6959 486.7116 503.4796 0.1176 0.1359 IMF 1

16:00-16:15 479.6587 411.2667 459.8857 0.1029 0.1271 IMF 1

16:15-16:30 447.9367 389.1476 426.0646 0.0637 0.0880 IMF 1

16:30-16:45 491.8764 463.3234 533.6140 0.0962 0.1200 IMF 1

16:45-17:00 488.9956 426.7180 382.6640 0.0857 0.1090 IMF 1

4.2 Base method, (SVR), compared to cross-validation application (SVR-CV)

In this stage of the study, the parameters used in support vector regression (SVR) are tuned using a cross-validation method

(see Section 2.1.1). The error for the predictions are presented in Fig 6, while the performance table can be found in Table 6.

The best parameters obtained from the cross-validation application are displayed in a separate column. The root mean square175

error (RMSE) is calculated, and the differences between SVR and SVR-CV are provided in a separate column, where positive

values indicate that SVR-CV provides better approximations compared to SVR. SVR-CV shows better agreement with real data

in 12 out of 16 time-windows. On average, SVR-CV exhibits a gain of approximately 8% in RMSE error compared to SVR.

The study reveals that the cross-validation can result in a gain in RMS error as high as 33%, as observed in the time-window

14:30-14:45.180
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Figure 6. The power predictions error for the time-windows 13:00-13:15 to 16:45-17:00. 80% of the data have been used for the training and

the rest of the data is used for the predictions that are compared with the real data. SVR compared to SVR-CV.
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Table 3. The power predictions errors for the time between 13 : 00− 17 : 00. RMSE = root mean square error. SVR compared to SVR-CV.

SVR compared to SVR-CV

Window
Real data

(mean value)

SVR prediction

(mean value)

SVR-CV prediction

(mean value)

SVR

RMSE

SVR-CV

RMSE

Difference in

RMSE

Best parameters obtained by cross validation

13:00-13:15 436.6414 431.1161 462.0369 0.1284 0.1298 - 1.13 % ’C’: 10, ’epsilon’: 0.2, ’gamma’: 0.01, ’kernel’: ’rbf’

13:15-13:30 454.2678 437.7086 411.9456 0.1383 0.1257 + 9.06 % ’C’: 1, ’epsilon’: 0.27, ’gamma’: 0.1, ’kernel’: ’rbf’

13:30-13:45 513.9758 450.5968 444.6124 0.1378 0.1532 - 11.22 % ’C’: 10, ’epsilon’: 0.2, ’gamma’: 0.01, ’kernel’: ’rbf’

13:45-14:00 466.5867 468.1083 467.04558 0.1125 0.1130 - 0.49 % ’C’: 2, ’epsilon’: 0.2, ’gamma’: 0.1, ’kernel’: ’rbf’

14:00-14:15 463.8826 495.3884 476.1067 0.1116 0.1033 + 7.39 % ’C’: 2, ’epsilon’: 0.2, ’gamma’: 0.01, ’kernel’: ’rbf’

14:15-14:30 455.6234 539.7051 535.6208 0.1006 0.0876 + 12.91 % ’C’: 1, ’epsilon’: 0.27, ’gamma’: 0.01, ’kernel’: ’rbf’

14:30-14:45 465.4522 517.7594 461.0503 0.0789 0.0527 + 33.17 % ’C’: 1, ’epsilon’: 0.27, ’gamma’: 0.01, ’kernel’: ’rbf’

14:45-15:00 412.4164 624.0937 583.2256 0.1716 0.1232 + 28.18 % ’C’: 1, ’epsilon’: 0.27, ’gamma’: 0.01, ’kernel’: ’rbf’

15:00-15:15 419.6866 508.4634 515.0853 0.1083 0.1128 - 4.17 % ’C’: 1, ’epsilon’: 0.27, ’gamma’: 0.01, ’kernel’: ’rbf’

15:15-15:30 420.9805 582.9539 572.4973 0.1832 0.1789 + 2.29 % ’C’: 1, ’epsilon’: 0.27, ’gamma’: 0.01, ’kernel’: ’rbf’

15:30-15:45 424.9075 509.5947 470.3976 0.1226 0.1012 + 17.45 % ’C’: 1, ’epsilon’: 0.2, ’gamma’: 0.01, ’kernel’: ’rbf’

15:45-16:00 454.6959 486.7116 478.8921 0.1176 0.1106 + 5.90 % ’C’: 1, ’epsilon’: 0.27, ’gamma’: 0.01, ’kernel’: ’rbf’

16:00-16:15 479.6587 411.2667 494.2966 0.1029 0.0917 + 10.86 % ’C’: 100, ’epsilon’: 0.27, ’gamma’: 0.01, ’kernel’: ’rbf’

16:15-16:30 447.9367 389.1476 436.7477 0.0637 0.0559 + 12.19 % ’C’: 1, ’epsilon’: 0.27, ’gamma’: 0.01, ’kernel’: ’rbf’

16:30-16:45 491.8764 463.3234 465.1299 0.0962 0.0939 + 2.38 % ’C’: 1, ’epsilon’: 0.27, ’gamma’: 0.01, ’kernel’: ’rbf’

16:45-17:00 488.9956 426.7180 461.8803 0.0857 0.0828 + 3.36 % ’C’: 1, ’epsilon’: 0.2, ’gamma’: 0.7, ’kernel’: ’rbf’
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5 Conclusions

The conclusions of this study highlight the benefits of employing an empirical mode decomposition (EMD)-based decoupling

procedure as a preprocessor to support vector regression (SVR), and parameter tuning by using a cross-validation method

for improving day-ahead wind power forecasting. In Sweden the intraday market works with 15-minute packages and with a

60-minute leading time. To fit this timeline, we used 15-minute averaged power data as our input for prediction. We divided the185

data set into 15-minute time-windows and calculated the average within each window. These averaged values were then used

as input features for our forecasting model.

For making predictions, we used the power data from the previous four 15-minute time-windows as input and forecasted the

power production for the 15-minute time-window that is 60 minutes ahead. This aligns with the timeline of the intraday market,

where predictions need to be made with a 60-minute leading time to account for the operational requirements of the market.190

In the first stage of the study, where SVR is compared to EMD-SVR, it is found that for five out of sixteen 15-minute

time-windows, the IMF or IMF combinations obtained from EMD approximate the real data better than using pure SVR in

the prediction process. The maximum error in approximating power productions with this method is 16%. Ten out of sixteen

time-windows are predicted with an error of up to 11%, and four of those are predicted with an error of less than 10%. These

results suggest that EMD-based signal decomposition can increase accuracy in wind power/speed forecasting.195

In the second stage of the study, where cross-validation is applied (SVR-CV), better overall approximations are obtained

compared to the SVR method (approximately +8% RMS error, averaged over 16 time-windows). Tuning the parameters of the

SVR method using cross-validation shows a significant advantage compared to using preset parameter values. This indicates

that parameter tuning can greatly improve the performance of SVR for wind power forecasting.

This study is tailored to the specific requirements of the intraday market and provides relevant insights for improving wind200

power forecasting within this timeline. Overall, the study suggests that employing an EMD-based decoupling procedure and

applying cross-validation for parameter tuning can enhance the accuracy of wind power forecasting for the intraday market

using SVR.
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