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Abstract.

Floating wind turbines must withstand a unique and challenging set of loads from the wind and ocean environment. To derisk

development, accurate predictions of these loads are necessary. Uncertainty in modeling predictions leads to larger required

safety factors, increasing project costs and the levelized cost of energy. Complex aero-hydro-elastic modeling tools use many

input parameters to represent the wind, waves, current, aerodynamic loads, hydrodynamic loads, and structural properties. It is5

helpful to understand which of these parameters ultimately drives a design. In this work, an ultimate and fatigue-proxy loads

sensitivity analysis was performed with 35 different input parameters, using an elementary effects approach to identify the

most influential parameters for a case study involving the National Renewable Energy Laboratory (NREL) 5-MW baseline

wind turbine atop the OC4-DeepCwind semisubmersible during normal operation. The importance of each parameter was

evaluated using 14 response quantities of interest across three operational wind speed conditions.10

The study concludes that turbulent wind velocity standard deviation is the parameter with the strongest sensitivity; this

value is important not just for turbine loads, but also for the global system response. The system center of mass in the wind

direction is found to have the highest impact on the system rotation and tower loads. The current velocity is found to be the

most dominating parameter for the system global motion and consequently the mooring loads. All tested wind turbulence

parameters in addition to the standard deviation are also found to be influential. Wave characteristics are influential for some15

fatigue-proxy loading, but did not significantly impact the extreme ultimate loads in these operational load cases.

The required number of random seeds for stochastic environmental conditions is considered to ensure that the sensitivities

are due to the input parameters and not due to the seed. The required number of analysis points in the parameter space is

identified so that the conclusions represent a global sensitivity. The results are specific to the platform and turbine, but the

demonstrated approach can be applied widely to guide focus in design parameter uncertainty.20

1 Introduction

It is projected that over 8 GW of floating wind energy will be installed by 2027 (Musial et al., 2022). Floating offshore wind

turbines (FOWTs) experience a unique set of loads and responses with complicated physics governing the design requirements.

Modeling tools that provide accurate load predictions are required for safe and efficient development. The International Elec-

trotechnical Commission (IEC) Technical Specification 61400-3-2 lays out simulations that should be run and safety criteria25
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that need to be met (IEC, 2019a). The outputs from modeling tools are functions of a very large set of input parameters,

including the environmental excitations, system properties, and aerodynamic and hydrodynamic modeling coefficients.

Not all inputs have an equal impact on the FOWT loads, and different types of loads are more sensitive to different inputs.

Most modeling parameters have some uncertainty associated with them. This uncertainty could be due to inaccuracy in defining

the parameter, physical statistical variability in the parameter, or changes in time throughout the life of a project. The impact of30

this uncertainty should be assessed for uncertainty in the ultimate and fatigue loads on the structure. It is helpful to understand

which modeling inputs are really driving the uncertainty, so the analysis can be focused and efficient.

Sensitivity studies have previously been done for land-based and offshore wind turbines. One approach to assessing sensi-

tivity is the elementary effects (EE) method. This method has been commonly used in the wind industry, where variance-based

sensitivity approaches are difficult, given the complexity of the modeling. The EE method is sometimes called a screening35

method, and can effectively identify the set of most influential parameters, but does not consider any coupling of inputs (Mor-

ris, 1991).

In 2018, Robertson et al. used EE to assess the significance of 18 turbulent wind-inflow related parameters for three different

wind speed ranges on a land-based NREL 5-MW baseline wind turbine. They found that shear and turbulence levels in the

main wind direction were the most important parameters impacting the turbine loads (Robertson et al., 2018). They used40

uniform perturbations for each of the parameters and found that with enough sampled points, the results mirrored sensitivity

approximations (Robertson et al., 2018). A 2019 study by Shaler et al. replicated this approach but focused fully on airfoil

properties. It was found that the turbine loads were most sensitive to aerodynamic lift coefficient and blade twist distribution

(Shaler et al., 2019). Again, this study broke the simulations into three different wind speed ranges, where they found that the

ultimate loads were strongly stratified by the wind condition, while the fatigue loads were more similar between conditions45

(Shaler et al., 2019). Another 2019 analysis used the same EE method to look not only at wind and aerodynamics, but also mass,

structural, and control parameters with important uncertainties; this work again found that turbulence in the wind direction and

shear were the most influential inputs, but also identified new sensitivities to turbine yaw misalignment and the lift distribution

on the outboard section of the blade (Robertson et al., 2019b).

Wind turbine simulations are very complex, with a huge number of highly coupled input parameters. The EE approach with50

independent radial perturbations has been well tested for effects at the turbine level in the papers cited above. This process was

extended to the farm level, with an emphasis on wake effects, in a 2021 project (Shaler et al., 2021). The turbine interactions

were evaluated using three turbines, and 28 wake and inflow related parameters were studied. Again, even when considering

multiple turbines, the turbulence in the wind direction and wind shear dominated the ultimate and fatigue loads (Shaler et al.,

2021).55

Offshore wind energy deployments introduce a wide range of additional input parameters for the ocean environment and the

complex support structures. A 2023 study assessed the sensitivity of dynamic modal parameters to four modeling inputs: wind

speed, rotor speed, nacelle yaw angle, and mean sea level, for the fixed bottom Block Island wind turbines (Partovi-Mehr et al.,

2023). The study compared multiple modeling tools, including OpenFAST, and validated with field data from the operating
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wind farm. The group found that for this jacket-supported turbine, the system natural frequency was most strongly dependent60

on the rotor speed, and the system damping ratio was most strongly dependent on the wind speed (Partovi-Mehr et al., 2023).

A 2022 study used the EE method to look at the sensitivity of fatigue to a broad set of continuous and discrete parameters,

including cycles to failure curves for the tower and monopile (Sørum et al., 2022). The project studied three different monopile-

supported large offshore wind turbines to assess if certain sensitivities were turbine-specific. They found that the cycles to

failure and fatigue capacity parameters had the largest influence (Sørum et al., 2022). Environmental variables had a secondary65

impact, and both wind and wave values were important; wind conditions drove the tower fatigue, while wave conditions drove

the monopile fatigue (Sørum et al., 2022). Across the three tested turbines, the wind was more influential compared to the

waves for the turbines with the larger rated power (Sørum et al., 2022).

Floating platforms introduce more complexity. Not only are new modeling parameters involved, but the critical response

can involve a new range of motions. It is predicted that FOWT costs can potentially be reduced more than three times by 203070

compared to 2021 costs (Musial et al., 2022). To achieve these drastic gains in efficiency and do so in a safe way, it is important

that designers can assess the uncertainty in their loads predictions. The previously demonstrated EE method can help identify

which modeling parameters have the greatest impact on FOWT loads, isolating the focus for in-depth uncertainty studies.

A demonstration of this is shown below. Section 2 describes the chosen FOWT system to analyze and the method of analysis

including numerical models and post-processing calculations. Section 3 defines the studied input parameters and their possible75

ranges. Sections 4 and 5 describe the output loads and their resulting sensitivities. The discussed findings are dependent on two

analysis parameters, and the convergence of the sensitivities with respect to these choices is displayed in Sections 6 and 7.

2 Approach

The EE method tested with previous sensitivity studies was extended to a semi-submersible floating wind platform. A range of

input parameters was selected, focusing on inputs previously identified as having a strong sensitivity, and adding new offshore80

and floating support-structure-specific variables. The tested ranges of the input variables were chosen based on possible or

expected levels of uncertainty. The study was conducted for an operating wind turbine in three different wind conditions: below-

rated, near-rate, and above-rated. These conditions correspond to wind speeds of 8.0 m/s, 12.0 m/s, and 18.0 m/s respectively,

and also included wave and current conditions. Some input parameter ranges are functions of the wind speeds, while some are

constant across the conditions.85

2.1 Wind Turbine and Floating Platform

The subject wind turbine is the NREL offshore 5-MW baseline wind turbine. This device has open-source characteristics

and has been used in many research efforts. It was designed to be representative of commercial turbines to help enable and

advance conceptual design studies. The turbine features an upwind three-bladed rotor and uses variable speed and collective

pitch control (Jonkman et al., 2009).90
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The platform used in the study is the OC4-DeepCWind semi-submersible designed for the DeepCWind Consortium and

adapted for a collaborative verification and validation project (Robertson et al., 2014). This platform has publicly available

properties. It was the subject of multiple phases of the International Energy Agency (IEA) Wind Task 30 Offshore Code Com-

parison Collaborative (OC4-OC6) project, and has generally well-understood behavior (Robertson et al., 2014). The design

features three offset columns with heave plate type caps at the bottom. A smaller diameter central column supporting the wind95

turbine tower is connected with a system of more slender pontoons and braces. Figure 1 shows the configuration used in the

OC4 project, which also was paired with the NREL 5-MW turbine. The platform is held in place by a catenary mooring system

with three radial lines connecting three anchors to fairleads near the base of the columns at the tops of the heave plates. The

three lines are all composed of a single type of chain.

Figure 1. DeepCWind Floating Offshore Wind Platform (Robertson et al., 2014)

2.2 Modeling Approach100

The numerical modeling was performed using OpenFAST version 3.3.0 for the aero-hydro-servo-elastic analysis. The turbulent

inflow wind was generated using TurbSim. The hydrodynamic forces on the floating platform were calculated in the HydroDyn

module using a combination of potential flow coefficients and viscous-drag elements. The irregular wave field was generated

using the JONSWAP spectrum and the current was depth independent. Note that wave stretching was not included, with drag

forces only applied up to the mean free surface; this will lead to an underprediction of second-order wave forces and a reduced105

sensitivity to the hydrodynamic forces near the waterline. Steady current was applied as a simple superposition on the wave
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velocities. No vortex shedding forces associated with the steady current are modeled. The first- and second-order potential

flow calculations were performed using the panel method code WAMIT. The mooring system was modeled using the lumped-

mass-dynamics-based MoorDyn module. The substructure was treated as rigid, but the tower and blades were compliant, and

their deflections were calculated using the ElastoDyn module. Previous analysis of the NREL 5-MW baseline wind turbine has110

shown that the higher-fidelity BeamDyn solver produces results that are generally aligned with the lower-fidelity ElastoDyn

solver. The largest difference for this turbine is that BeamDyn does predict a small amount of blade torsion not captured by

ElastoDyn, but this is generally compensated by the active blade-pitch controller. The aerodynamic forces were calculated in

the AeroDyn module, using blade element momentum theory with unsteady aerodynamics and tower forces. The turbine was

controlled using the ServoDyn module, using the baseline controller for the NREL 5-MW turbine atop the OC4-DeepCwind115

semisubmersible with a Bladed-style dynamic link library.

Each simulation was run for a 10-minute time series with a 1-minute transient removed from the results. IEC recommends

using at least 6 10-minute simulations, with potentially more depending on the specific FOWT and site IEC (2019a). The IEC

floating wind specification encourages the use of more random seed numbers instead of longer simulations (IEC, 2019a). In

this work, the simulation time is held constant and the number of seeds is increased until the results are no longer dependent120

on the number of seeds, as described in Section 6.

2.3 EE

The EE method was outlined by Max Morris in 1991 for general computational experiments. The key advantage is one factor

is adjusted at a time, reducing the total number of simulations required for a sensitivity assessment (Morris, 1991). This

approach does not identify coupling between input parameters, but is effective for screening for the variables creating the125

largest sensitivity.

A modification of the original technique uses radial perturbations of all parameters for a sufficiently large number of starting

points. This radial EE method was described and tested by Robertsen et al. in 2018 and used here (Robertson et al., 2018).

The technique is graphically represented in Figure 2 for a simplified model with only three input parameters. Each blue dot

represents a position in the parameter hyperspace, and the red dots represent a small shift from that point for one of the130

parameters. The effect on the output quantity due to the perturbation informs the sensitivity to that parameter at that specific

location in the possible range of inputs. When each parameter is perturbed, their relative influence and importance can be

determined. As the number of blue dots, or starting set of conditions, grows, the results converge toward the global sensitivity.

This process can be extended to any number of input parameters, and the results can be assessed for any number of output

quantities of interest.135

In this work, the size of the perturbations was held constant, to ±10% of the parameter range. The direction of the pertur-

bation (plus or minus) was randomly chosen, with the constraint that the perturbation had to remain inside the possible range.

The starting points were chosen following a Sobol sequence. This sequence is designed to have a uniform-type distribution in

an n-dimensioned space (Sobol, 1967). This approach avoids biasing the results to some location in the parameter ranges, and

allows the addition of new starting points after simulations have been run.140
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Figure 2. Three parameter representation of input parameter hyperspace with set of starting points and individual parameter perturbations,

adapted from (Robertson et al., 2019b)

Irregular wave conditions and turbulent wind conditions require a seed for the pseudo-random number generator (pRNG)

for phase information. There can be variation in loads based only on the seed, so a sufficient number of seeds should be tested

to ensure the influence in seed does not mask the influence of the parameter variation. The IEC recommended minimum of

six seeds may be higher depending on the specific device and environmental condition (IEC, 2019a). In this work, the same

number of seeds was used at every starting point and perturbation. The sets of seeds were chosen to be unique for every starting145

point and perturbation. The necessary number of seeds was specifically considered for this model and is described in Section

6.

The output quantities of interest (Y ) were combined for all seeds (S) of a certain set of inputs (U ) following Equation 1

and 2, for the ultimate and fatigue-proxy loads, respectively. The ultimate load (Yult.) is taken as the mean of the absolute

maxima across each seed (s). The fatigue-proxy load (Yfat.) is taken as the mean of the standard deviations across each seed.150

This evaluation is not a true representation of fatigue loads, as only the size of the load cycles is considered, not the number

of cycles. It is expected that the relevant frequencies for each load output will be similar enough for the standard deviation to

serve as a reasonable proxy for the fatigue. This was done to simplify the post-processing where detailed structural and material

properties are not fully known. It is possible that if true fatigue calculations were performed, the relative fatigue sensitivity of

input parameters highly impacting system frequencies could be larger.155

Yult.(U) =
1

S

S∑
s=1

MAX(|Y (U)|) (1)

Yfat.(U) =
1

S

S∑
s=1

STD(Y (U)) (2)

The EE sensitivity value for an input parameter (i) at a certain starting point in the parameter hyperspace (b) for a certain

wind speed condition (w) is defined for ultimate loads in Equation 3 and for fatigue-proxy loads in Equation 4. Both equations
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feature a local partial-derivative-like calculation, with the ratio of the change in output to the change in input (∆iw). U b is the160

set of all conditions at the starting point, and U b+xi is the same set of conditions with the addition of the perturbation in the i

input parameter. The partial derivative is multiplied by the total range for the i input parameter; it is not just that gradient that

is important to sensitivity, but also the possible range. The sensitivity values from different input parameters are then all in the

units of the output value, allowing comparison. The resulting value represents how much the output would vary across the full

input range if the local sensitivity was constant.165

There are likely large differences in the output loads based on the wind speed condition. For ultimate loads, the maximum

value experienced is a key concern, so if sensitivity is high, but the total load is still low, it is not important. To account for this,

the ultimate sensitivity value includes the addition of the output for the nominal value of all input parameters corresponding to

the wind speed (Yw). This results in a set of three nominal additions, for below-rated, near-rated, and above-rated.

UEEbiw =

∣∣∣∣Yult.(U b +xi)−Yult.(U b)
∆iw

uiw,range

∣∣∣∣+Yw (3)170

For fatigue-proxy loads, if the sensitivity is high, but the number of relevant cycles is very low in the device’s lifetime, it will

not drive the design. The fatigue-proxy sensitivity value is thus scaled by the probability of occurrence of the corresponding

wind speed condition (P (w)).

FEEbiw = P (w)

∣∣∣∣Yfat.(U b +xi)−Yfat.(U b)
∆iw

uiw,range

∣∣∣∣ (4)

The probability of each wind condition was calculated based on an aggregate model of the United States offshore wind175

locations created in a 2016 study based on data from the National Data Buoy Center (Stewart et al., 2015). The project

created comprehensive joint probability distributions for "wind speed, significant wave height, wave peak-spectral period,

and wind/wave misalignment" for the West Coast, East Coast, and Gulf Coast (Stewart et al., 2015). The wind condition

probabilities were based on a combination of the three representative sites with an even weighting and are found in Table 1.

The total of the probabilities does not equal 100% because the speeds below cut-in and above cut-out are not included in this180

study. This is not a problem for the weighting done in Equation 4.

Table 1. Wind condition probability used for fatigue-proxy elementary effects sensitivity calculation

Condition Below-Rated Near-Rated Above-Rated

Wind Speed Range [m/s] 3.0 - 9.0 9.0 - 15.0 15.0 - 25.0

Aggregate Probability 0.525 0.322 0.062

To identify which input parameters contributed to the highest sensitivity, significant events were defined following Equations

5 and 6, where an EE value greater than two times the standard deviation larger than the mean EE value is counted. The number
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of times that an individual input parameter led to a significant EE value quantifies how sensitive the output is to that parameter

relative to the rest of the studied variables.185

UEEsignificant > UEE+ 2σUEE (5)

FEEsignificant > FEE+ 2σFEE (6)

3 Input Parameters

Table 2 lists all 35 studied input parameters. The italicised variables are related to wind and aerodynamics. The plain variables190

are related to the system and structure. The underlined variables are related to sea state and hydrodynamics. The first 16

parameters have been previously identified in elementary effects studies as having significant sensitivity (Robertson et al.,

2018; Shaler et al., 2019; Robertson et al., 2019b). The last 19 parameters are additions for a floating offshore system that are

expected to have potential importance. Some critical parameters were highlighted in a 2019 analysis that studied hydrodynamic

uncertainty for the OC5-DeepCWind semisubmersible, with a particular focus on numerical underprediction of low-frequency195

response (Robertson et al., 2019a). The mooring stiffness (dependent on mooring weight for a catenary system), the system

center of gravity, and the wave amplitude were found to all contribute significant uncertainty (Robertson et al., 2019a). An

important difference in this 2019 study is that an operating wind turbine was not present.
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Table 2. Modeling input parameters for sensitivity analysis (italic = wind / aerodynamic, plain = system and structure, underline = sea state

/ hydrodynamic)

Input Parameter Label Units

Shear exponent Shear -

Veer V eer degrees

Coherence exponent γwind -

σu (standard deviation) σu m/s

Lu (integral scale parameter) Lu m

au (coherence decrement) au -

bu (offset parameter) bu 1/m

Yaw error Y aw degrees

Air density ρair kg/m3

Blade mass Mblade %

Blade mass imbalance (factor) MbladeIMB %

Blade twist at tip Twist degrees

Airfoil lift coefficient at root Clroot %

Airfoil lift coefficient at tip Cltip %

Tower stiffness factor TK -

Tower damping tuner TD -

Mooring mass per unit length Mmooring kg/m

System center of mass - upstream/upwind SCMX m

System center of mass - vertical SCMZ m

System inertia - pitch direction SIP kg-m2

System inertia - yaw direction SIY kg-m2

System mass Msystem kg

Water depth Depth m

Water density ρwater kg/m3

Directional spreading range Θspread degrees

Wind/wave misalignment Θmis degrees

Significant wave height Hs m

Peak wave period Tp s

Wave spectral shape factor γwave -

Current speed Vcurrent m/s

Current direction Θcurrent degrees

Transverse drag coefficient near water line CdWL -

Transverse drag coefficient on column Cdtop -

Transverse drag coefficient on heave plate Cdbottom -

Axial drag coefficient Cdaxial -
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3.1 Parameter Ranges

For each input parameter, the potential range of uncertainty and a nominal value was selected. The ranges are either based on200

statistical variation in time or uncertainty. These values are shown in Table 3. The minimum, nominal, and maximum values

are given for each of the three wind bins if there is a dependence (otherwise, the same value is used for all wind speed bins).

The nominal values are used for the ultimate elementary effects sensitivity calculation as described in Equation 3, and the

minimum and maximum values determine the range that the parameters can lie between. It should be noted that the parameter

ranges represent the range of possible values for a given condition, and not a range of uncertainty for the design value at the205

top of the range. This applies for wind and wave conditions and generally increases the size of the parameter range, increasing

the relative sensitivity.

In general, the variables are independent of each other. The exception to this is coupling between wind and wave misalign-

ment, significant wave height, and peak wave period. The maximum significant wave height is a function of the wind and wave

misalignment; waves can potentially be larger when the misalignment is small. Both the minimum and maximum wave periods210

are functions of the wave height.
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Table 3. Modeling input parameter ranges and nominal values for below rated (BR), near rated (NR), and above rated (AR) wind speed bins

(italic = wind / aerodynamic, plain = system and structure, underline = sea state / hydrodynamic). If only one value is given, it applies to all

three wind conditions

Input Parameter Units Minimum Nominal Maximum

BR NR AR BR NR AR BR NR AR

Shear exponent - -0.03 0.05 0.06 0.14 0.36 0.26 0.18

Veer degrees -7.6 -6.688 -6.688 0 24.776 28.728 28.728

Coherence exponent - 0 0 1

σu (standard deviation) m/s 0.28 0.42 0.92 0.952 1.23 1.796 1.62 2.04 2.67

Lu (integral scale parameter) m 5.0 8.0 25.0 340.2 1000.0 1400.0 1600.0

au (coherence decrement) - 1.5 12.0 26.0

bu (offset parameter) 1/m 0 0.00035 0.08 0.08 0.05

Yaw error degrees -20 0 20

Air density kg/m3 1.2005 1.225 1.2495

Blade mass % 0.993 1.045 1.098

Blade mass imbalance (factor) % 0 0 0.05

Blade twist at tip degrees -1.894 0.106 2.106

Airfoil CL at root % -0.26 0 0.26

Airfoil CL at tip % -0.26 0 0.26

Tower stiffness factor - 0.7225 1 1.3225

Tower damping tuner - 0.001 0.0255 0.05

Mooring mass per unit length kg/m 112.22 113.35 114.48

System center of mass - upstream/upwind m Nacelle 1.86 1.90 1.94

Platform -4.0 0.0 4.0

System center of mass - vertical m Nacelle 1.72 1.75 1.79

Platform -9.35 -8.66 -7.97

System inertia - pitch direction kg-m2 2.357E+09 2.562E+09 2.767E+09

System inertia - yaw direction kg-m2 Nacelle 2.556E+06 2.608E+06 2.660E+06

Platform 3.903E+09 4.243E+09 4.582E+09

System mass kg Nacelle 2.352E+05 2.400E+05 2.448E+05

Platform 3.544E+06 3.852E+06 4.160E+06

Water depth m 196 200 204

Water density kg/m3 1020 1025 1030

Directional spreading range degrees 0 0 20

Wind/wave misalignment degrees 0 0 90

Significant wave height m 0 1.45 1.95 3.14 f(Θmis)

Peak wave period s f(Hs) 8.25 7.96 8.42 f(Hs)

Wave spectral shape factor - 1.0 1.0 1.0 0.284 7.0

Current speed m/s 0.0 0.0 2.0

Current direction degrees 0 0 90

Drag coefficient at water line - 0.4 1.2 2

Drag coefficient on column - 0.4 0.7 1

Drag coefficient on heave plate - 0.4 1.2 2

Axial drag coefficient - 3.5 4.8 5.5
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The first 16 parameter ranges were based on the ranges from previous EE studies with some adjustments for an offshore wind

environment (Robertson et al., 2019b; Shaler et al., 2019, 2021). The wind shear exponent ranges are based on a 2021 study

of lidar data from floating lease areas off the coast of New Jersey (Debnath et al., 2021). The wind veer ranges are based on a

relationship with the shear exponent described in the same study (Debnath et al., 2021). The maximum for the turbulent wind215

standard deviation was selected based on a class B wind turbine as defined by IEC using the wind speed for each condition,

and the minima were selected as having a turbulence intensity of 3.5% (IEC, 2019b). The range of air density values was taken

as the largest seasonal variation for an offshore site (U.S. East Coast) as identified in a 2019 study examining the effect of

density changes on global power production (Ulazia et al., 2019). The tower stiffness range results in a ±15% change in tower

frequency. This full range still falls above the turbine 1p and below the turbine 3P frequencies tested.220

The justifications for the new floating/offshore specific parameter range selections are as follows:

– Mooring mass: The mooring mass range is taken as ±1% of the nominal value. This amount of uncertainty was recom-

mended by industry experts due to manufacturing uncertainty and the addition of marine growth in a project lifetime.

– System center of mass - upstream/upwind: A range of ±2% was recommended by industry experts due to fabrication

uncertainty. This value was applied to the nacelle, but could not be used for the platform, which has a nominal value of225

0.0 m. The platform range was chosen to result in a mass proportional shift to the shift in the nacelle. A large portion of

the platform mass is ballast water, which is not shifted in the model adjustment, so the steel adjustment is increased to

±8% to account for the same change in the ballast position.

– System center of mass - vertical, system inertia - pitch direction, system inertia - yaw direction, and system mass:

The same recommended range of ±2% was used for all the system mass and inertia properties. Again, the platform steel230

has a larger shift of ±8% to account for the ballast water.

– Water depth: The range in water depth was based on changes in water level for a single location due to tides and

storm surge. The limits of highest and lowest observed water levels come from the LIFES50+ study, which assessed the

metocean conditions for three different types of floating wind sites (Gómez et al., 2015). Because these changes occur at

a single site through time, no corresponding changes to the mooring system are made.235

– Water density: The range in water density is a conservative range based on world limits of 1020.0 kg/m3 to 1030.0

kg/m3 from the NOAA World Ocean Atlas (NCEI, 2018).

– Directional spreading: The range in directional spreading was chosen based on expert opinion. The cosine spreading

function with an equal-energy method was used as described in the 2014 paper recommending it for OpenFAST imple-

mentation (Duarte et al., 2014). The function is given in Equation 7, where the value of s is set to 1.0, making a cosine240
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squared function. The value of C is set so that the total energy at each frequency is as desired for the spectrum (Duarte

et al., 2014). This functionD(Θ) is multiplied by the spectral value S(ω) for a combined frequency-direction magnitude.

D(Θ) = C

∣∣∣∣cos(
π(Θ−Θmean)

2Θmax
)

∣∣∣∣2s (7)

– Wind/wave misalignment: The wind and wave misalignment range was selected to cover a conservative range of pos-

sible conditions. A 2014 study on wind and wave misalignment effects for floating wind loads found that the most tower245

fatigue loads came from direct alignment (Bachynski et al., 2014). A wide range of misalignment angles are considered

to see the impact on other important loads.

– Significant wave height: The significant wave height is a function of wind and wave misalignment following joint

probability distributions from a comprehensive metocean analysis of U.S. offshore wind sites (Stewart et al., 2015). For

each point in the input parameter hyperspace, a unique range of wave heights is applied based on the wind condition and250

the local misalignment. The minimum significant wave height is taken as 0.0 m for all wind conditions and misalignment

angles (rather than what is shown in Figure 3). The maximum values are taken from the 2016 study based on data from

the National Data Buoy Center using a 20 minute statistical period and are the maxima of the three sites for each

misalignment angle (Stewart et al., 2015). These maxima are shown with the solid black lines in the top section of Figure

3. The nominal values are taken as the aggregate mean value shown with the dashed black lines. The colored lines in the255

figure, with three of each line type, mark the East Coast, West Coast, and Gulf Coast individually.

The significant wave height, peak period, and spectral shape factor are used to define the JONSWAP wave spectrum, as

given by Equation 8 (ABS, 2016). The peak angular frequency, ωp, is equal to 2π divided by the peak period.

S(ω) =
5

16

H2
sω

4
p

ω5
exp

[
−5

4
(
ωp
ω

)4
]
γα(1− 0.287lnγ)

α= exp

[
− (ω−ωp)2

2σ2ω2
p

]
σ = 0.07 when ω ≤ ωp

σ = 0.09 when ω > ωp

(8)

– Peak wave period: The peak period ranges are a function of the significant wave height, and again are uniquely calcu-260

lated for each point in the input parameter hyperspace. The maxima are chosen based on the 2016 U.S. metocean project

with a 20 minute statistical period and are shown as a function of wave height with the solid black lines in the bottom

row of subfigures in Figure 3. The minima are chosen based on the breaking wave limit and are shown as a function of

significant wave height with the dashed-dotted black lines. Again, the three colored lines of each line type are the values

for the three comprehensive U.S. locations based on joint probability distributions (Stewart et al., 2015). At large wave265
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heights, more and more of the period data falls below the breaking limit, and eventually even the maximum periods are

lower than the limit. These breaking waves cannot be accurately modeled with mid-fidelity models like OpenFAST, but

the selected ranges of significant wave height do not fall into this region.
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Figure 3. Wave height dependence on misalignment and wave period dependence on wave height from aggregate values (black) used from

U.S. East Coast (blue), West Coast (green), and Gulf Coast (red) comprehensive sites, data from (Stewart et al., 2015)

– Wave spectral shape factor: The wave spectral shape factor ranges were chosen following guidance from the American

Bureau of Shipping, with a minimum of 1.0 and a maximum of 7.0 (ABS, 2016). The nominal values were selected as270

functions of the wave height and period, as recommended by IEC and stated in Equation 9 (IEC, 2019a).

TP√
HS

≤ 3.6−→ γ = 3.6

3.6<
TP√
HS

< 5.0−→ γ = 5.75− 1.15
TP√
HS

5.0≤ TP√
HS

−→ γ = 1.0

(9)

– Current speed: The current speed range goes up to a maximum value for open ocean currents; this value of 2.0 m/s is

from the Gulf Stream (Gyory et al.).
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– Current direction: The current direction range goes up to a maximum of 90.0 degrees, perpendicular to the wind275

direction. This orthogonal current could create unique loading. It is expected that current coming from the downwind

direction would have lower loads than when current loads are in the same direction as the wind.

– Drag coefficient near water line: In previous work analyzing this semi-submersible platform, the drag coefficient near

the water line was identified as being particularly important (Wang et al., 2022). The water particle velocities are highest

here and higher-order viscous effects are the most pronounced. The drag coefficient in this region was specifically280

isolated from the coefficients on the rest of the body to determine its unique influence. The selected nominal value

was found to best replicate motions from model test experiments in previous work (Wang et al., 2022). The total range

is based on the possible range of drag coefficients for cylinders as a function of Reynolds number. This coefficient is

applied from the top of the columns down to an elevation 4.0 m below the mean water line.

It should be noted that the previous work identifying the importance of this parameter included a wave stretching model.285

In this analysis without wave stretching it is expected that the significance is reduced.

– Drag coefficient on column: The nominal drag coefficient for the main length of the columns was again selected based

on what was found to best replicate model test motions (Wang et al., 2022).

– Drag coefficient on heave plate: The nominal drag coefficient for the base of the columns, which act as heave plates,

was also based on the previous work with this platform (Wang et al., 2022).290

– Axial drag coefficient: The nominal axial drag coefficients for the columns were also based on the previous work with

this platform (Wang et al., 2022). The range is larger, as there is more variability with the unique viscous effects in the

axial direction, compared to the well-studied transverse drag on cylinders. Separated flow is immediate in this direction,

and the drag forces are complex.

4 Output Quantities of Interest295

Fourteen quantities of interest were selected to evaluate the importance of each input parameter. Table 4 lists these quantities

of interest and their relevant labels and units. Outputs listed in italics are most strongly linked to aerodynamics and the rotor,

while the non-italicized quantities are more global.
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Table 4. Output quantities of interest for load identification (red = rotor specific, black = global system)

Quantity of Interest Label Units

Blade root bending moment RootMp N-m

Blade root pitching moment RootMzc1 N-m

Low speed shaft bending moment LSSGagMp N-m

Rotor torque RotTorq N-m

Yaw bearing bending moment YawBrMp N-m

Yaw bearing yawing moment YawBrMzp N-m

Tower base bending moment TwrBsM N-m

Blade tip out of plane deflection OoPDefl1 m

Generator power GenPwr W

Mooring line tension at fairlead Fair N

Mooring line tension at anchor Anch N

Watch circle WatchCircle m

Heel angle Heel degrees

Nacelle acceleration NacAcc m/s2

The blade-root bending moment, yaw-bearing bending moment, tower-base bending moment, low-speed shaft bending mo-

ment, and watch circle each have components in two directions. For ultimate loads, the value of each quantity was taken as300

the maximum vector magnitude. For fatigue-proxy loads, a load rose approach was used. The cycles were broken into 12 di-

rectional bins (15 degree increment), and the bin with the highest standard deviation was used for that outputs fatigue-proxy

contribution.

The heel angle is a combination of the pitch and roll angle, and was combined at every time step for both ultimate and

fatigue-proxy loads following Equation 10. The nacelle acceleration is the vector magnitude of the accelerations in all three305

directions for both ultimate and fatigue-proxy loads.

Heel = arctan
(√

tan(Pitch)2 + tan(Roll)2
)

(10)

For the mooring loads, the forces at all three fairleads and all three anchors were considered. The line with the largest

maximum and the largest standard deviation were selected separately for the ultimate and fatigue-proxy loads on a case-by-

case basis.310
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5 Results

In total, 324,000 OpenFAST and 72,000 TurbSim simulations were run following the quantities in Equation 11. Only 7 of the

input parameter perturbations resulted in a change in the turbulent inflow wind calculations. For the other 28 perturbations, the

inflow wind from the starting point was used reducing the number of required TurbSim simulations.

324,000 OpenFAST Runs = (3 Wind Conditions)(30 Starting Points)(1 + 35 Input Perturbations)(100 Seeds)

72,000 TurbSim Runs = (3 Wind Conditions)(30 Starting Points)(1 + 7 Wind Input Perturbations)(100 Seeds)
(11)315

The histograms in Figures 4 and 5 show the ultimate and fatigue-proxy EE values, respectively, for all quantities of interest

from all simulations. The plots are broken by color, according to the wind speed condition. The red lines in each plot indicate

the threshold for a significant event, determined by two times the standard deviation, as described in Equations 5 and 6.

The ultimate values shown in Figure 4 are strongly stratified by wind condition for most outputs. This separation is largely

influenced by the changes in the nominal output, Yw, added to the EE value as shown in Equation 3. The ultimate EE value320

for the blade loads of the root bending moment and tip deflection are highest for the near-rated condition, logically where

thrust is expected to be highest. The tower, shaft, and nacelle ultimate EE values are highest for the above-rated condition.

The only outputs without a strong wind speed stratification are the global system motion-related quantities of mooring line

tensions, watch circle, and heel angle. These three outputs are later shown to be largely dominated by current velocity and

system center of mass, both input parameters that are independent of wind speed. The fatigue-proxy EE values are much more325

consistent between wind conditions, which is interesting, considering that each is weighted by the probability of the wind

speed. This means that the differences in load variation between wind speed are roughly matched by the differences in wind

speed probability. The spread in the ultimate values is larger than for the fatigue-proxy values.
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Figure 4. Ultimate EE value stacked histograms broken by wind speed condition for 14 quantities of interest; red line marks threshold for

significant EE value
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Figure 5. Fatigue-proxy EE value stacked histograms broken by wind speed condition for 14 quantities of interest; red line marks threshold

for significant EE value

The bar graphs in Figures 6 and 7 show the number of ultimate and fatigue-proxy significant events, respectively, attributed

to each input parameter. The input parameter bar labels are colored by category: red for wind, magenta for aerodynamic forces,330

black for system and structure, blue for sea state, and cyan for hydrodynamic forces. The bars are divided and colored according

to which output parameter the significant event is related to. The outputs closely linked with the rotor have no hatch, and the

more global outputs have a diagonal hatch.

Looking at the ultimate load sensitivity in Figure 6, similar to previous land-based sensitivity studies, the wind speed standard

deviation in the main wind direction is the most influential input parameter. The next most important parameters are the335

horizontal system center of mass and the current velocity. The wind-related inputs (red) drove the rotor-related outputs (no

hatch) for the most part, and also have some important contributions to the nacelle acceleration. Most structural and mass

properties have a limited impact on the ultimate loads, with the exception of the horizontal center of mass. This property

is highly important for the extreme heel angle and the bending moment at the tower base. These two outputs are expected
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to be coupled and are logically driven by this important input. The wave and current conditions appear to only drive the340

ultimate loads related to the platform translation. The watch circle displacement and the mooring tensions at the fairleads and

anchors are reasonably influenced by the current and drag coefficients, which contribute highly to mean forces. It is somewhat

surprising how few significant events are attributed to the wave conditions. The DeepCWind semi-submersible is a relatively

large platform for the turbine size, reducing sensitivity to wave loading. That said, it should be recalled that all wind conditions

involved an operating wind turbine, which adds considerable damping and increases the sensitivity to wind parameters. It is345

possible that the influence of the wave parameters may be much stronger for idling load cases, which will be addressed in

future work.

Figure 6. Floating offshore wind turbine ultimate load EE sensitivity, broken by load type, solid bars correspond to turbine specific responses

and hatched bars correspond to global system responses (input parameter colors: red = inflow wind, magenta = aerodynamic forces, black =

system and structure, blue = sea state, and cyan = hydrodynamic forces)

Looking at Figure 7, the standard deviation of the wind speed in the main direction is also the most influential input parameter

for fatigue-proxy loads, again most strongly impacting the rotor-related loads. Compared to the ultimate load sensitivity, the

wave parameters have a larger effect on the fatigue-proxy loads. The significant wave height, peak wave period, and wind and350

wave misalignment angle all are driving inputs for the global motion fatigue-proxy values of the platform. The wave conditions

are more important for the variability in the loads than the extreme values. The current speed and direction are also important

for these fatigue-proxy values, which is less intuitive given their more constant forces. No structural or mass properties overly

dominated the fatigue-proxy loads.
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Figure 7. Floating offshore wind turbine fatigue-proxy load EE sensitivity, broken by load type, solid bars correspond to turbine specific

responses and hatched bars correspond to global system responses (input parameter colors: red = inflow wind, magenta = aerodynamic forces,

black = system and structure, blue = sea state, and cyan = hydrodynamic forces)

6 Seed Convergence355

The presented results in Section 5 require a certain number of seeds for the stochastic irregular waves and turbulent wind

environment. This required number is specific to a given platform, turbine, and environmental condition. If the number of

seeds is very low, it is likely that the differences in loads between simulations may be more related to the difference in seed

than to the perturbation in input variable. When the number of seeds is high enough, the averaging process in Equations 1 and 2

removes the dependence on the seeds, and the difference in output can be accredited to the difference in input. Some inputs and360

some outputs are more strongly dependent on the number of seeds, so the required number of seeds is not universal; however,

the same number of seeds was used for each perturbation in this study.

Given the very large number of inputs, outputs, starting points, and wind speeds, it is difficult to look at the influence of

the seed number for each input and output combination individually. Some examples of seed convergence for input and output

combinations that led to a large number of significant sensitivity are shown in Figures B1, B2, B3, and B4 in Appendix B.365

Ultimately, the important criteria is that the identified most-influential input parameters are not dependent upon the seeds

used. This means that the bar plots in Figures 6 and 7 should not change if more seeds are added or if different seeds are

used. Figures 8 and 9 show this convergence of the final relative sensitivities, measured by number of significant events for

21



ultimate and fatigue-proxy loads, respectively. 100 seeds were run for each point and perturbation in the hyperspace. The post-

processing calculations were performed pulling from a pool of 1 to 100 seeds, and the resulting number of significant ultimate370

and fatigue-proxy events are plotted for each input. The final point in the lines matches the bar heights in Figures 6 and 7.

When doing this convergence check, the pools of S seeds are taken randomly from the full set of 100, so that the results at

S+ 1 are not as strongly tied to the results at S, leading to a smoother, more clear convergence.

The ultimate loads sensitivity for some important input parameters is almost independent of the number of seeds, including

SCMX , Vcurrent, γwind, au, and Lu. The relative importance of Shear and V eer, in particular, is much higher when only375

a few seeds are used. The ultimate loads sensitivity converges quickly for all inputs except σu, with stable relative levels

after about 40 seeds. After this point, the variations are small compared to the differences between inputs. However, σu, the

parameter leading to the highest sensitivity, continues to become relatively more important with an increased number of seeds.

Between 80 and 90 seeds, it is evident that the number of significant events is converging toward just below 300. Given the large

difference from the other input parameters, this provides sufficient insight. The number of seeds needed to identify sensitivity,380

especially for σu, is much higher than the minimum of six recommended by IEC (IEC, 2019a). Wind turbulence has high

energy at very low frequencies, resulting in some large-amplitude, low-frequency cycles in any given time series, and strongly

increasing the dependence on seed number.

0 20 40 60 80 100 120 140 160
Number of Seeds

0

50

100

150

200

250

300

Nu
m

be
r o

f S
ig

ni
fic

an
t U

EE

Shear
Veer

wind

u

Lu

au

bu

Yaw
air

Mblade

MbladeIMB
Twist

Clroot

Cltip
TK
TD
Mmooring

SCMX

SCMZ

SIP
SIY
Msystem

Depth
water

spread

mis

Hs
Tp

wave

Vcurrent

current

CdWL

Cdtop

Cdbottom

Cdaxial

Figure 8. Convergence of ultimate response sensitivity due to number of random seeds

The fatigue-proxy loads sensitivity results converge much quicker than the ultimate loads sensitivity results. Even for σu,

the number of significant events is relatively stable after only 20 seeds. It is expected that the fatigue-proxy would require385
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fewer seeds than ultimate loads, as the cyclic amplitudes over a time series are less likely to have outliers than the tails of the

statistical distribution. A 2023 study looking into the statistical uncertainty in blade bending moment fatigue as a function of

seed numbers also found that more than the IEC suggested minimum of six ten-minute simulations were needed (Mozafari

et al., 2023). The Danish led project looked at a fixed onshore 10 MW turbine, and found that 50 seeds were needed for

acceptable accuracy, and that more seeds were needed for lower wind speeds (Mozafari et al., 2023).390
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Figure 9. Convergence of fatigue-proxy response sensitivity due to number of random seeds

The sensitivity results are determined to be converged after 90 seeds for ultimate loads and after 30 seeds for the fatigue-

proxy loads. This process is likely load case- and device-dependent, so it should be performed independently for each ap-

plication of the EE sensitivity analysis approach. The results shown in Figures 4, 5, 8, and 7 use the data from all 100 run

seeds.

7 Starting Point Convergence395

The radial one-at-a-time perturbation method looks at the uncoupled sensitivity at a single point in the parameter hyperspace,

within the ranges defined. Each point, chosen following the Sobol sequence, likely has a different local sensitivity value. To get

a picture of the true sensitivity across the full domain, a sufficient number of starting points must be used. It should be noted

that, while the process treats the inputs as fully uncoupled (with the exception of wave misalignment, height, and period), there
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are likely some combinations of inputs that would not be physically expected, and the sensitivities at these points can still400

influence the findings.

The number of necessary starting points is a function of the local second partial derivatives. When the derivative changes

sharply through the domain, more starting points are needed for converged identification of the most important inputs. Similar

to the method of determining seed convergence, the sufficient number of starting points was determined by calculating the

number of significant events per input using a range of 1 to B starting points. Figures 10 and 11 show the convergence of the405

significant events with respect to the number of starting points. The number of EE values is a direct function of the number of

starting points, so as the number of starting points grows, so does the number of significant events. The fraction of the total

number of significant events is plotted instead of the absolute number to be able to compare and track convergence.

In this case, the sets of B starting points are not random but follow the Sobol sequence, which is designed to fill in the

n-dimensioned region with an even distribution. For the seed convergence, each individual seed had no inherent bias toward410

one input parameter. However, each starting point does have a bias toward the local partial derivative, resulting in a less-smooth

convergence path. Still, if enough starting points are used, the global sensitivity will converge so that additional points do not

affect the conclusions.

For the ultimate load convergence, shown in Figure 10, after 20 starting points it is clear that σu is the most dominant input.

Vcurrent and SCMX clearly have secondary importance, and the rest of the inputs are far less influential. It appears that the415

relative impact of σu may still grow some if more than 30 starting points are used, but the order of importance seems unlikely

to change.

0 10 20 30 40
Number of Starting Points

0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e 

Ul
tim

at
e 

Si
gn

ifi
ca

nc
e 

UE
E

Shear
Veer

wind

u

Lu

au

bu

Yaw
air

Mblade

MbladeIMB
Twist

Clroot

Cltip
TK
TD
Mmooring

SCMX

SCMZ

SIP
SIY
Msystem

Depth
water

spread

mis

Hs
Tp

wave

Vcurrent

current

CdWL

Cdtop

Cdbottom

Cdaxial

Figure 10. Convergence of ultimate response sensitivity due to number of input parameter hyperspace starting points
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For the fatigue-proxy load convergence shown in Figure 11, σu is even more clearly dominant, even after only 10 starting

points. At 30 starting points, it appears there is no relationship between the relative sensitivity and additional starting points.
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Figure 11. Convergence of fatigue-proxy response sensitivity due to number of input parameter hyperspace starting points

8 Conclusions420

This work used a radial EE approach to identify which numerical modeling input variables have the most important effects on

ultimate and fatigue-proxy loading of the DeepCWind floating platform supporting the NREL 5-MW offshore wind turbine.

The standard deviation of the load was used as a proxy for the fatigue. This simplification quantifies load variability but

likely under-predicts the sensitivity to input parameters which strongly influence load frequency. Non-linear fatigue paths are

not included in this method at all. All modeling parameters have a range of validity, and this process can determine which425

uncertainty ranges should be assessed in greater detail. A total of 35 input parameters were tested and evaluated using 14

output responses. The results were delineated by output to understand which specific input and response relationships have

the highest sensitivity. The required number of seeds used for stochastic irregular waves and turbulent wind environments was

assessed to ensure that the variability due to seed was not influencing the conclusions. The required number of starting points

in the parameter range domain was also assessed to ensure that the sensitivity assessment approximated a global sensitivity.430

In total, 324,000 OpenFAST simulations and 72,000 TurbSim simulations were run, spanning three different operating wind

speed conditions.
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The evaluated input parameters included wind and water environment descriptions, structural properties, and aerodynamic

and hydrodynamic modeling coefficients. All parameter ranges were assessed to cover the possible variation either due to

changes in time, uncertainty in construction, or uncertainty in accuracy.435

It was found that ultimate loads EE values were highly stratified by wind speed; depending on output load, either the above-

rated or near-rated condition contributed the most extreme load sensitivity. Significant fatigue-proxy EE values, however, were

not clearly split by wind condition.

The EE approach has been shown to be effective for screening the most influential modeling parameters for FOWT load

assessment. For the combination of the NREL 5-MW offshore wind turbine on the DeepCWind semi-submersible, the input440

parameters contributing to the highest sensitivity in ultimate loads are:

– Primary: σu

– Secondary: SCMX and Vcurrent

– Tertiary: γwind, Lu, au, bu, Y aw, and Θcurrent

and the input variables contributing to the highest sensitivity in fatigue-proxy loads are:445

– Primary: σu

– Secondary: γwind, au, bu, Y aw, Hs, and Vcurrent

– Tertiary: Sheer, Lu, TK, SCMX , Θmis, Tp, and Θcurrent

Similar to previous analyses with land-based wind turbines, the turbulent wind speed standard deviation in the main direction

(σu) is the input parameter with the highest impact. Not only are rotor-specific loads very sensitive to this value, but so are the450

global platform motions. While σu is the most important, all wind turbulence parameters have a significant impact on ultimate

and fatigue-proxy loads.

Mooring loads and device watch circle are dominated by current. Almost no significant events in these outputs come from

the wind or wave variables. When it comes to mooring design, a significant effort should be placed on assessing the true range

of current speeds and directions.455

With the exception of the horizontal center of mass, the system mass, inertia, and structural properties have a lower impact on

the loads; environmental conditions variability seems to be much more important. This is likely a platform-specific conclusion;

the DeepCWind semi-submersible is a relatively stable design with a relatively large water-plane area and resonant frequencies

outside of the main wave and wind energy. The one structure parameter that does have a high relative sensitivity is the horizontal

system center of mass in the wind direction. This value is less important for the fatigue-proxy cyclic amplitudes, but is by far460

the main driver for the extreme platform heel angle, and, subsequently, the tower-base bending moment.

While the wave misalignment angle, height, and period do have meaningful influence on some fatigue-proxy values, it

is somewhat surprising how little of an impact the wave conditions have on the extreme ultimate loads. The wave input
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perturbations contribute far fewer significant events than the current inputs, and even fewer compared to the turbulent wind

characteristics. This would indicate that significantly more emphasis should be placed on understanding the wind environment465

than the wave environment for an offshore wind site assessment for this floater. Future analyses that include idling conditions

past the cut-out wind speed may find that wave inputs are more influential. It is likely that without the aerodynamic damping

of the operational turbine, changes in the wave height and period may lead to more considerable changes in the ultimate loads

on the platform. It is still logical that the waves are more influential for fatigue loading than ultimate loading. Potential wave

over-topping and slamming events could also be design drivers for platform stiffener design; however, these loads are difficult470

to understand using mid-fidelity modeling tools.

The method used in this project can be used as an important step in the design process. The results identify which input

parameter uncertainty ranges need to be given particular attention. The conclusions should be treated as unique to the individual

platform and turbine, and it is recommended that nonoperational load cases are also considered.

Appendix A: Fatigue-Proxy EE Value Histogram475

Figure A1 shows the same histograms of fatigue-proxy EE values as shown in Figure 5, but with a zoomed-in y-axis to see the

upper end of the distributions. The lowest bin had by far the most instances for all quantities of interest, including contributions

from all three wind speed conditions. The spread in the fatigue-proxy EE values is small compared to the ultimate EE values,

and there is little stratification; this is clear in the full figure, but the distribution and significant events that surpass the threshold

are not visible. The zoomed version of the figure shows this. Note that the lowest bin is made of instances from all three wind480

speed conditions, but the contributions from the near-rated and above-rated conditions are cropped out in this view.
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Figure A1. Fatigue-proxy EE value histograms broken by wind speed condition for 14 quantities of interest with a zoomed y-axis; red line

marks threshold for significant EE value

Appendix B: Seed Convergence

Figures B1, B2, B3, and B4 show the ultimate and fatigue-proxy output according to Equations 1 and 2, as a function of

the number seeds run. The blue line shows the results for the starting point with no perturbation, and the red line shows the

results for the relevant input perturbation. The number of seeds is sufficient when the difference between the blue and red485

lines is clearly larger than the variability in either line due to seed. This means that the EE value is actually due to the input

perturbation and not the chosen seeds.

Figure B1 shows the seed convergence for the specific relationship of heel angle sensitivity to the system horizontal center

of mass. Convergence is achieved when the variability due to seed has disappeared, but a lower and more important threshold is

when the difference between the lines is clearly distinguishable from the variability due to seed. Note that when the sensitivity490

between an input and an output is low, the difference due to the input perturbation may never be large compared to the
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fluctuations from the seed. This is true for the bottom-middle and bottom-right plots, that is, for the fatigue-proxy load in the

near-rated and above-rated conditions. While SCMX is very important for the extreme absolute value of the heel, it has a

much smaller impact on the cycle size. In general, this relationship is relatively robust with respect to the number of seeds.

Figure B1. Seed convergence of platform heel due to system horizontal center of mass, blue line: nominal starting point, red line: perturbation

in SCMX

Figure B2 shows the seed convergence for the specific relationship of low speed shaft bending moment sensitivity to the495

turbulent wind speed standard deviation in the main wind direction. This relationship is much more sensitive to the number of

seeds. The variability due to seed is large compared to the difference due to input perturbation. This is why the trend for σu in

Figure 8 is the slowest to converge. Note that this input-output relationship contributes a large number of significant events both

for ultimate and fatigue-proxy loads. Even though the relationship is sensitive to the number of seeds, the difference between

the red and blue lines is clearly distinguishable from the individual fluctuations by around 70 seeds.500
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Figure B2. Seed convergence of low-speed shaft bending moment due to turbulent wind speed standard deviation in the main wind direction,

blue line: nominal starting point, red line: perturbation in σu

Figures B3 and B4 show the seed convergence for two more important input-output relationships. Both of these relationships

contribute to the high sensitivity to σu and demonstrate that the influence of the perturbation is clearly distinguishable from the

influence of the seed number when at least 80 seeds are used.
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Figure B3. Seed convergence of nacelle acceleration due to turbulent wind speed standard deviation in the main wind direction, blue line:

nominal starting point, red line: perturbation in σu
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Figure B4. Seed convergence of yaw-bearing yawing moment due to turbulent wind speed standard deviation in the main wind direction,

blue line: nominal starting point, red line: perturbation in σu
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