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Abstract. In this work, we implement, verify, and validate a physics-based digital twin solution applied to a floating offshore1

wind turbine. The digital twin is validated using measurement data from the full-scale TetraSpar prototype. We focus on the2

estimation of the aerodynamic loads, wind speed, and section loads along the tower, with the aim at of estimating the fatigue3

lifetime of the tower. Our digital twin solution integrates : 1) a Kalman filter to estimate the structural states based on a4

linear model of the structure and measurements from the turbine, 2) an aerodynamic estimator, and 3) a physics-based virtual5

sensing procedure to obtain the loads along the tower. The digital twin relies on a set of measurements that are expected to be6

available on any existing wind turbine (power, pitch, rotor speed, and tower acceleration), and motion sensors that are likely7

to be standard measurements for a floating platform (inclinometers and GPS sensors). We explore two different pathways8

to obtain physics-based models: a suite of dedicated Python tools implemented as part of this work , or and the OpenFAST9

linearization feature. In our final version of the digital twin, we use components from both approaches. We perform different10

numerical experiments to verify the individual models of the digital twin. In this simulation realm, we obtain estimated damage11

equivalent loads with an accuracy of the order of approximately 5% to 10%. When comparing the digital twin estimations with12

the measurements from the TetraSpar prototype, the errors increased to 10%-–15% on average. Overall, the accuracy of the13

results appears is promising and demonstrates the possibility to use of using digital twin solutions to estimate fatigue loads14

on floating offshore wind turbines. A natural continuation of this work would be to implement the monitoring and diagnostics15

aspect of the digital twin , to inform operation and maintenance decisions. The digital twin solution is provided with examples16

as part of an open-source repository.17

1 Introduction18

The offshore floating wind turbine market is expected to grow in the next coming decades as the technology is gaining gains19

in maturity, with several floating wind turbine prototypes already tested and commissioned, such as the TetraSpar, developed20

by Stiesdal Offshore (Stiesdal Offshore, 2022). Operation & and maintenance (O&M) costs can account for approximately21

one-third of offshore wind farm life cycle expenditures for a fixed-bottom project and are expected to be higher for remote22

(floating) projects (Castella, 2020). Reducing the O&M costs is therefore an impactful and effective means to lower the costs23

of floating offshore projects. Digital twin solutions are increasingly being considered used to follow products during their life24
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cycle to assess component conditions, guide predictive maintenance, and thereby reduce O&M costs. A review of digital twins25

for power systems is found in Song et al. (2023). Digital twins often include a virtual sensing component , whose role consists26

of providing information that are that provides information not measured by the physical system, and a structural health moni-27

toring component to assess the condition of the system. Virtual sensing technology is usually achieved using physics-based or28

data-driven approaches; both approaches relying on measurements from the physical system to infer and extrapolate informa-29

tion about its current state. Physics-based approaches use a numerical model of the system, whereas data-driven approaches30

either use ad-hoc use either ad hoc algorithms or machine-learning techniques. Machine-learning approaches can be trained31

using high-fidelity models or measurements, leading to potentially high accuracies while maintaining low computational time,32

but their training requirements imply that a technology cannot be readily transferred from one platform to another. Physics-33

based models often require low-fidelity models to achieve computational times low enough for digital twins to run in real time.34

They nevertheless offer the advantage that they provide tractable and insightful results, and, they can be applied to a same35

family of wind turbine concepts because they do not require a training dataset. Currently, there is no definite case as to which36

approach can lead to the best digital twin implementation, and it is possible that future approaches will combine physics-based37

with data-driven techniques. This work presents the development, verification, and validation of a physics-based digital twin38

for floating wind turbines , as a proof of concept for future maturation of the technology.39

Digital twins for wind turbine applications have recently become a topic of research interest. The current authors explored the40

topic of physics-based digital twins in previous work, where in which a method to estimate tower loads on land-based turbines41

was developed (Branlard et al., 2020a, b). The approach relied on a Kalman filter model (Kalman, 1960; Zarchan and Musoff,42

2015) , that combines a linear physics-based model of the structure with measurements from the turbine to perform a virtual43

sensing of the tower section loads and estimate the fatigue of this component. The measurement data was were taken from the44

supervisory control and data acquisition (SCADA) system using sensors readily available on most turbines. The approach used45

a mix between an augmented Kalman filter approach (Lourens et al., 2012), where the loads are estimated with the states of the46

system, and a physics-based aerodynamic estimator for aerodynamic thrust. Bilbao et al. (2022) used a Gaussian process latent47

force model instead to estimate the forcing of the system , and thereby obtain the section loads along the tower. Drivetrains48

are another component that has recently been an application of digital twin for which a digital twin has been applied, with49

physics-based approaches presented for instance in (Mehlan et al., 2022, 2023)in Mehlan et al. (2022, 2023), and data-driven50

models presented in Kamel et al. (2023).51

In spite Despite the recent popularity of the term “digital twin” becoming recently popular,it ,” the concept is heavily based on52

the fields of structural-health structural health monitoring and load estimations (or more generally, virtual sensing), which have53

long been topics of research. For instance, Iliopoulos et al. (2016) used physics-based modal decomposition to estimate the dy-54

namic response on the substructure of a fixed-bottom wind turbine. Neural networks have been used to establish transfer func-55

tions or surrogate models based on SCADA data to obtain wind turbine loads with the aim of performing conditional monitor-56

ing (see, e.g., Cosack (2010); Schröder et al. (2018)). Kalman filters were introduced in fields other than wind energy to perform57

load estimation, for instance in the following references: Auger et al. (2013); Ma and Ho (2004); Eftekhar Azam et al. (2015); Lourens et al. (2012)58

(Auger et al., 2013; Ma and Ho, 2004; Eftekhar Azam et al., 2015; Lourens et al., 2012). Kalman filtering has been extensively59
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used in wind energy to estimate rotor loads and improve wind turbine control , see, e. g.,Boukhezzar and Siguerdidjane (2011); Selvam et al. (2009); Bottasso and Croce (2009); Bossanyi (2003)60

. (Boukhezzar and Siguerdidjane, 2011; Selvam et al., 2009; Bottasso and Croce, 2009; Bossanyi, 2003). Load estimations were61

also achieved using hybrid-techniques hybrid techniques combining physics based on SCADA data by Noppe et al. (2016).62

Other load estimation techniques may be used, such as lookup tables (Mendez Reyes et al., 2019), modal expansion (Iliopoulos63

et al., 2016), machine learning (Evans et al., 2018), neural networks (Schröder et al., 2018), polynomial chaos expansion (Dim-64

itrov et al., 2018), deconvolution (Jacquelin et al., 2003), or load extrapolation (Ziegler et al., 2017).65

In this work, we build on our previous work related to fixed-bottom turbines and present a digital twin solution for floating66

wind turbines that relies on physics-based models and a Kalman filter. We apply the digital twin to the TetraSpar structure and67

use measurements from the full-scale prototype. Achieving computational efficiency is crucial to be able to run the digital twin68

online, therefore, a reduced order model with few selected degrees of freedom is used. Developing digital twins for floating69

wind turbines present a set of challenges compared to our previous work on fixed-bottom foundations. The potentially large70

motions undergone by the platform may affect the aerodynamics and accelerometer signals. The models developed for fixed-71

bottom foundations need to be augmented to be able to predict the aerodynamics when the platform experiences large pitching72

motions. The dynamics of the platform motion needs to be well captured for the tower-top accelerometer to be used and for73

estimating the loading in the stationkeeping system. In both floating and fixed-bottom wind turbines, hydrodynamic loads need74

to be estimated to capture member-level loads in the substructure but they can be omitted as a first approximation if only the75

tower loads are estimated, as in this study.76

In Section 2, we provide an overview of our digital concept, the vision for future application, and the TetraSpar prototype on77

which the digital twin is applied. In Section 3, we present the individual components of the digital twin, and run some isolated78

verification studies on them. In Section 4, we present results from the digital twin application first using numerical experiments,79

and then using measurements from the TetraSpar prototype , before concluding. To avoid lengthening the main text, we provide80

derivations (some being of which are important contributions of this work) and additional results in appendices.81

2 Overview of the digital twin concept82

In this section, we provide an overview of our digital twin concept and how it is applied in this study.83

2.1 Long-term vision of the digital twin concept84

Many definitions and applications of digital twins are possible. The vision for the concept discussed in the this work is to85

follow the life cycle of a wind turbine in real-time real time and ultimately provide tangible signals to inform O&M decisions.86

Our goal is to achieve this by relying only on measurements expected to be available on most wind turbines, thereby avoiding87

the extra cost of adding sensors. In this work, we leave open the question as to whether the installation of an additional set of88

optimally placed and selected sensors can further improve the predictions of the digital twin, further reducing the long-term89

O&M costs, and thereby warranting the additional costs of adding the sensors.90
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Figure 1. Overview of the digital twin concept. Dashes Dashed lines indicate features that are outside the current scope.

We illustrate our approach and vision in Figure 1. The digital twin is intended to run in real-time real time on a cloud91

platform. It combines a set of models (on the left of the figure) with data from the real system (on the right) to perform the92

estimation of various states and eventually produce diagnostics that can be use to inform the O&M. The data from the real93

system are taken from high-frequency measurements from the SCADA system (e.g., power, pitch, rotor speed). The states94

estimated by the digital twin include aerodynamic states (wind speed, thrust) and motions of the structure (e.g., surge, pitch,95

tower deflection). The core algorithm in the estimation is a Kalman filter that uses a linear wind turbine model. The estimated96

states are used in an a “virtual sensing” step , to produce quantities of interests (QoI), such as the loads at key locations of the97

structure. The QoI are then intended to be postprocessed by a monitoring and diagnostic tool to generate the data needed to98

perform condition-based O&M.99

2.2 Narrowed scope100

The boxes in Figure 1 that are surrounded with dashes are not addressed in the current work, namely: the structural with dashed-101

line borders—structural health modeling, monitoring and diagnostics, and O&M decisions. These decisions—are postponed to102

future work, even though they are essential steps necessary to achieve our final vision, but they are postponed to future work.103

Dashed lines indicate possible and arrows indicate options that may be exploited in the future but are also outside of our scope:104

the use of historical data to assist in the diagnostics, the use of estimates to perform modeling model updating, and real-time105

implementation.106

This work therefore focuses on the estimation of states and environmental conditions under the assumption that the estimated107

quantities can replace costly measurements and eventually be used for O&M decisions. We intend to provide a proof of concept108
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paving that paves the way for future commercial applications. A detailed description of each of the boxes surrounded with plain109

lines will be provided solid lines is given in Section 3.110

2.3 System studied111

2.3.1 The TetraSpar prototype112

Throughout this article, the system studied The system studied for this article is the TetraSpar floating offshore prototype. The113

system consists of a floating platform and station keeping stationkeeping system developed by Stiesdal Offshore in collabo-114

ration with partners Shell, RWE, and TEPCO Renewable Power, and a 3.6-MW wind turbine with a rotor diameter of 130 m115

developed by Siemens Gamesa Renewable Energy. A sketch of the system is provided in Figure 2. The prototype was installed

Figure 2. Sketch of the TetraSpar prototype

116

off the coast of Norway and commissioned in November 2021. The prototype turbine is equipped with additional sensors117

(labeled “Optional measurements” in Figure 1), which we will use to validate the estimated QoI.118

2.3.2 Numerical experiments119

Prior to using measurement data, we will use simulations (referred to as “numerical experiments”) in place of the real system to120

feed-in feed data to the digital twin. The advantage of this approach is that the QoI are directly accessible and can be compared121

to the estimates for verification purposes.122
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Data for the numerical experiments is are obtained using OpenFAST simulations (Jonkman et al., 2023). A model of the123

TetraSpar floating platform and the wind turbine was implemented in OpenFAST based on data provided by the manufactur-124

ers. The All the members of the substructure are modelled using the strip-theory approach (Morison equation) because the125

inherent long-wavelength assumption of the strip-theory has been shown to be sufficiently accurate for this structure with rel-126

atively slender members. The OpenFAST model is complemented with NREL’s Reference OpenSource Controller (ROSCO,127

Abbas et al. (2021)). The controller parameters are tuned so that OpenFAST simulations match the operating conditions of the128

turbine were extracted from SCADA data (pitch, rotor speed and power). The nacelle velocity feedback option of ROSCO is129

used to reduce the platform pitching motion. Using trial and error, the frequency and damping ratio of the pitch PI-controller130

are set to ωp = 0.05 rad/s and a controller was tuned to approximate these conditions. ζp = 7 %, and the values for the131

torque controller are set ωQ = 0.15 rad/s and ζQ = 7 %. The gain-scheduling of the pitch controller are obtained using the132

tuning feature of ROSCO. We note that the controller is only needed to perform verifications of the digital twin with real-133

istic time series of the turbine responses, but the controller itself is not used for the design of the digital twin. We use the134

following modules of OpenFAST(see , and Jonkman et al. (2023)) (Jonkman et al., 2023): MAP (mooring lines), HydroDyn135

(hydrodynamics), ElastoDyn (tower and blade elasticity; rigid floater), AeroDyn (aerodynamics), InflowWind (wind inflow),136

and ServoDyn (controller interface).137

For the numerical experiments, we use synthetic turbulent wind fields generated using TurbSim (Jonkman and Buhl (2006)138

)(Jonkman and Buhl, 2006). In particular, we will often use the same wind field, that we will which we refer to as the “turbulent139

step”,,” where a deterministic ramp and drop are added to a turbulent field. The advantage of this 10-min wind field is that is140

it covers all the operating regions of the turbine in a challenging way because the variations of the wind speed are sudden. The141

wind speed at hub height for the turbulent step can be seen in Figure 6.142

2.3.3 Main aspects of the structural model143

We model the structure using a set of 8 degrees of freedom (DOFsDOF), as illustrated in Figure 3. The platform is repre-144

sented as a rigid body, and its motion is described using 6 DOFsDOF: surge, sway, heave, roll, pitch, and yaw, respectively145

noted x,y,z,ϕx,ϕy,ϕzx, y, z, ϕx, ϕy , and ϕz . The tower bending in the fore-aft direction is represented using one 1 gen-146

eralized DOF, qt, associated with a Rayleigh-Ritz shape function, taken as the first fore-aft mode shape of the tower (see,147

e. g., Branlard (2019)). (Branlard, 2019). The shape function along the tower height, zt, is written as Φ(zt), with Φ(0) = 0148

at the tower bottom, and Φ(LT ) = 1 at the tower top, where LT is the tower length. The shaft rotation is noted ψ, so that149

the rotation speed of the rotor is ψ̇where the dotted , where the dot notation indicates differentiation with respect to time.150

The rotor-nacelle-assembly (RNA) rotor-nacelle assembly is modeled as a rigid body. The full vector of DOFs is therefore :151

q = [x,y,z,ϕx,ϕy,ϕz, qt,ψ]DOF is therefore q = [x, y, z, ϕx, ϕy, ϕz, qt, ψ]. The equations of motion will be recast into a152

first-order form by concatenating the vector of DOFs DOF and its time derivative: , x= [q, q̇]. The selected set of DOF capture153

the first-order effects as it is the minimal set required to capture the full motion of the floater (necessary to compute restoring154

loads and tower loads), the tower flexibility (necessary to capture tower loads) and the rotor motion (necessary to capture the155

aerodynamics). Additional degrees of freedom could be considered to increase the modeling accuracy, in particular to include156
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Figure 3. Notations for the structural modeling of the floating wind turbine, assuming no yawing of the nacelle. Left: main points

(F,T,N,O,G) and inertial coordinate system (i). Right: degrees of freedom (x,y,z,ϕx,ϕy,ϕz, qt,ψ) and main loads: aerodynamics (T ,

Q), hydrodynamics (6× 6 mass , and damping and stiffness matrices: , Mh, Ch, Kh. Wave ; wave excitation force neglected), mooring

(6× 6 stiffness matrix, Km), and gravity (g).

floater flexibility for internal calculation of substructure member loads. This would increase the computational requirement157

and only contribute to second-order effects, and it is therefore postponed to future work.158

In this work, we perform a simplifying assumptions, e.g., neglecting the influence of nacelle yaw on the system. The mea-159

surement data is are conveniently provided in the fore-aft and side-side system of the nacelle. The main assumption is therefore160

that we assume a rotational symmetry of the platform and mooring system about the yaw axis. We intend to lift this assumption161

in future work. Some of the consequences of this assumption is that we do no capture changes of inertial properties due to162

asymmetry of the support structure and changes of stiffness of the mooring system. In the case of the TetraSpar, the mass163

matrix of the floater does not vary significantly with the yawing of the coordinate system, and the assumption appears fair.164

For the restoring stiffness of the mooring system, the diagonal terms do not vary significantly as the coordinate system yaws,165

but some of the coupling terms vary by 50% to 200%. The couplings between the platform DOF are likely wrongly estimated166

under the rotational symmetry assumption. The impact is nevertheless limited because most of the platform DOF (x, y,ϕx, and167

ϕy) are measured and therefore observable by the Kalman filter.168

3 Individual components of the digital twin169

In this section, we describe and verify the individual components of the digital twin presented in Figure 1. In Section 4, we170

will present applications of the digital twin where all the individual components are combined together.171
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3.1 Wind turbine measurements172

The measurements used as inputs to the digital twin are listed in Table 1. These outputs are stored in a database at a sampling

Table 1. Measurements used as inputs to the digital twin.

Signal Symbol

Blade Collective blade pitch angle θp

Rotor speed ψ̇

Generator torque* Qg

Surge and Sway Platform surge and sway x,y

Roll and Pitch Platform roll and pitch ϕx,ϕy

Nacelle accelerations r̈N

* Obtained from the power measurement using Equation 2.
173

rate of 25 Hz. We expect these measurements to be standard sensors for any floating wind turbine. The TetraSpar prototype is174

equipped with additional measurements that will be are used to validate the implementation of the digital twin (see Section 4).175

3.2 Nonlinear wind turbine models176

3.2.1 Overview177

Similar to our previous work (Branlard et al., 2020b), we use two different pathways to obtain nonlinear and linear models of178

floating wind turbines: OpenFAST and WELIB (Wind Energy LIBrary, Branlard (2023b)). The different modeling approaches179

are illustrated in OpenFAST approach was described in Section 2.3.2, it is compared to the WELIB approach in Table 2 and180

further presented below. the WELIB toolset is further discussed below. In the next sections, we will show that the results from181

both approaches are consistent with each other so that either of the two can be used to obtain nonlinear and linear reduced182

order models. Ultimately, in Section 4, a mix of the two approaches is used for the digital twin: linear OpenFAST models for183

the state-space equations (Section 3.5) and WELIB for the virtual sensing step (Section 3.6).184

The OpenFAST approach was described in . The185

3.2.2 WELIB tools186

The WELIB approach consists of a set of dedicated open-source Python tools that are similar to the ElastoDyn, HydroDyn187

and MAP modules of OpenFAST. We developed this Python code these tools to offer additional modularity and granularity,188

for instanceto allow for: : the tools can be called individually or together; their states, inputs and outputs can be accessed and189

manipulated at each time step; and the Python scripting eases the manipulation of the models. For instance, this allows for: 1)190

analytical linearization of the structural dynamics, 2) simple linearization of the hydrodynamics (obtention of 6x6 6× 6 ma-191

trices), 3) linearization of hydrodynamics with respect to wave elevation, 4) linearization with respect to parameters (Jonkman192

et al., 2022), and 5) interactive time-stepping of the linear and nonlinear models. One shortcoming is that WELIB does not193
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Table 2. Approaches and tools used to obtain nonlinear and linear models.

pHydroDyn

pyMAP

YAMS

OpenFAST 
(ElastoDyn,  

HydroDyn, MAP, 
AeroDyn)

Tool

Structural model

Usage

Hydrodynamics

Moorings

Structural model
Hydrodynamics

Moorings

Analytical

Numerical

Numerical

Numerical
and 

analyticalAerodynamics

Formulation &
Linearization

Approach

WELIB
(Python
tools)

OpenFAST

2

1

Virtual sensing

Virtual sensing

cover the full range of options available with OpenFAST, which is a continuously evolving, extensively verified and validated194

tool. model. In this work, we mostly use the first two features listed above and their usage will be described in Section 3.3.2. Re-195

sults from time-stepping simulations will be presented in Section 3.3.3. We expect to exploit the additional features of WELIB196

in future digital-twin implementations. For this work, we implemented the following tools in WELIB: 1) YAMS, a symbolic197

structural dynamics package to obtain the equations of motion of an assembly of rigid and flexible bodies analytically, and198

allow for their analytical linearization (Branlard and Geisler, 2022); 2) pHydroDyn, a Python version of the module Hydro-199

Dyn (with a subset of HydroDyn’s functionality) to determine the hydrodynamic loads; and 3) pyMAP, a wrapper around the200

MAP module of OpenFAST, to obtain the mooring quasi-statics. With these three additions, it is possible to perform nonlinear201

simulations of floating wind turbines using WELIB and perform comparisons with OpenFAST. The benefits of202

3.2.3 Differences between the two nonlinear approaches203

Currently, no controller or aerodynamic module is present in WELIB. Therefore, nonlinear timestepping simulations with204

WELIB are limited to free-decay simulations or prescribed loads. Another shortcoming is that WELIB does not cover the full205

range of options available with OpenFAST, which is a continuously evolving, extensively verified and validated tool. Such206

options include the potential flow representation of hydrodynamic bodies, the flexibility of the floating structure, aerodynamic207

and control features. One benefit of WELIB over OpenFAST is the possibility to perform interactive time-stepping, that is,208

to change the states and inputs dynamically during the simulation. We do not use this approach in this work, but it can be209

considered for nonlinear digital twin applications, for instance, using an extended Kalman filter algorithm. Another benefit210

is the possibility to obtain analytical linear models and of the structure, which avoids using finite-differences and therefore211

reduces the associated numerical errors. In the WELIB approach, the individual modules are linearized separately before being212

combined into the final linear model, and it is therefore easier to understand where each term in the Jacobians of the linear213

models comes from, and thereby, gain physical intuitiveness on the model. Results Ultimately, the linear models obtained by214

both approaches are similar and differ mostly based on differences in the structural dynamics equations and the implementation215

9



of rotational transformation matrices. Results comparing time simulations using both approaches will be presented in see216

Section 3.3.217

3.3 Linear wind turbine models218

As part of our digital twin concept, we have chosen to use linear wind turbine models and a Kalman filter for the core of the219

state estimation (see Section 3.5). Nonlinear models and an extended Kalman filter could be considered in future iterations. In220

this section, we describe how the linear models from OpenFAST and WELIB are obtained.221

3.3.1 OpenFAST linearization222

OpenFAST can provide full-system linearization of its underlying nonlinear models by using a mix of analytically- and finite223

difference-derived analytically and finite-difference-derived Jacobians (Jonkman and Jonkman, 2016; Jonkman et al., 2018).224

The linearization process provides the state-space model (δẋ=Aδx+Bδu) and output equation (δy =Cδx+Dδu) for225

small perturbations (indicated with δ) of the internal states (x), inputs (u), and outputs (y) of OpenFAST, around the linearized226

a selected operating point. OpenFAST provides the linear model for the entire set of states, inputs, and outputs present in the227

model (including virtual sensor-type outputs typically written to an output file and not used internally). In this work, we extract228

subsets of the A, B, C, and D matrices and combine them to form the linear model of the state estimator (see Section 3.5).229

3.3.2 WELIB linearization230

WELIB performs the linearization of the structure, hydrodynamics, and moorings independently , before combining them into231

one model. The aerodynamic loads are not linearized because a dedicated aerodynamic estimator is used in this work (see232

Section 3.4). The steps are as follows:233

– The structural equations are linearized analytically using our symbolic framework (Branlard and Geisler, 2022). We234

introduce introduced a notion of “augmented inputs” to linearize the equations of motion without an explicit knowledge235

of the external forces. The process is described in Appendix A.236

– We compute the 6×6 linearized rigid-body hydrodynamics matrices (mass matrix Mh, damping matrix Ch, and stiffness237

matrix Kh) corresponding to the six rigid-body motions of the platform. We obtain themusing numerical differentiation238

in two different waysAt the time of this study, these matrices could not be obtained directly from OpenFAST. While239

working on this issue, we ended up devising multiple ways to obtain them. They can now be obtained using: 1) using240

the full-system linearization of the HydroDyn module, 2) the Python implementation of the HydroDyn module by per-241

forming rigid-body perturbation perturbations of the full platform, or , 2) using 3) an upgraded version of the OpenFAST242

HydroDyn driver that also uses rigid-body perturbations. The first approach uses baseline OpenFAST functionalities but243

requires additional postprocessing scripts and derivations. The full-system linearization of the HydroDyn module. The244

latter linearization of OpenFAST provides Jacobians of the hydrodynamic loads as a function of motions of the individual245

hydrodynamic analysis nodes (of which models often have hundreds to thousands of). To transfer these individual Jaco-246

10



bians to the reference point and obtain the 6× 6 matrices, we developed and used the method presented in Appendix B.247

The process is involved and prone to errors. In comparison, the second and third approaches are straightforward to im-248

plement and are several orders of magnitude faster. The Python version was implemented first and then ported over249

to Fortran so that it can be readily available to the OpenFAST community. The consistency between the two different250

approaches was verified. The , and because of its ease of use, the second approach is not straightforward to implement,251

therefore, we upgraded the OpenFAST HydroDyn driver to provide the 6× 6 hydrodynamic matrices directly without252

the need to use the full-system linearization . retained in this study. We note that in this study, all members are modeled253

using the Morison equation and the hydrodynamic drag is set to zero during the linearization process. There is therefore254

no frequency-dependent damping, and the effect of hydrodynamic drag is assumed to be part of the modeling uncertainty255

of the state estimator (see Section 3.5).256

– The linearized 6× 6 mooring stiffness matrix, Km, is obtained by calling the linearization feature of the MAP module,257

and transferring the Jacobian to the reference point using the method outlined in Appendix B.258

– The linearized equations of motion are assembled as:259

[M0 +Q0Mh]δq̈+ [C0 +Q0Ch]δq̇+ [K0 +Q0(Kh +Km)]δq = δfa + δfh (1)260

where the matrices with subscript 0 originate from the linearization of the structure (see Appendix A). The term matrix261

Q0is used here to map the , of dimension 8× 6, maps the subset of the 6 rigid-body platform degrees of freedom DOF262

(x,y,z,ϕx,ϕy,ϕz), used for the definitions of Mh, Ch, Kh and Km, to the full vector of degrees of freedomDOF, q.263

The term δfa is an approximation of the aerodynamic loads , and will be discussed in Section 3.4. The term δfh is an264

approximation of the hydrodynamic wave-excitation loadsand it will be . In this work, δfh is mapped into the inherent265

model noise of the Kalman filter in (see Section 3.5. ). Assuming that the loading is part of the model noise is a crude266

approximation that is expected to be fair as long as the loading has a zero mean value, which is expected to be the267

case for the wave loading, but not for the wind or current loading (here omitted). This modeling choice is not very268

influential in this work because the motions of the platform measured by the inclinometers and GPS sensors inherently269

carry information about the wave loading. Improvements could be obtained by including a model for the wave-excitation270

loads, and further, limiting the wave load signal such that it remains within a certain frequency band.271

For instance, we could introduce a hydrodynamic state analog to the wave elevation or a set of states that scales different272

hydrodynamic shape functions so that the hydrodynamic load can be obtained as a linear superposition of scaled shape273

functions. In our application (tower section loads), such modeling did not appear necessary, but it will be considered in274

future work as it can be relevant to estimate substructure loads.275

– We recast Equation 1 into a first-order system to obtain the state matrix A.276
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3.3.3 Verification of the linear models277

In this section, we compare results from the OpenFAST nonlinear model, the OpenFAST linear model, and the WELIB linear278

model , for free-decay simulations of the TetraSpar structure. Free-decay simulations are sufficient because wave and aerody-279

namic loads are purposely not included in the linear models used by the digital twin. The OpenFAST linear model is obtained280

about the operating point defined by q0 = 0 and ψ̇0 = 10 rpm. All models (including the OpenFAST nonlinear model) use281

8 DOFsDOF. The initial conditions are set to q = [1,−1,0.6,0.5,0.5,0,−0.2,0] q = [1,−1,0.6,0.5,0.5,0,−0.2,0] (in m and282

deg) and ψ̇ = 10 rpm, after which the structure is free to decaymove.283

First, simulation without hydrodynamics (structure only) are considered, to isolate and verify the structural-dynamics part284

of the models. The time responses from the linear and nonlinear models are in strong agreement when only the structure is285

considered (see results in Appendix C). Below, we present Then, we consider results for a model that includes hydrodynamics286

, but without wind or external waves (still water). Free decay of the structure using nonlinear and linear models for a case287

including moorings and hydrodynamics (still water). Time series of the main DOFs.We set the hydrodynamic drag to zero288

due to the difficulty in linearizing this term and will let the state estimator account for this modeling uncertainty. Results of289

the free-decay simulation are given in Figure 4 , for a time period of 153 s corresponding to the surge frequency. When

2.5

0.0

2.5

Su
rg

e 
[m

]

R2 = 0.973 R2 = 0.998

1

0

1

Sw
ay

 [m
]

R2 = 0.752 R2 = 0.908

0.5

0.0

0.5

1.0

He
av

e 
[m

]

R2 = 0.983 R2 = 0.978

0.5

0.0

To
we

r F
A 

[m
] R2 = 0.859 R2 = 0.992

WELIB linear
OpenFAST nonlinear
OpenFAST linear

0 50 100 150
Time [s]

0.5

0.0

0.5

Ro
ll 

[d
eg

]

R2 = 0.632 R2 = 0.819

0 50 100 150
Time [s]

4

2

0

Pi
tc

h 
[d

eg
]

R2 = 0.963 R2 = 0.996

0 50 100 150
Time [s]

0.50

0.25

0.00

0.25

0.50

Ya
w 

[d
eg

]

R2 = 0.000 R2 = 0.994

0 50 100 150
Time [s]

9.99

10.00

10.01

10.02

Ro
tS

pe
ed

 [r
pm

] R2 = 0.639 R2 = 0.808

Figure 4. Free decay of the structure using nonlinear and linear models for a case including moorings and hydrodynamics (still water). Time

series of the main DOF.
290

hydrodynamics is included, the time responses from the linear models are in strong agreement with the nonlinear OpenFAST291

results for the surge, heave, pitch, and tower fore-aft DOFsDOF. The sway, roll, and rotor speed responses tend to drift as the292

simulation time advances. The WELIB linear model has difficulty capturing the yaw response. We believe that some of the error293

in the yaw signal is due to differences between the formulations of the three-dimensional rotations in OpenFAST and WELIB,294

resulting in a difference of coupling between the DOFs, which we assume can be attributed to inherent differences between295

linear and nonlinear models. The coefficient of determination (R2) is indicated in Figure 4, comparing the linear models to296

the reference OpenFAST simulations for each response. In all cases, the OpenFAST linear model is closer to the nonlinear297

OpenFAST model than the WELIB model. The consistency between the linear and nonlinear OpenFAST model is expected298

because they are obtained from the same code base. The WELIB linear model had difficulty capturing the yaw response. We299

12



believe that some of the error in the yaw signal is due to differences between the formulations of the three-dimensional rotations300

in OpenFAST and WELIB. The difference in yaw, results in a difference of coupling between the DOF, which can explain the301

differences observed in the sway, roll and rotor speed signals.302

To further quantify the differences between the models, we compare the natural frequencies obtained using the OpenFAST303

linear and WELIB linear models in Table 3. Overall, the frequencies between the two linear formulations agree very well (less

Table 3. Comparison of system frequencies obtained using the WELIB and OpenFAST linear models with and without hydrodynamics (no

addded added mass, damping, hydrostatics, or wave excitation)

Structure + mooring Structure + mooring + hydrodynamics

Mode OpenFAST [Hz] WELIB [Hz] Rel. Err [%] OpenFAST [Hz] WELIB [Hz] Rel. Err [%]

Surge 0.0088 0.0088 -0.2 0.0067 0.0065 -2.4

Sway 0.0088 0.0088 -0.1 0.0067 0.0068 0.7

Yaw 0.0163 0.0162 -1.0 0.0128 0.0128 -0.3

Pitch 0.0879 0.0886 0.7 0.0253 0.0257 1.6

Roll 0.0894 0.0902 0.9 0.0256 0.0266 4.0

Heave NA NA NA 0.0276 0.0276 -0.2

Tower FA 0.5782 0.5789 0.1 0.5129 0.5145 0.3

304

that than 2.5% relative error), except for the roll frequencies (4% error) with hydrodynamics. Given the results of this section,305

we will continue this study using the OpenFAST linear model. We expect that continuous development of WELIB will further306

narrow the gap with OpenFAST in the future.307

3.4 Aerodynamic estimator308

In Section 3.3, we indicated that the linear models were derived without accounting for aerodynamics. Instead, we choose to309

include the aerodynamic contribution separately within the digital twin. The reason for this choice is that the determination of310

the aerodynamic loads is essential to capturing the main loading and deflections of the structure, in particular the tower, and ,311

the aerodynamic loads vary significantly over the range of operating conditions. Therefore, separating this contribution limits312

the need to obtain different linearized models for different operating conditions. We have successfully applied this approach313

in the past (Branlard et al., 2020a). In this work, we extend this approach to accommodate the floating wind application. The314

different elements of the aerodynamic estimator consist of : a torque estimator, aerodynamic maps, and a wind speed estimator.315

3.4.1 Kalman filter for torque estimation316

We assume that the power and rotor speed are reliable measurement signals, and we further assume that the generator torque317

(relative to the low-speed shaft) can be inferred from the power signal as:318

Qg =
P

ψ̇

1

nηDT(ψ̇)
(2)319
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where ηDT is the drivetrain (gearbox and generator) efficiency , and n is the gear ratio. For the TetraSpar, n= 1, and we assume320

ηDT = 1. The dynamics equation of the drivetrain is modeled as:321

JDTψ̈ =Q−Qg (3)322

where JDT is the inertia of the drivetrain about the shaft axis. If we assume that the generator torque is a measurement, then an323

augmented Kalman filter (Lourens et al., 2012) can be used to estimate the aerodynamic torque Q, using the following state324

equation:325 
ψ̇

ψ̈

Q̇

=


0 1 0

0 0 1
JDT

0 0 0



ψ

ψ̇

Q

+


0

− 1
JDT

0

Qg (4)326

A random walk approach is used for the evolution of the torque, that is, Q̇= 0, and the Kalman filter adds further model noise327

to this equation. The measurement equation of the Kalman filter is:328  ψ̇

Qg

=

0 1 0

0 0 0



ψ

ψ̇

Q

+

0
1

Qg (5)329

In the following, we will write Q̂, the aerodynamic torque obtained using the method outlined above. We will present verifica-330

tion results in Section 3.4.4.331

3.4.2 Aerodynamic maps332

It is commonly accepted that the aerodynamic performances performance of a wind turbine mostly depends on the tip-speed333

ratio and the pitch angle of the blade. With compliant structures, the bending of the blade, the bending of the tower, and the334

motions of the floating platform (in particular, the platform pitch) will also affect the aerodynamic performancesperformance.335

These motions are to a large extent a function of the mean wind speed. Therefore, we suggest to tabulate the aerodynamic336

performances as recommend tabulating the aerodynamic performance as a function of wind speed (U ), rotor speed (ψ̇), blade337

pitch (θp), and platform pitch ϕy ((ϕy , assumed to be in the fore-aft direction). The power and thrust coefficients, respectively338

noted CP and CT , are precomputed using aeroelastic simulations in OpenFAST for a discrete set of values of the 4 four input339

parameters. In the simulations, the blade and tower elasticity are accounted for. To limit the number of simulations, only the340

points that are within reasonable proximity of the regular operating conditions of the wind turbine are computed. The 4D341

aerodynamic maps are precomputed as follows:342

CP (U,ψ̇,θp,ϕy), CT (U,ψ̇,θp,ϕy) (6)343

U ∈ {2,3, · · · ,25} m.s−1, ψ̇ ∈ {5,5.5, · · · ,18} rpm, (7)344

θp ∈ {−1,0, · · · ,30} deg, ϕy ∈ {−10,0,15} deg (8)345

The precomputed values are stored in a database.346
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3.4.3 Wind speed estimation347

The digital twin uses the aerodynamic map database to estimate the wind speed and aerodynamic thrust. For a given air density348

(ρ), rotor radius (R), and given measurements ˜̇
ψ, θ̃p, ϕ̃ymeasurements ˜̇

ψ, θ̃p, ϕ̃y , the aerodynamic torque and thrust are readily349

obtained as a function of wind speed from the database:350

Q(U) =
1

2
ρ
U3

˜̇
ψ
πR2CP (U,

˜̇
ψ, θ̃p, ϕ̃y), T (U) =

1

2
ρU2πR2CT (U,

˜̇
ψ, θ̃p, ϕ̃y) (9)351

where S.I. SI units are assumed for all variables. For a given estimated torque (Q̂), the estimated wind speed (Û ) is found such352

that:353

Q(Û)− Q̂= 0 (10)354

As illustrated in Figure 5, multiple values of Û can potentially satisfy Equation 10 because the aerodynamic torque is a355

nonlinear function of the wind speed. In such casecases, we use the steady-state operating condition curve of the turbine to

4 6 8 10 12 14
Wind Speed [m/s]

0

1

2

Q
/Q

 [-
]

Q

U

Steady operating condition
Q(U) from database
Possible solutions
Point if steady
Selected

Figure 5. Illustration of wind speed estimation in the case where multiple wind speed values match the target torque value Q̂
356

chose choose between the multiple solutions (typically two) , by selecting the point that is closest to this curve (see Figure 5).357

A relaxation scheme is also used, based on the previous estimate, to alleviate sudden jumps of the estimated wind speed.358

3.4.4 Verification of the aerodynamic estimator359

To verify the aerodynamic estimator, we ran an OpenFAST simulation of the TetraSpar with the “turbulent step” wind field360

mentioned in Section 2.3.2 and irregular waves computed with a significant wave height of Hs = 6 m and a peak spectral361

period of Tp = 14, which represent a fairly extreme sea state for the site of the TetraSpar prototype. The simulated values of ψ̇,362

θp, ϕy , Qg are used as direct input to the aerodynamic estimator. Comparisons of the estimates with the OpenFAST outputs are363

shown in Figure 6. The shaded area on the figure represent the area areas on the graphs represent the areas where the generator364

torque is zero (turbine spinning up), and ; therefore, the wind speed estimator is not expected to work in that region. The top365
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Figure 6. Example of aerodynamic estimation using “simulated measurements” from OpenFAST. Top: wind speed. Middle: Dimensionless

torque. Bottom: structural inputs from the OpenFAST simulation provided to the estimator.

tops of the plots indicate the ratio of standard deviations, the mean relative error (ϵ), and the coefficient of determination (R2).366

Throughout this article, we define the mean relative error of a quantity x as:367

ϵ(x) = meani

[
|xest[i]−xref[i]|
mean(|xref|)

]
(11)368

where xest is the estimated signal, xref is the reference signal, and x[i] is the value of a signal at the time step i. Using the mean369

of |xref| in the denominator avoids issue issues related to signals crossing 0. It results in lower mean relative error than if the370

instantaneous value was were used, but the metric is still indicative of how far the two signals are on average.371

To quantify the performance of the estimator, we reproduced reproduce the simulation above, but adding add different noise372

levels to the measurements to account for measurement errors by the sensors. A Gaussian noise signal of zero mean and373

standard deviation rσ is added to each input, where r is the noise level and σ is the standard deviation of the clean input. The374

results are shown in Table 4. As expected, the error in the estimation increases with increasing noise levels. This numerical

Table 4. Mean relative error (ϵ) of the wind speed, torque and thrust estimates , for increasing noise levels.

Noise level 0% 1% 5% 10% 20%

Wind Speed 2.6% 2.6% 3.1% 4.1% 6.7%

Torque 3.5% 3.8% 5.0% 6.8% 11.1%

Thrust 4.1% 5.1% 5.6% 7.3% 11.6%

375

experiment provides a rough quantification of the errors that can be expected from the aerodynamic estimator.376

16



3.5 State estimator377

In this work, we follow a similar approach to our previous work (e.g., Branlard et al. (2020a)), (Branlard et al., 2020a), where378

an augmented Kalman filter is used to estimate states and loads. The Kalman filter used in the aerodynamic estimator (Sec-379

tion 3.4) is augmented with additional states and outputs. The Kalman filter uses two linear models: a state-equation, describing380

the time evolution of the states, and an output equation, describing how the measurements are related to the states and inputs.381

The state and output equations are written:382

δẋKF =XxδxKF +XuδuKF +wx (12)383

δyKF = Y xδxKF +Y uδuKF +wy (13)384

where δxKF, δuKF, and δyKF are the state, input, and output1, respectively, ; Xx, Xu, Y x, and Y u are the system matrices that385

relate the different system vectors, ; and, wx and wy are Gaussian processes represented modeling noise. The output vector,386

δyKF, is also referred to as the “measurement” vector , because it corresponds to the measured signals. At a given time step,387

the Kalman filter algorithm uses the system matrices, a set of measurements, and an a-priori a priori knowledge of the model388

and measurement uncertainties to estimate the state vector (Kalman, 1960; Zarchan and Musoff, 2015).389

In this work, we design the state estimator such that the state vector contains the structural degrees of freedom (δq and δq̇)390

and the aerodynamic torque (Q), and the input vector consists of the thrust (obtained with the aerodynamic estimator) , and391

the generator torque (obtained from the power). These design choices were guided by our previous work on the topic. For392

this choice of state and input variables, we build linear models for the state and output equations. We use the linear models393

described in Section 3.3 (the A, B, C, D matrices) , to populate the system matrices of the Kalman filter. We provide additional394

Additional details on how the relevant Jacobians are extracted are given in Section 3.6.1. Given our choice of system vectors,395

the state equation is:396 
δq̇

δq̈

Q̇

=


0 I 0

A12 A22
∂q̈
∂Q

0 0 0



δq

δq̇

Q

+


0 0
∂q̈
∂Qg

∂q̈
∂T

0 0


Qg

T

+wx (14)397

where , A12 and A22 are the two lower blocks of the A matrix, and I is the identity matrix. The Jacobians with respect to the398

loads are extracted from the B and D matrices. A random walk approach is used for the evolution of the torque Q (that is, we399

set Q̇= 0). The output equation, which effectively relates the measurements to the system states and inputs, is set as:400 
δq̃

ψ̇

r̈N

Qg

=


∂q̃
∂q

∂q̃
∂q̇

∂q̃
∂Q

0 Ĩ 0

∂r̈N

∂q
∂r̈N

∂q̇
∂r̈N

∂Q

0 0 0



δq

δq̇

Q

+


0 0

0 0

∂r̈N

∂Qg

∂r̈N

∂T

1 0


Qg

T

+wy (15)401

1In general, the Kalman filter system vectors are different from the ones used for the linearization presented in Section 3.3, therefore the subscript KF (for

Kalman Filter) is added to these vectors.
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where r̈N is the vector of nacelle accelerations, and q̃ = {δx,δy,δϕx, δϕy} is the measurements of surge, sway, roll, and pitch402

as given in Table 1.403

The state and output equations are used as part of a Kalman filter algorithm implemented in WELIB, which continuously404

takes as input the measurements from the wind turbine (corresponding to the left-hand side of Equation 15). The process405

and covariance matrices used within the Kalman filter algorithm (determining the values of wx and wy) are populated based406

on the estimated standard deviations of the different states and outputs. At each time step, the thrust is estimated using the407

aerodynamic torque of the previous time step and used as input. The result of the Kalman filter consists in is the estimated408

states and outputs at each time step. Sample simulation results will be are provided in Section 4.409

3.6 Virtual sensing410

Once the states are estimated by the Kalman filter, the virtual sensing step is used to derive quantities of interest (see Figure 1).411

In this work, we focus on the estimation of the sectional loads along the tower using a physics-based model. We investigate412

two methods to obtain these loads.413

3.6.1 OpenFAST linearization outputs414

The first method consists of using the linearization outputs of OpenFAST, namely, using a subset of the equation δy =Cδx+415

Dδu (see Section 3.3.1). In general, if a QoI quantity of interest is present in the output vector of OpenFAST, it can be retrieved416

as follows. If the variable is located at the row index k in the vector y, then this variable can be obtained from the states and417

inputs as:418

[y]k = [δy]k + [y0]k = [C]kδx+ [D]kδu+ [y0]k (16)419

where [·]k indicates that the row k of the matrix or column vector is used. In our case, [y]k in Equation 16 would for instance420

be the sectional fore-aft bending moment at the height zj along the tower, noted My(zj). The advantages of using this method421

are multiple: 1) the method is directly applicable to any other outputs computed by OpenFAST, 2) the calculation procedure422

is linear and therefore computationally efficient, 3) if strain measurements are available at given heights, the rows [C]k and423

[D]k could be included in the output equation of the Kalman filter (Equation 15) to provide information about the model’s424

expectation of these measurements, and 4) the underlying linear model is consistent with the nonlinear model of OpenFAST.425

The downside of the method is its linearity, in the sense that it is only valid close to the operating point and could lack important426

nonlinear effects. The values of [C]k, [D]k, and [y0]k would potentially need to be reevaluated if the system operates away427

from the linearized operating point. One possible solution would be is to introduce gain-scheduling to continuously modify the428

linear system based on the estimated wind speed. In this work, we used one operating point only and obtained results with fair429

accuracy (see Section 4). We nevertheless expect that to better represent the different operating regions of a pitch-regulated430

wind turbine, three to five linear models, stitched together through gain-scheduling would be needed.431
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3.6.2 Nonlinear calculation (WELIB)432

An alternative method consists of computing the section loads based on first principles using the formulation presented in433

Branlard (2019). The calculation requires a knowledge of the tower-top loads and the full kinematics of the tower and nacelle434

(position, velocity, and acceleration). At a given time step, the kinematics are computed based on q, q̇, and q̈. The tower-435

top loads are estimated based on the aerodynamic loads and the inertial loads of the rotor-nacelle assembly. We describe436

the method in more details detail in Appendix D. The advantages are that nonlinearities are accounted for and the model is437

valid irrespectively irrespective of the operating condition. The downside is that this method does not provide any of the four438

advantages offered by the OpenFAST linearization method.439

3.6.3 Verification of the section loads calculation440

To verify the calculation of the section loads, we use the same “turbulent step” wind field and irregular sea state that was441

were used in Section 3.4.4. We assume that the time series of q, q̇ and q̈ are entirely known, extracted from the OpenFAST442

simulation. These time series are provided to the two section loads algorithms: the WELIB nonlinear algorithm , and the443

OpenFAST linear algorithm.444

We run two sets of virtual sensing. In the “ideal” set, the loads at the tower top are extracted from OpenFAST results and445

provided to the two virtual sensing algorithms. In this ideal case, the linearized operating points of the OpenFAST linear model446

is set as the mean of each of the OpenFAST time series values. Results for the ideal case are provided illustrated in Figure 7.447

The two algorithms are able to reproduce the section loads of OpenFAST with relatively high accuracy, which verifies our two
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Figure 7. Tower fore-aft bending moment for the “turbulent step” and an irregular sea state as calculated by OpenFAST and compared to

the WELIB nonlinear and OpenFAST linear method. The motion of the structure is determined by OpenFAST and provided to the two

algorithms. The tower-top loads are also provided to the algorithms (“ideal” case, as opposed to Figure 8).

448

calculation procedures.449

In the second set, labeled “unknown thrust”,,” the tower top loads are not provided to the algorithms, but ; instead, the450

aerodynamic estimator mentioned in Section 3.4.4 is used to estimate the aerodynamic loads. This time, we do not set the451
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linearized operating point of the OpenFAST linear model to the mean value of the time series, but ; we set it to the static452

equilibrium (without loading).453

The results are provided illustrated in Figure 8. The accuracy of the section loads calculation is seen to deteriorate when the
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Figure 8. Tower fore-aft bending moment for the “turbulent step” and an irregular sea state as calculated by OpenFAST and compared to

the WELIB nonlinear and the OpenFAST linear method. The motion of the structure is determined by OpenFAST and provided to the two

other algorithms. The tower-top loads are estimated using the aerodynamic estimator (“unknown thrust” case, as opposed to the ideal case

presented in Figure 7).

454

aerodynamic loads are estimated with the aerodynamic estimator, which is expected. The damage equivalent load computed455

with a Wöhler slope of m= 5 is found to be 3.7% lower with the OpenFAST linear method and 1.2% lower with the YAMS456

nonlinear method compared to the value for reference signal.457

The performances performance of both algorithms remain satisfactory because we observe that remains satisfactory because458

the extrapolated signals follow the reference OpenFAST nonlinear simulation. The relative error obtained with the OpenFAST459

linear algorithm is higher (13.3%) than the one obtained using the WELIB nonlinear method (8.2%). The main source of error460

in the linear model is associated with the fact that the linearization point was not tuned for this specific simulation. It is our461

simplifying design choice to use only one linearization operating point throughout. Because of the loss of accuracy associated462

with this design choice, we will use the WELIB nonlinear algorithm in the digital twin for the calculation of section loads.463

We note that the variable that affects the most After performing a sensitivity analysis on the inputs and states of the system,464

we observed that the variables that most affect the fore-aft section loads is are the platform pitch ( ϕy), the tower fore-aft465

bending degree of freedom (qt), and then, the aerodynamic thrust. In this section, we assumed that all the states where known466

(including ϕy and qt), leading to great accuracy in the estimation of the section loads. The final verification step consists of467

involves providing estimated states to the algorithm, which is the topic of the next section.468
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4 Applications of the digital twin469

In Section 3 , we discussed how the different components of the digital twin were introduced and tested using increasing level470

of complexity. In this section, we combine discuss combining the different components to form the digital twin. We begin471

using numerical experiments from OpenFAST (see Section 2.3.2), similar to what was done in the previous sectionpreviously,472

before using measurements from the TetraSpar prototype.473

4.1 Numerical experiment474

First, we use the same “turbulent step” wind field and sea state that was used throughout Section 3. The augmented states of the475

system are determined at each time step using the state estimator described in Section 3.5. The measurements (see Table 1) are476

taken from the nonlinear OpenFAST simulation. The wind speed and aerodynamic loads are estimated using the aerodynamic477

estimator described in Section 3.4. The linear model is derived from linearized OpenFASTwhile , and the section loads in the478

tower are obtained using the WELIB virtual sensing algorithm described in Section 3.6. The estimates from the digital twin are479

compared with the reference nonlinear OpenFAST simulation results in Figure 9. A visual inspection of the time series reveals
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Figure 9. Estimated signals from the digital twin compared to results from an a nonlinear OpenFAST simulation using the turbulent-step

numerical experiment. From top to bottom: aerodynamic torque (Q), aerodynamic thrust (T ), tower-top position (qt), tower-bottom fore-aft

bending moment (My , TB). Results are made dimensionless for confidentiality reasons.

480

that the digital twin is able to capture the main trends and fluctuations of the different signals. The match can be considered481

remarkable given that only the sensors provided in Table 1 are used by the digital twin. Metrics such as mean relative error (ϵ)482

, and coefficient of determination (R2) are indicated on the figure. Despite the visually appealing match, the metrics indicate483

that the tower-bottom moment has a mean error of ϵ= 21%. The damage equivalent load of the tower-bottom moment is484
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underestimated by ϵ̃Leq
=−21%, where we define:485

ϵ̃(Leq) =
Leq,est −Leq,ref

Leq,ref
(17)486

Differences in damage equivalent loads typically indicate differences in the frequency content of the signals. We compare the487

frequency content of the estimated signals with the reference signals in Figure 10. The low-frequency content (below 1 Hz) is
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Figure 10. Power spectral density (PSD) of the time series presented in Figure 9. A logarithmic scale is used on the y axis.

488

captured well, in line with the visual inspection of Figure 9. Unfortunately, no clear trend is found for the high frequency high-489

frequency content: the power spectra of the aerodynamic loads indicate an underestimation, whereas the spectra of the tower-top490

position and tower-bottom bending moment tend to have higher energy content. As shown in previous studies (Branlard et al.,491

2020a), adequate filtering of the input measurements can be used to tune the energy content at high frequencies. The method492

is yet unsatisfactory because it acts as an artificial rebalancing of energy content to achieve the desired DEL value. Both low493

and high frequency content contribute to the DEL values, therefore, we believe that systematic improvement is only possible494

through modeling improvements and higher observability of the states by the Kalman filter.495

To quantify the errors in the estimation under a wider set of operating conditions, we ran run 10-min simulations for a496

set of wind speeds under normal turbulent conditions and sea states. We selected select wind speeds from 5 to 20 m/s using497

10 different seeds per bin of wind speed. The seeds are used to randomise randomize the turbulent field and sea states. The498

wind speed range is selected such so as to avoid cut-in and cut-out events where the aerodynamic estimator is not expected499

to perform well. The turbulence intensity is selected based on the normal turbulence model for a turbine of class “A”..” The500

wave height and wave period are set as a function of the wind speed as: Hs(U) = 0.16U +1 and Tp = 0.09U +5.57 , based501

Tp(U) = 0.09U+5.57. The Hs and Tp relationships were obtained by performing a linear regression on the sea state and wind502

measurements at the test site. OpenFAST simulations were are run for each case, and then the digital twin was is run using503

these numerical measurements. A summary of the mean relative error on some key estimated quantities is given in Figure 11.504
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We observe that the mean relative error of the wind speed and aerodynamic loads are is between 5% and 15% with a tendency
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Figure 11. Mean relative error of estimated signals for various wind speed and seeds. Clockwise from top left: wind speed (U), aerodynamic

loads, tower-bottom moment (My TB), and damage equivalent load of the tower-bottom moment (Leq,My TB). The individual simulations

are indicated by transparent markers. The average over each seed is indicated using plain solid lines.

505

for larger errors on the aerodynamic loads at low and high wind speeds. The error further propagates within the system, and the506

tower-bottom moment is estimated with a relative error between 10% and 40%. The error levels indicate that the aerodynamic507

estimator, which is based on quasi-steady rotor-averaged aerodynamics, cannot fully capture the dynamic aerodynamic state508

of the rotor in floating conditions. In general, the digital twin lacks sufficient information to fully capture the tower-top loads509

and the frequency content of the system. It is expected that placing the placement of additional sensors, such as accelerometers510

or load cells, along the tower , can significantly improve the estimation of the tower loads (in that case, we would either use511

OpenFAST linearization outputs , or , or an extended Kalman filter and a nonlinear model for the outputs). As seen in Figure 11,512

the relative error levels on the damage equivalent loads are between −10% and 5%, with the loads being either overestimated513

or underestimated depending on the wind speed. The structural health monitoring system could potentially use the estimated514

error levels indicated in Figure 11 to provide a confidence interval on the fatigue lifetime of the tower. We note that these515

error levels represent a best case scenario , best-case scenario because we assumed that no noise or biases were present in the516

measurements. We expect the error levels to increase with additional measurement noise.517

4.2 Estimations using measurements from the full-scale prototype518

In this section, we use measurements from the full-scale TetraSpar prototype installed off the Norwegian coast. Four days of519

data were selected based on data availability; a wide range of wind speeds are present in the time series (ranging from 4 to 24.5520

m/s with an overall mean of 8.9 m/s). Two days were selected in summer and two in winter to account for potential seasonality.521

Apart from these criteria, the selection of time series can be considered random. The measurement data is are stored as 10-min522

time series sampled at 25 Hz. The total number of 10-min samples used over the four days is 576. The measurement data is523
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are provided to the digital twin to perform the state estimation and virtual sensing. The The prototype is equipped with load524

cells at the tower top, middle, and bottom and nacelle wind speed measurements. We use these measurements to compare with525

the digital twin estimates.526

We begin by highlighting the computational time of the current procedure, as computational efficiency is crucial to achieve527

our digital twin vision. The state estimation is currently 10 times faster than realtimereal time. The virtual sensing step is half528

realtime twice as fast as real time, but computational improvements are possible, in particular, by using a compiled language529

instead of Python. The prototype is equipped with load cells at the tower top, middle and bottom, and nacelle wind speed530

measurements. We use these measurements to compare with For reference, OpenFAST simulations of the full TetraSpar model531

(with substructure flexibility) typically run 3 times slower than real time, and a reduced-order OpenFAST model with 8 DOF532

runs 1.1 times slower. Currently, real time estimation cannot be achieved with OpenFAST. Reduced-order modeling techniques,533

such as the ones presented in this article, are necessary to implement an online digital twin. Yet, if the digital twin estimates.is534

run as a postprocessing step, then parallelization using multiple CPUs could be used, e.g., processing different time periods of535

the day.536

A sample of results is provided in Figure 12. The figure illustrates a selected case where the estimation of the tower load537

is reasonably accurate, with an error on the damage equivalent load of only 0.4%. We note that the wind speed from the
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Figure 12. Comparison of digital twin outputs with wind speed and tower-bottom moment measurements from the TetraSpar prototype. The

measured wind speed comes from a nacelle anenometer and therefore is expected to differ from the rotor-averaged value estimated by the

digital twin.

538

measurement is a point measurement , (nacelle anenometer, in the wake of the turbine), and it is therefore not expected to be539

in strong agreement with the digital twin estimate, which is representative of a rotor-averaged wind speed.540

An aggregate of results from all the 10-min digital twin runs is illustrated in Figure 13. The figure shows relative errors in541

wind speed, thrust, and damage equivalent loads at the tower bottom and tower middle. As indicated previously, the wind speed542

from the digital twin and the measurements are different quantities, but the level of error obtained indicates that the digital twin543

is able to capture the main level of wind speed. The aerodynamic thrust from the aerodynamic estimator is compared with544

the load cell at the tower top in the fore-aft direction. This is a crude first-order approximation , (e.g., neglecting inertial and545

gravitational loads, nacelle tilting and shaft bending), but the overall estimated levels appears to beon average , on average,546

around 10% from the measured ones. The tower damage equivalent loads areon average , on average, within ±10% of the547
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Figure 13. Similar to Figure 11 but using measurements from the Tetra Spar prototype. Each marker indicate indicates a 10 10-min simulation

result. Solid lines are bin averages. The whiskers indicate the standard deviation in each bin. The bottom plots are for the tower bottom (TB)

and tower middle (TM) bending moments.

values obtained from the measurements, but some cases show errors ranging between ±50%. To give perspective on the large548

error values taken by the metrics, we illustrate two cases with large errors in Figure 14 and Figure 15. In both cases, we observe
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Figure 14. Similar to Figure 12, but for a case where a clear offset is present in the tower loads.
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that the estimator is capturing the trends and low frequencies with accuracies accuracy that, from a pure qualitative perspective,550

would appear satisfactory. As seen in Figure 14, an offset is present in the signal, which indicates that some physics might be551

missing from the load virtual sensing, or that the state estimator is failing. Measurement errors could also affect the results, but552

no systematic error was detected over the time period investigated. It is therefore difficult to conclude as to what is the main553

source of error. In Figure 14, the overall load level is captured well, but the error in the damage equivalent load is ϵLeq is 33%.554

As illustrated in Figure 10, our current method fails at capturing the high-frequency content of the signals, which can have a555

significant impact on the accuracy of the damage equivalent loads. In spite of Despite these challenges, the average accuracy556

of 10% is promising and indicates that the current methodology can be used to reconstruct some structural and environmental557

signals from a limited number of readily-available readily available sensors.558

5 Conclusions559

In this work, we implemented, verified, and validated a physics-based digital twin solution applied to a floating offshore wind560

turbine. The work focused on the estimation of the aerodynamic loads and the section loads along the tower, using a set of561

measurements that we expect to be available on any existing wind turbine (power, pitch, rotor speed, and tower acceleration)562

, and motion sensors that are likely to be standard measurements for a floating platform (inclination and GPS sensors). The563

key concept behind our approach consists of using: uses 1) a Kalman filter to estimate the structural states based on a linear564

model of the structure and measurements from the turbine, 2) an aerodynamic estimator, and 3) a physics-based virtual sensing565

procedure to obtain the loads along the tower. An important part of the work consisted of was developing the methodology566

and implementing the tools and models necessary for the aerodynamic estimation, state estimation, and load virtual sensing.567

We explored two different pathways to obtain models: a suite of Python tools , or and OpenFAST linearization. We used568

components from both approaches for the digital twin.569

Using numerical experiments, we found that the accuracy of the individual models were typically in was typically on the570

order of 5%. When comparing the digital twin estimations with the measurements from the TetraSpar prototype, the errors571

increased to 10%-–15% on average for the quantities of interest. Overall, the accuracy of the results appeared promising given572

the scope of our work, which aimed at illustrating to illustrate a proof of concept for a floating wind turbine digital twin. We573

observed a non-negligible scatter of results for the estimation of the tower damage equivalent loads that we attributed to the574

difficulty of capturing high-frequency content.575

Future work , should therefore explore possible improvements of the method to address this issue.576

Additional improvements could include: 1) gain-scheduling of the linear models , to extend the domain of validity of the577

linear models used and reduce the modeling error, 2) using nonlinear models and extended Kalman filtering techniques , to lift578

the linear assumptions that challenges the aerodynamics, hydrodynamics and structural dynamics, 3) introducing additional579

degrees of freedom and a full account of the yawing of the nacelle , to increase the fidelity of the models and account for the580

flexibility of the floater, 4) adding a model to account for wave excitation forces , to account for hydrodynamic loads and likely581

improve the estimation of member-level loads, 5) introducing additional measurements , to improve the state estimation and582
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increase the observability of the state, 6) improving the robustness of the aerodynamic estimator (in particularin particular,583

beyond the cut-in and cut-out wind speed), and speeds, to apply the digital twin when the turbine is not operating, and, 7)584

expanding the virtual sensing steps to estimate additional signals.585
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Appendix A: Linearization of the equations of motion with augmented inputs599

In this section, we describe the procedure used to linearize the structural equations of motion without a knowledge of the external loads,600

which is used to obtain Equation 1. We write the implicit form of the equations of motion as601

e(q, q̇, q̈, ũ, t) = 0 (A1)602

where q, q̇, q̈ and ũ are the degrees of freedom, velocities, accelerations, and “augmented inputs” of the model, respectively. The term603

augmented input is used because the external loads are included in this vector. The external loads are (in general) a function of the degrees604

of freedom. Therefore, we write the augmented input vector as:605

ũ= ũ(q, q̇, q̈,u) (A2)606
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where u is the vector of inputs in the classical sense, that is, consisting of system inputs that do not depend on the degrees of freedom (for607

instance, the wave elevation). The operating point is written using the subscript “0”,and ,” and is defined as:608

e(q0, q̇0, q̈0, ũ0, t) = 0 (A3)609

We perturb each variable, as q = q0+δq, q̇ = q̇0+δq̇, etc., where δ indicates a small perturbation of the quantities. The perturbation of the610

augmented input is then:611

ũ= ũ(q0, q̇0, q̈0,u0)+
∂ũ

∂q

∣∣∣∣
0

δq+
∂ũ

∂q̇

∣∣∣∣
0

δq̇+
∂ũ

∂q̈

∣∣∣∣
0

δq̈+
∂ũ

∂u

∣∣∣∣
0

δu (A4)612

where |0 indicates that the expressions are evaluated at the operating point. The linearized equations are obtained using a Taylor-Series613

Taylor-series expansion:614 [
M0 −Q0

∂ũ

∂q̈

∣∣∣∣
0

]
δq̈+

[
C0 −Q0

∂ũ

∂q̇

∣∣∣∣
0

]
δq̇+

[
K0 −Q0

∂ũ

∂q

∣∣∣∣
0

]
δq =Q0

∂ũ

∂u

∣∣∣∣
0

δu (A5)615

with616

M0 =− ∂e

∂q̈

∣∣∣∣
0

, C0 =− ∂e

∂q̇

∣∣∣∣
0

, K0 =− ∂e

∂q

∣∣∣∣
0

, Q0 =
∂e

∂u

∣∣∣∣
0

(A6)617

and where M0, C0, K0 are the linear mass, damping, and stiffness matrices, and Q0 is the linear forcing vector, also called the input matrix.618

Appendix B: Transfer of a Jacobian from one destination point to another619

The Jacobians provided by OpenFAST and MAP are provided at given nodes of the structure (e.g., the hydrodynamic nodes, or the fairleads).620

In this section, we highlight the procedure to transfer these Jacobians to another node (the platform reference point) assuming a rigid-body621

relationship between the nodes. The procedure is used in this work to compute the linear 6× 6 matrix for the hydrodynamics and mooring622

dynamics in Section 3.3.2. We obtain different relationships depending if on whether the destination point is assumed to be displaced or not623

. (see different subsections below).624

B1 Transfer of Jacobians between two points625

We consider a point source (noted S) and a destination point (noted D). The notations are illustrated in Figure B1. We assume a rigid-body

rD0
F S0

s0

rS0

δuD

rS

s
rD

δθ

δuS

D

S

Figure B1. Rigid-body kinematics with the loads from one source point (S) transferred to ta destination point (D), assuming small motion

of the points.
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626

relationship between that the two points . belong to a rigid body. The forces and moments at the destination and source are related as follows:627

FD = F S (B1)628

MD =MS + s̃F S (B2)629

where s= rS − rD is the vector from destination point to the source point, F S and MS are the force and moments, respectively, at point630

S, and the tilde notation refers to the skew symmetric matrix, which is a matrix representation of the cross product. We seek to linearize631

Equation B1 and Equation B2 for small displacements and rotations of the destination and source nodes. In particular, we seek to express632

the Jacobians at the destination node as a function of the source node, assuming a rigid-body relationship between the two. The rigid-body633

relationship linking the small displacements (δu) and small rotations (δθ) of the source and destination points is:634

δuD = δuS + s̃0δθS635

δθD = δθS (B3)636

where s0 is the vector between the source and destination points at the operating point (prior to the perturbation). The Jacobians of the637

transformations given in Equation B3(, and its inverse) , are:638  ∂uD
∂uS

∂uD
∂θS

∂θD
∂uS

∂θD
∂θS

=

I s̃0

0 I

 ,
 ∂uS

∂uD

∂uS
∂θD

∂θS
∂uD

∂θS
∂θD

=

I −s̃0

0 I

 (B4)639

To linearize Equation B1 and Equation B2, we introduce the following perturbations:640

FD = FD0 + δFD, F S = F S0 + δF S (B5)641

MD =MD0 + δMD, MS =MS0 + δMS , (B6)642

where the subscript 0 indicates values at the operating point. At the operating point, Equation B1 and Equation B2 are satisfied, that is:643

FD0 = F S0 (B7)644

MD0 =MS0 + s̃0F S0 (B8)645

Transfer of forces646

Inserting Equation B5 into Equation B1 leads to:647

FD0 + δFD = F S0 + δF S (B9)648

Whichwhich, using Equation B7, leads to:649

δFD = δF S (B10)650

The Jacobians of the loads at nodeD with respect to the displacements at nodeD are then obtained by applying the chain rule to Equation B10651

and making use of the Jacobian of the displacements given on the right of Equation B4. For instance, for the force:652

∂FD

∂uD
=
∂F S

∂uS

∂uS

∂uD
+
∂F S

∂θS

∂θS

∂uD
=
∂F S

∂uS
653

∂FD

∂θD
=
∂F S

∂uS

∂uS

∂θD
+
∂F S

∂θS

∂θS

∂θD
=
∂F S

∂θS
− ∂F S

∂uS
s̃0 (B11)654
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For the transfer of the moments, the relationship will be different whether the moments are transferred at the undisplaced destination point ,655

or the displaced destination point.656

Moments at the undisplaced destination point657

In this section, the moments are transferred to the undisplaced destination point. The vector from the undisplaced destination point to the658

displaced source is:659

r = s0 + δuS (B12)660

Introducing Equation B6 and Equation B12 into Equation B2, and temporarily using the “×” notation instead of the tilde notation:661

MD0 + δMD =MS0 + δMS + s0 ×F S0 + s0 × δF S + δuS ×F S0 + δuS × δF S (B13)662

Making use of Equation B8, neglecting the nonlinear term (δuS × δF S) and reintroducing the tilde notation , leads to:663

δMD = δMS + s̃0δF S − F̃ S0δuS (B14)664

The Jacobians of the moments at the undisplaced node D with respect to the displacements at node D are then obtained by applying the665

chain rule to Equation B14:666

∂MD

∂uD
=
∂MS

∂uS

∂uS

∂uD
+
∂MS

∂θS

∂θS

∂uD
+ s̃0

[
∂F S

∂uS

∂uS

∂uD
+
∂F S

∂θS

∂θS

∂uD

]
− F̃ S0

∂uS

∂uD
667

=
∂MS

∂uS
+ s̃0

∂F S

∂uS
− F̃ S0 (B15)668

and669

∂MD

∂θD
=
∂MS

∂θS

∂θS

∂θD
+
∂MS

∂uS

∂uS

∂θD
+ s̃0
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∂θS

∂θD
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∂F S
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∂uS

∂θD
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− F̃ S0

∂uS

∂θD
670

=
∂MS

∂θS
− ∂MS

∂uS
s̃0 + s̃0

∂F S

∂θS
− s̃0

∂F S

∂uS
s̃0 + F̃ S0s̃0 (B16)671

Jacobian relationships at the undisplaced destination point672

Equation B11, Equation B16, and Equation B15 can be gathered in matricial form to relate the different Jacobians between the source point673

and the undisplaced destination point:674  ∂FD
∂uD

∂FD
∂θD

∂MD
∂uD

∂MD
∂θD


undisplaced

=

 I 0

s̃0 I

 ∂FS
∂uS

∂FS
∂θS
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∂uS
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I −s̃0

0 I

+

 0 0

−F̃ S0 F̃ S0s̃0

 (B17)675

Moments at the displaced destination point676

In this section, the moments are transferred to the displaced destination point. The vector from the displaced destination point to the displaced677

source is:678

r = s0 + δuS − δuD = s0 − s̃0δθS (B18)679

Introducing Equation B6 and Equation B18 into Equation B2, and temporarily using the “×” notation instead of the tilde notation:680

MD0 + δMD =MS0 + δMS + s0 ×F S0 + s0 × δF S − (s0 × δθS)×F S0 − (s0 × δθS)× δF S (B19)681
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Making use of Equation B8, neglecting the nonlinear term ((s0 × δθS)× δF S), and reintroducing the tilde notation , leads to:682

δMD = δMS + s̃0δF S + F̃ S0s̃0δθS (B20)683

The Jacobians of the loads at the displaced node D with respect to the displacements at node D are then obtained by applying the chain rule684

to Equation B20 and making use of the Jacobian of the displacements given on the right of Equation B4.685

∂MD

∂uD
=
∂MS

∂uS

∂uS

∂uD
+
∂MS

∂θS

∂θS

∂uD
+ s̃0

∂F S

∂uS
686

=
∂MS

∂uS
+ s̃0

∂F S

∂uS
(B21)687

and688

∂MD

∂θD
=
∂MS

∂uS

∂uS

∂θD
+
∂MS

∂θS

∂θS

∂θD
+ s̃0

∂F S

∂θD
+ F̃ S0s̃0689

=
∂MS

∂θS
− ∂MS

∂uS
s̃0 + s̃0

∂F S

∂θD
+ F̃ S0s̃0690

=
∂MS

∂θS
− ∂MS

∂uS
s̃0 + s̃0

∂F S

∂θS
− s̃0

∂F S

∂uS
s̃0 + F̃ S0s̃0 (B22)691

Jacobian relationships at the displaced destination point692

Equation B11, Equation B22, and Equation B21 can be gathered in matricial form to relate the different Jacobians:693  ∂FD
∂uD

∂FD
∂θD

∂MD
∂uD

∂MD
∂θD


displaced

=

 I 0

s̃0 I

 ∂FS
∂uS

∂FS
∂θS

∂MS
∂uS

∂MS
∂θS

I −s̃0

0 I

+

0 0

0 F̃ S0s̃0

 (B23)694

B2 Relationships at the displaced destination point for multiple source points695

We now consider the case where multiple point sources are present. The derivation can be seen as a generalization of the previous case696

between two points, but special care is needed . when summing the contributions from the different nodes. The notations are illustrated in697

Figure B2. The loads at the destination points are obtained as:

rD0

rk0

F k0

sk0

rj0

δuD

rk

sk
rD

δuk

δθD

δuj

Sj

Sk

D

Figure B2. Rigid-body kinematics with the loads from multiple source points (Sj), transferred to a destination point (D)

698

FD =
∑
k

F k (B24)699

MD =
∑
k

Mk + s̃kF k (B25)700
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where k is an index looping over all points of the rigid structure. To shorten notations, we define the vector between the destination point and701

a given point as:702

sk = rk − rD (B26)703

sk0 = rk0 − rD0 (B27)704

where sk is the vector between the displaced points and sk0 is the vector prior to the displacement(at the operating condition). . Due to the705

rigid-body assumption, the elementary displacements of the points are related as follows:706

δuD = δuj + s̃j0δθj707

δθD = δθj (B28)708

from which one obtains the following useful relationships:709

∂uj

∂uD
= I,

∂θj

∂uD
=O,

∂uj

∂θD
=−s̃j0,

∂θj

∂θD
= I,

∂θj

∂θk
= Iδjk,

∂θj

∂uk
=O (B29)710

Using a similar Taylor expansion as for the case with two nodes, the perturbation loads are obtained as:711

δFD =
∑
k

δF k (B30)712

δMD =
∑
k

δMk + s̃k0δF k + F̃ k0(s̃k0δθk) (B31)713

The chain rule for a given quantity of interest (Q) is obtained by summing over all the elementary variables:714

dQ=
∑
j

∂Q

∂uj
duj +

∂Q

∂θj
dθj (B32)715

For instance, the application of the applying the chain rule to FD and using Equation B30 leads to:716

∂FD
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∂FD

∂uj

∂uj
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j

∑
k

∂F k

∂uj
(B33)717

Eventually, the Jacobians at the displaced destination node are obtained as:718  ∂FD
∂uD

∂FD
∂θD

∂MD
∂uD

∂MD
∂θD


displaced

=
∑
j

∑
k

 I 0

s̃k0 I

 ∂Fk
∂uj

∂Fk
∂θj

∂Mk
∂uj

∂Mk
∂θj

I −s̃j0

0 I

+

0 0

0 F̃ j0s̃j0

 (B34)719

Appendix C: Verification of the linear models720

In this section, we supplement the results given in Section 3.3.3 , by showing free-decay results without hydrodynamics (no added mass,721

damping, hydrostatics). We In Figure C1, we show results with the structure onlyin , and results with the structure and moorings are reported722

in Figure C2. These results also include the nonlinear WELIB formulation. A strong agreement is found between the nonlinear OpenFAST723

and WELIB models, and between the linear OpenFAST and WELIB models. The yaw degree of freedom appears to be more challenging724

to capture for the linear models. We recall that OpenFAST and WELIB use different definition of the transformation matrices between the725

degrees of freedom, which results in different structural dynamic equations.726
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Figure C1. Free decay of the structure using nonlinear and linear models for a case including only the structure (no moorings, no hydrody-

namics). Time series of the main DOFsDOF.

1

0

1

Su
rg

e 
[m

]

R2 = 0.996 R2 = 0.992 R2 = 0.997

1

0

1

Sw
ay

 [m
]

R2 = 0.996 R2 = 0.996 R2 = 0.996

0.5

0.0

0.5

To
we

r F
A 

[m
] R2 = 0.983 R2 = 0.979 R2 = 0.994

0 10 20 30 40
Time [s]

0.5

0.0

0.5

Ro
ll 

[d
eg

]

R2 = 0.993 R2 = 0.993 R2 = 0.999

0 10 20 30 40
Time [s]

1

0

1

Pi
tc

h 
[d

eg
]

R2 = 0.997 R2 = 0.996 R2 = 0.999

0 10 20 30 40
Time [s]

0.1

0.0

Ya
w 

[d
eg

]

R2 = 0.989 R2 = 0.000 R2 = 0.000

0 10 20 30 40
Time [s]

9.95

10.00

10.05

Ro
to

r s
pe

ed
 [r

pm
] R2 = 0.992 R2 = 0.992 R2 = 0.998

WELIB nonlinear
WELIB linear
OpenFAST nonlinear
OpenFAST linear

Figure C2. Free decay of the structure using nonlinear and linear models for a case including moorings (no hydrodynamics). Time series of

the main DOFsDOF.

Appendix D: Computation of section loads727

In this section, we describe the nonlinear calculation procedure used in Section 3.6.2 to assess the section loads along the tower based on728

estimates of the structure kinematics and the loads at the tower top. For conciseness, in this appendix, we use x and z for the coordinates729

along the tower fore-aft and tower height, respectively, instead of xT and zT .730

D1 Tower fore-aft bending moment and shear force731

The fore-aft and side-side loads are computed moments are computed in the same way, therefore; therefore, this section focuses on the732

fore-aft direction. The sectional fore-aft bending moment at a given tower height z is determined as:733

My(z) =My,top −
LT∫
z

Sx(z
′)dz′ (D1)734

-here Here, My,top is the fore-aft bending moment at the tower top, and Sx is the shear force in the x direction, obtained as:735

Sx(z) =

LT∫
z

px,all(z
′)dz′ (D2)736
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where px,all is the force per unit length acting on the tower section in the fore-aft direction, including contributions from the external loads737

(aerodynamic loads on the structure), inertial loads due to the acceleration of the structure (including gravity), and nonlinear correction terms738

from the loads in the z direction (p−∆ effect, including self-weight effects). The different contributions are written as follows:739

px,all = px,ext + px,corr − px,acc (D3)740

In this work, we neglect the external loads on the tower, px,ext = 0 (aerodynamic loads on the tower are typically small relative to rotor-thrust741

loads for an operating wind turbine). The acceleration contribution is px,acc =−m(z)(ax,struct(z)− ax,grav), where m is the mass per length742

along the beam, and ax,struct(z) is the acceleration of the section, determined based on the rigid-body acceleration of the floater and the elastic743

motion of the tower (q̇T and q̈T ), and ax,grav is the acceleration of gravity in the x direction. The p−∆ correction term due to the vertical744

loading is computed as (see Branlard (2019)):745

px,corr =
d2Φ

d2z

 L∫
z

pz dx
′ +

∑
zk≥z

Fz,k

− dΦ

dz

[
pz +

∑
k

Fz,kδ(z− zk)

]
(D4)746

where pz is the vertical load per unit length (mostly consisting of the self-weight), Fz,k is the k-th th vertical force acting at point zk, and747

δ is the Dirac function, and Φ is the shape function used to describe the tower displacement field (see Section 2.3.3). In our case, only the748

vertical force acting on top of the tower is present, z1 = LT and Fz,1 = Fz,top. The procedure is similar to compute the section loads in the749

y direction (using the p−∆ correction as well) is similar.750

D2 Tower and RNA rotor-nacelle assembly kinematics751

The determination of the tower section loads require requires a knowledge of the tower kinematics, to compute astruct, and the RNA of the752

rotor-nacelle assembly (RNA) kinematics, to compute the inertial contribution to the tower-top loads (see Section D3). The position, linear753

velocity, linear acceleration, rotational speed, and rotational acceleration of the floater (point F , body f ) are given respectively by:754

rF = {x,y,z}i, vF = {ẋ, ẏ, ż}i, aF = {ẍ, ÿ, z̈}i, (D5)755

ωf = {ϕ̇z, ϕ̇y, ϕ̇z}i, ω̇f = {ϕ̈z, ϕ̈y, ϕ̈z}i (D6)756

where the notation i indicates that the coordinates of the vector are expressed in the inertial coordinate system. The transformation matrix757

from the floater to the inertial frame is obtained as : Rf2i =R(ϕx,ϕy,ϕz). , where R is a function computing the rotation matrix. The tower758

base (point T , body t) kinematics are obtained from the floater using rigid body motion using rigid-body kinematics:759

rT = rF + rFT , (D7)760

vT = vF +ωf × rFT , (D8)761

aT = aF +ωf × (ωf × rFT )+ ω̇f × rFT , (D9)762

ωt = ωf , ω̇t = ω̇f , Rt2i =Rf2i (D10)763
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where rFT is the vector from the floater point to the tower base. The kinematics of a given tower section (point S, at height z) are given by:764

rS = rT + rTS = rT + rTS0 +uS , (D11)765

vS = vT +ωt × rTS + u̇S , (D12)766

aS = aT +ωt × (ωt × rTS)+ ω̇t × rTS +2ωt × u̇S + üS , (D13)767

ωs = ωt +ωts, (D14)768

ω̇s = ω̇t + ω̇ts +ωt ×ωts, (D15)769

where rTS0 = zẑt is the vector from the tower base to the undeflected section, uS , u̇S , üS are the elastic motions of the section computed770

based on the shape function and the generalized coordinates, e.g., uS(z) =
∑

j qt,jΦj = qtΦ(z)x̂t (see e.g.,Branlard and Geisler (2022)).771

We note that OpenFAST also includes a vertical motion associated with the deflection (referred to as a “geometric nonlinearity”)associated772

with the deflection, which we are currently neglecting neglect in this work. The transformation matrix from the section to the tower is773

Rs2t =R(−u′
S,y,u

′
S,x,0), where uS,y and uS,x are the components of uS in the tower coordinate system, and the prime notation indicates774

the differentiation with respect to z. The rotation speed and acceleration of the tower section with respect to the tower base are:775

ωts =
{
u̇′
S,y, u̇

′
S,x,0

}
t
, ω̇ts =

{
ü′
S,y, ü

′
S,x,0

}
t

(D16)776

The kinematics of the tower-top point and nacelle (point N , body n) are taken from the last section node (point S with z = LT ). Yawing,777

tilting, and rolling of the tower top would change the orientation matrix, rotational velocity, and rotational acceleration of the nacelle. These778

kinematics are omitted here for conciseness. The kinematics of the center of mass of the RNA (point G) are obtained using rigid-body779

kinematics(, identical to what was used between point F and T ).780

D3 Tower-top loads781

The tower-top loads are computed as follows:782

F top =F aero −F inertia (D17)783

Mtop =Maero −Minertia (D18)784

where the aerodynamic loads are transferred to the tower top and where the inertial loads from the rigid-body RNA are:785

F inertia =MRNA(aG − g) (D19)786

Minertia = rNG ×F inertia +JG · ω̇n +ωn × (JG ·ωn) (D20)787

where: rNG is the vector from the tower top to the center of mass of the RNA, MRNA is the mass of the RNA, JG is the inertia tensor of the788

RNA at it’s center of mass, aG is the linear acceleration of the center of mass of the RNA, ωn is the rotational acceleration of the RNA, and789

ω̇n is the rotational acceleration of the nacelle. The load calculation is first done in the coordinate system of the nacelle , and then transferred790

to the coordinate system of the tower where Equation D1 is defined.791
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