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Abstract.

Control co-design is a promising approach for wind turbine design due to the importance of the controller in power produc-

tion, stability, load alleviation, and the resulting coupled effects on the sizing of the turbine components. However, the high

computational effort required to solve optimization problems with added control design variables is a major obstacle to quan-

tifying the benefit of this approach. In this work, we propose a methodology to identify if a design problem can benefit from5

control co-design. The estimation method, based on post-optimum sensitivity analysis, quantifies how the optimal objective

value varies with a change in control tuning.

The performance of the method is evaluated on a tower design optimization problem, where fatigue load constraints are

a major driver, and using a Linear Quadratic Regulator targeting fatigue load alleviation. We use the gradient-based multi-

disciplinary optimization framework Cp-max. Fatigue damage is evaluated with time-domain simulations corresponding to10

the certification standards. The estimation method applied to the optimal tower mass and optimal cost of energy show good

agreement with the results of the control co-design optimization while using only a fraction of the computational effort.

Our results additionally show that there may be little benefit to using control co-design in the presence of an active frequency

constraint. However, for a soft-soft tower configuration where the resonance can be avoided with active control, using control

co-design results in a taller tower with reduced mass.15

1 Introduction

Control co-design (CCD) is a sub-field of dynamic systems design where the controller is designed simultaneously with the

structure. Wind turbine design is a promising field of study within CCD because these structures are driven by load constraints,

while at the same time control is important for optimal energy production and for reducing loads (Garcia-Sanz, 2019; Veers

et al., 2022).20

Though CCD is not yet widely used in the field of wind energy, several research groups have shown the potential of the

method. Chen et al. (2017) include an automatic controller synthesis for the design of a wind turbine blade with individual

pitch control and trailing edge flaps, leading to a decrease in the levelized cost of energy (LCOE). Deshmukh and Allison

(2016) achieve an 8 % improvement in Annual Energy Production (AEP) with a CCD approach compared to a sequential
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approach, considering torque control only and using a simple set of structural constraints and a linearized model for the turbine25

dynamics. Pao et al. (2021) report how including control tuning in the design process leads to a cost-effective extreme-scale

13 MW downwind turbine rotor. This result was achieved with an iterative design process instead of a fully coupled approach.

Most wind turbine optimization frameworks rely heavily on steady-state analysis (Zahle et al., 2016) or a nested/decoupled

frozen loads approach (Bottasso et al., 2016) to reduce the computation effort of the optimization. Yet, CCD requires expensive

time domain simulations to be executed within the optimization loop, to assess the effect of changing the control. Such changes30

to an optimization framework are expensive, both in the code development phase and during execution. This high computational

cost makes it difficult to identify designs relevant to CCD, since the design process often requires a trial-and-error approach.

Therefore, a tool is needed to estimate which problems can benefit from CCD without an excessive computational burden.

From a mathematical point of view, the difference between a CCD and a standard physical design optimization problem can

be seen as the addition of the design variables describing the controller action. A promising problem for CCD applications is35

one that is likely sensitive to control tuning. Indeed, an integrated design approach is recommended when the physical system

and control system are strongly coupled (Allison and Herber, 2014). Therefore, we propose a method to estimate how the

optimal objective value of a given problem changes when the control changes, in the context of gradient-based optimization.

The estimator is formulated using post-optimum sensitivity analysis (POSA) (Castillo et al., 2008) on a standard structural

optimization problem with fixed control, and can be used to estimate the results of the more complicated CCD optimization.40

While POSA is not widely used in the field of wind energy, a recent study by McWilliam et al. (2022) uses this approach to

identify the design drivers for swept blades.

The proposed estimation method is applied to the design of a wind turbine tower driven by fatigue damage constraints.

Several authors have developed control strategies to reduce fatigue damage (Johnson et al., 2012; Camblong et al., 2012),

reducing tower side-side loads by 8 % (Kim et al., 2020) and fore-aft fatigue loads by 14 % (Nam et al., 2013). Since fatigue45

damage can be a driving constraint for wind turbine towers (Canet et al., 2021; Dykes et al., 2018), CCD has the potential to

improve the design of this component. In the context of CCD however, fatigue reduction is more challenging due to the many

long-running time-domain simulations that are needed for accurate fatigue calculations. Therefore, an estimation method is

particularly relevant for this type of problem before applying CCD directly.

Another important constraint in the design of wind turbine towers is the frequency constraint, which prevents resonance with50

the rotor rotational frequency. Recent developments in control design have allowed to design towers without this constraint,

called soft-soft towers, where resonance avoidance is managed by active control. Soft-soft towers generally have a lower mass

than standard ones (also called soft-stiff configuration), and their designs can also be driven by fatigue damage (Dykes et al.,

2018). In this work, both the standard and soft-soft configurations are studied in order to assess the performance of the presented

estimation method on two different design problems with different sets of constraints.55

The paper is organized as follows. Section 2 describes two estimation methods: a first-order estimator taking into account

a linear dependency of the problem with control tuning, and a high-order estimator that includes non-linear effects but is

also subject to additional assumptions. Section 3 describes the tower design problem and control architecture in detail, and

how to apply the estimator formula in practice. Section 5 compares the estimator to the solution of the corresponding control
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co-design optimization problem. Finally, the limitations of this study and potential applications are discussed in Section 6. A60

nomenclature is provided in Appendix A.

2 Methodology

We consider the control co-design Problem 1 below, where c and x represent the control and structural design variables,

respectively:

minimize
x,c

f(x,c)

subject to gi(x,c)≤ 0 i= 1, ...n. (1)65

In the general case, the objective function f and the constraints gi, i= 1, ...,n depend on both x and c. Most existing wind

turbine optimization frameworks do not allow for the direct solution of Problem 1. Several frameworks are implemented in

such a way that the controller design is fixed during the design process. In this context, adding the control design variable

c to the existing optimization requires significant development effort. In addition, having the control design variable in the

optimization problem requires updating the time-dependent loads on the structure at each iteration of the optimization. As a70

consequence, the computational effort required for the optimization becomes large, and the direct solution of the problem is

generally impractical.

Instead, it is possible to solve an optimization problem with frozen control, represented by Problem 2, where the control

variable is fixed to its reference value cr:

minimize
x

z = f(x,cr)

subject to gi(x,cr)≤ 0 i= 1, ...n. (2)75

The aim of this work is to understand if the design problem benefits from a CCD approach. In other words, are there sufficient

potential improvements to justify the additional effort to solve Problem 1? If Problem 2 can benefit from a CCD reformulation,

the optimal objective value is likely to be sensitive to a change in the control parameter cr. This means that solving the

problem at cr or cr+dc will give a significant change in the optimal objective value dz∗(dc) = z∗(cr+dc)−z∗(cr). We use

post-optimum design sensitivity (Castillo et al., 2008) to estimate dz∗(dc) from the solution of Problem 2.80

The change of optimal objective value due to a change of the control parameter dc can be written as a first-order approxi-

mation using the gradients of f :

dz∗(dc) = f(x∗ +dx∗,cr +dc)− f(x∗,cr)≃∇xf(x
∗,cr)

Tdx∗ +∇cf(x
∗,cr)

Tdc. (3)

In this equation, the change of optimal solution dx∗ is not directly known, but can be characterized with the first-order

optimality conditions: the constraints are satisfied and the stationarity condition, described in the following paragraphs, holds.85

First, the satisfaction of the constraints means that gi(x∗ +dx∗,cr +dc) = gi(x
∗,cr) = 0, i ∈ I, where I is the set of

active constraints. We assume that the active set does not change with dc. This equation can be expanded by using a first-order

3



approximation around point (x∗,cr) on the left-hand term, resulting in:

∇xgi(x
∗,cr)

Tdx∗ =−∇cgi(x
∗,cr)

Tdc, i ∈ I. (4)

Then, we can relate the gradient of the constraints to the gradient of the objective function ∇xf(x
∗,cr) in Eq. (3) using90

the stationarity condition. For unconstrained optimization, the optimum is a stationarity point of the objective function, i.e.

∇xf(x
∗,cr) = 0. This condition gives practical methods to find the optimum, e.g. with root-finding algorithms. However, for

constrained optimization, ∇xf(x
∗,cr) ̸= 0 in general, in the presence of active constraints. In this case, we can characterize

the optimum by considering stationarity points of the Lagrangian function L instead, also called augmented cost function:

L(x,cr,λ) = f(x,cr)+λTg(x,cr), (5)95

where λ are the Lagrange multipliers. Here, we simplify the problem by considering only the active constraints. For values

of x satisfying the constraints, the value of the Lagrangian function matches the value of the objective function, L(x,cr,λ) =
f(x,cr). Then, it is possible to find a set of Lagrange multipliers (noted λ∗) so that the optimum x∗ corresponds to a stationarity

point of L, i.e. ∇xL(x∗,cr,λ
∗) = 0. Hence, the stationarity condition is obtained:

∇xf(x
∗,cr)+

∑
i∈I

λ∗
i∇xgi(x

∗,cr) = 0. (6)100

The Lagrange multiplier can be interpreted as the rate of change of the objective function relative to a change in the con-

straint function. For a formal proof of the stationarity condition, the reader is referred to the Karush-Kuhn-Tucker optimality

conditions and textbooks on convex and non-linear optimization (Boyd and Vandenberghe, 2004).

The stationarity condition is reformulated by post-multiplying it by dx∗. Using Eq. (4), the Jacobian of the constraints with

respect to x can be replaced by the Jacobian with respect to c:105

∇xf(x
∗,cr)

Tdx∗ =
∑
i∈I

λ∗
i∇cgi(x

∗,cr)
Tdc. (7)

The expression for ∇xf(x
∗,cr)

Tdx∗ in Eq. (3) can be replaced by Eq. (7), obtaining the following first order estimator:

dz∗est(dc) =∇cf(x
∗,cr)

Tdc+
∑
i∈I

λ∗
i∇cgi(x

∗,cr)
Tdc, (8)

which is valid under the assumption that the feasible set does not change with dc. The first term of the estimator represents how

the objective function changes with dc assuming the optimal design x∗ does not change. The second term gives the change110

in the optimal objective value due to a variation in the constraints, which results in a change of the optimal design x∗. This

formulation is based on a first-order differentiation. Figure 1 illustrates the roles of the two terms of the estimator.

A purely linear estimator only takes into account the linear variation of the problem with dc and cannot capture non-linear

effects such as diminishing returns. Thus we propose an extension of the estimator that captures the non-linear behaviour of the

constraints, called high-order estimator. By using a higher-order expansion instead of a first-order one, the following formula115

is obtained:

dz∗est(dc) = ∆f(dc)+
∑
i∈I

λ∗
i∆gi(dc), (9)
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where ∆gi(dc) = gi(x
∗,cr +dc)− gi(x

∗,cr), i ∈ I and ∆f(dc) = f(x∗,cr +dc)− f(x∗,cr). The high-order estimator is

valid under the following assumptions:

– the objective function and constraints are linear in x;120

– there are no couplings between x and c in the objective function and constraints, i.e. ∇2
x,cf and ∇2

x,cg are negligible;

– the active set does not change with a small variation dc.

The derivation and explanation of these assumptions can be found in Appendix B. In case the assumptions are violated, the

precision of the estimator is likely to decrease, but the method can still capture the underlying trend effects of varying the

control parameter. Appendix C illustrates this aspect on a simple quadratic program. In addition, Fig. 1 illustrates how the125

violation of the coupling assumption impacts the precision of the estimator. The estimated optimum (white circle) is close to

the real optimum (black triangle) in the weak coupling case, but less precise when the coupling is strong.

Figure 1. Illustration of the estimator on a quadratic problem, with one scalar design variable x and one constraint g, for weak (a) and strong

(b) couplings.

3 Case study

In this section, we present the tower design case study used to evaluate the estimator. We first describe the optimization problem

on which the estimator is applied. The second part of this section focuses on the adopted Linear Quadratic Regulator (LQR)130

control law and its parametrization. A description of the analysis and fatigue damage models concludes the section.

3.1 Optimization problem

We consider a wind turbine tower optimization problem with the objective of reducing the cost of energy (CoE). Two configu-

rations of the tower design are considered: a standard configuration, where the natural frequencies of the structure are required

not to interact with the rotor rotational frequency, and a soft-soft configuration, where the natural frequencies can be lower than135
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the passing frequency and resonance is avoided through active control. The tower design is parameterized with the tower height

h, the diameter d, and wall thickness t of each tower segment. The total tower mass is denoted by m. Geometrical constraints

are set on taper, continuity of wall thickness, and maximum tower diameter. The load constraints, gD,j , j = 1, ...,ns ensure that

the fatigue damage does not exceed the value of 1 along the full length of the tower. Finally, for the standard configuration, a

frequency constraint is set so that the first and second natural frequencies f1,f2 are sufficiently far from the rotor 1P frequency140

f1P, with a threshold δf . In this work, the controller design of the soft-soft configuration is kept simple in order to focus on

the objective function sensitivity. We assume that the controller is designed in such a way as to operate immediately below and

above the resonant frequency, using a classical frequency skipping approach (Bossanyi, 2000). However, for simplicity, we did

not implement this feature in the controller, and we simply avoided running simulations in proximity of the resonant condition.

The optimization is represented by Problem 10, where c= cr represents the scalar control tuning set at its reference value:145

minimize
h

z = CoE(m∗(h,cr),h,cr,d
∗(h,cr),t

∗(h,cr))

with m∗(h,cr) = minimize
d,t

{ m(t,d,h), (t,d) ∈ S(h,cr)}

[d∗(h,cr),t
∗(h,cr)] = argmin

d,t
{ m(t,d,h), (t,d) ∈ S(h,cr)}.

(10)

The following two sets of constraints S1 and S2 are considered, corresponding to the standard and soft-soft configurations,

respectively:

(t,d) ∈ S1(h,c)↔


gDj (d,t,h,c)≤ 0, j = 1, ...,ns

fk(d,t,h)≥
f1P

1− δf
, k = 1,2

Geometrical constraints.

(11)

(t,d) ∈ S2(h,c)↔

 gDj
(d,t,h,c)≤ 0, j = 1, ...,ns

Geometrical constraints.
(12)150

Problem 10 is formulated using a nested formulation, where the tower mass is the objective function of the inner optimization

problem and acts as an intermediate variable to calculate the CoE. Solving the equivalent monolithic problem would require

excessive computational resources. This is because a large number of aeroelastic simulations are required to accurately estimate

the loads. An additional contribution to the computational cost comes form the fact that we use finite-difference to estimate the

gradient of the objective function and of the constraints. To limit cost, a frozen-load approach is used (Bottasso et al., 2016),155

where the loads are not updated within the inner optimization problem. If the change between the initial and current designs is

greater than a given threshold, the aero-elastic simulations are evaluated using the current design to update the loads, and the

process is iterated. This method is valid under the assumption that the load envelope varies slowly with changes in the inner

tower design variables (d,t). While this approach can potentially lead to non-optimal design, it is widely used in wind energy

and provides satisfying results.160
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3.2 Control parametrization

We use a wind-scheduled Multi-Input Multi-Output (MIMO) LQR controller with integral action (Bottasso et al., 2012b).

The controller states are the tower top displacement and velocity, the rotational speed, the pitch angle, the pitch rate, and

the electrical torque. The integral of the rotational speed is added to eliminate the steady-state error of the controller. The

controller inputs are the pitch angle and the electrical torque. At each wind speed considered, the controller gains are computed165

by applying LQR theory to the linearized system of the turbine dynamics, see Hendricks et al. (2008) for more details.

The tuning of an LQR controller is done through the choice of the entries of the weight matrices associated with the states

and inputs, noted Q and R. In this work, the controller is tuned by changing the diagonal term of Q associated with the tower

top velocity, labelled c. The following expression reports the parametrization of the weight matrices:

Q(c) =


0

c
0 1

β2
max 0

0
q

 , R =

r 0

0 0.1

 , with

q =min(0.1, 0.015 · (V − 3)+0.01)

r =min(1.0, max(0.1, 1− 0.18 · (V − 9)))
(13)170

where βmax is the maximum pitch angle of the turbine power regulation strategy. The parameters r and q are used for gain-

scheduling and are varied according to the wind speed V . The reference value for the control tuning is cr = 0.

Figure 2 shows that, by varying the only free parameter c, the average fatigue damage can be reduced by up to 6.8 %.

However, the fatigue damage reduction varies depending on where the fatigue damage constraint is calculated on the tower.

Figure 2. Impact of the control tuning on the mean fatigue damage, and at three locations along the tower.
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3.3 Analysis model175

The numerical experiments presented in this work are conducted using the multi-disciplinary wind turbine design optimization

framework Cp-max. The details of the framework can be found in the available literature (Bottasso et al., 2012a, 2014, 2016).

We highlight the aspects that are important for the tower design optimization and fatigue calculations in this section.

The tower is modelled as a steel tubular structure, divided into ne elements. Each tower element is characterized by its

radius at the top and bottom, and its wall thickness. The tower is then modelled as a non-linear geometrically exact shear- and180

torsion-deformable beam. This is used in turn in the multi-body model of the wind turbine for the aeroelastic simulations, using

the solver Cp-Lambda. The aerodynamics of the wind turbine are modelled using the Blade Element Momentum method.

The fatigue load analysis is performed according to certification standards (International Electrotechnical Commission,

2005). Simulations are run from the cut-in to the cut-out wind speed with increments of 2 ms−1. At each considered wind

speed, a turbulent wind field is generated with TurbSim (Jonkman, 2009). Simulations are run for 600 s for 6 different turbulent185

seeds, excluding an initial transient period of 30 s. Once the aeroelastic simulations are run, loads are extracted at ns stations

along the tower to compute the stress loading on the structure. A rain-flow counting algorithm is then used on the stress time

history to identify the number of loading cycles and their amplitude. Miner’s rule and the material S-N curve is used to estimate

the lifetime fatigue damage at each station (Sutherland, 1999).

The cost of energy is calculated following the NREL cost model (Fingersh et al., 2006):190

CoE(m,h,c,d,t) =
FCR · ICC(m)

AEPnet(h,c,d,t)
+AOE, (14)

where the fixed charged rate FCR and the annual operating expenses AOE are assumed to be independent of the design

variables. The initial capital cost ICC varies only with the tower mass m (which, in turn, depends on tower height h, controller

tuning c, and inner tower design variables d and t), since the rest of the wind turbine design is assumed fixed. Finally, the net

annual energy production AEPnet is calculated from aeroelastic simulations.195

4 Application of the estimation method to the case study

This section describes how the first-order and high-order estimation formulas derived in Section 2 are applied to the tower de-

sign optimization problem to estimate the benefits of a control co-design approach. In principle, Problem 10 could be promising

for a CCD approach since the control tuning c has a direct impact on the dynamic response of the wind turbine, which in turn

influences fatigue loads. As a result, it is reasonable to expect that the integrated design of control and tower could improve the200

design through reductions in the fatigue damage constraints.

The estimation formulas presented in Section 4 are derived from a monolithic optimization problem, not a nested one.

Therefore, it is not possible to apply it directly to Problem 10. Instead, we apply Eq. (8) and (9) to the nested optimization

problem, which is monolithic. Regarding the validity assumptions of the high-order estimator, a preliminary study on the

impact of the control tuning on the fatigue damage constraint ensured the robustness of the active set with the chosen range205

of control tuning variation. In addition, the objective and constraints can be assumed to be linear in x provided the change of
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design is small. However, the validity assumption related to the coupling is more difficult to prove due to the complexity of the

problem considered. Therefore, the high-order estimator may be unprecise.

The objective function for the considered problem is m(t,d,h) and does not depend on the control parameter. Therefore

the first term in the estimator equations is zero: ∇cf =∇cm= 0 and ∆f(dc) = ∆m(dc) = 0. Among the constraints of the210

problem, the fatigue damage constraint is the only one impacted by the tuning of the controller. Therefore, the second term of

the estimation formulas only depends on gD,j , j = 1, ...,ns. This leads to the following estimate functions for the change in

optimal tower mass:

dm∗
est(dc) =



ns∑
j=1

λD,j∇cgD,jdc First-order

ns∑
j=1

λD,j∆gD,j(dc) High-order

(15)

where λD,j represent the Lagrange multipliers of the inner problem associated with the fatigue damage constraint gD,j . The215

Lagrange multipliers are obtained by solving the nested optimization at the reference value of the control parameter cr. The

terms ∇cgD,j and ∆gD,j(dc) are calculated by running aeroelastic simulations and evaluating the fatigue damage for different

values of dc and using the optimal tower design (d∗,t∗) obtained with the reference control tuning. The terms ∇cgD,j are

evaluated using forward finite differences with a step of 0.03.

While the estimator formula cannot be applied directly to the outer optimization problem, it can inform on the sensitivity220

of CoE with regard to control changes. In Eq. (14), CoE depends on the controller tuning for the calculation of the AEP

and the ICC through the optimal tower mass m∗. However, the net annual energy production is mostly driven by the tower

height, whereas the impact of the controller tuning and the inner tower design is marginal in comparison: AEPnet(h,c,d,t)≃
˜AEPnet

est (h). The following CoE estimate is written as a function of tower height and control tuning only:

CoEest(h,dc) =
FCR · ICC(m∗

est(h,cr +dc)+dmest|h(dc))
˜AEPnet

est (h)
+AOE. (16)225

The term dmest is varied with the tower height. The Lagrange multipliers are updated with h. However, the change in fatigue

damage constraints is calculated for the reference tower height h0 only, assuming that the term is relatively insensitive to height

changes.

This function can be used to gauge the optimal CoE that would have been obtained by solving the minimization problem

including control tuning as a design variable, i.e. using CCD. This is done by minimizing the CoE estimate with respect to h230

and dc:

CoE∗
est = minimize

h,dc
CoEest(h,dc). (17)
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5 Results

In this section, the estimation method presented in Section 4 is applied to re-design the tower of the IEA 3.4 MW reference

onshore wind turbine (Bortolotti et al., 2019). We compare the high-order estimator of the optimal tower mass and CoE to235

optimization results. The computational effort of the estimation method is reported at the end of the section.

All optimization problems are solved using the active set optimization algorithm implemented in the fmincon routine of

MATLAB (The MathWorks Inc., 2019). The outer optimization is solved with a tolerance on the expected objective function

change ϵobj = 10−5. The inner optimization is solved with ϵobj = 10−4, and with a tolerance on constraint violation ϵcon = 10−2.

The objective function for the outer and inner problems are both scaled by the corresponding value of the initial design. The240

number of tower elements is ne = 10, and the number of fatigue damage constraints is ns = 19. The threshold for the frozen-

load method is set to 1%.

5.1 Estimator performance on the optimal tower mass

In this section, the change in optimal tower mass due to a control tuning variation is estimated. Then, this estimate is compared

to the solution of the tower mass optimization problem run for different variations of the control parameter at the reference245

tower height.

We first look at the importance of the different constraints on the design, by solving the inner tower optimization problem

with fixed control tuning c= 0 and fixed tower height hr = 110 m. Figure 3 reports the optimal design and the Lagrange

multipliers for the two considered configurations. For both configurations, the designs are similar. However, the presence of

the frequency constraints in the standard configuration drives the wall thickness up in the bottom half of the tower. Analysis250

of the Lagrange multiplier shows that for the soft-soft configuration, geometric constraints are the primary drivers. However,

these constraints are also insensitive to control tuning. The next most important constraint is fatigue, which can be mitigated by

control, indicating potential benefits from CCD. In the standard configuration, the largest Lagrange multiplier is associated with

the added frequency constraint, with λf = 2.44. The Lagrange multipliers associated with fatigue are one order of magnitude

smaller, showing a lower relative importance of these constraints and a reduced potential for CCD compared to the soft-soft255

case.

Using the value of the Lagrange multipliers, the first-order and high-order estimators are calculated and reported in Fig. 4.

The results of the optimization for dc= 0.1, 0.2, and 0.3 are also reported. The high-order estimator accurately predicts the

change in optimal mass for the standard configuration, whereas it under-predicts the results for the soft-soft configuration.

Both estimators are able to show that the soft-soft configuration benefits significantly more from a change in control tuning260

than the standard one, in accordance with the constraint analysis. However, the high-order estimator more precisely quantifies

this benefit, whereas the first-order estimator fails to capture the effect of diminishing returns on controller tuning.
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Figure 3. Characteristics of the optimal standard and soft-soft tower designs for the reference height hr = 110 m and control tuning c= 0:

optimal tower design (a) optimal Lagrange multipliers associated to the geometric (b) and fatigue damage constraints (c).

First-order estimator

High-order estimator

Optimal Value

Standard

Soft-soft

Figure 4. Comparison between the optimum mass change dm∗ and the estimated mass change dm∗
est calculated with the first-order and

high-order estimator, for different values of the control parameter and for the two configurations. The tower height is fixed to the reference

height.
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5.2 Estimator performance on the CoE

In this section, we want to understand if the CoE can be reduced by the combined action of control load alleviation and changed

tower height through CCD, and if the proposed estimation method can predict the CCD results.265

Figure 5 reports the contour plot of the CoE estimate function for the standard and soft-soft configurations, calculated as

described in Section 4 for different tower heights (0.9hr, hr, 1.1hr, 1.2hr) and for dc= 0,0.03,0.1,0.2,0.3. Both the first-

order and high-order estimate functions are represented. As expected, there is little coupling between the tower height and the

control parameter in the standard configuration, with the CoE showing only marginal variations with control tuning. For the

soft-soft configuration instead, the CoE can be reduced by simultaneously changing the control parameter and the tower height.270

The estimated change in optimal CoE is calculated as the minimum of the estimate function, and marked in Fig. 5 as a cross

and a white circle for the first-order and high-order methods, respectively.

First-order estimator

High-order estimator

Estimated optimum

(first-order)

Estimated optimum

(high-order)

CCD optimum-2

-1

0

1

2

3

Figure 5. Relative change of CoE as a function of the tower height change and control tuning parameter calculated using the first-order and

high-order estimators, for the standard and soft-soft configuration. The reference CoE is the optimal value for the non-CCD problem with

c= 0.

In order to assess the accuracy of the CoE estimator, we solve the tower optimization problem with a non-CCD formulation

(corresponding to Problem 10 with c= 0), and with a CCD formulation where the control tuning is bounded between 0 and 0.3.

Table 1 reports the change in optimal CoE brought by the use of CCD calculated directly with the optimization results and with275

the estimation method (first-order and high-order). The two estimation methods correctly predict that the soft-soft configuration

benefits much more from CCD than the standard configuration. In addition, the estimated improvement is accurate in the high-

order case compared to the optimization results. Instead, the first-order estimator significantly over-predicts the benefits of

CCD, which is coherent with the limitations of the approach. We note that the estimated change in optimal design is far from

the actual one in Fig. 5. This is coherent with the goal of the presented method to quantify the sensitivity of the optimal280

objective value and not of the optimum.
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Table 1. Percentage improvement on the optimal CoE using a CCD approach, calculated with optimization results and the estimation method.

Optimization First-order estimator High-order estimator

Standard configuration -0.01 % -0.14 % -0.02 %

Soft-soft configuration -0.53 % -2.12 % -0.45 %

Table 2 documents the optimization results used to compute the data in Table 1. The data shows that the optimal CCD soft-

soft tower is 2.8 % lighter and 1.5% higher than the version calculated without CCD, which implies a gain in power capture

in sheared inflow. This reduction in tower mass and increase in power capture explains why the CoE is more impacted for the

soft-soft configuration than for the standard configuration.285

Table 2. Characteristics of the optimal design for the non-CCD and CCD problems, and for the standard and soft-soft configuration. The

percentage change between the CCD and the non-CCD cases is reported in parentheses.

Standard non-CCD Standard CCD Soft-soft non-CCD Soft-soft CCD

Tower height h [m] 110 110.6 (+0.5 %) 110 111.6 (+1.5 %)

Control tuning c [-] 0 0.019 0 0.203

Tower mass m∗ [t] 331.07 334.08 (+0.9 %) 311.33 302.47 (-2.8 %)

AEP [GWh] 14.955 14.977 (+0.1 %) 14.955 15.014 (+0.4 %)

CoE [$/Mwh] 41.481 41.477 (-0.01 %) 41.235 41.016 (-0.5 %)

5.3 Computational effort

In terms of computational costs, calculating the high-order estimator requires evaluating (i) the Lagrange multipliers by solving

the optimization problem at the reference control, and (ii) the constraints for different values of the control parameter. In this

section, we compare this computational effort to the one needed to solve the CCD optimization problem, applied to the CoE.

Table 3 reports different metrics to compare the computational cost between the high-order estimator and the CCD optimiza-290

tion. The number of evaluations of the full set of aero-elastic simulations, noted neval, is used as the main comparison metric,

since it is the most computationally expensive step of the design process. The fatigue damage constraints are evaluated for four

different values of the control tuning, and require one full-set evaluation each. The Lagrange multipliers are evaluated for four

different tower heights, and require between one and two full-set evaluations each, depending on the number of iterations in

the frozen-load loop. As a result, the estimator is calculated using a total of 11 or 12 full-set evaluations depending on the con-295

figuration. Instead, the CCD optimization requires 20 and 50 full-set evaluations for the standard and soft-soft configurations,

respectively. In terms of wall time, the estimation method is computed in around a half and a sixth of the time required to solve

the CCD problem for the two configurations. Therefore, the presented estimation method is computationally efficient. We note

that the number of iterations for the outer optimization for the two CCD cases is low. For more complex problems, or when
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using a tighter optimization tolerance, the number of iterations is likely to increase significantly, and the computational effort300

of the CCD process will also increase.

Table 3. Computational effort for the CoE estimator and for the CCD optimization: number of iterations for the outer optimization niter,

number of evaluation of the full set of aero-elastic simulations neval, and wall time relative to the CCD case.

niter neval Wall time relative to CCD

Standard configuration
High-order estimator - 11 0.54

CCD 4 20 1.0

Soft-soft configuration
High-order estimator - 12 0.16

CCD 6 50 1.0

6 Discussion

A CCD approach can incur major computational costs when compared to the simpler non-CCD optimization. At the same time,

our results show that CCD is not always guaranteed to provide benefits to the final design compared to a more straightforward

non-CCD approach. Without knowing a-priori the potential benefit, there is a significant risk, in terms of engineering time,305

code development and computational resources, in attempting a CCD optimization. This work suggests that results from the

simplified optimization problem can be used in conjunction with the high-order estimator, to determine whether a given prob-

lem can benefit from a CCD approach. The first-order estimator shows similar results, with a reduced precision. Furthermore,

the analysis of the Lagrange multipliers and constraint sensitivity in the proposed method gives a justification for why a CCD

approach would fail. This information is generally not readily available when running a CCD optimization directly, because310

optimization algorithms can fail for technical reasons (inadequate parameters, scaling or problem formulation).

The method is applicable to similar problems where the optimum design is driven by a load constraint, when loads can be

alleviated by control action (for example, the design of wind turbine support structures or blades). The computational cost

reduction should be similar in problems where the fatigue damage constraints are driving the design. In cases where the driving

constraints are easier to evaluate, there should be a greater reduction in computational effort, since the estimator would be less315

expensive to compute. In addition, while the estimation method was developed to target CCD applications, the mathematical

derivations and associated assumptions are developed in the general case, where c can be any parameter. Therefore, it can be

applied to any optimization problem to disentangle the effects of one parameter from the rest of the solution.

The precision of the high-order estimator depends on several assumptions on the objective functions and constraints. When

the assumptions are violated, the estimator can under-predict the benefits of CCD, as shown in our results. In addition, the320

estimator uses local sensitivity information of the non-CCD optimum, and therefore it will be inaccurate when a CCD approach

significantly changes the design. Consequently, there may still be a benefit of using a CCD approach, even if the estimator fails

to show it.
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In this study, we perform CCD using one tuning parameter of the LQR controller. However, the proposed method is general

and does not dependent on the control architecture. The applicability of the method to parametrizations with a large number of325

design variables is left for future work on the topic.

Finally, this work shows how CCD can be used for the design of wind turbine towers. In the presence of an active frequency

constraint, CCD may not give significant improvements. Instead, the use of active load alleviation enables a taller and lighter-

mass tower compared to the non-CCD design. Our results are specific to one particular wind turbine and may not be generally

applicable. Notwithstanding these limitations, the results reported here highlight the importance of performing a thorough330

analysis of the driving constraints through the use of Lagrange multipliers before attempting a complex and computationally

expensive optimization.

7 Conclusion

This study shows how design sensitivity analysis can be used to estimate the change of optimal objective value caused by a

change in control. Using the solution of an optimization problem with fixed control, we can characterize the results of the335

more complex control co-design problem without the associated computational effort. Two estimators are presented, based on

first-order and high-order approximations, respectively, where the latter captures non-linear effects.

The proposed estimation method is applied to the redesign of a wind turbine tower driven by fatigue loads, using an LQR

controller targeting fatigue load alleviation. High computational resources are required to calculate fatigue damage accurately,

which makes this problem an ideal application for the estimator. Two design configurations are considered: a standard config-340

uration, where a frequency constraint is enforced to avoid resonance with the rotational frequency of the rotor, and a soft-soft

configuration, where resonance is avoided using active control. The proposed first-order and high-order estimators are applied

to the optimal tower mass and optimal CoE problems. We have shown that the high-order estimator accurately predicts how

the tower mass changes with control tuning, compared to optimization results. The first-order estimator is inaccurate for large

values of control tuning, but captures the difference between the standard and soft-soft configurations. Combined with a simple345

CoE model, the high-order estimator predicts a 0.45% reduction in optimal CoE for the soft-soft tower, while running the

CCD optimization gives an improvement of 0.53%. The proposed estimation method is accurate and uses only a fraction of

the computational resources of the CCD optimization. Our results additionally show that the standard tower configuration does

not benefit from a CCD approach, due to the presence of an active frequency constraint. Changing the control is beneficial for

the soft-soft tower, because the fatigue damage constraint is the primary design driver and can be alleviated by control action.350

In this case, the use of CCD yields a taller tower with lower mass, which impacts the CoE significantly.

As shown in this work, design sensitivity analysis allows one to identify relevant design problems for CCD from the results

of a simplified non-CCD solution. In a context where computational effort is an obstacle to the wide use of CCD, the proposed

method can help identify and quantify the benefits of this approach for wind energy applications.
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Appendix A: Nomenclature355

Symbols used for generic optimization problems

λ Lagrange multipliers

c or c Variables or parameters describing the controller

cr or cr Reference value for the control variables

f Objective function

gi, i= 1, ...,n Constraints

x Design variable of the optimization problem, except control

z Objective function value

I Set of active constraints

∇x□ Jacobian or gradient of □ with regards to x

□∗ Value at the optimum

d□ Small variation

d□est Estimated value of the variation of □

Symbols used for the tower design optimization problem

λD,j , j = 1, ...,ns Lagrange multipliers associated with the fatigue damage constraint

λf Lagrange multipliers associated with the first frequency constraint

d Diameter of the tower elements

f1,f2,f1P First and second natural frequencies of the turbine, and rotor 1P passing frequency

gD,j , j = 1, ...,ns Fatigue damage constraints

h Tower height

m Mass of the tower

ne,ns Number of tower elements and fatigue damage constraints

r,q Gain-schedule parameters for the LQR control gains

t Thickness of the tower elements

Abbreviations

AEP Annual energy production

AOE Annual operating expenses

CCD Control co-design

CoE Cost of Energy

FCR Fixed charge rate

ICC Investment capital cost

LQR Linear quadratic regulator
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Appendix B: High-order estimator

In this appendix, we derive the high-order estimator expressed by Eq. (9) and explain the validity assumptions, listed below:

– A1: the objective function and constraints are linear in x;360

– A2: there are no couplings between x and c in the objective function and constraints, i.e. ∇2
x,cf and ∇2

x,cg are negligible;

– A3: the active set does not change with a small variation dc.

We consider the following non-linear optimization problem:

minimize
x

z = f(x,cr)

subject to gi(x,cr)≤ 0 i= 1, ...n. (B1)

The change of optimal objective value due to a change of the control parameter dc is defined as:365

dz∗(dc) = f(x∗ +dx∗,cr +dc)− f(x∗,cr). (B2)

We assume that the objective function f is linear in x (A1) and does not have a coupling between the variables x and c (A2).

Using these assumptions on a second-order Taylor expansion of Eq. (B2) gives:

dz∗(dc) = f(x∗ +dx∗,cr +dc)− f(x∗,cr) =∇xf(x
∗,cr)

Tdx∗ +∇cf(x
∗,cr)

Tdc+

XXXXXXXXXXX

1

2
dx∗T∇2

xf(x
∗,cr)dx

∗

+
1

2
dcT∇2

cf(x
∗,cr)dc+

hhhhhhhhhhdx∗T∇2
xcf(x

∗,cr)dc+ o(||dc||2). (B3)

We use the notation ∇2
x□ for the Hessian of a function with respect to x. Due to the assumptions A1 and A2 on f , the second-370

order terms dependent on dx∗ are negligible. The remaining terms dependent on dc can be identified with the second-order

Taylor expansion of the function c 7→ f(x∗,c) around the point c= cr. Therefore, the expression can be rewritten as:

dz∗(dc) =∇xf(x
∗,cr)

Tdx∗ +∆f(dc)+ o(||dc||2), (B4)

where ∆f(dc) = f(x∗,cr +dc)− f(x∗,cr). Assumptions A1 and A2 on the constraints lead to the following expression:

gi(x
∗ +dx∗,cr +dc)− gi(x

∗,cr) =∇xgi(x
∗,cr)

Tdx∗ +∆gi(dc)+ o(||dc||2), i= 1, ...,n, (B5)375

where ∆gi(dc) = gi(x
∗,cr +dc)− gi(x

∗,cr), i= 1, ...,n. We consider the set I of active constraints. Assuming that the

active set does not change with dc (A3), one has gi(x∗ +dx∗,cr +dc) = gi(x
∗,cr) = 0, i ∈ I, and therefore:

∇xgi(x
∗,cr)

Tdx∗ =−∆gi(dc)+ o(||dc||2), i ∈ I. (B6)

We can relate the gradient of the objective function to the gradient of the constraints using the optimality conditions. We

assume that f and gi, i= 1, ...,n are differentiable and that strong duality holds for Problem B1. Then, if x∗ is optimal, there380
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is a set of Lagrange multipliers λ∗ satisfying the Karush-Kuhn-Tucker conditions (Boyd and Vandenberghe, 2004). Among

these, the stationarity condition states:

∇xf(x
∗,cr)+ (λ∗)T∇xg(x

∗,cr) = 0. (B7)

The stationarity condition is reformulated by post-multiplying it by dx∗ and by separating active and inactive constraints:

∇xf(x
∗,cr)

Tdx∗ =−
∑
i/∈Ī

λ∗
i∇xgi(x

∗,cr)
Tdx∗ −

∑
i∈I

λ∗
i∇xgi(x

∗,cr)
Tdx∗ (B8)385

The terms corresponding to inactive constraints are null since λi = 0. The terms corresponding to active constraints can be

reformulated using Eq. (B6). Following these considerations, Eq. (B8) becomes:

∇xf(x
∗,cr)

Tdx∗ =
∑
i∈I

λ∗
i∆gi(dc)+ o(||dc||2). (B9)

The expression for ∇xf(x
∗,cr)

Tdx∗ in Eq. (B4) can be replaced by Eq. (B9), which gives the equation for the high-order

estimator:390

dz∗(dc) =
∑
i∈I

λ∗
i∆gi(dc)+∆f(dc)+ o(||dc||2). (B10)

The first term of the formula can be expanded to all constraints instead of the set I since λ∗
i = 0 for inactive constraints. Fur-

thermore, the high-order estimator formula is derived here using a second-order Taylor expansion. However, we can repeat the

reasoning with an arbitrary high order k of the Taylor expansion, resulting in an expression in o(||dc||k) instead of o(||dc||2).

Appendix C: Application to a quadratic program395

In this section, we illustrate how the assumptions associated to the high-order estimator impacts its validity. For this purpose,

we study the simple quadratic program below, with x= [x1,x2]
T :

minimize
x

z = yT Py+ qTy+ z0 where y = [x, c]T

subject to Gx≤ g2c
2 + g1c+ g0

Hx≤ h0 (C1)

The value of P, q, G, gi, i= 0, ..2, H and h0 can be adjusted to create problems that satisfy or violate the validity assumption

for the estimator. The parameter z0 is set so that the optimal objective value of the reference problem is z∗ = 0. For each type400

of problem, we study how the optimum and the estimator dz∗est change with the value of dc. The reference problem is always

taken for c= 0, and dc varies between 0 and 1.
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A1: The objective function is linear in x

In order to represent problems with objective functions linear or non-linear in x, the diagonal terms of the matrix P are varied

with a parameter b. We use the following:405

P =


b 0 0

0 b 0

0 0 0

 , q =


−10

1

0

 , G =
[
1 0

]
, g2 =−4, g1 = 3, g0 = 1, H = 0, h0 = 0. (C2)

When b= 0, the objective function is strictly linear in x. With increasing values of b, the non-linear terms in the objective

function dominate more and more the linear term. We study how the estimator performs for b = 20, 5 and 0.1. For this problem,

the objective function is not dependent on c.

Figure C1. Contour plot of the objective function with the optimal value marked with an asterisk (*), for objective functions with varying

degree of non-linearity in x. The higher the value of b, the more dominant the non-linear terms compared to the linear terms in the objective

function. The constraint is represented as a yellow line and varies with c.

Figure C1 shows the value of the objective as a function of x1 and x2. The constraint Gx≤ g2c
2+g1c+g0 is represented for410

different values of c as a yellow line and the optimum is marked as an asterisk. The figure shows that the optimal design changes

in a similar way for the different values of b. Figure C2 reports the value of the optimum change dz∗ and of the first-order and

high-order-estimator dz∗est for the different values of b. For low values of b when the objective function is mostly linear in x,

the high-order estimator follows more closely the optimal value. In addition, we observe that the first-order estimator follows

the slope of the optimal value at c= 0. This indicates which problems see the most change in optimal value when c is varied.415
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Figure C2. Comparison of the optimal objective value with the first-order estimator and the high-order estimator for objective functions with

varying degree of non-linearity in x. The higher the value of b, the more dominant the non-linear terms compared to the linear terms in the

objective function.

A2: There is no coupling between x and c in the objective function

In order to represent the coupling between x and c in the objective function, the non-diagonal terms of the matrix P corre-

sponding to x2 and c are set to −b. We use the following:

P =


0.1 0 0

0 0.1 −b

0 −b 0

 , q =


−10

0

0

 , G =
[
1 0

]
, g2 =−5, g1 = 6, g0 = 1, H = 0, h0 = 0. (C3)

The problem is solved for b= 10.0, 5.0 and 0.1. The higher b, the stronger the coupling between x2 and c. Figure C3420

shows the objective value as a function of x1 and x2 as well as the constraint value for c= 0.1 and for c= 0.2. The higher the

coupling, the larger the changes in the objective function. Figure C4 shows that the estimator performs well only in the case of

b= 0.1, where the coupling terms are small. Note that in this case, the first-order and high-order estimators do not change with

parameter b, since they assume that the coupling term is negligible, i.e. b= 0.

A3: The active set does not change with changes in c425

To study how a change in the active set impacts the validity of the estimator, a constraint is added so that it is not active for

c= 0 and becomes active as c increases. We use the following:

P =


0.1 0 0

0 0.1 0

0 0 0

 , q =


−5

5

0

 , G =
[
1 0

]
, g2 =−5, g1 = 6, g0 = 1, H = [1,0], h0 = 0. (C4)
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Figure C3. Contour plot of the objective function with the optimal value marked with an asterisk (*), for problems with varying degree of

coupling between x and c in the objective function. The higher b, the more dominant the coupling terms compared to the linear terms in the

objective function. Results are represented with a solid line for c= 0.1, and with a dashed line for c= 0.2 in order to highlight the magnitude

of the coupling between x and c.

Figure C4. Comparison of the optimal objective value with the first-order estimator and the high-order estimator, for problems with varying

degree of coupling between x and c in the objective function. The higher b, the more dominant the coupling terms compared to the linear

terms in the objective function. The high-order estimator assumes b= 0.
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Figure C5 a reports the objective function with the constraint Gx≤ g2c
2 + g1c+ g0 in yellow and the constraint Hx≤ h0

in blue. For c= 0 and c= 0.1, the yellow constraint is active. However, for c= 0.7, the yellow constraint is no longer active430

and the blue constraint becomes active. Therefore, the optimum is set where the blue constraint is, and not where the yellow

constraint is. When the active set changes (c > 0.2), the high-order estimator does not follow the optimal value anymore.

Figure C5. Contour plot of the objective function with the optimal value marked with an asterisk (*), where the blue line represent the

constraint non-dependent on c (a). Comparison between the first-order, the high-order estimator and the optimal objective value for variations

in c (b).
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