
How to identify design optimization problems that can be improved
with a control co-design approach?
Jenna Iori1, Carlo Luigi Bottasso2, and Michael Kenneth McWilliam1

1Department of Wind and Energy Systems, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
2Wind Energy Institute, Technical University of Munich, 85748 Garching b. München, Germany

Correspondence: Jenna Iori (jenio@dtu.dk)

Abstract.

Control co-design is a promising approach for wind turbine design due to the importance of the controller in power produc-

tion, stability and load alleviation. However, the high computational effort required to solve optimization problems with added

control design variables is a major obstacle to quantify the benefit of this approach. In this work, we propose a methodology

to identify if a design problem can benefit from control co-design. The estimation method, based on post-optimum sensitivity5

analysis, quantifies how the optimal objective value varies with a change in control tuning.

The performance of the method is evaluated on a tower design optimization problem, where fatigue load constraints are

a major driver, and using a Linear Quadratic Regulator targeting fatigue load alleviation. We use the gradient-based multi-

disciplinary optimization framework Cp-max. Fatigue damage is evaluated with time-domain simulations corresponding to the

certification standards. The estimation method applied to the optimal tower mass and optimal levelized cost of energy show10

good agreement with the results of the control-co design optimization, while using only a fraction of the computational effort.

Our results additionally show that there may be little benefit to use control co-design in the presence of an active frequency

constraint. However, for a soft-soft tower configuration where the resonance can be avoided with active control, using control

co-design results in a higher tower with reduced mass.

Keywords: Control co-design, Multi-disciplinary optimization and design, Wind energy, Fatigue alleviation, Wind turbine15

tower design, LQR control, Design sensitivity analysis

1 Introduction

Control co-design (CCD) is a sub-field of dynamic systems design where the controller is designed simultaneously with the

structure. Wind turbine design is a promising field of study within CCD because these structures are driven by load constraints,

while at the same time control is important for optimal production and for reducing loads (Garcia-Sanz, 2019; Veers et al.,20

2022).

Though CCD is not yet widely used in the field of wind energy, several research groups have shown the potential of the

method. Chen et al. (2017) include an automatic controller synthesis for the design of a wind turbine blade with individual

pitch control and trailing edge flaps, leading to decrease in the levelized cost of energy (LCOE). Deshmukh and Allison

1

https://doi.org/10.5194/wes-2023-58
Preprint. Discussion started: 16 June 2023
c© Author(s) 2023. CC BY 4.0 License.



(2016) achieve an 8% improvement in Annual Energy Production (AEP) with a CCD approach compared to a sequential25

approach, considering torque control only and using a simple set of structural constraints and a linearized model for the turbine

dynamics. Pao et al. (2021) report how including control tuning in the design process leads to a cost-effective extreme-scale

13MW downwind turbine rotor. This result was achieved with an iterative design process instead of a fully-coupled approach.

Most wind turbine optimization frameworks rely heavily on steady state analysis (e.g. Zahle et al. (2016)) or a nested/decou-

pled frozen loads approach (e.g. Bottasso et al. (2016)) to reduce the computation effort of the optimization. Yet, CCD requires30

expensive time domain simulations to be executed within the optimization loop, to assess the effect of changing the control.

Such changes to an optimization framework are expensive, both in the code development phase and to execute once completed.

This high computational cost makes it difficult to identify designs relevant for CCD, since the design process often requires a

trial and error approach. Therefore, a tool is needed to estimate which problems can benefit from CCD without an excessive

computational burden.35

From a mathematical point of view, the difference between a CCD and a standard physical design optimization problem can

be seen as the addition of the design variables describing the controller action. A promising problem for CCD applications is

likely to be sensitive to control tuning. Therefore, we propose a method to estimate how the optimal objective value of a given

problem changes when the control changes, in the context of gradient-based optimization. The estimator is built using post-

optimum sensitivity analysis (POSA) (Castillo et al., 2008) on a standard structural optimization problem with fixed control,40

and can be used to estimate the results of the more complicated CCD optimization. While POSA is not widely used in the field

of wind energy, a recent study by McWilliam et al. (2022) uses this approach to identify the design drivers for swept blades.

The proposed estimation method is applied to the design of a wind turbine tower driven by fatigue damage constraints.

Several authors have developed control strategies to reduce fatigue damage (Johnson et al., 2012; Camblong et al., 2012),

reducing tower side-side loads by 8% (Kim et al., 2020) and fore-aft fatigue loads by 14% (Nam et al., 2013). Since fatigue45

damage can be a driving constraints for wind turbine tower (Canet et al., 2021; Dykes et al., 2018), CCD has the potential to

improve the design of this component. In the context of CCD however, fatigue reduction is more challenging due to the many

long running time-domain simulations that are needed for accurate fatigue calculations. Therefore, an estimation method is

particularly relevant for this type of problems before applying CCD directly.

Another important constraint in the design of wind turbine towers is the frequency constraint that prevents resonance with the50

rotor rotational frequency. Recent development in control design has allowed to design towers without this constraint, called

soft-soft towers, where the resonance avoidance is managed by active control. The soft-soft towers generally have a lower

mass than standard ones (also called soft-stiff configuration), and their designs can also be driven by fatigue damage (Dykes

et al., 2018). In this work, both the standard and soft-soft configurations are studied in order to assess the performance of the

presented estimation method on two different design problems with different sets of constraints.55

The paper is organized as follow. Section 2 describes two estimation methods: a first-order estimator taking into account

a linear dependency of the problem with control tuning, and a high-order estimator including non-linear effects but subject

to additional assumptions. Section 3 describes the tower design problem and control architecture in details, and how to apply

the estimator formula in practice. Section 4 compares the estimator to the solution of the corresponding control co-design
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optimization problem. Finally, the limitations of this study and potential applications are discussed in Section 5. A nomenclature60

is provided in Appendix A.

2 Methodology

We consider the control co-design Problem 1 below, where c and x represents the control and structural design variables,

respectively:

minimize
x,c

f(x,c)

subject to gi(x,c)≤ 0 i = 1, ...n. (1)65

In the general case, the objective function f and the constraints gi, i = 1, ...,n depend on both x and c. Most existing

wind turbine optimization frameworks do not allow to solve Problem 1 directly. Many frameworks are implemented in such

a way that the controller design is fixed during the design process. In this context, adding the control design variable c to the

existing optimization requires significant development effort. In addition, having the control design variable in the optimization

problem requires to update the time-dependent loads on the structure at each iteration. As a consequence, the computational70

effort required for the optimization becomes large, and it is generally impractical to attempt to solve the problem.

Instead, it is possible to solve an optimization problem with frozen control, represented by Problem 2, where the control

variable is fixed to its reference value cr:

minimize
x

z = f(x,cr)

subject to gi(x,cr)≤ 0 i = 1, ...n. (2)

The aim of this work is to understand if the design problem benefits by a CCD approach. In other words, is there sufficient75

potential improvements to justify the additional effort to solve Problem 1? If Problem 2 can benefit from a CCD formulation,

the optimal objective value is likely to be sensitive to a change in the control parameter cr. This means that solving the

problem at cr or cr +dc will give a significant change in the optimal objective value dz∗(dc) = z∗(cr +dc)−z∗(cr). We use

post-optimum design sensitivity (Castillo et al., 2008) to estimate dz∗(dc) from the solution of Problem 2.

The change of optimal objective value due to a change of the control parameter dc can be written as a first-order approxi-80

mation using the gradients of f :

dz∗(dc) = f(x∗+ dx∗,cr + dc)− f(x∗,cr)≃∇xf(x∗,cr)T dx∗+∇cf(x∗,cr)T dc. (3)

In this equation, the change of optimal solution dx∗ is not directly known, but can be characterized with the first-order

optimality conditions: the constraints are satisfied and the stationarity condition holds.

First, satisfaction of the constraints means that gi(x∗+ dx∗,cr + dc) = gi(x∗,cr) = 0, i ∈ I, where I is the set of active85

constraints. We assume that the active set does not change with dc. This equation can be expanded by using a first-order
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approximation around point (x∗,cr) on the left-hand term, resulting in:

∇xgi(x∗,cr)T dx∗ =−∇cgi(x∗,cr)T dc, i ∈ I. (4)

Then, we can relate the gradient of the constraints to the gradient of the objective function ∇xf(x∗,cr) in Eq. (3) using

the stationarity conditions. For unconstrained optimization, the optimum is a stationarity point of the objective function. This90

condition gives practical methods to find the optimum, e.g. with root finding algorithms. However, for constrained optimization,

∇xf(x∗,cr) ̸= 0 in general, in the presence of active constraints. In this case, we can characterize the optimum by considering

stationarity points of the Lagrangian function L instead, also called augmented cost function:

L(x,cr,λ) = f(x,cr) +λT g(x,cr), (5)

where λ are the Lagrange multipliers. Here, we simplify the problem by considering only the active constraints. For values95

of x satisfying the constraints, the value of the Lagrangian function matches the value of the objective function, L(x,cr,λ) =

f(x,cr,λ). Then, it is possible to find a set of Lagrange multipliers (noted λ∗) so that the optimum x∗ corresponds to a

stationarity point of L, i.e. ∇xL(x∗,cr,λ
∗) = 0. Hence, the stationarity condition is obtained:

∇xf(x∗,cr) +
∑

i∈I
λ∗i∇xgi(x∗,cr) = 0. (6)

The Lagrange multiplier can be interpreted as the rate of change of the objective function relative to a change in the con-100

straint function. For a formal proof of the stationarity condition, the reader is referred to the Karush-Kuhn-Tucker optimality

conditions and textbooks on convex and non-linear optimization (Boyd and Vandenberghe, 2004). Note that the stationarity

condition comes with assumptions on differentiability and strong duality.

The stationarity condition is reformulated by post-multiplying it by dx∗. Using Eq. (4), the Jacobian of the constraints with

respect to x can be replaced by the Jacobian with respect to c:105

∇xf(x∗,cr)T dx∗ =
∑

i∈I
λ∗i∇cgi(x∗,cr)T dc. (7)

The expression for ∇xf(x∗,cr)T dx∗ in Eq. (3) can be replaced by Eq. (7), obtaining the following first order estimator:

dz∗est(dc) =∇cf(x∗,cr)T dc +
∑

i∈I
λ∗i∇cgi(x∗,cr)T dc. (8)

The first term of the estimator represents how the objective function changes with dc assuming the optimal design x∗ does

not change. The second term gives the change in the optimal objective value due to a variation in the constraints, which results110

in a change of the optimal design x∗. This formulation is based on a first-order differentiation and is valid under the assumption

that the feasible set does not change with dc. Figure 1 illustrates how the two terms of the estimator works.

A pure linear estimator only takes in account the linear variation of the problem with dc and cannot show the effect of

diminishing returns. Thus we propose an extension of the estimator that captures the non-linear behavior of the constraints,
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called high-order estimator. By using a higher order expansion instead of a first-order one, and under appropriate assumptions115

on the objective function and constraints, the following formula is obtained:

dz∗est(dc) = ∆f(dc) +
∑

i∈I
λ∗i ∆gi(dc), (9)

where ∆gi(dc) = gi(x∗,cr + dc)− gi(x∗,cr), i ∈ I and ∆f(dc) = f(x∗,cr + dc)− f(x∗,cr). This estimator is valid as-

suming that (i) the objective function and constraints are linear in x and there is no couplings between x and c, (ii) the active

set does not change with a finite variation dc, and (iii) constraints that do not depend on c do not affect the change of opti-120

mum. The derivation and explanation for the assumptions can be found in Appendix B. Appendix C illustrates how the validity

assumptions impacts the performance of the estimator on a simple quadratic program. In addition, Fig. 1 illustrates how the

assumptions on the coupling impact the estimator validity.

Figure 1. Illustration of the estimator on a quadratic problem, with one scalar design variable x and one constraint g represented by the

vertical line. The problem is represented for the reference value cr and in the presence of a variation dc, when the coupling between x and

c is weak (a) and when it is strong (b). The estimated optimum (white circle) is close to the real optimum (black triangle) only in the weak

coupling case.

3 Case study

In this section, we present the case study used to evaluate the estimator. We first describe the tower optimization problem on125

which the estimator is applied. Then, the method to estimate how the optimal tower mass and levelized cost of energy (LCOE)

change with the control tuning are described. The third part reports the Linear Quadratic Regulator (LQR) control law and the

control tuning used. This section is concluded by describing the analysis and fatigue damage models.

3.1 Optimization problem

We consider a wind turbine tower optimization problem with the objective to reduce the LCOE. Two configurations of the130

tower design are considered: a standard configuration, where the natural frequencies of the structure are required to not interact
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with the rotor rotational frequency, and a soft-soft configuration, where the natural frequencies can be lower than the passing

frequency and resonance is avoided through active control. In this work, we do not consider the resonance avoidance strategy

in the design of the controller. The tower design is parameterized with the tower height h, the diameter d and wall thickness t

of each tower segment. Geometrical constraints are set on taper, continuity of wall thickness and maximum tower diameter to135

ensure the tower can be built. The load constraints, gD,j , j = 1, ...,ns ensure that the fatigue damage does not exceed 1 along

the full length of the tower. Finally, for the standard configuration, a frequency constraint is set so that the first and second

natural frequencies f1,f2 are sufficiently far from the rotors 1P frequency f1P.

The optimization is represented by Problem 10, where c = cr represents the scalar control tuning set at its reference value:

minimize
h

z = LCOE(m∗(h,cr),h)

with m∗(h,cr) = minimize
d,t

{m(t,d,h), (t,d) ∈ S(h,cr)}
(10)140

(t,d) ∈ S1(h,c)↔





gDj
(d,t,h,c)≤ 0, j = 1, ...,ns

fk(x)≥ f1P

1− δf
, k = 1,2

Geometrical constraints

(11)

(t,d) ∈ S2(h,c)↔





gDj (d,t,h,c)≤ 0, j = 1, ...,ns

Geometrical constraints.
(12)

Two sets of constraints S1 and S2 expressed by Eq. (11) and (12) are considered, corresponding to the standard and soft-soft

configurations, respectively. The tower mass is noted m.

The control tuning has a direct impact on the optimization problem through the change in the aerodynamics loads and in the145

dynamic response of the wind turbine. This in turn impacts the fatigue loads. On the other hand, the AEP used to calculate the

LCOE is only marginally impacted by the control tuning, since it is based on the average power production, which tends to be

relatively insensitive to such changes.

Problem 10 is formulated using a nested formulation, where the tower mass m is the objective function of the inner optimiza-

tion problem and acts as an intermediate variable to calculate the LCOE. Solving the equivalent monolithic problem would150

require excessive computational resources. This is because a large number of aeroelastic simulations is required to accurately

estimate the loads, and we use finite-difference to estimate the gradient of the objective function and of the constraints. To

avoid this issue, we use a frozen-load approach to reduce the computational cost, under the assumption that the load envelope

varies slowly with changes in the inner tower design variables (d,t). For a given tower height, a beam model of the tower is

derived and integrated into the complete aeroelastic multibody model of the turbine, which is then used to conduct all neces-155

sary aeroelastic simulations. The corresponding loads are then frozen and used as input for the tower mass optimization. Upon

convergence of the inner optimization, the mass difference between the tower design used for the load evaluation and the tower
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design found at the end of the optimization is evaluated. If the change in design is greater than a given threshold, the process is

repeated iteratively (Bottasso et al., 2016). While this approach can potentially lead to non-optimal design, it is widely used in

wind energy and provides satisfying results.160

3.2 Estimator applied to the tower mass and LCOE

In the tower optimization problem represented by Problem 10, only the fatigue constraint has a direct dependence on the

controller behavior. Therefore, the estimator in Eq. (9) is defined using this constraint only and applied to the tower mass

minimization problem. In this case, the tower mass is not a function of the control parameter and the gradient of the objective

function with regards to c is zero. As a result, the change in optimal tower mass m∗ is estimated with the following expression:165

dm∗
est(dc) =

ns∑

j=1

λD,j∆gD,j(dc), (13)

where λD,j represent the Lagrange multipliers of the inner problem associated to the fatigue damage constraint gD,j . The

validity of the high-order estimator is ensured because the active set is robust, there is little interaction between constraints,

and the objective and constraints tend to be nearly linear around the optimum.170

Figure 2. Illustration of the process used to make the LCOE estimate function LCOEest from the optimal tower mass estimator dm∗
est: the

optimal tower mass estimate is obtained over a set of points dcq and hq (a), the corresponding LCOE is calculated using a simplified cost

model (b) and a quadratic interpolation is run to form the LCOE estimate function (c)

The estimator formula cannot be applied directly to LCOE due to the nested formulation of the problem. Instead, we use a

surrogate model of the LCOE as a function of the tower mass and tower height. This model is then applied to the optimal tower

mass estimator calculated for different tower heights. The process is illustrated in Fig. 2. The resulting LCOE estimate can be
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used to gauge the optimal LCOE that would have been obtained by solving the minimization problem including control tuning

as a design variable, i.e. using CCD. This is done by minimizing the LCOE estimate function over the range of data used to175

generate the surrogate model, i.e.

LCOE∗est = minimize
h,dc

LCOEest(h,dc). (14)

3.3 Control parametrization

We use a wind-scheduled Multi-Input Multi-Output (MIMO) LQR controller with integral action (Bottasso et al., 2012b).

The controller states are the tower top displacement and velocity, the rotational speed, the pitch angle, the pitch rate, and the180

electrical torque. The integral of the rotational speed is added to eliminate the steady state error of the controller. The controller

inputs are the pitch angle and the electrical torque. At each wind speed considered in the operational range, the controller gains

are computed by applying LQR theory to the linearized system of the turbine dynamics, see Hendricks et al. (2008) for more

details.

The tuning of an LQR controller is done through the choice of the entries of the weight matrices associated to the states and185

inputs, noted Q and R. In this work, the controller is tuned by changing the diagonal term of Q associated to the tower top

velocity. The following expression reports the parametrization of the weight matrices:

Q(c) =




0
c

0 1
β2

max 0
0

q




, R =


r 0

0 0.1


 , (15)

where c = 0 is the nominal control tuning and βmax is the maximum pitch angle of the turbine power regulation strategy. A

gain schedule is created by varying the parameters r and q over the operational range.190

The choice of parametrization was done by doing a sensitivity analysis of the diagonal entries of the matrices Q and R on

fatigue damage, power production, and ultimate loads. The weight matrix entry associated to the tower top velocity was found

to give a good fatigue damage reduction, without affecting the standard deviation of the power production in a significant

manner.

3.4 Analysis model195

The numerical experiments presented in this work are conducted using the multi-disciplinary wind turbine design optimization

framework Cp-max. The details of the framework can be found in the available literature (Bottasso et al., 2012a, 2014, 2016).

We highlight the aspects that are important for tower optimization and fatigue calculations in this section.

The tower is modelled as a steel tubular structure, divided in ne elements. Each tower element is characterized by its radius

at the top and bottom, and its wall-thickness. The tower is then modelled as a non-linear geometrically exact shear and torsion200

deformable beam. This is used in turn in the multi-body model of the wind turbine for the aeroelastic simulations, using the

solver Cp-Lambda. The aerodynamics of the wind turbine are modeled using the Blade Element Momentum method.
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The fatigue load analysis is performed according to certification standards. Simulations are run from the cut-in to the cut-out

wind speed with increments of 2 m.s−1. At each considered wind speed, simulations are run for 600s for 6 different turbulent

seeds, excluding the initial transient period. Once the aeroelastic simulations are run, loads are extracted at ns stations along205

the tower to compute the stress loading on the structure. A rain-flow counting algorithm is then used on the stress time history

to identify the number of loading cycles and their amplitude. Miners rule and the material S-N curve is used to estimate the

lifetime fatigue damage at each station (Sutherland, 1999).

4 Results

In this section, the estimation method presented in Section 3.2 is applied to re-design of the tower of the IEA 3.4 MW reference210

onshore wind turbine (Bortolotti et al., 2019). We first study the impact of the control tuning on the fatigue damage constraints.

This provides the constraints variation ∆gD used in the high-order estimator. Then, we compare the high-order estimator of the

optimal tower mass to optimization results. Finally, the tower mass estimator is used to assess how the optimal LCOE would

change by using CCD.

All optimization problems are solved using the active set optimization algorithm implemented in the fmincon routine of215

MATLAB (The MathWorks Inc., 2019). The outer optimization is solved with tolerance on the expected objective function

change ϵobj = 1e− 5. The inner optimization is solved with ϵobj = 1e− 4, and with a tolerance on constraint violation ϵcon =

1e−2. The objective function for the outer and inner problems are both scaled by the corresponding value of the initial design.

The number of tower elements is ne = 10, and the number of fatigue damage constraints is ns = 19.

4.1 Control action on the fatigue damage constraint220

Fatigue damage is evaluated for different values of the control tuning variation dc on a reference tower design. This tower

design corresponds to the solution of the inner optimization of Problem 10, solved for cr = 0 and for the reference tower

height hr = 110 m. Figure 3 shows that on average, varying the control tuning from 0 to 0.3 reduces the fatigue damage by

6.8%. The fatigue damage reduction varies depending on where the fatigue damage constraint is calculated on the tower. In

particular, the control tuning has a marginal impact at the tower top, corresponding to Constraint 19 in Fig. 3.225

4.2 Estimator performance on the optimal tower mass

In this section, the change in optimal tower mass due to a control tuning variation is estimated using the results of the previous

section. The estimator is then compared to the solution of the tower mass optimization problem run for different variations of

the control parameter at the reference tower height.

We first look at the importance of the different constraints on the design, by solving the inner tower optimization problem230

with fixed control tuning cr = 0 and fixed tower height hr = 110 m. Figure 4 reports the optimal design and the Lagrange

multipliers for the two considered configurations. For both configurations, the designs are similar. However the presence of

the frequency constraints in the standard configuration drives the wall thickness up in the bottom half of the tower. Analysis
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Figure 3. Impact of the control tuning on the fatigue damage on average and at three locations along the tower, where Constraint 1 and 19

correspond to the tower bottom and top, respectively.

of the Lagrange multiplier show that for the soft-soft configuration, geometric constraints are the primary drivers. However,

these constraints are also insensitive to control tuning. The next most important constraint is fatigue, which can be mitigated235

by control, indicating potential benefits from CCD. In the standard configuration, the largest Lagrange multiplier is associated

with the added frequency constraint, with λf = 2.44. Adding this constraint also reduces the relative importance of fatigue,

reducing the potential for CCD, but also showing why the soft-soft tower has lower mass than the standard configuration.

Using the value of the Lagrange multipliers, the first-order and high-order estimators are calculated and reported in Fig. 5.

The results of the optimization for dc = 0.1,0.2 and 0.3 are also reported. The high-order estimator accurately predicts the240

change in optimal mass for the standard configuration, whereas it under-predicts the results for the soft-soft configuration.

Both estimators are able to show that the soft-soft configuration benefits significantly more from a change in control tuning

than the standard one, in accordance with the constraint analysis. However, the high-order estimator more precisely quantifies

this benefit whereas the first-order estimator fails to capture the effect of diminishing returns on controller tuning.

4.3 Estimator performance on the LCOE245

In this section, the optimal LCOE is estimated using the results of the previous sections and compared to the results of the

control co-design optimization. We want to understand if the LCOE can be reduced by the combined action of control load

alleviation and changing the tower height through CCD, and if the proposed estimation method can predict the CCD results.

Figure 6 reports the contour plot of the LCOE estimate function for the standard and soft-soft configurations, calculated as

described in Section 3.2 for different tower heights (0.9hr, hr, 1.1hr, 1.2hr) and for dc = 0,0.1,0.2,0.3. As expected, there is250

little coupling between the tower height and the control parameter in the standard configuration, with the LCOE showing only

marginal variations with control tuning. For the soft-soft configuration instead, the LCOE can be reduced by simultaneously
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Figure 4. Characteristics of the optimal standard and soft-soft tower designs for the reference height hr = 110 m and control tuning cr = 0:

optimal tower design (a) optimal Lagrange multipliers associated to the fatigue damage (b), and geometric constraints (c).

First-order estimator

High-order estimator

Optimal Value

Standard

Soft-soft

Figure 5. Comparison between the optimum mass change dm∗ and the estimated mass change dm∗
est calculated with the first-order and

high-order estimator, for different values of the control parameter and for the two configurations. The tower height is fixed to the reference

height.
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changing the control parameter and the tower height. The estimated change in optimal LCOE is calculated as the minimum of

the estimate function, and marked as a white circle in Fig. 6.

LCOE estimator

Estimated optimum

CCD optimum
-0.5

0

0.5

1

1.5

2

2.5

3

Figure 6. Relative change of LCOE as a function of the tower height change and control tuning parameter calculated using the high-order

estimator, for the standard and soft-soft configuration. The reference LCOE value is the optimal LCOE for the non CCD problem with cr = 0.

In order to assess the accuracy of the LCOE estimator, we solve the tower optimization problem with a non-CCD formulation255

(corresponding to Problem 10 with cr = 0) and with a CCD formulation with bounds on the control tuning c ∈ [0,0.3]. Table 1

reports the change in optimal LCOE brought by the use of CCD calculated directly with the optimization results and with the

estimation method. The estimation method correctly predicts that the soft-soft configuration benefits much more from CCD

than the standard configuration. In addition, the estimated improvement is accurate compared to the optimization results.

Table 1. Change of optimal LCOE between a CCD and a non-CCD approach calculated using the estimation method and using optimization

directly.

CCD Optimization Estimator

Standard configuration -0.01% -0.02%

Soft-soft configuration -0.53% -0.45%

In terms of computational cost, calculating the LCOE estimator required solving four tower mass optimization problems and260

evaluating the fatigue damage for four values of the control tuning, resulting in 12 evaluations of the full set of aero-elastic

simulations for each configuration. In comparison, solving the CCD problem required solving the inner problem and running

the full set of simulations 50 times for the soft-soft configuration and 20 times for the standard configuration. Therefore, the

presented estimation method is able to identify which configuration benefits from a CCD formulation, with a fraction of the

computational effort of the actual optimization.265
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The results of the optimization for the two configurations are reported in Table 2. The data shows that the optimal CCD soft-

soft tower is 2.8% lighter and 1.5% higher than the version calculated without CCD, which implies a gain in power capture in

sheared inflow. This reduction in tower mass and increase in power capture explains why the LCOE is more impacted for the

soft-soft configuration than for the standard configuration. While the estimator performs well on the change in optimal LCOE,

it does not predict well the change in design. Indeed, Fig. 6 shows that the estimated change in optimal design is far from the270

actual one. This is likely caused by the decreasing accuracy of the estimator as dc increases.

Table 2. Comparison of the optimal objective value for the standard and soft-soft configurations, when calculated with and without a CCD

formulation. The percentage change between the CCD and the non-CCD cases is reported in parentheses.

Standard non-CCD Standard CCD Soft-soft non-CCD Soft-soft CCD

Tower height h [m] 110 110.6 (+0.5%) 110 111.6 (+1.5%)

Control tuning c [-] 0 0.019 0 0.203

Tower mass m∗ [t] 331.07 334.08 (+0.9%) 311.33 302.47 (-2.8%)

AEP [GWh] 14.955 14.977 (+0.1%) 14.955 15.014 (+0.4%)

LCOE [$/Mwh] 41.481 41.477 (-0.01 %) 41.235 41.016 (-0.5%)

5 Discussion

A CCD approach can incur major computational costs when compared to the simpler non-CCD optimization. At the same time,

our results show that CCD is not always guaranteed to provide benefits to the final design compared to a more straightforward

non-CCD approach. Without knowing a-priori the potential benefit, there is a significant risk, in terms of engineering time,275

code development and computational resources, in attempting a CCD optimization. This work demonstrates that results from

the simplified optimization problem can be used in conjunction with the high-order estimator, to determine whether a given

problem can benefit from taking a CCD approach. The first-order estimator shows similar results, however fails to capture the

effect of diminishing returns from controller tuning. The method is applicable for similar problems where the optimum design

is driven by a load constraint when loads can be alleviated by control action, for example the design of wind turbine support280

structures or blades. In addition, while the estimation method was developed to target CCD applications, the mathematical

derivations and associated assumptions are developed in the general case, where c can be any parameter. Therefore, the method

can be applied to any optimization problem to disentangle the effects of one parameter on the rest of the solution.

The validity of the high-order estimator depends on strong assumption on the objective functions and constraints. When the

assumptions are violated, the estimator can under-predict the benefits of CCD, as shown in our results. In addition, the estimator285

uses local sensitivity information of the non-CCD optimum and will be inaccurate when a CCD approach significantly changes

the design. Therefore, there may still be a benefit of using a CCD approach, even if the estimator fails to show it.

In this study, we perform CCD using one tuning parameter of the LQR controller. The proposed method is not dependent

on the control architecture, but was verified in a case where the controller is tuned using only a few variables. However, CCD
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can be performed in several other ways. The applicability of the method to parametrizations with a large number of design290

variables, for example open-loop control in the context of direct transcription, is left for future work on the topic.

Finally, this work shows how CCD can be used for the design of wind turbine towers. In the presence of an active fre-

quency constraint, CCD may not give significant improvements. Instead, the use of active load alleviation enables a taller and

lighter-mass tower compared to the non-CCD design. The control used for the soft-soft configuration did not include an active

resonance avoidance strategy. We can expect that including this feature in the controller design would translate into reduced295

benefits. In addition, our results are specific to one particular wind turbine and may not be generally applicable. However, these

results highlight the importance of doing a thorough analysis of the driving constraints through the use of Lagrange multipliers

before attempting to solve a complex and computationally expensive optimization.

6 Conclusion

This study shows how design sensitivity analysis can be used to estimate the change of optimal objective value caused by a300

change in control. Using the solution of an optimization problem with fixed control, we can characterize the results of the

more complex control co-design problem without the associated computational effort. Two estimators are presented, based on

first-order and high-order approximations, respectively, where the latter captures non-linear effects.

The proposed estimation method is applied to the redesign of a wind turbine tower driven by fatigue loads, using an LQR

controller targeting fatigue load alleviation. High computational resources are required to calculate fatigue damage accurately,305

which makes this problem an ideal application for the estimator. Two design configurations are considered: a standard config-

uration, where a frequency constraint is enforced to avoid resonance with the rotational frequency of the rotor, and a soft-soft

configuration, where resonance is avoided using active control. The proposed first-order and high-order estimators are applied

to the optimal tower mass and optimal LCOE problems. We have shown that the high-order estimator accurately predicts

how the tower mass changes with control tuning, compared to optimization results. The first-order estimator is inaccurate for310

large values of control tuning, but captures the difference between the standard and soft-soft configurations. Combined with

an LCOE surrogate model, the high-order estimator predicts a 0.45% reduction in optimal LCOE for the soft-soft tower, while

running the CCD optimization gives an improvement of 0.53%. The proposed estimation method is accurate and uses only a

fraction of the computational resources of the CCD optimization. Our results additionally show that the standard tower config-

uration does not benefit from a CCD approach, due to the presence of an active frequency constraint. Changing the control is315

beneficial for the soft-soft tower, because the fatigue damage constraint is the primary design driver and can be alleviated by

control action. In this case, the use of CCD yields a higher tower with lower mass, which impact the LCOE significantly.

As shows in this work, design sensitivity analysis allows to identify relevant design problems for CCD from the results of

a simplified non-CCD solution. In a context where computational effort is an obstacle to the wide use of CCD, the proposed

method can help identify and quantify the benefits of this approach for wind energy applications.320

14

https://doi.org/10.5194/wes-2023-58
Preprint. Discussion started: 16 June 2023
c© Author(s) 2023. CC BY 4.0 License.



Appendix A: Nomenclature

Symbols used for generic optimization problems

λ Lagrange multipliers

c or c Variables or parameters describing the controller

cr or cr Reference value for the control variables

f Objective function

gi, i = 1, ...,n Constraints

x Design variable of the optimization problem, except control

z Objective function value

I Set of active constraints

∇x□ Jacobian or gradient of □ with regards to x

□∗ Value at the optimum

d□ Small variation

d□est Estimated value of the variation of □

Symbols used for the tower design optimization problem

λD,j , j = 1, ...,ns Lagrange multipliers associated to the fatigue damage constraint

λf Lagrange multipliers associated to the first frequency constraint

d Diameter of the tower elements

f1,f2 First and second natural frequencies of the turbine

f1P Rotor 1P passing frequency

gD,j , j = 1, ...,ns Fatigue damage constraints

h Tower height

m Mass of the tower

ne Number of tower elements

ns Number of fatigue damage constraints

r,q Gain-schedule parameters for the LQR control gains

t Thickness of the tower elements

Abbreviations

AEP Annual energy production

CCD Control co-design

LCOE Levelized Cost of Energy

LQR Linear quadratic regulator
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Appendix B: High-order estimator

In this appendix, we derive the high-order estimator expressed by Eq. (9) and explain the validity assumptions. We consider325

the following non-linear optimization problem:

minimize
x

z = f(x,cr)

subject to gi(x,cr)≤ 0 i = 1, ...n. (B1)

The change of optimal objective value due to a change of the control parameter dc is defined as:

dz∗(dc) = f(x∗+ dx∗,cr + dc)− f(x∗,cr). (B2)

We assume that the objective function f is linear in x and that does not admit a coupling between the variables x and c.Using330

these assumptions on a second-order Taylor expansion of Eq. (B2) gives:

dz∗(dc) = f(x∗+ dx∗,cr + dc)− f(x∗,cr) =∇xf(x∗,cr)T dx∗+∇cf(x∗,cr)T dc +
XXXXXXXXXXX

1
2
dx∗T∇2

xf(x∗,cr)dx∗

+
1
2
dcT∇2

cf(x∗,cr)dc∗+
hhhhhhhhhhdx∗T∇2

xcf(x∗,cr)dc + o(||dc||2). (B3)

We use the notation ∇2
x□ for the Hessian of a function with respect to x. Due to the assumption on f , the second-order

terms dependent on dx∗ are negligible. The remaining terms dependent on dc can be identified with the second-order Taylor

expansion of the function c 7→ f(x∗,c) around the point c = cr. Therefore, the expression can be rewritten as:335

dz∗(dc) =∇xf(x∗,cr)T dx∗+ ∆f(dc) + o(||dc||2), (B4)

where ∆f(dc) = f(x∗,cr +dc)−f(x∗,cr). Applying the same assumption on the constraints gives the following expression:

gi(x∗+ dx∗,cr + dc)− gi(x∗,cr) =∇xgi(x∗,cr)T dx∗+ ∆gi(dc) + o(||dc||2), i = 1, ...,n, (B5)

where ∆gi(dc) = gi(x∗,cr + dc)− gi(x∗,cr), i = 1, ...,n. We consider the set I of active constraints that depends on c.

Assuming that the active set does not change with dc, one has gi(x∗+ dx∗,cr + dc) = gi(x∗,cr) = 0, i ∈ I, and therefore:340

∇xgi(x∗,cr)T dx∗ =−∆gi(dc) + o(||dc||2), i ∈ I. (B6)

We can relate the gradient of the objective function to the gradient of the constraints using the optimality conditions. We

assume that f and gi, i = 1, ...,n are differentiable and that strong duality holds for Problem B1. Then, if x∗ is optimal, there

is a set of Lagrange multipliers λ∗ satisfying the Karush-Kuhn-Tucker conditions (Boyd and Vandenberghe, 2004). Among

these, the stationarity condition states:345

∇xf(x∗,cr) + (λ∗)T∇xg(x∗,cr) = 0. (B7)
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The stationarity condition is reformulated by post-multiplying it by dx∗ and by separating constraints in and outside set I:

∇xf(x∗,cr)T dx∗ =−
∑

i∈I
λ∗i∇xgi(x∗,cr)T dx∗−

∑

i/∈I
λ∗i∇xgi(x∗)T dx∗. (B8)

The terms corresponding to constraints in set I can be reformulated using Eq. (B6). In addition, we assume that the constraints

that do not depend on x contribute marginally to the change of optimum. This means that either the corresponding Lagrange350

multiplier is small, or that the change of design dx∗ does not impact the constraint, i.e. dx∗ is orthogonal to the support to the

constraint and ∇xgi(x∗)T dx∗≪ 1. Following these considerations, Eq. (B8) becomes:

∇xf(x∗,cr)T dx∗ =
∑

i∈I
λ∗i ∆gi(dc) + o(||dc||2). (B9)

The expression for ∇xf(x∗,cr)T dx∗ in Eq. (B4) can be replaced by Eq. (B9), which gives the equation for the high-order

estimator:355

dz∗(dc) =
∑

i∈I
λ∗i ∆gi(dc) +∆f(dc) + o(||dc||2). (B10)

The high-order estimator formula is derived here using a second-order Taylor expansion. However, we can repeat the rea-

soning with an arbitrary high order k of the Taylor expansion, resulting in an expression in o(||dc||k) instead of o(||dc||2).

Appendix C: Application to a quadratic program

In this section, we illustrate how the assumptions associated to the high-order estimator impacts its validity. For this purpose,360

we study the simple quadratic program below, with x = [x1,x2]T :

minimize
x

z = yT Py + qT y + z0 where y = [x, c]T

subject to Gx≤ g2c
2 + g1c + g0

Hx≤ h0 (C1)

The value of P, q, G, gi, i = 0, ..2, H and h0 can be adjusted to create problems that satisfy or violate the validity assumption

for the estimator. The parameter z0 is set so that the optimal objective value of the reference problem is z∗ = 0. For each type

of problem, we study how the optimum and the estimator dz∗est change with the value of dc. The reference problem is always365

taken for c = 0, and dc varies between 0 and 1.
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C1 The objective function is linear in x

In order to represent problems with objective functions linear or non-linear in x, the diagonal terms of the matrix P are varied

with a parameter b. We use the following:

P =




b 0 0

0 b 0

0 0 0


 , q =




−10

1

0


 , G =

[
1 0

]
, g2 =−4, g1 = 3, g0 = 1, H = 0, h0 = 0 (C2)370

When b = 0, the objective function is strictly linear in x. With increasing values of b, the non-linear terms in the objective

function dominate more and more the linear term. We study how the estimator performs for b = 20, 5 and 0.1. For this problem,

the objective function is not dependent on c.

Figure C1. Contour plot of the objective function with the optimal value marked with an asterisk (*), for objective functions with varying

degree of non-linearity in x. The higher the value of b, the more dominant the non-linear terms compared to the linear terms in the objective

function. The constraint is represented as a yellow line and varies with c.

Figure C1 shows the value of the objective as a function of x1 and x2. The constraint Gx≤ g2c
2+g1c+g0 is represented for

different values of c as a yellow line and the optimum is marked as an asterisk. The figure shows that the optimal design changes375

in a similar way for the different values of b. Figure C2 reports the value of the optimum change dz∗ and of the first-order and

high-order-estimator dz∗est for the different values of b. For low values of b when the objective function is mostly linear in x,

the high-order estimator follows more closely the optimal value. In addition, we observe that the first-order estimator follows

the slope of the optimal value at c = 0. This indicates which problems see the most change in optimal value when c is varied.
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Figure C2. Comparison of the optimal objective value with the first-order estimator and the high-order estimator for objective functions with

varying degree of non-linearity in x. The higher the value of b, the more dominant the non-linear terms compared to the linear terms in the

objective function.

C2 There is no coupling between x and c in the objective function380

In order to represent the coupling between x and c in the objective function, the non-diagonal terms of the matrix P corre-

sponding to x2 and c are set to −b. We use the following:

P =




0.1 0 0

0 0.1 −b

0 −b 0


 , q =




−10

0

0


 , G =

[
1 0

]
, g2 =−5, g1 = 6, g0 = 1, H = 0, h0 = 0. (C3)

The problem is solved for b = 10.0, 5.0 and 0.1. The higher b, the stronger the coupling between x2 and c. Figure C3

shows the objective value as a function of x1 and x2 as well as the constraint value for c = 0.1 and for c = 0.2. The higher the385

coupling, the larger the changes in the objective function. Figure C4 shows that the estimator performs well only in the case of

b = 0.1, where the coupling terms are small. Note that in this case, the first-order and high-order estimators do not change with

parameter b, since they assume that the coupling term is negligible, i.e. b = 0.

C3 The active set does not change with changes in c

To study how a change in the active set impacts the validity of the estimator, a constraint is added so that it is not active for390

c = 0 and becomes active as c increases. We use the following:

P =




0.1 0 0

0 0.1 0

0 0 0


 , q =




−5

5

0


 , G =

[
1 0

]
, g2 =−5, g1 = 6, g0 = 1, H = [1,0], h0 = 0. (C4)
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Figure C3. Contour plot of the objective function with the optimal value marked with an asterisk (*), for problems with varying degree of

coupling between x and c in the objective function. The higher b, the more dominant the coupling terms compared to the linear terms in the

objective function. Results are represented with a solid line for c = 0.1, and with a dashed line for c = 0.2 in order to highlight the magnitude

of the coupling between x and c.

Figure C4. Comparison of the optimal objective value with the first-order estimator and the high-order estimator, for problems with varying

degree of coupling between x and c in the objective function. The higher b, the more dominant the coupling terms compared to the linear

terms in the objective function. The high-order estimator assumes b = 0.
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Figure C5 a reports the objective function with the constraint Gx≤ g2c
2 + g1c + g0 in yellow and the constraint Hx≤ h0

in blue. For c = 0 and c = 0.1, the yellow constraint is active. However, for c = 0.7, the yellow constraint is no longer active

and the blue constraint becomes active. Therefore, the optimum is set where the blue constraint is, and not where the yellow395

constraint is. In the region where the active set changes (c > 0.2), the high-order estimator does not follow the optimal value

anymore.

Figure C5. Contour plot of the objective function with the optimal value marked with an asterisk (*), where the blue line represent the

constraint non-dependent on c (a). Comparison between the first-order, the high-order estimator and the optimal objective value for variations

in c (b).

C4 The constraints non-dependent on c have a small impact on the optimum

In this case study, the constraint non-dependent on c are modeled as x1− bx2 ≤ 0. We use the following:

P =




0.1 0 0

0 0.1 0

0 0 0


 , q =




−10

1

0


 , G =

[
1 0

]
, g2 =−5, g1 = 6, g0 = 1, H = [1,−b] h0 = 0 (C5)400

Figure C6 reports the objective value and constraints for b = 0.3, 1.0 and 100. For b = 100, the constraint x1− bx2 ≤ 0 in

blue interacts weakly with the yellow constraint that depends on c. This represents a case where the constraint have a small

impact on the objective value. For lower values of b, we observe that the optimum moves in a different direction than the

change in the yellow constraint. This indicates that the yellow and blue constraints are coupled more strongly, and the change

in optimum cannot be attributed mainly to the alleviation of the yellow constraint. Figure C7 shows how the optimal objective405

value changes in comparison to the estimator. For cases where the two constraints interact weakly (b = 100), the estimator

follows closely the change in optimal objective value.
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Figure C6. Contour plot of the objective function with the optimal value marked with an asterisk (*) for problems where the constraint

non-dependent on c (in blue) interacts to a varying degree with the constraint dependent on c (in yellow). The higher the value of b, the

weaker the interaction with the two types of constraints.

Figure C7. Comparison of the optimal objective value with the first-order estimator and the high-order estimator for problems where the

constraint non-dependent on c interacts to a varying degree with the constraint dependent on c . The higher the value of b, the weaker the

interaction with the two types of constraints.
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