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Abstract. As the use of wind energy expands worldwide, the wind energy industry is considering building larger clusters of

turbines. Existing computational methods to design and optimize the layout of wind farms are well suited for medium-sized

plants; however, these approaches need to be improved to ensure efficient scaling to large wind farms. This work investigates

strategies for covering this gap, focusing on Gradient-Based (GB) approaches. We investigated the main bottlenecks of the

problem, including the computational time per iteration, multi-start for GB optimization, and the number of iterations to achieve5

convergence. The open-source tools PyWake and TOPFARM were used to carry out the numerical experiments. The results

show Algorithmic Differentiation (AD) as an effective strategy for reducing the time per iteration. The speedup reached by AD

scales linearly with the number of wind turbines, reaching 75 times for a wind farm with 500 wind turbines. However, memory

requirements may make AD unfeasible in personal computers or for larger farms. Moreover, flow case parallelization was

found to reduce the time per iteration, but the speedup remains roughly constant with the number of wind turbines. Therefore,10

top-level parallelization of each multi-start was found to be a more efficient approach for GB optimization. The handling of

spacing constraints was found to dominate the iteration time for large wind farms. In this study, we ran the optimizations

without spacing constraints and observed that all wind turbines were separated by at least 1.4D. The number of iterations

until convergence was found to scale linearly with the number of wind turbines by a factor of 2.3, but further investigation is

necessary for generalizations. Furthermore, we have found that initializing the layouts using a heuristic approach called Smart-15

Start (SMAST) significantly reduced the number of multi-starts during GB optimization. Running only one optimization for

a wind farm with 279 turbines initialized with SMAST resulted in a higher final AEP than 5,000 optimizations initialized

with random layouts. Finally, estimates for the total time reduction were made assuming the trends found in this work for the

time per iteration, number of iterations, and number of multi-starts holds for larger wind farms. One optimization of a wind

farm with 500 wind turbines combining SMAST, AD, flow case parallelization, and without spacing constraints takes 15.6h,20

whereas 5,000 optimizations with random initial layouts, finite-differences, spacing constraints, and top-level parallelization

are expected to take around 300 years.
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1 Introduction: Wind Farm Layout Optimization

The use of wind energy worldwide increases year by year. The global cumulative wind power capacity reached 837GW by the

end of 2021, with a prediction of around 3,200GW by 2030 (GWEC, 2022). This growth opens the path for the wind energy in-25

dustry to consider building larger wind farms. Existing literature shows a gap in approaches and strategies to efficiently perform

Wind Farm Layout Optimization (WFLO) with hundreds of wind turbines. A proper framework to address the problem could

enable faster evaluation of thousands of different configurations, allowing trade-off sensitivity analysis and design insights in

a more extensive and faster way.

Since the first work on WFLO by Mosetti et al. (1994) using a Gradient-Free (GF) approach, the literature on the topic30

massively evolved around GF. GF-based approaches on the topic include metaheuristic methods such as Genetic Algorithm

(GA) (González et al., 2018; Wang et al., 2015; Parada et al., 2017), Particle Swarm Optimization (PSO) (Hou et al., 2016;

Pillai et al., 2017; Veeramachaneni et al., 2012; Wan et al., 2012; Pookpunt and Ongsakul, 2016), Random-Search (RS) (Feng

and Shen, 2017b, a), and many others. GF methods explore the entire design space and may find the global optimum at some

point, but processing time explodes with the number of design variables. Therefore, GF methods tend not to scale well for35

problems with many design variables (Martins and Ning, 2021; Ning et al., 2019) and are more suitable for smaller problems

(Wright et al., 1999). Gradient-Based Wind Farm Layout Optimization (GBWFLO) has been explored more since a few years

ago. Research in the field has been evolving, including analytical computation of the gradients (Guirguis et al., 2016, 2017;

Stanley et al., 2019), a quasi-Newton limited-memory optimizer called Limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) that estimates the inverse of the Hessian Matrix using a generalized secant method (van Dijk et al., 2017; Croonen-40

broeck and Hennecke, 2021), another limited-memory optimizer called SNOPT (Sparse Nonlinear Optimizer) that explores

the sparsity of the Jacobian matrix (Tingey and Ning, 2017), SNOPT with Finite Differences (FD) (Fleming et al., 2016),

SNOPT with analytical gradients (Gebraad et al., 2017), and Adjoints (King et al., 2017; Allen et al., 2020). Mittal et al. (2016)

developed a hybrid GF (GA) and GB (fmincon) algorithm. A concern in GBWFLO is getting stuck in local minima due to

the multi-modality of the problem, as visually demonstrated in the literature (Thomas et al., 2022b). One possible strategy to45

overcome local minima is to perform multi-starts by running multiple optimizations with different initial solutions. Multi-start

GBWFLO can explore the design space in a more extensive way, avoiding potential non-optimal final solutions. However, the

extra costs to run multi-starts can become another concern for larger problems. In this context, efficient multi-start is potentially

a way of speeding up GBWFLO.

Literature has few articles comparing GF and Gradient-Based (GB) in a systematic and standardized way (e.g., same con-50

figurations). Brogna et al. (2020) performed WFLO in complex terrain with 25 wind turbines, comparing six GF with two

GB methods that use Global Search and Multi-start from MATLAB optimization toolboxes. They reported GF (RS, Pattern

Search, and Local Search) outperforming the two GB approaches analyzed on both computational costs and optimization re-

sults. Croonenbroeck and Hennecke (2021) performed layout optimization to maximize profit and efficiency, which is the ratio

between the Annual Energy Production (AEP) and theoretical maximum AEP. They compared a GB (L-BFGS-B) against GF55

algorithms, including modified versions of GA, PSO, Simulated Annealing (SA), and RS. They found L-BFGS-B to perform

2



the fastest among all the options but not with the best results in AEP on a spectrum of six runs. Guirguis et al. (2016) compared

GB with analytical derivatives and GA. Additionally, the study compared two GB Interior Point Method (IPM) approaches

where one used FD to compute the gradients and the other used exact analytical gradients. They found the computational costs

of the GB FD approach to be around 20 times higher than the GB with analytical gradients. Additionally, the GB with analytical60

gradients resulted in 0.36% higher wind farm efficiency. Even though the literature is not in total agreement on which approach

is the best, GB methods are worthy of further development, especially for large WFLO with many design variables. In order

to make GBWFLO more efficient and applicable for large wind farms, the associated computational cost and time need to

be properly addressed. The next section will break down the computational cost into different components. In the following

sections, approaches to reduce the computational cost are proposed.65

2 Total Computational Time for Gradient-Based (GB) Optimization

Equation (1) shows the total computational time to perform GB optimization. To accomplish faster large GBWFLO, one needs

to tackle the bottlenecks of the problem, which are the variables in Equation (1).

ttotal = (titer ·niter + tinit) ·
nmultistarts

ncpu
(1)

where ttotal is the total computational time for the GBWFLO, titer is the time per iteration, niter is the number of iterations70

until convergence, tinit is the time to initialize the problem, including time to generate the initial layout, e.g. via Smart-Start

(SMAST) from section 3.4.1, nmultistarts is the number of initial starts to avoid getting stuck in local minima, as visually

demonstrated in (Thomas et al., 2022b), and finally, ncpu is the number of CPU cores available for parallelization of the

nmultistarts independent optimizations with different initial layouts.

2.1 Time per Iteration75

In GB optimization, each iteration typically consists of computing the gradients of the objective function and constraints with

respect to all design variables, followed by a line-search that comprises one or more function evaluations of the objective and

constraints. In this section, we analyze different approaches to reduce the iteration time of GBWFLO.

2.1.1 Gradients Computations: Analytical vs Finite-Differences

Computing gradients can be done with different methods. In Algorithmic Differentiation (AD), all the lines of code are dif-80

ferentiated. These lines are usually composed of simple mathematical operations. AD performs differentiation with respect to

each relevant variable at each line of code by applying the chain rule, and then sums up all the contributions. The FD method

computes the derivatives using a Taylor series expansion, as shown in Equation C1 (Appendix C). FD computes the Jacobian

matrix by looping through all the dimensions to compute the function values, perturbing with a determined step size, and com-

puting the differences in the function. The value of the step size dictates the truncation error. Smaller step sizes reduce the error85
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but increase the amount of numerical noise. The Complex-Step (CS) method also relies on a Taylor expansion to compute the

derivatives. However, the step is represented by an imaginary term in the complex plane (Equation C3, Appendix C). The CS

method typically doubles computational time, as there are two times more bits in each value. As shown in Appendix C4, we

need to add a complex step to an input and run f(x+ ihêj) to find the gradient with respect to that input. This means that all

operations in f, which depends on x, need to be executed on both the real and the imaginary part. The advantage of the CS is90

that the only source of error is the truncation error since there is no associated subtraction cancellation error. Adopting smaller

step sizes can reduce truncation errors.

2.1.2 Parallelization

One of the most common objective functions in WFLO is the AEP, which is computed by summing up the contributions of the

various combinations of wind direction sectors and wind speeds (referred to as flow cases). The number of flow cases during95

each iteration is a function of the discretization of the wind resource. To avoid numerical discrepancies, it is necessary to

discretize finely the bins of wind directions and wind speeds. The number of flow cases can sum up to 8280 if wind directions

and wind speed bins of 1°(0°to 360°) and 1m/s (3 to 25m/s) are considered, for instance. The contribution of each flow case to

the AEP is multiplied by the frequency of occurrence of that combination, and all of them are summed up sequentially in one

CPU to calculate the total AEP. As the flow cases are independent, parallelization could speed up iterations as the calculation100

of AEP contributions of each flow case can be done simultaneously on several CPUs rather than sequentially on one CPU.

Throughout the text, this is referred to as flow case parallelization.

2.1.3 Constraints

Handling constraints in GBWFLO can be done with penalty functions, Sequential Quadratic Optimization (SQP), and IPM

(Martins and Ning, 2021). Constraints in GBWFLO usually include physical boundaries and minimal spacing between turbines.105

Looking at the literature on WFLO, the spacing constraint between turbines varies. Many studies consider 5 wind turbine rotor

diameters (D) (Gao et al., 2015; Wang et al., 2015; Parada et al., 2017), but others consider 4D (Hou et al., 2016; Rodrigues

et al., 2015), 3D (Mittal et al., 2017; Abdulrahman and Wood, 2017), 2D (Stanley and Ning, 2019; Padrón et al., 2019;

Kirchner-Bossi and Porté-Agel, 2018; Gebraad et al., 2017; Fleming et al., 2016), and a few works consider values beyond 5D

(Rodrigues et al., 2016). When there are too many constraints in optimization, for instance, large WFLO with wind turbine110

pair-spacing constraints, combining all the constraints into a single constraint is also possible (Martins and Ning, 2021).

2.2 Number of Initial Starts

Better initial guesses for the layout can potentially avoid the worst local optima. In previous literature, GF has been found in

some studies to provide better results than multi-start GB. However, just a few starts were applied for the GB, and the layouts

were randomly initialized. It is unclear, for instance, if the work done by Croonenbroeck and Hennecke (2021) to optimize a115

wind farm with 20 wind turbines could have found L-BFGS outperforming (in AEP) the GF methods if more multi-start runs
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were applied (six runs in this study). Examples of previous studies on multi-start for GBWFLO considered random multi-start

(Brogna et al., 2020; Yang and Deng, 2023; Thomas et al., 2022a; Baker et al., 2019) and Latin-Hypercube sampling (Guirguis

et al., 2016), while an example of a multi-start GF (RS) also using randomly produced initial guesses is given in Feng and Shen

(2017a). A heuristic approach developed by Perez et al. Pérez et al. (2013) assumed a turbine widespread throughout the wind120

farm area as a strategy to avoid the wake effects and produce better initial guesses. They generated random regular rectangles,

applied a rectangular transformation to extend the points to the wind farm boundaries, and used triangulations to maximize

the sum of the areas of the triangles. Still, they had to generate a set of random candidate solutions to initiate the approach.

One could enhance heuristic approaches for the initial layout with physics information (e.g., wake effects), avoiding random

guesses for the layout. These examples show that there is room for improving multi-start GB, for instance, if layouts were125

initialized using some threshold or method based on physics, rather than purely random. Smart-Start (SMAST) is a heuristic

approach based on physics, where wind turbine wake effects guide the decisions to place wind turbines for the initial layout

sequentially. SMAST is now available in PyWake (Pedersen et al., 2022), and here we show to which extent the method can

improve multi-start for large GBWFLO. That is potentially a way of improving multi-start for GB optimization of wind farms,

one of the objectives of this present study.130

2.3 Objective and Scope of the Work

This work aims to speed up layout optimization for large wind farms. The strategy is to tackle the bottlenecks in terms of

computational expenses. Specifically, on optimization iteration time, the objective is to show how different GB approaches and

parallelization of the flow cases scale with the Number of Wind Turbines (nwt). Moreover, we explore a heuristic approach to

produce better initial layout guesses and improve multi-start, which is necessary for GB methods.135

2.4 Contributions to the Existing Literature

This work intends to complement and add the following new insights to the existing literature:

- Evaluate how parallelization scales with nwt during large GBWFLO.

- Evaluate how different techniques to compute gradients scale with nwt when performing GBWFLO

- Evaluate how niter scale with nwt when performing GBWFLO.140

- Demonstrate how nmultistarts scales with nwt and how to reduce this number using a heuristic approach.

3 Methods

The AEP computations and the optimizations were performed in PyWake (Pedersen et al., 2023) and TOPFARM (Réthoré

et al., 2014), which are open-source tools developed by the Technical University of Denmark. Examples of previous works

using PyWake and TOPFARM can be found in the literature (Rodrigues et al., 2022; Ciavarra et al., 2022; Criado Risco et al.,145

2023; Quick et al., 2022; Pedersen and Larsen, 2020; Nyborg et al., 2023; Fischereit et al., 2021; Pérez-Rúa and Cutululis,

2022). Section 3.1 provides all the relevant details about the optimization formulation. Section 3.2 shows the case studies
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considered in this work. Section 3.3 describes the methods and assumptions to evaluate iteration time, whereas Section 3.4

provides an overview of the heuristic method to produce efficient initial layouts and improve multi-start GBWFLO.

3.1 Optimization: Problem Formulation150

For the AEP computations, an implementation of a Gaussian wake model (Bastankhah and Porté-Agel, 2014) referred to as

Bastankhah Gaussian (BG) in Table 1 was considered. The optimization algorithm used in this work is the Sequential Least-

Squares Quadratic Programming (SLSQP), which relies on quasi-Newton methods (Powell, 1964; Liu and Nocedal, 1989)

and is suitable for constrained GB optimization problems (Wu et al., 2020; Perez et al., 2012; Virtanen et al., 2020). The

optimization in this work follows the formulation in Equation (2), where the objective function is the AEP, and the design155

variables are the layout coordinates x and y of the turbines. Moreover, farm boundary constraints are applied to restrict the

area upon which the turbines can move. TOPFARM handles the design variables and constraints corresponding to the problem

formulation in Equation (2).

max
x,y

AEP (x,y)≈ 8760

Nθ∑
d=1

Nu∑
u=1

Pd,u (x,y) · ρd,u

s.t. Ckj ≥ 0∀k,j

(2)

where C is a matrix of wind farm boundary constraint, d denotes wind directions, u refers to wind speeds, with Nθ and Nu160

standing for the number of wind directions and wind speeds; Pd,u represents the power output of the wind farm given by the

wind turbine coordinate vectors x and y, for wind direction d and inflow wind speed u; lastly, ρd,u is the frequency of wind

direction d and inflow wind speed u.

When the wind farm is circular, the boundary constraint, C, is a 1×nwt matrix, defined in Equation (3):

Ck,1 =Rwf −
√
x2
k + y2k, (3)165

where k is an integer denoting the turbine number, Rwf is the Wind Farm Radius, and the coordinates x and y have the origin

at the wind farm center.

When the wind farm span is a parallelogram, the boundary constraints, C, are defined as a 4×nwt matrix,

Ck,1 =

[(
xUR−xLR

ymax− ymin

)
(yk − ymin)+xLR

]
−xk (4)

Ck,2 = xk −
[(

xUL−xLL

ymax− ymin

)
(yk − ymin)+xLL

]
(5)170

Ck,3 = ymax− yk (6)

Ck,4 = yk − ymin (7)

where xUL, xUR, xLL, and xLR are the upper left, upper right, lower left, and lower right coordinates that respectively define

the parallelogram boundaries. The upper axis of the parallelogram is assumed to be parallel to the x-axis.
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As pointed out in section 2.1.3, adopted values of spacing constraint between wind turbines in a wind farm vary in the175

literature. A spacing constraint value of 2D (Equation 8) was adopted for the layout initialization provided by the heuristic

algorithm (described in Section 3.4.1) and in the discussion of spacing constraint costs in Section 4.1.3. For the remaining

optimizations, spacing constraints were disregarded and the formulation of Equation 2 was adopted. This setup for the spacing

constraint is adopted because the cost of handling spacing constraints for each turbine pair does not scale well with nwt.

Additional discussion around the spacing constraint consideration in this work is provided in Section 4.1.3, where we provide180

a plot showing the influence of spacing constraints on speeding up GBWFLO across scales. Moreover, we show and discuss in

the Discussion section that the minimum spacing in our final results is at least 1.4D.

max
x,y

AEP (x,y)≈ 8760

Nθ∑
d=1

Nu∑
u=1

Pd,u (x,y) · ρd,u

s.t. Ckj∀k,j ≥ 0√
(xi−xj)

2
+(yi− yj)

2 ≥ 2D

(8)

where the sub-indices i and j denote spatial locations.

3.2 Study-Cases185

Two study cases have been considered in this work, which are summarized in Table 1. The power and CT curves are provided

in Figures 1a and 1b, respectively. The simulations to investigate the time per iteration were performed with a realistic setup,

the Horns Rev I wind farm. A Weibull distribution was fitted to the local wind resource (Figure 1c). We further extended the

analysis of Horns Rev I to assess how the approaches tested in this work scale with the number of wind turbines nwt (Figure

2).190

The results for the number of iterations and number of multi-starts are based on more than 50,000 55,000 GBWFLOs , and

these were performed with a faster setup, which uses the wind turbine idealized 3.35MW wind turbines with constant CT , site,

and wake model definitions from the IEA Wind Task 37 case study 1 (IEA Wind Task 37, 2018; Baker et al., 2019). These wind

turbines are slightly different than the reference IEA 3.4MW wind turbines defined by Bortolotti et al. (2019) . Extra cases were

designed to scale the analysis (Figure 3). In this simplified setup, only the rated wind speed (9.8m/s) is simulated, and all wind195

turbines operate with constant CT ≈ 0.964 CT ≈ 8/9 . The wake model for these simulations is the Bastankhah Gaussian

(BG) with a constant CT ≈ 0.964 (called Simple Bastankhah Gaussian - SBG at Table 1). Another reason for choosing the IEA

37 site is related to the circular boundaries, as rectangular boundaries use four times more boundary constraints. Furthermore,

Figure 1d shows the frequency of occurrence of wind directions for the IEA 37 site. Note that, in the current study, we simulate

360 wind directions (as shown in Table 1) while only 16 wind directions were considered in the original IEA Wind Task 37200

case study. Our results are, therefore, not directly comparable to the AEP results of the benchmark in Baker’s work (Baker

et al., 2019). Even though the absolute values (such as AEP) are not consistent with the original IEA 37, we expect our results
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(a) Power curves. (b) CT curves.

(c) Wind rose, Horns Rev I. (d) Wind rose, IEA 37.

Figure 1. Power curves, CT curves, and wind rose distribution for the sites considered in this study.

on niter and multi-starts, as well as the relative comparisons presented in this study, to be valid for more realistic wind farm

setups as well.

Table 1. Cases considered for the optimization and setup/models used in PyWake/TOPFARM.

Site nwt Wind Turbine Wake Model Superposition WS Bins WD Bins

IEA37 16, 36, 64, 130, 279, 566 IEA37 3.35MW SBG Squared Sum 1 360

Horns Rev I 100, 200, 300, 400, 500 V80 2MW BG Squared Sum 23 360

3.3 Time per Iteration: Horns Rev I205

This section provides the methods implemented to accelerate iteration time during the optimization described in Section 3.1.

These simulations use a realistic setup (Horns Rev I), as described in section 3.2 and summarized in Table 1.
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(a) nwt = 100. (b) nwt = 200. (c) nwt = 300.

(d) nwt = 400. (e) nwt = 500.

Figure 2. Considered variations of the scaled Horns Rev I site. The 80 turbines marked in black are the original turbines from the Horns Rev

I layout, whereas the turbines marked in white represent the rows and columns added to the original layout.

Figure 3. Scaled IEA 37 layouts with Rwf of 4500m, 6750m, and 9750m with nwt of respectively 130, 279, and 566.

3.3.1 Gradients Computation

We tested different techniques to compute the gradients and evaluate how they scale with nwt, including AD, FD, and CS.

The theoretical background of these different gradient methods can be found in section 2.1.1, Appendix C, or in the literature210

(Martins and Ning, 2021). In this work, we have adapted PyWake to use “Autograd” (Maclaurin et al., 2015) and perform AD

to automatically calculate the gradients of the output (AEP) with respect to the inputs (layout coordinates x and y).

9



3.3.2 Parallelization of the Flow Cases

In this work parallelization is studied, these studies are performed on a computational cluster. This work implemented paral-

lelization in a computational cluster. Single node operation was utilized with each node being composed of 2x AMD EPYC215

7351 16 core CPUs, @2.9GHz, with 128GB of RAM. All the CPUs in each node (32 CPUs per node) are set up to run one

simulation. PyWake parallelizes the flow cases, computing chunks of wind directions and wind speeds throughout the several

CPUs within a node.

3.4 Number of Initial Starts: IEA 37

As the total computational time for GB is a function of nmultistarts, this section provides methods for investigating that220

bottleneck. This work explores a heuristic (SMAST) to efficiently generate initial layouts for WFLO. The objective of the

method is to speed up WFLO by reducing the number of multi-starts necessary to achieve optimized solutions. Section 3.4.1

details SMAST and section 3.4.2 presents a methodology to improve multi-start GBWFLO based on a comparison between

SMAST and a random set of simulations.

3.4.1 The Smart-Start (SMAST) Algorithm: A Heuristics Method225

The objective of the SMAST is to provide a better initial layout for multi-start GBWFLO. The process is described in Algorithm

1. First, SMAST defines an array L with all the potential positions for wind turbines, in this case a regular grid of points

covering the domain. Next, SMAST removes positions from L not satisfying constraints, i.e., farm boundary constraints.

SMAST then computes the AEP at all the remaining points in L, considering the wakes from the turbines previously added.

Next, SMAST randomly selects a point p among the points associated with the highest AEP, ↕best Lbest, and places the next230

turbine at p. Finally, SMAST removes p and all the points that violate the spacing constraint of the newly added wind turbine.

This process is repeated until all wind turbines have been placed. As described, SMAST ignores the wake effects of the turbine

to be added, i.e., the power reduction of the already added turbines due to wake effects from the new turbine is ignored. This

simplification is, however, necessary to make the method feasible. SMAST has a parameter to define the desired degree of

randomness (randompct) when selecting the point p. If SMAST is run without randomness (randompct = 0), the algorithm235

places the turbine at the point with the highest AEP. In case multiple points provide the highest AEP, e.g. in the first iteration

assuming a uniform site, the algorithm randomly selects one of these points. This means that even for randompct = 0, the

algorithm is able to provide different layouts. SMAST with some randomness (randompct > 0) takes more possibilities for best

points and picks one of them randomly. The higher is the randompct, the more best points are considered. If SMAST is entirely

random (randompct = 100), SMAST bypasses the AEP calculation and quickly generates a random layout that satisfies the240

boundary and spacing constraints. Another parameter that influences the AEP provided by the SMAST is the resolution of the

grid defined in the Algorithm 1. Figures D1 and D2 show examples of SMAST AEP flow maps of the potential positions L
with grids with resolutions of 3R and 6R (i.e. the distance between points in L), respectively. Figures D3 and D4 show how

the AEP and the computational time vary according to the grid size. The finer the SMAST grid, the higher the AEP (except for
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nwt = 16 where it stabilizes after 4R) but also the higher the computational time of SMAST. The initialization time to generate245

random layouts (randompct = 0) is nearly negligible compared to, for instance, SMAST with randompct < 100 (Figure D5),

as the expensive loop to compute AEP and store information about remaining cells in each iteration is bypassed. Memory can

also be a problem in running SMAST if the grid is too refined. We do not expect the minimum spacing between turbines in the

optimized layout to be sensitive to the grid resolution provided by SMAST, as the optimizer moves the turbines apart to avoid

the highest wake regions.250

Algorithm 1 Smart-Start (SMAST) Algorithm

1: L← {Potential positions for wind turbines}

2: L←L - OOBL {OOB: Out of Boundary positions}

3: P ← {initialize empty turbine position vectors}

4: for i= 1 to nwt do

5: ZL← AEP(L,P )

6: minAEP = randompct
th percentile of ZL

7: lbest = l ∈ L, where Z(l)≥minAEP

8: p ∈R lbest, where ∈R selects a random element

9: P = P∪p
10: drop elements of L where dist(L,p)< 2D

11: end for

3.4.2 Random Multi-Start versus SMAST

Aiming to showcase the capabilities of SMAST to improve multi-start for GBWFLO, we consider sets of random multi-start

simulations with three different IEA 37 case studies: 16, 64, and 279 wind turbines. Those sets are the baseline for the com-

parisons. The methodology in this work consisted of running 10,000 random simulations (two batches of 5,000 simulations)

for each case (i.e., randomly generated initial layouts), splitting the results into m chunks, and computing the maximum AEP255

of each chunk. Finally, the mean and confidence intervals of the m maximum values are computed. Figure 4 shows how the

normalized optimized AEP varies with the number of random initial starts for the three cases. The AEP is normalized as

the average optimal AEP at 5,000 initial starts at each batch. As there are two batches with 5,000 simulations for each farm

size, we take the mean between these two values. The bandwidth in the plots represents the standard deviation within a 99%

confidence interval of th the mean. To better clarify the methodology, let us look at the 16 wind turbines case at 1,000 initial260

starts. The procedure consists in splitting the 10,000 simulations into 10 chunks of 1,000 simulations, computing the maximum

AEP of each of the 10 chunks, and computing the mean and 99% confidence interval of these maximum values with Equation

(9). The results from Figure 4 are going to be used in section 4.3, where we showcase how SMAST improves GBWFLO by

achieving the same final optimized results as the random approach (to generate the initial layout) but with a reduced number of

multi-starts. Furthermore, what is noticeable in Figure 4 is that 99.9% of the maximum AEP is obtained around 500 starts for265
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nwt = 16, around 2,500 starts for nwt = 64, and around 4,000 starts for nwt = 279. For small problems, the random approach

seems to work as the maximum AEP converges after a relatively low number of starts. Other methods are necessary for larger

problems, as the example with nwt = 279 shows that no full convergence is achieved even after 5,000 starts. We define con-

vergence when the AEP reaches 99.9% of the Normalized Optimized AEP (Y-axis, Figure 4). In practice, convergence would

mean a flat curve in Figure 4.270

Figure 4. Simulations with initial layout randomly generated for three cases of the IEA 37: 16, 64, and 279 wind turbines. These are the

baseline cases for comparison with SMAST.

AEPub,lb =AEPmean± 2.576 · σ√
m

(9)

where AEPub and AEP lb are the upper and lower bounds of the AEP within a 99% confidence interval, m is the number of

chunks, AEPmean is the mean of the maximum AEP value of each chunk, and σ is the standard deviation of the maximum

AEP values.

4 Results and Discussion275

In this section, we present the results of our study on speeding up GBWFLO by exploring each of the variables in Equation 1.

Section 4.1 shows how different gradient computation methods (section 4.1.1) and parallelization (section 4.1.2) impact titer.

Additionally, the influence of spacing constraints on titer is shown in section 4.1.3. Section 4.2 how niter scales with nwt.

Section 4.3 shows how SMAST can improve nmultistarts for GBWFLO and finally section 4.4 addresses the impact of these

findings on the total optimization time.280
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(a) Impact of gradient method on time per iteration. (b) Impact of gradient method on speedup. (c) Impact of gradient method on memory usage.

Figure 5. Impact of different gradient computation methods on time per iteration, speedup, and memory usage. The speedup in Figure 5b

takes FD as basis for comparisons.

4.1 Time per Iteration

This section explores titer during GBWFLO, as well as strategies to speed up titer by different gradient computation methods

and parallelization of the flow cases. These results are based on the more realistic Horns Rev 1 setup.

4.1.1 Impact of Gradient Computation Method

Figure 5a shows the time per iteration for AD, FD, and CS, whereas Figure 5b shows the speedup when comparing these285

gradient methods to FD. According to Figures 5a and 5b, AD computes gradients faster than FD and CS, especially as nwt

increases. AD is around 20 times faster than FD for 100 wind turbines and the speedup increases roughly linearly with nwt.

This is expected and confirms that FD is only feasible for optimizing small wind farms. Figure 5c shows the Memory Usage

for each method, revealing a trade-off between speed and memory. As nwt increases, AD consumes more memory than FD

and CS. AD memory usage is 85Gb for 500 turbines, which is usually beyond a regular computer’s configuration. This value290

(85Gb) is more than four times higher than CS and around 5 to 6 times higher than FD. The conclusion is that large wind farms

(e.g., nwt = 500) can only be optimized with AD, as FD and CS would require CPU usage in the order of years.

4.1.2 Impact of Parallelization

Figure 6a shows the time per iteration for 1 CPU, 4 CPU, 16 CPU, and 32 CPU, whereas Figure 6b shows the speedup when

comparing these different parallelization schemes. As Figures 5a and 5b demonstrated the superiority of AD, the simulations295

shown in Figures 6a and 6b used AD. The speedup computations consider 1 CPU as the baseline for comparisons. When several

multi-starts are needed, our results show top-level parallelization of each optimization to be more efficient than parallelization

of flow cases. According to Figures 6a and 6b, parallelization has a positive contribution to reducing titer and increasing

the speedup. However, the speedup keeps constant with the nwt. Moreover, the speedup when considering 4 CPUs against 1
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(a) Impact of parallelization on time per iteration. (b) Impact of parallelization on speedup.

Figure 6. Impact of parallelization of the flow cases on time per iteration and speedup during GBWFLO.

CPU (Figure 6b) is four. The same comparison for 16 CPUs against 1 CPU results in a speedup of around 12, whereas 32300

CPUs against 1 CPU have a speedup of around 16. These results indicate that the speedup achieved by parallelizing the flow

cases does not linearly increase with the number of CPUs. These results show that parallelization of the multi-start process

simulating one seed in one CPU seems more effective than parallelization of the flow cases. This means that if one needs to

run hundreds of multi-starts, then better CPU utilization can be achieved by running each multi-start optimization in parallel,

i.e. one optimization per CPU. This was confirmed by a small test where 100 multi-starts were optimized. In this test, the flow305

case parallelization approach was around two times slower than the multi-start parallelization approach.

4.1.3 Impact of Spacing Constraints

Figure 7 shows how the spacing constraint impacts the titer, indicating that handling spacing constraints does not scale well

with nwt. In the blue curve of Figure 7, each pair of turbines has an associated minimal spacing that must be satisfied, while the

orange line has no pair-spacing constraints. Calculating the spacing between the wind turbines and the associated gradients is310

relatively fast. The bottleneck is the time spend on handling the constraints inside the optimizer, which is seen to be considerable

for large farms. The optimizer used in this work is the SLSQP. Calculating the distances between 500 points takes around

0.01s, and calculating the gradients is similarly fast. SLSQP, however, needs to compute the Lagrangian multiplier for all

the constraints, and it is assumed is what takes most of the almost two hours increase in the iteration time (Figure 7) when

introducing WT-pair spacing constraints. In this example, handling the spacing constraint of each wind turbine pair in a setup315

with 500 wind turbines takes roughly two hours which slows down the iteration time by around 10 times. Obviously, wind

turbines must be placed with more than 1D spacing to avoid a collision, but this minimal distance is implicitly achieved even

without spacing constraints in all optimizations performed in this study, see section 4.5 where also other issues related to too

close spacing are discussed.
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Figure 7. Influence of wind turbine pair-spacing constraints on time per iteration during GBWFLO.

4.2 Number of Iterations320

The results in this section are based on optimizations of the faster scaled IEA 37 case study, described in section 3.2.

Figure 8 shows the niter to achieve convergence as a function of nwt based on 5,000 optimizations of each farm size, nwt =

(16, 36, 64, 130, 279). The mean niter is seen to scale linearly with nwt, niter = 2.3nwt+16. The linear fit of the median has

the same slope as Figure 8 with just one decimal difference. Additionally, two optimizations were performed with 566 wind

turbines to verify the linear extrapolation to larger wind farm sizes.325

In some cases niter is considerably higher than the mean. We suspect that these outliers represent cases where the optimizer

gets stuck in local minima.

In this case, niter scales almost perfectly linearly with 2.3 times nwt, but in general we expect niter to be highly dependent

on the optimizer, its settings, e.g. tolerance, the nature of the objective function and the constraints, e.g. the shape of the

boundary, as well as the scaling of the input, the objective function and the constraints. More investigation is needed to make330

a general conclusion.

The 5,000 optimizations of each farm size were performed with different levels of randomness (1,000 each), randompct =

(0, 1, 10, 50, 100), but it was found that the amount of randomness only has a minor impact on the number of iterations, see

Figure E2 in Appendix E.

4.3 Number of Initial Starts335

The results on reducing the number of initial starts presented in this section are based on simulations of the scaled IEA 37 study

case described in section 3.2. Our approach used a heuristic algorithm to improve the multi-start GBWFLO optimization by

providing a better guess for the initial layout. Section 3.4.1 described how the SMAST algorithm sequentially places turbines

in a gridded physical domain to obtain an initial layout. The SMAST algorithm evaluates the wind resource of each grid cell
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Figure 8. Number of iterations as a function of the number of wind turbines to achieve convergence. The site considered is the scaled IEA

37.

before placing each new turbine. The more refined the grid is, the more expensive it is to run SMAST. Before studying how to340

improve the multi-start, we ran a batch of simulations to check the sensitivity of the SMAST to several metrics (Appendix D and

E, Figures D3, D4, E1, E2). The initial AEP provided by the SMAST increases as the grid resolution gets finer (as mentioned

in section 3.4.1); however, there is a limit upon which the AEP no longer increases significantly (Figures D3 and D4). Based

on the results, the SMAST grid resolution adopted in this study is 3R (i.e., 3 times the wind turbine radius) for all the cases,

except the 566 wind turbines case, where 5R was adopted to prevent memory problems. These resolution values provide, at the345

same time, suitable initial AEP at reasonable computational expenses. To get a sense of SMAST computational time for large

wind farms, Table 2 shows a summary of the mean time of SMAST and the AEP gain, which is the percentage of improvement

comparing the initial mean AEP provided by SMAST with randompct = 0 and randompct = 100. The computational time

for the smallest case nwt = 16 is not high (only 3s) but it does not scale well and gets up to around 3 hours for the largest case

in which nwt = 566.350

Table 2. SMAST Computational Time and Gain for the considered IEA37 cases

nwt 16 36 64 130 279 566

tinit [s] 3 11 53 413 3233 10742

AEP Gain [%] 9.07 11.23 12.14 11.52 11.05 10.54

Figure 9 shows how the optimized AEP varies as a function of nmultistarts, considering different levels of randomness

(randompct) for the SMAST and different nwt. The black dashed lines in each plot show the maximum AEP, and the gray

bands a 99% confidence interval of the best result for the optimized AEP among two sets of 5,000 simulations with entirely

random initial layouts (randompct = 100). In the 16 wind turbine case, Figure 9a, the random approach is equal or superior to
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(a) Normalized Optimized AEP, 16 wind turbines. (b) Normalized Optimized AEP, 64 wind turbines. (c) Normalized Optimized AEP, 279 wind turbines.

Figure 9. Normalized Optimized AEP as a function of the number of initial starts, considering the IEA 37 study-case. The ’n’ variable refers

to the number of initial starts at which the SMAST approach results in higher Normalized Optimized AEP, as compared to 10,000 simulations

that used an approach with layouts randomly initialized.

SMAST for all levels of randomness. In the 64 wind turbine case, Figure 9b, SMAST with 0% randomness needs only one start355

to obtain an AEP result that is as high as the best of 5,000 multi-start optimizations with 100% randomness. The SMAST with

1% and 10% require 2 and 122 initial starts (2-3 and 53-414, respectively, within a 99% confidence interval), respectively, to

surpass the 100% random case with 5,000 starts. It is also seen that for more than 80 starts, 1% randomness improves the AEP

result. The 279 wind turbines case, Figure 9c, shows that the 0% and 1% SMAST cases need one initial start to surpass the

100% random case, whereas the SMAST 10% case requires approximately eight initial starts (4-16 within a 99% confidence360

interval). Note, however, that even though one start with 0% randomness is enough to surpass the random case, then it may

still be beneficial to run with multiple starts. In this example, the maximum AEP can be increased by approximately 0.5% by

running 30 starts instead of one.

These results indicate that more randomness gives higher AEP for a sufficiently high number of starts - the larger farms and

the more randomness the more starts are needed. For the small nwt = 16 case, "sufficiently high" is less than 20 starts. For365

the medium nwt = 64 case, 80 starts are enough for 1% randomness while more than 500 starts are needed when introducing

more randomness. For the large 279 wind turbine farm, "sufficiently high" is far beyond 500 even for the 1% randomness case.

In summary, SMAST significantly reduces the number of starts required to get a high AEP result compared to the random

approach when optimizing large wind farm layouts. Moreover, a randomness value (randompct) lower than 100% means that

the initial layout is limited to a subset of the design space. If the optimizer is not able to escape the local minima, this may370

also limit the solution space. For small wind farms, a higher AEP may be found by a random guess in the solution space that

is not accessible when using less randomness in the initial start. For larger wind farms, finding a better solution by random is

not realistic.
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4.4 Total Computational Time

This section summarizes the potential reduction of the total optimization time, ttotal, for a wind farm with 500 wind turbines375

by using all the strategies approached in this work. The ttotal is estimated using Equation 1 and combines the iteration time

found with the more realistic Hornsrev1 setup (Hornsrev1) with the number of iterations and multi-starts found with the faster

IEA37 setup. Assuming that Additionally, we assume that the result on number of multi-starts for 279 wind turbines is similar

for a wind farm with 500 wind turbines.

First, the time per iteration for 500 wind turbines using FD and one CPU without spacing constraints is 12.6h (see Figure 5a).380

Additionally, the time for computing and handling spacing constraints for 500 wind turbines was found to be 1.9h (see Figures

7 and 6a). Therefore, the total iteration time without the methods proposed in this work is 14.5h. The number of iterations for

a 500 wind turbine case is estimated to be 1,166 using the linear equation found in section 4.2. In this case, we set the number

of random multi-starts to 5,000, which is not even enough to get a result as good as one optimization with SMAST, if the trend

from Figure 9 continues up to 500 wind turbines. Hence, the total optimization time on one node with 32 CPUs is estimated to385

be 14.5h/iter· 1,166iter· 5,000starts/32CPUs ≈ 300years.

Applying the methods presented in this work, i.e. AD, flow case parallelization on 32 CPUs, and no spacing constraints, the

time per iteration is reduced to 38s (see Figure 6a). Using SMAST, one optimization is expected to give higher AEP than the

approach described above. The time to generate an initial layout by SMAST is ≈ 3.3h. Therefore, the total optimization time

is 38s/iter · 1,166iter+3.3h≈ 15.6h.390

A slightly higher AEP can be obtained by running, e.g. 32 optimizations with SMAST. In this case, it is more efficient to

parallelize the starts rather than the flow cases. The iteration time is thereby increased to 603s (see Figure 6a), and the total

optimization time becomes (603s/iter · 1,166iter+3.3h) · 32starts/32CPUs≈ 199h.

4.5 Discussion

When running GBWFLO for large wind farms, one critical aspect is the spacing constraint. As previous works in WFLO395

considered small to medium wind farms, this problem was not explicitly apparent. That is why this work applied spacing con-

straints only to generate the initial layout (by SMAST) and disregarded them for the remaining optimization. That considerably

reduced the computational expenses to achieve the objectives of this study. This was only possible because the wind turbines

did not end up too close. The strategy adopted in this work relied on the inherent behavior of wind turbine wake models,

which places turbines apart from each other to produce more AEP, guiding the optimizer driver towards separating them. As400

the objective of the work is to show the impact of different gradient computation methods, parallelization, and the capabilities

of SMAST, we do not expect disregarding the constraints to affect the results. For all the optimizations, the turbines were at

least 1.4D separated apart in the final optimized designs, which is lower than typical spacing distances. It is crucial, though, to

reinforce that placing turbines too close to each other can cause problems related to mechanical loads on wind turbine com-

ponents. Additionally, the applied engineering wake models do not include a dedicated near-wake model and their behavior405

close to the turbine is therefore missing some physical aspects. Furthermore, the constraint handling problem may be solved
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by constraint aggregation, but initial investigations showed a negative impact on the optimized AEP. Therefore, we decided

to run the optimizations in this study without spacing constraints and leave the in-depth investigation of spacing constraint

aggregation for future work.

In this work, the driver used for the optimization is the open-source SLSQP. The choice for this driver has to do with the410

possibility of a fully open-source simulation tool (even though other tools such as IPOPT could have been used). PyWake

and TOPFARM, as mentioned in section 3, are open-source packages developed by DTU and well coupled with SLSQP.

Additionally, SLSQP is currently commercially used by the wind energy industry to perform GBWFLO. Literature shows,

though, some studies pointing towards the superiority of SNOPT for optimal AEP (Baker et al., 2019; Thomas et al., 2022b).

Therefore, future work could use SNOPT or another driver to confirm the trends found in this work.415

Another possibility to speed up wind farm optimization is considering a subset of the flow cases. For wind farm AEP

computations, Thomas et al. (2022b) demonstrated that at least 40 or 50 wind sectors are necessary to run WFLO. However,

wriggles can occur when simulating too few wind directions. We define wriggles as direction dependent variations in wind

turbine wakes when averaging all the wind directions with their sector frequency weight. In simple cases, the occurrence of

such wriggles has been found to drastically increase the number of local minima. Taking this into consideration, in this work,420

we took the conservative approach of considering wind direction bins of 1°. However, we acknowledge other possibilities and

intend to explore them in future work.

5 Conclusions

In this work, different strategies to accelerate WFLO of large wind farms with hundreds of turbines has been explored. We have

focused on GB approaches as GF methods tend to scale poorly for problems with many design variables. We have separated the425

problem into reducing the iteration time, the number of iterations and the number of multi-starts (optimization with different

initial layouts).

The time per iteration has been investigated using a realistic setup with scaled versions of the Horns Rev I wind farm (100 -

500 wind turbines). It was found that the iteration time can be decreased by computing gradients via AD compared to FD and

CS. The speedup scales linearly with the number of wind turbines and was found to be around 75 times for a wind farm with430

500 wind turbines. However, on personal computers or for even larger farms, AD may become unfeasible due to its extensive

memory requirements.

Simulating the different flow cases in parallel is another approach to reduce the iteration time, but the speedup was found to

be roughly constant with the number of wind turbines. Moreover, top-level parallelization was found to be more efficient. In

general, we therefore recommend using the available CPUs to parallelize multi-starts with different initial layouts instead of435

flow cases.

Requiring all pairs of wind turbines to be separated by some minimum distance introduces a considerable number of op-

timization constraints. The time used to handle these constraints by the applied SLSQP optimizer scales very badly with the

number of wind turbines, dominating the iteration time of wind farms with 300 wind turbines or more. The problem may be
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solved by using another optimizer or by constraint aggregation, but in this study, we ran the optimizations without spacing440

constraints and observed that all pairs of wind turbines were separated by at least 1.4D in all optimizations.

The number of iterations needed to achieve convergence was investigated using a faster setup (IEA37 with up to 566 wind

turbines). The mean number of iterations was found to scale linearly with the number of wind turbines times 2.3. This result

is assumed to be highly dependent on the optimizer, its settings, the boundary shape and the scaling of the inputs, outputs and

constraints. The heuristic Smart-Start (SMAST) approach, which was used to obtain better initial layouts, did not manage to445

reduce the number of iterations significantly.

The number of multi-starts, i.e. number of optimizations performed with different initial layouts to obtain a result close

to the global maximum, was also investigated using the faster setup (IEA 37 with up to 279 wind turbines). The number of

multi-starts needed to reach 99.9% of the best AEP from 10,000 optimizations was found to depend on the wind farm size: 500

starts for 16 wind turbines, 2500 starts for 64 wind turbines, and 4000 starts for 279 wind turbines. For the biggest wind farm,450

however, it is suspected that 10,000 optimizations were not enough to find the global maximum.

Comparing SMAST with different levels of randomness (randompct = 0 - 100) revealed that more randomness in the initial

layouts gives higher AEP when optimizing small wind farms (16 wind turbines), while less randomness, i.e. better initial

layouts, is superior for large farms (64 and 279 wind turbines). It was found that the AEP obtained from one optimization

initialized with SMAST (randompct = 0), was higher than the best AEP of 5,000 optimizations initialized with random wind455

turbine positions (randompct = 100). It is expected that the superiority of SMAST will increase even further for larger wind

farms.

The reduction in total optimization time is estimated, assuming that the result on the number of multi-starts for 279 wind

turbines is similar for larger wind farms and that the number of starts and iterations found using the faster IEA37 setup can

be combined with the iteration time from the more realistic Horns Rev I setup. It was estimated that running one optimization460

with SMAST, AD, flow case parallelization and without spacing constraints instead of 5,000 optimizations with random initial

layouts, FD, spacing constraints and top-level parallelization, reduces the total optimization time from around 300 years to

15.6 hours while increasing the AEP.

We suggest future works on large WFLO to explore the effect of constraint aggregation methods on iteration time and

optimized AEP, and to test the proposed approaches with other optimizers and wind farm setups to generalize the results of465

this present work.
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Appendix A: Acronyms

AEP: Annual Energy Production475

AD: Algorithmic Differentiation

SMAST: Smart-Start

GWEC: Global Wind Energy Council

WFLO: Wind Farm Layout Optimization

GF: Gradient-Free480

GA: Genetic Algorithm

PSO: Particle Swarm Optimization

RS: Random-Search

GBWFLO: Gradient-Based Wind Farm Layout Optimization

L-BFGS: Limited-memory Broyden-Fletcher-Goldfarb-Shanno485

SNOPT: Sparse Nonlinear Optimizer

FD: Finite-Differences

CS: Complex-Step

GB: Gradient-Based

SA: Simulated Annealing490

IPM: Interior Point Method

SQP:Sequential Quadratic Optimization

BG: Bastankhah Gaussian

SBG: Simple Bastankhah Gaussian

SLSQP: Sequential Least Squares Programming495

OpenMDAO: Open Multidisciplinary Design, Analysis, and Optimization

OOB: Out of boundaries

21



Appendix B: Nomenclature500

titer: Time per iteration

nmultistarts: Number of multi-starts

niter: The number of iterations until convergence

ttotal: Total computational time for GB

nwt: Total computational time for GB505

x: Layout coordinate of the wind turbine in the x-direction

y: Layout coordinate of the wind turbine in the y-direction

Ck: Wind farm boundary constraint

k: Integer number to represent the index of C and the turbine number

d: Wind direction510

u: Wind speeds

Nθ: number of wind direction

Nu: Number of wind speeds

Pd,u: Represents the power output of the wind farm given by the wind turbine coordinate vectors x and y

ρd,u: Number of wind speeds515

Rwf : Wind farm radius

xUL: upper left coordinate that defines the parallelogram boundaries

xUR: upper right coordinate that defines the parallelogram boundaries

xLL: lower left coordinate that defines the parallelogram boundaries

xLR: lower right coordinate that defines the parallelogram boundaries520

CT : Thrust coefficient

WSBins: Bins for the wind speeds

WDBins: Bins for the wind directions

L: Vector of potential positions for wind turbines

αbest: points in L with the highest AEP525

p: point among αbest

OOB: Points out of the boundaries of the wind farm

P : Wind turbine positions vector

randompct: level of randomness for layouts generated by SMAST

D: Wind turbine diameter530

AEPub: the upper bound of the AEP within a 99% confidence interval

AEP lb: the lower bound of the AEP within a 99% confidence interval

m: m is the number of chunks of the 10,000 simulations with initial layouts randomly generated
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AEPmean: is the mean of all the maximum AEP values of each chunk m

σ: standard deviation of the maximum AEP values of all chunks of size m535

Appendix C: Equations for Gradients Computations

Equation (C2) shows the FD generalized formula containing all the high-order truncation terms for the forward difference.

Equation (C1) reduces to Equation (C2) when considering only the first-order truncation terms, where O(h) refers to the

truncation error.540

f(x+hêj) = f(x)+h
∂f

∂xj
+

h2

2!

∂2f

∂x2
j

+
h3

3!

∂3f

∂x3
j

..., (C1)

where h represents FD step size, êj is the unit vector at the jth direction, as shown by Martins and Ning (2021).

∂f

∂xj
=

f(x+hêj)− f(x)

h
+O(h) (C2)

where O(h) represents the truncation error.

Likewise to FD, CS Equation (C3) reduces to (C4) when disregarding higher order truncation terms.545

f(x+ ihêj) = f(x)+ ih
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∂f

∂xj
=

Im(f(x+ ihêj))

h
+O(h2) (C4)
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Appendix D: Grid Resolution550

For the charts on the left on Figures D1 and D2, the AEP is calculated for a wind turbine with all potential positions taking into

account wakes from the already added wind turbine(s) (in black color). A new wind turbine (red) is added at the best position.

The chart on the right shows the final layout provided by SMAST, where all 64 wind turbines have been placed.

Figure D1. Example of a SMAST grid with 3R resolution for nwt = 64.

Figure D2. Example of a SMAST grid with 6R resolution for nwt = 64.
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Figure D3. SMAST Grid resolution for the small/medium wind farms.

Figure D4. SMAST Grid resolution for the large wind farms.

555
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Figure D5. Layout initialization time comparison using SMAST.

Appendix E: Random Parameter Impact

Figure E1. Impact of randompct on the initial AEP.
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Figure E2. Impact of randompct on the number of iterations.

Appendix F: Final AEP and Optimization Time

Figure F1. Final AEP and optimization time of SMAST as compared to randomly generated layouts.
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