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Abstract. The wind turbine extreme response estimation based on statistical extrapolation necessitates using a minimal number

of simulations to calculate a low exceedance probability. The target exceedance probability associated with a 50-year return

period is 3.8× 10−7, which is challenging to evaluate with a small prediction error. The situation is further complicated by

the fact that the distribution of wind turbine response might be multi-modal, and the extremes belong to a different statistical

population than the main body of the distribution. Traditional theoretical probability distributions, mostly uni-modal, may5

not be suitable for this task. The problem could be alleviated by applying a fit specifically on the tail of the distribution.

Yet, a single uni-modal distribution may not be sufficient for modeling diverse wind turbine responses, and an inappropriate

distribution model could lead to significant prediction errors, including bias and variance errors. The Gaussian mixture model, a

probabilistic and flexible mixture distribution model used extensively for clustering and density estimation tasks, is infrequently

applied in the wind energy sector. This paper proposes using the Gaussian mixture model to extrapolate extreme wind turbine10

responses. The performance of two approaches is evaluated: 1) parametric fitting first and aggregation afterward, and 2) data

aggregation first followed by fitting. Different distribution models are benchmarked against the Gaussian mixture model. The

results show that the Gaussian mixture model is capable of estimating a low exceedance probability with minor bias error, even

with limited simulation data, and demonstrates flexibility in modeling the distributions of varying response variables.

1 Introduction15

An accurate low exceedance probability estimation is crucial in the statistical extrapolation of wind turbine responses, es-

pecially when limited data is available. The crude Monte Carlo Simulation (MCS) requires a large sample size, making it

computationally expensive. The extreme response with a 50-year return period is usually extrapolated from 10-min simula-

tions, and estimating the 50-year extreme response corresponds to an exceedance probability p= 3.81× 10−7 from 10-min

simulations. The coefficient of variation (c.o.v.) of the MCS estimator is
√

(1− p)/(pN), where N is the sample size(Ditlevsen20

and Bjerager, 1986). Using crude MCS for analysis with such low probabilities requires at least 10
3.81×10−7 = 26,280,000 sim-

ulations for sufficient accuracy, i.e., a c.o.v. ≈
√
1/10≈ 0.316. The ultimate design load assessment procedure prescribed

by the IEC aims at ensuring the structural integrity of the turbine when subjected to rare extreme loading conditions. The

standards assume three types of scenarios for simulating such rare events: 1) extreme environmental conditions that result in

extreme loads, 2) occurrence of faults potentially combined with extreme environmental conditions, and 3) rare occurrences25
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under normal operation. The last option is represented by Design Load Case (DLC) 1.1. It encompasses loads resulting from

site-specific atmospheric turbulence occurring during the turbine’s normal lifetime, i.e., the normal turbulence model. It estab-

lishes the characteristic load value corresponding to a 50-year return period, which could be obtained by statistical analysis of

extreme loading using load extrapolation methods. The design load is then obtained by multiplying the characteristic loads by

an appropriate partial safety factor (IEC, 2019). The load extrapolation methods are categorized into two approaches, i.e., 1)30

parametric fitting first and aggregation afterward (FFAA); 2) data aggregation first and fitting afterward (AFFA). Unlike crude

MCS, both approaches use limited data and rely on statistical extrapolation for low exceedance probability estimation, which

will introduce prediction error.

In the FFAA approach, the long-term distribution is obtained by aggregating the short-term distributions weighted by the

probabilities of occurrence at different wind speed bins. The long term distribution Flong term(s|T ) of the load response s with35

simulation time T is a function of short term distribution Fshort term(s|Vk,T ) at different wind speed (IEC, 2019):

Flong term(s|T ) =
M∑
k=1

Fshort term(s|Vk,T )pk (1)

where Vk is the mean wind speed at each wind bin, and

pk = f(Vk)∆Vk,Vin ≤ V1 < ... < VM ≤ Vout (2)

is the probability of occurrence of each wind bin, with f(Vk) being the probability density of the wind speed. Vin is the cut-in40

wind speed (usually 3 m/s), Vout is the cut-out wind speed (usually 25 m/s), and ∆Vk is the wind speed bin width (usually

2m/s). The wind speed is divided into bins within the wind turbine’s operational range. At each wind speed bin, 10-min simu-

lations are performed, and the short-term distribution of extremes Fshort term(s|Vk,T ) is fitted. The limitation of this approach is

that even though Fshort term(s|Vk,T ) might have different probabilistic behaviors at different wind speed bins, the same type of

probability distribution is predefined and adopted for ease of application. The tail distribution might not be modeled well at all45

wind speed bins as there may be uncertainty in the individual fits of the underlying short-term distributions (Freudenreich and

Argyriadis, 2008). The key issue is determining the proper distribution model without knowing the underlying conditional dis-

tributions at each wind bin. Different distribution models have different tail behaviors, which could result in different long-term

response predictions (Ding and Chen, 2013). The estimated extreme loads have a wide range when using the three-parameter

Weibull, Gumbel, generalized extreme value (GEV), and lognormal distributions as conditional distributions (Freudenreich and50

Argyriadis, 2008; Dimitrov, 2016). An improper distribution could result in a far-off extreme load prediction (Freudenreich

and Argyriadis, 2008; Dimitrov, 2016).

In the AFFA approach, the environmental input conditions for the 10-minute load simulations are sampled directly from

their long-term distributions. Hence the data aggregation happens automatically through the distribution choice. The extreme

values from all 10-min simulations are fitted to a single probability distribution for extreme load estimation or exceedance55

probability calculation. This method is also referred to as the post-processing method (Zhang et al., 2020) and is equivalent

to a density estimation approach. It suffers from the same challenge as the FFAA approach, as selecting a proper distribution

becomes difficult, especially when the underlying distribution is unknown. An improper distribution selection could introduce
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large estimation errors and far-off extreme response estimation. As the number of simulations is limited, even though different

probability distributions are available, selecting the distribution is challenging. Fit accuracy at the center of the distribution60

does not guarantee a good extrapolation at the tail, which is more important for extreme load estimation. The wind turbine

extreme response distributions could have multiple modals
::::::
modes (Yang et al., 2022), whereas distributions like Weibull,

Gumbel, GEV, lognormal, etc., are uni-modal distributions. Yang et al. (2022) compared the AFFA and FFAA approaches with

different distributions but has not resolved the statistical extrapolation issue. A possible solution is to fit only the tail data,

e.g., Natarajan and Holley (2008) fitted the tail of wind turbine loads using a Gumbel distribution with a quadratic distortion.65

Mixture probability distributions (e.g. Weibull-Weibull), as discussed in Jung and Schindler (2017), can be beneficial for

accurately modeling an entire multimodal statistical population. In the tail of the response
::::::::
However,

:::
the

:::::::
varying

::::::
number

:::
of

:::::
modes

::
in

:::::
wind

::::::
turbine

::::::::
response

:::::::::::
distributions,

:::::::::
sometimes

::::::::
exceeding

::::
two,

:::::
poses

:::::::::
challenges

:::
for

::::
both

::::::::
bi-modal

::::::::::
distributions

::::
and

::::::::::::::
fixed-component

:::::::::::
distributions.

:::::
These

:::::::::
challenges

::::
stem

:::::
from

::::::::::
mismatches

::
in

:::::
mode

:::::::
numbers

::::::
during

::::::::::
distribution

:::::
fitting

:::::
using

:::
the

:::::::
complete

:::::::
dataset.

::::::
When

::::::
relying

::::::
solely

::
on

::::
tail

::::
data

:::
for

::::::::::
distribution

::::::
fitting,

:::
the

::::::::
selection

::
of

::::::::::
appropriate

:::::::
mixture

::::::::::
probability70

:::::::::
distribution

::::::::::
components

::::
and

::::
their

::::::::
quantities

:::::::
remains

:
a
::::::::
challenge

:::::
(e.g.,

::::::::::::::
Weibull-Weibull, the model will likely be dominated by

only one of these distributions ; hence the tail behavior predicted by a mixture distribution model is expected to be similar to

that of a unimodal distribution fit focused on tail data only.
:::::::::::
GEV-Weibull,

::::::::::::::::::::::
GEV-Lognormal-Weibull).

:

The Gaussian mixture model (GMM) (McLachlan and Peel, 2000) is proposed in this paper as the distribution function

for AFFA approach. It is a flexible probabilistic model and is widely used for machine learning tasks: clustering (He et al.,75

2011; Zhang et al., 2021; Weber et al., 2022), classification (Huang et al., 2005; Kim and Kang, 2007; Permuter et al., 2006),

and image segmentation (Nguyen and Wu, 2013; Yin et al., 2018; Gupta and Sortrakul, 1998). GMM has also been used in

the field of wind energy, e.g., wind speed probability density estimation(Wahbah et al., 2018), wind power ramps(Cui et al.,

2018), wind turbine power (Zhang et al., 2019), wind turbine power curves (Srbinovski et al., 2021), and environmental contour

estimation (Zhang and Natarajan, 2022). GMM is a mixture model whose probability density function (PDF) is multimodal,80

which is suitable for modeling the multi-modal distribution of wind turbine responses. However, its potential in wind turbine

extreme response estimation is yet to be explored. The objective of the present paper is to use GMM for extreme response

estimation and especially for response variables whose distribution is multi-modal. Comparison will be made against using

other distributions within the scope of the FFAA and AFFA approaches. The prediction error, which includes bias error (the

difference between mean prediction and true value) and variance error (the variability of the prediction), will be systematically85

investigated on different wind turbine responses.

2 Gaussian mixture model

GMM is a weighted sum of Gaussian distribution components, where each component is defined by its mean (µ) and standard

deviation (σ). The PDF of a GMM is

y(x) =

m∑
j=1

πjN (x|µj ,σj) (3)90
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where N (x|µj ,σj) is the PDF of a Normal distribution, m is the number of components, and πj is the component coefficient

(weight) and follows

m∑
j=1

πj = 1, 0≤ πj ≤ 1 (4)

For a given number of components, the model parameters {πj ,µj ,
∑

j , j = 1,2, ...,m} could be estimated from a data sample

::::::
dataset whose size is denoted by N , {xn,n= 1,2, ...,N} (see Appendix A for more details). The number of components is95

unknown a priori and should also be estimated from data. It balances the model to prevent underfitting or overfitting. The

Akaike information criterion (AIC) (Akaike, 1998) could be used for estimating the optimal number of components m. The

method stems from information theory and is an extension of a maximum likelihood estimation with the expression

AIC = 2k− 2ℓ(θ|x), (5)

where k = 3m− 1 is the number of parameters. The m and θ= {πj ,µj ,σj , j = 1,2, ...,m} that give the minimum AIC value100

correspond to the optimal number of components and the associated model parameters respectively.

As a mixture model, GMM with two or more components is not Gaussian distributed anymore and has different tail behavior

compared to the Gaussian distribution. As its number of components and the associated component coefficients adapt to data,

GMM possesses more flexibility than other parametric distribution models. However, it’s important to note that when the

sample size is small, too many components in GMM may result in an overrepresentation of the data and compromise its105

extrapolation capability.

3 Problem formulation and methods

The wind turbine time domain analysis is time-consuming and requires a lot of computational resources, and the feasible num-

ber of simulations is often limited. The low exceedance probability is usually extrapolated from a small sample
::::::
dataset. Statisti-

cal extrapolation thus reduces the number of simulations but introduces prediction errors simultaneously. The prediction error110

could be described by the mean squared error (MSE) of the estimator P̂F , i.e., MSE(P̂F ) = V (P̂F )+
[
B(P̂F )

]2
(Wackerly

et al., 2008), where V (P̂F ) is the variance error, which describes the variability of prediction using different random samples,

and B(P̂F ) = E(P̂F )−PF is the bias error, which describes the difference between the mean prediction with true value. The

variance and bias error, performance indicators of the wind turbine response extrapolation methods, should be examined.

Choosing an inappropriate distribution will undoubtedly increase the bias error in the FFAA and AFFA approaches. Further-115

more, even with the same distribution, different estimations of model parameters can yield varying results. Parameter estimation

includes but is not limited to 1) the method of least squares (LS), which estimates the model parameters by minimizing the sum

of the squares of the difference between the observed values and the predicted values from a model; 2) maximum likelihood

estimation (MLE); and 3) method of moments (e.g., Weibull model parameter estimation (Moriarty et al., 2004)). In the FFAA

and AFFA approaches, a comparison is made between the GEV, three parameter-Weibull, and lognormal distributions, along120

with GMM using different parameter estimation methods. This comparison involves a total of 11 methods:
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1. FFAA with GEV, Weibull, and lognormal as short-term distributions(referred to as FFAA (GEV), FFAA (Weibull), FFAA

(Lognormal)) conditional on wind speeds, where the MLE is used for model parameter estimation.

2. AFFA with the three distributions using MLE and LS for model parameter estimation (referred to as GEV (MLE),

Weibull (MLE), Lognormal (MLE), GEV (LS), Weibull (LS), and Lognormal (LS))125

3. AFFA with GMM using AIC and LS for finding the number of components (referred to as GMM (AIC) and GMM (LS))

In the LS estimated AFFA approaches, GEV (LS), Weibull (LS), and Lognormal (LS), only the tail data (above 80% quan-

tile) is used to fit the theoretical distributions, where the probability of exceedance of the tail data is calculated as Pt. The

probability of exceedance of the response variable is then determined as Pf = Nt

N ×Pt= 0.2×Pt, where Nt is the sam-

ple size of the tail data, and N is the total sample size. The AFFA approach using LS minimizes the squared difference130

between the empirical and theoretical probability of exceedances in the logarithmic scale, with weights assigned to each

data point. Specifically, for the sorted data sample
:::::
dataset

:
in ascending order S = {xi, i= 1,2, ...,N}, the corresponding em-

pirical cdf {Fei = (i− 0.5)/N,i= 1,2, ...,N}, and the weight {wi = 1/
√
Fei × (1−Fei)}. The residual for the tail data∑N

i=N−Nt+1wi × (log(1−Fei)− log(1−F (xi|θ)))2 is minimized to get the model parameter θ. Note that the empirical

cdf is calculated based on the entire sample
:::::
dataset, but the squared error is minimized only on the tail data.135

Determining the appropriate number of components of a GMM requires further research. In Eq. 5, AIC is used (referred to as

GMM (AIC)), where the first term is a penalty term, which discourages overfitting a model, thus balancing model complexity.

However, in cases where the sample size is large, the penalty term becomes relatively small, and the AIC approaches maximum

likelihood estimation. It will lead to better accuracy at the center of the distribution relative to the tail. To address this, LS on

tail data (above 80% quantile) (legend as GMM(LS)) is proposed for selecting the number of components m. Following the140

procedure in section 2, the squares of the residuals from the tail data using GMM associated with the number of components

k are calculated (same as AFFA with LS). The optimal value of m gives the least squares of residuals. Note that the LS here is

only for determining the number of components, which is independent of the model parameter θ= {πj ,µj ,σj , j = 1,2, ...,m}
estimation using EM algorithm (see Appendix A).

The analysis focuses on four wind turbine responses: (a) the maximum out-of-plane blade tip deflection, (b) the maximum145

blade root out-of-plane bending moment, (c) the maximum blade root in-plane bending moment, and (d) the maximum tower

base side-to-side bending moment. The simulated wind turbine responses are obtained from Barone et al. (2011). To extract

peak responses from a sampled time series, the global maxima, block maxima (Fogle et al., 2008; Dai et al., 2022) and peak

over threshold methods, average conditional exceedance rates (ACER)(Naess et al., 2013) could be used(Toft et al., 2011;

Dimitrov, 2016; Ding et al., 2013). Different peak extraction techniques will render different results but will not be the focus of150

this study, where the peaks are obtained using only the global maxima method. The randomness of the responses comes from

the wind parameters, where the mean 10-minute wind speed is sampled from the Rayleigh distribution, and two random seeds

are used for generating the turbulence model. The wind turbine model is a 5 MW NREL reference wind turbine, a three-bladed,

upwind rotor with a diameter of 126 meters. The FAST aeroelastic code is used for the five million aero-elastic simulations

(Barone et al., 2011), which is based on DLC 1.1 in IEC 61400-1 (IEC, 2019).155
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The 11 methods are firstly compared on the entire sample
::::::
dataset with a sample size N ∼ 105. Those methods that exhibit

relatively small differences compared to the results obtained through crude MCS are further assessed for prediction error,

which involves performing statistical extrapolation using 100 sets of smaller sample size samples randomly drawn from the

entire sample
:::::
dataset. Additionally, for the AFFA approach using the three distributions, the impact of varying amounts of tail

data on the results will also be discussed.160

4 Results

The PDF of wind turbine response (c) from MCS is shown in Fig. 1, which is multimodal. To model the PDF of response

(c) using the entire sample
::::::
dataset, the Weibull distribution with maximum likelihood estimation is employed. However, as the

Weibull distribution is unimodal and cannot capture the multimodal nature of the underlying PDF, a noticeable discrepancy

arises between the MCS and the Weibull distribution. Consequently, the Weibull distribution cannot be directly used to model165

the wind turbine response (c). Similar observations can be made when utilizing other unimodal distributions such as GEV,

lognormal, and Gumbel distributions to model other responses. Fitting wind turbine extreme response with uni-modal distri-

butions directly will have a large estimation error at both the center and the tail distribution. This limitation explains why, in

the AFFA approach, only the tail portion of the distribution is fitted and utilized for extreme response estimation.
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Figure 1. PDF of maximum blade root-in-plane bending moment

4.1 Wind turbine response distribution modeling170

The 11 methods are firstly compared on the entire sample
::::::
dataset with a sample size N ∼ 105, and the probabilities of ex-

ceedance in logarithmic scale are plotted in Fig. 2. Since the predicted exceedance probability already reaches the limit that

can be calculated using a Monte Carlo Simulation (MCS), this comparison focuses solely on statistical modeling rather than

extrapolation.
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In the FFAA approach, a large difference is observed between the prediction and MCS for cases (a) and (b) regardless of the175

short-term conditional distribution used. However, when using the GEV distribution for cases (c) and (d) and the lognormal

distribution for case(d), a smaller difference is observed. The results indicate that FFAA is a viable option for extreme response

estimation, but distribution selection significantly impacts the results.

In the AFFA approach, using MLE for model parameter estimation may not yield favorable outcomes. A significant differ-

ence between the prediction and MCS results is observed for all cases, regardless of the distribution used, except for case (b)180

when using the three-parameter Weibull distribution. Among the three distributions, Weibull consistently performs better than

the others regarding tail performance. By focusing only on fitting the tail data and disregarding the accuracy of the distribution

at the center, using the LS approach greatly improves the results. For all four cases, the difference between the prediction and

MCS is small, except when using the lognormal distribution for case (d), as shown in Fig. 2 (d). While the choice of distribu-

tion has a relatively small effect on the results when using LS for the AFFA approach, it is important to note that an improper185

distribution selection can still lead to significant deviations in predictions.

Regarding GMM, using LS to determine the number of components outperforms AIC. When the sample size is large, the

penalty term in AIC becomes negligible, often resulting in selecting a model with excessive components. In the four cases

considered, LS suggests using m= 6 components, while AIC suggests using m= 9, explaining the difference in performance.

It is important to note that the results shown in Fig. 2 are based on the entire sample
:::::
dataset. In practical scenarios, only a190

relatively small number of simulations can be conducted, and the low probability of exceedance is statistically extrapolated.

Since the results of the FFAA and AFFA approaches using MLE for model parameter estimation heavily depend on the choice

of distribution, the extrapolation methods employed will be compared in the subsequent section.

4.2 Wind turbine response distribution extrapolation

To statistically compare the extrapolation performance of different methods, a random sample of 104 data points is drawn from195

the entire sample
::::::
dataset 100 times. These samples are then utilized for extreme load extrapolation, and the statistical results

obtained from each method using these 100 samples are compared. With a sample size of 104, the exceedance probability

captured by MCS will not be smaller than 10−4; thus statistical extrapolation performance of each method is compared. Given

the relatively large distribution modeling errors observed for the FFAA and AFFA with MLE approaches, even when using the

entire data sample
:::::
dataset, their extrapolation performances are not compared here.200

Fig. 3 shows results of AFFA approach with GEV, three-parameter Weibll, and lognormal distributions with LS for model

parameter estimation, along with GMM using LS and AIC for selecting the number of components. The mean probability of

exceedance from 100 samples of each method is plotted, and its difference with MCS represents the prediction bias error. The

GEV, Weibull, and lognormal have relatively small bias errors for cases (a), (b), and (c), while relatively large bias errors for

case (d). Lognormal has the largest bias error for case (d), consistent with the observations made using the entire sample
:::::
dataset.205

On the other hand, GMM has relatively small bias errors for all the cases, except case (d), when the exceedance probability is

smaller than 5× 10−6, where it exhibits a relatively larger bias error.
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Figure 2. Probability exceedance estimation with MCS data
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Figure 3. Probability of exceedance estimation with sample data
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To make further comparisons, especially to examine the variance error of the methods compared, the prediction error at an

exceedance probability PF = 1.90× 10−6, the exceedance probability associated with a 10-year return period, is compared.

Assuming P̂FMCS
is the true PF , the associated extreme response values are obtained as (a) 9.75 m, (b) 1.74× 104 kN·m, (c)210

9.77× 103 kN·m, and (d) 4.03× 104 kN·m for the four wind turbine responses. Several metrics are calculated and presented

in Table 1 to compare the performance of the methods at these response locations. These metrics include:

– The mean of predicted exceedance probability, denoted as E(P̂F )

– The variance of the predicted exceedance probability, denoted as V

– The square of the bias error, denoted as B2215

– The mean squared error, denoted as MSE

– the root mean square error (normalized by PF ), denoted as rMSE/PF

These metrics provide a comprehensive evaluation of the methods in terms of their overall prediction error at the specific

exceedance probability of interest.

10



GEV Lognormal Weibull GMM (AIC) GMM (LS)

(a)

E(P̂F ) 2.73E-06 1.47E-06 2.82E-06 1.78E-06 4.20E-06

V 2.97E-11 3.04E-12 2.27E-11 1.09E-11 6.79E-11

B2 6.82E-13 1.87E-13 8.40E-13 1.43E-14 5.28E-12

MSE 3.04E-11 3.23E-12 2.35E-11 1.10E-11 7.32E-11

rMSE/PF 2.90 0.94 2.55 1.74 4.50

(b)

E(P̂F ) 1.81E-06 9.46E-07 1.92E-06 9.70E-07 3.15E-06

V 1.60E-11 1.26E-12 1.20E-11 1.82E-12 5.33E-11

B2 9.31E-15 9.16E-13 2.56E-16 8.70E-13 1.55E-12

MSE 1.60E-11 2.17E-12 1.20E-11 2.69E-12 5.49E-11

rMSE/PF 2.10 0.77 1.82 0.86 3.89

(c)

E(P̂F ) 4.02E-06 4.83E-06 4.29E-06 8.72E-07 1.48E-06

V 8.82E-11 1.88E-11 7.01E-11 7.49E-12 1.26E-11

B2 4.47E-12 8.57E-12 5.70E-12 1.06E-12 1.80E-13

MSE 9.27E-11 2.74E-11 7.58E-11 8.55E-12 1.28E-11

rMSE/PF 5.06 2.75 4.58 1.54 1.88

(d)

E(P̂F ) 6.24E-06 4.59E-05 7.73E-06 3.04E-06 4.01E-06

V 3.00E-10 2.72E-10 2.73E-10 1.51E-10 1.62E-10

B2 1.88E-11 1.94E-09 3.40E-11 1.30E-12 4.46E-12

MSE 3.19E-10 2.21E-09 3.07E-10 1.52E-10 1.67E-10

rMSE/PF 9.38 24.71 9.21 6.48 6.78
Table 1. Extreme load estimation with sample data

Except for case (a), it can be observed from both Fig. 3 and Table 1 that the lognormal distribution exhibits a larger deviation220

in terms of the mean P̂F compared to the GEV and Weibull distributions. This discrepancy is indicated by the largest bias (B2)

value. However, when considering the variance error, the lognormal distribution shows the smallest mean square error (MSE)

for the first three cases. This highlights the importance of considering variance errors when making comparisons. Conversely,

the lognormal distribution yields the largest MSE for case (d) among all the methods compared. This is due to the distinct tail

behavior of case (d), which differs significantly from the lognormal distribution, as it is not sufficiently flexible to fit different225

response variables.

In contrast, the GMM demonstrates considerable flexibility. GMM (AIC) has the smallest MSE for cases (c) and (d),

and the second smallest for cases (a) and (b). The distinguishing factor between GMM and other distributions lies in its

performance consistency. Given the uncertainty about the underlying data distribution, opting for a flexible distribution with

reliable performance, like GMM, becomes advantageous as it mitigates the risk of significant prediction errors caused by an230

inappropriate model selection. On the other hand, employing the LS method to determine the number of components leads
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to more prediction errors than AIC in all four cases. This suggests that AIC performs well when the sample size is relatively

small. Table 2 provides the average number of components for GMM obtained from the 100 sets when using AIC versus LS.

(a) (b) (c) (d)

AIC 7.04 7.35 8.78 6.34

LS 7.47 7.29 7.49 7.36
Table 2. Average number of components for GMM

In almost all cases, the major contribution to the MSE is V , as compared to B2, which shows the importance of considering

variance error when performing a statistical comparison. As an exception, in case (d), the B2 is larger than V , which indicates235

that lognormal is unsuitable for this particular case as the bias error is excessively large.

4.3 Sample size effect on extreme load extrapolation

The sample size plays a significant role in determining the prediction error for all the methods examined. Van Eijkvan Eijk

et al. (2017) investigated the effect of different sample sizes on extreme load predictions and pointed out that the extrapolated

50-year responses could be misleading and a 300 min of time series is not sufficient for 50-year load extrapolation. In the240

cases discussed above, a sample size of 104 was used to achieve a relatively small prediction error close to the exceedance

probability associated with a 10-year return period. Limited by the sample size of the data, the exceedance probability smaller

than 1.90× 10−6 is not accurate for MCS and thus is not investigated in this study. Given the time-consuming nature of wind

turbine analysis, a smaller sample size is desirable. The results using 100 random sample sets
:::::::
samples with a size of 103 are

plotted in Fig.4. In this analysis, GMM exhibits a relatively smaller bias for PF ≥ 1.90×10−5, associated with a 1-year return245

period. On the other hand, for the other three distributions, the bias error becomes quite substantial for exceedance probability

smaller than 10−3. This demonstrates the limitation of all the compared methods when using a small sample size for extreme

response estimation.
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Figure 4. Results for case (c) with sample size 103
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5 Discussions

Statistical extreme response extrapolation is important for the probabilistic design of wind turbines. The FFAA and AFFA250

approaches in IEC 61400-1 (IEC, 2019) are assessed on their modeling and extrapolation performance, where the latter is a

more challenging task. The FFAA approach demonstrates feasibility when a suitable short-term distribution is selected, e.g.,

using GEV as a short-term distribution for case (c) and (d) (as is shown in Fig. 2). However, it is important to note that the

response at each wind speed bin may not follow the same distribution. Consequently, using a single distribution for all bins

might introduce prediction errors. Furthermore, different response variables may exhibit different distribution characteristics,255

and applying a single distribution to various response variables may lead to additional prediction errors. As evident from Fig.

2, the GEV might perform well for cases (c) and (d) but not the other two response variables.

Flexibility in distribution modeling is important for both the FFAA and AFFA approaches. The results show that AFFA ap-

proach with LS is less subjected to the effect of choosing distribution models. However, an improper distribution will introduce

prediction error. This could be seen from the examples above that using lognormal distribution for case (d) will have a large bias260

error. Given that wind turbine response variables can exhibit multi-modal distributions, it is recommended to utilize a flexible

distribution model. The GMM fulfills this requirement, making it suitable for extreme response extrapolation. GMM offers the

advantage of capturing the multi-modal nature of wind turbine responses and can provide more accurate predictions than other

distribution models. Therefore, GMM is recommended for modeling and extrapolating extreme wind turbine responses. There

are several advantages to using the GMM for extreme response estimation:265

1. GMM can effectively model both the center and the tail distribution. Fig. 1 illustrates that GMM is capable of capturing

the bimodal nature of the probability distribution well. In contrast, other uni-modal distributions struggle to model the

PDF well, making them unsuitable for direct use in extreme response estimation.

2. GMM is a flexible modeling approach that can be applied to different types of wind turbine responses. It consistently

performs well across all the compared wind turbine responses. In contrast, other distribution models may perform well270

for certain response variables but exhibit significant prediction errors for others. For instance, as shown in Fig. 3 and

Table 1, the lognormal distribution performs well for the first three cases but demonstrates the largest prediction error

for the last case.

3. GMM eliminates the prediction error associated with selecting different percentages of data for tail estimation. Only the

tail data is utilized when fitting the three distributions using the LS method. However, the amount of tail data selected275

for estimation can lead to varying results. The
:::::
GMM

::::
(LS)

:::::::::
overcomes

::::
this

::::::::
limitation

::
as

:::
LS

::
is

::::
only

::::
used

::
to

:::::::::
determine

:::
the

::::::
number

::
of

::::::::::
components

::::
and

::
is

:::
not

::::::
affected

:::
by

:::
the

:::::
choice

:::
of

::::::::
quantiles.

:::
For

::::::::
example,

::
in

:::
Fig.

::
5,

:::
the

:
extreme load estimation

for the maximum out-of-plane blade tip deflection is compared using Weibull(LS) with data above the 50th
:::::
(legend

:::
as

::::
50%)

:
to 90th quantiles. Fig. 5 illustrates significant differences when

::::::
(legend

::
as

:::::
90%)

::::::::
quantiles.

:::::::::
Significant

::::::::::
differences

::
are

::::::::
observed

:::::
when

:::::
using different amounts of tail data are used. GMM (LS ) overcomes this limitation as LS is only used280

to determine the number of components and is not affected by the choice of quantiles
::
for

:::
LS

::::
with

:::::::
Weibull

::::::::::
distribution.
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In summary, the advantages of using GMM for extreme response estimation include its ability to accurately model both the

center and the tail distribution, its flexibility in handling different response variables, and its avoidance of prediction errors

associated with selecting different amounts of tail data. These benefits make GMM a recommended choice for wind turbine

extreme response extrapolation.285

Results with different quantile

Statistical extrapolation is a challenging problem, particularly when dealing with smaller sample sizes for lower exceedance

probability extrapolation. With a sample size 104, GMM has a noticeable bias error when the exceedance probability is smaller

than 5× 10−5 for case (d), as depicted in Fig. 3. It is important to note that when using a smaller sample size, the prediction

error is expected to increase, as illustrated in Fig. 4. Thus, caution must be exercised when performing statistical extrapolation,290

and further research should focus on error analysis in statistical extrapolation. For instance, it would be valuable to investigate

the relationship between the sample size, the desired prediction error, and the extrapolated exceedance probability.

It should be mentioned that the favorable performance of GMM in the aforementioned examples is attributed to the un-

derlying distribution being multi-modal. For uni-modal variables, a flexible uni-variate distribution could be used for extreme

response estimation, e.g., the distribution based on maximum entropy with fractional moments (Zhang et al., 2020). Therefore,295

the choice of an appropriate distribution should be guided by the characteristics of the variable being analyzed.

6 Conclusions

Extreme response estimation can be likened to low exceedance probability estimation with limited simulations. Both para-

metric fitting first and aggregation afterward and data aggregation first and fitting afterward approaches could be used for the

task. Both approaches with maximum likelihood estimation are quite sensitive to the distribution chosen, which could lead300

to biased results with an improper probability distribution. The data aggregation first and fitting afterward coupled with least
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square estimation for fitting the tail distribution is less sensitive to the type of probability distribution. However, an improper

probability distribution could still introduce a large prediction error.

There are flexible distributions available, but most are limited to uni-modal distribution. The probability distribution of the

wind turbine responses could be multimodal. Using uni-modal distribution, e.g., GEV, Weibull, and lognormal, to directly fit305

the distribution for extreme response estimation is infeasible. The Gaussian mixture model is a multimodal distribution by

nature and is proposed here for extreme load estimation when the underlying distribution is multimodal. It could model both

the center and tail distribution, is flexible enough for different response variables, and does not require subjectively choosing

the threshold compared with the least square estimation of tail distribution. It is thus recommended as an alternative distribution

of wind turbine extreme response estimation.310

Statistical extrapolation is challenging, and extreme caution must be exercised when making assumptions far beyond the

available data sample
:::::
dataset. Given that the extreme response associated with a 50-year return period necessitates low ex-

ceedance probability estimation, an adequate number of simulations are critical for accurate prediction.

Nomenclature

AFFA Data aggregation first and fitting afterward315

AIC Akaike information criterion

FFAA Parametric fitting first and aggregation afterward

GEV Generalized extreme value

GMM Gaussian mixture model

LS Least squares320

MCS Monte Carlo simulation

MLE Maximum likelihood estimation

PDF Probability density function
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Appendix A: GMM model parameter estimation335

The initial model parameters are calculated from the clusters evaluated by the k-means clustering algorithm (Arthur and

Vassilvitskii, 2007), and optimized by the Expectation-Maximization (EM) algorithm (McLachlan and Peel, 2000) as follows:

1. Divide the N data points to k clusters using k-means clustering algorithm. Compute µj , σj and πj using the data points

within each cluster as the initial model parameters for the Expectation-Maximization (EM) algorithm

2. EM algorithm340

The model parameters {πj ,µj ,σj , j = 1,2, ...,m} are found by an iterative EM algorithm (Dempster et al., 1977) to have

a maximum likelihood estimation.

(a) E step

Evaluate the responsibilities using the current model parameters. The responsibility γj(xn) is the probability that

component j takes for explaining the observation xn, which is calculated as:345

γj(xn) =
πjN (xn|µj ,σj)∑m
i=1πiN (xn|µi,σi)

(A1)

(b) M step

Update the model parameters using the responsibilities from E step. The mean for component j is calculated as:

µj =

∑N
n=1 γj(xn)xn∑N
n=1 γj(xn)

(A2)

The standard deviation for component j is calculated as:350

σj =

√√√√∑N
n=1 γj(xn)(xn −µj)2∑N

n=1 γj(xn)
(A3)
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and the j component coefficient is calculated as:

πj =
1

N

N∑
n=1

γj(xn) (A4)

3. Repeat step 2 until the model parameters converge or the maximum number of iterations is met.
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