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Abstract. With their constant increase in size, wind turbines are reaching unprecedented heights. Therefore, at these heights,

they are influenced by wind conditions that have not yet been studied in detail. With increasing height, a transition to laminar

conditions becomes more and more likely. In this paper, the presence of the turbulent/non-turbulent interface (TNTI) in the

atmosphere is investigated. Three different on- and offshore locations are investigated. Our fractal scaling analysis leads to

typical values known from ideal laboratory and numerical studies. The height distribution of the probability of the TNTI5

is determined and shows a frequent occurrence at the height of the rotor of future multi megawatt turbines. The indicated

universality of the fractality of the TNTI allows the use of simplified models in laboratory and numerical investigations.

1 Introduction

Wind turbines are getting bigger and bigger, reaching heights of over 250m, and are installed farther offshore. The turbulent

wind at these locations and heights is rarely measured. Therefore, the environmental conditions for future offshore wind10

turbines are still poorly understood. However, these conditions have a significant impact on the performance of wind turbines.

It is known that wind fluctuations on short time scales cause fluctuations in the power output of wind turbines (Milan et al.,

2013). In addition, a varying turbulence intensity (TI) of the inflow over the rotor also has a significant influence on turbine

operation (Lobo et al., 2023).

With the new developments in wind energy, the transitions from turbulent to laminar conditions are becoming increasingly15

important. In particular, the complexity of these turbulent/non-turbulent interfaces (TNTI) can have an impact on working

conditions, which is the focus of our paper.

While the TNTI has been extensively studied in laboratory flows, it has hardly been investigated in the atmosphere. Available

data covers heights up to 100m offshore using met masts such as the FINO platforms and up to 200m onshore using met masts

such as the Cabauw met mast. More Extreme heights up to 250m offshore are measured using Lidar systems, which however20

provide lower temporal resolution. Recently, flights have been carried out to investigate the turbulence around wind parks,

covering different heights (Lampert et al., 2020). However, flights only allow a short observation period and can only provide

limited picture regarding turbulent properties.

The question arises whether we can find similarities between the characteristics of TNTI from ideal laboratory and numerical

studies and those from atmospheric situations. The objective of this paper is to make a first characterization of atmospheric data25

in order to identify the TNTI in the atmosphere and compare it on the basis of known features, namely fractal characteristics.

1



The aim is therefore not to discuss minor details, but to provide a basic idea of the presence of the TNTI in the atmosphere and

the possibilities of characterizing it.

The applied method is described in detail for measurements at the FINO1 platform and additional sites are investigated to

provide a more complete picture. The measurement sites considered are described in Sect. 2. The basic features and methods30

of characterizing the TNTI are presented in Sect. 3. The results of the analysis are presented in Sect. 4 and discussed in Sect. 5.

Sect. 6 concludes this paper.

2 Measurement sites

Three different sites with height resolved data are used for the analysis. The FINO1 met mast, the Cabauw met mast (Lidar

measurments available), and Lidar measurements at the offshore platform Borssele Alpha are taken into account.35

The FINO1 offshore met mast has a height of 103m (FINO1, 2023). It is selected for a detailed discussion, as it is a well

known offshore platform, which provides temporal high resolved data on a long observation period. Cup anemometer at 33m,

40m, 50m, 60m, 70m, 80m, 90m, and 100m record the wind speed simultaneously with a sampling frequency of 1Hz. Wind

vanes at 33m and 90m record the wind direction. As for certain inflow directions the mast influences the measurements, data

for wind directions between 275° and 350° of either directional sensor are neglected (filled with NaNs) to ensure undisturbed40

inflow. Further, as FINO1 is located next to several wind parks, only data up to the date of the assembly of the first wind turbine

are considered. The available time period is hence from 01.01.2007 to 15.07.2009. Further, low wind speeds (u < 0.5m s−1),

which tend to unreasonable high TI and which have minor importance for the operation of wind turbines, are neglected (data

filled with NaNs).

The Cabauw wind data were made available by the Royal Netherlands Meteological Institute (KNMI) (Hansen et al., 2021).45

The 213m high met mast is installed onshore. Propeller anemometer at 20m, 40m, 80m, 140m, and 200m record the wind

speed simultaneously with a sampling frequency of 2Hz. For the time period from 1985 to 1986 roughly 480 hours are available.

At the same site Lidar measurements were conducted and made available by KNMI (KNMI, 2023a, b). Two data sets

recorded by a ZephIR 300M wind lidar are avaibale. One data set (Cabauw Lidar ZP) includes wind speeds at seven heights

from 10m to 251m (not equidistant) with a temporal resolution of about 11 s. This data is available in the time period from50

15.02.2018 to 07.06.2020. The second data set (Cabauw Lidar ZX) includes wind speeds at eleven heights from 10m to 299m

(not equidistant) with a temporal resolution between 17 s and 18 s. This data is available in the time period from 20.02.2020 to

07.06.2020.

Further, data by Lidar measurements at the Borssele Alpha offshore platform (BSA) next to the wind park Borssele I-V

(operation started in September 2021) is used which was also made available by KNMI (KNMI, 2023c). Data was recorded55

by a ZephIR 300M wind lidar at 11 heights from 14m to 249m (not equidistant) with a temporal resolution between 17 s and

18 s. Data is available from end of 2019 until now. Measurements are still ongoing. The considered time period in this paper is

from 21.11.2019 to 31.08.2021.
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3 Method

In this section, the approach used in this work to detect and to characterize the TNTI is presented. A brief introduction to60

laboratory experiments on the TNTI is given (Sect. 3.1). Section 3.2 describes the characterization of boundaries based on the

fractal dimension. In Sect. 3.3, a method for characterizing the TNTI in the atmosphere based on one-point measurements of

the wind velocity is given and shown exemplarily for the FINO1 site.

3.1 Turbulent/non-turbulent interface (TNTI)

Between different flow states, as turbulent and non-turbulent, an interface forms. An example of a turbulent/non-turbulent65

interface (TNTI) of a jet is shown in Fig. 1. The mixing of the two flow phases occurs on large and small scales. It can be

recognized how the complexity of this interface increases downstream.

TNTI

Figure 1. Jet flow visualized by laser induced fluorescence (adapted from Dimotakis et al. (1981); Sreenivasan and Meneveau (1986)).

The fractal boundary between the turbulent flow and the laminar surrounding can be seen. It is here indicated by a red line, which is an

approximation of the TNTI.

The TNTI was first investigated in laboratory flows by Corrsin and Kistler (1955). Sreenivasan and Meneveau (1986) were

the first to describe the boundary between laminar and turbulent flows through its fractal dimension. They investigated a

developing turbulent boundary layer on a flat plate. The turbulent flow was made visible by smoke. Images were taken and a70

brightness threshold was used to determine the TNTI. By changing the image resolution, different scales were resolved and on

an intermediate range of scales between the Kolmogorov length scale and 1/6 integral length scale L a fractal dimension of

the TNTI of about 2.4 was found.

Following this work, more detailed studies were carried out using more sophisticated methods such as Particle Image Ve-

locimetry (PIV). de Silva et al. (2013) used PIV measurements to detect the TNTI in a boundary layer flow using a turbulent75

kinetic energy (TKE) threshold. They found a more precise fractal dimension of 2.36 on scales from 20% L to the small-

est scales (limited by the resolution). Based on these results, we define a fractal dimension of a TNTI of 2.36 (or 0.36 for a

one-dimensional cut, as explained below) as a typical TNTI fractal dimension of a TNTI.

While the TNTI itself is rather thin, its position is strongly varying. The TNTI is formed on large scales by engulfment (large

scale fluctuations of the interface) and on small scales by nibbling (viscous diffusion process). From large to small scales, the80
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TNTI exhibits a self similarity that can be found in the fractal dimension. A detailed review on the TNTI is given by da Silva

et al. (2014) and a more recent summary is given by Xu et al. (2023).

3.2 Fractal dimension

This turbulent/non-turbulent interface is commonly described by its fractal characteristics. Fractals were intensively studied by

Mandelbrot (1982) and became an object of interest for the scientific community. To characterize a fractal its fractal dimension85

can be used.

An exemplary fractal curve that corresponds to a boundary in two-dimensional space is the Koch curve (Fig. 2). The con-

struction scheme consists of replacing the middle subinterval of an interval with two equally sized subintervals. From the

resulting intervals, the middle subintervals are again replaced by two subintervals of the same size, and so on to smaller and

smaller intervals (increasing order n). The result is a fractal boundary, which in this case follows a strict geometric law.90

The fractality of this Koch curve can be estimated by a box counting approach, which results in the fractal dimension

(box-counting dimension or Minkowski–Bouligand dimension). To do so, boxes with different edge length r are used and the

number of boxes N(r) required to cover the curve is counted. The fractal dimension Df (box-counting dimension) can then

be determined by the slope of the relation

N(r)∝ r−Df (1)95

to 1.262 for the Koch curve (see Sreenivasan and Meneveau, 1986).

In real-world applications, data with a high spatial resolution is not always available. Atmospheric data in particular is

mostly only available by point wise measurements. The limited amount of vertical measurement points of the investigated data

sets is not sufficient for a two-dimensional analysis. However, by Taylor’s hypothesis of frozen turbulence (Taylor, 1938) the

individual point measurements will give a one-dimensional slice through a three-dimensional field. By the additive rule of100
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Figure 2. Koch curve of the order n.
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Figure 3. Koch curve with one-dimensional slice and marked inter-
vals of crossings with the Koch curve (a). The corresponding inter-
vals give the Cantor set like plot (b).

Thereby, a simple way to estimate the fractal character-
istic of a boundary in three-dimensional or two-dimensional
space is to consider a one-dimensional slice (e.g. a point mea-
surement of the wind speed). Intervals on this slice with and
without a crossing of the boundary can be found (as indi- 40

cated in Fig. 3). The fractal dimension of this slice can be
estimated after Eq. 1 by the number of intervals N(r) on the
scale r needed to cover the boundary crossings. The result of
this box counting approach is Df,1 = 0.262 and after Eq. 2
gives the correct Df,2 = 1.262. 45

From this it becomes clear, that the fractal dimension of
higher dimensional fractals can be estimated from a one-
dimensional slice. Consequently, an adequate estimate of the
fractality of the TNTI in the atmosphere can be made by the
available single point measurements, which correspond to a 50

slice through a three-dimensional wind field.

3.3 Applied method

Typically, when applying methods to calculate the fractal di-
mension, the challenge lies in determining the interface us-
ing a threshold. Details on the herein applied method are dis- 55

cussed for the FINO1 site. A similar procedure as in de Silva
et al. (2013) is used to estimate the TNTI. To determine
the TNTI, the instantaneous turbulent kinetic energy (TKE)
is used to detect transitions between laminar and turbulent
phase. Subsequently, the just mentioned box counting ap- 60

proach is applied to characterize the TNTI by its fractality.
The instantaneous TKE is approximated by

E =
1

2
(u−umovavg)

2 (3)

with the moving averaged wind speed

umovavg =
1

Tfs

T/2∑

∆t=−T/2

u(t+∆t). (4) 65

Here the sampling frequency fs and the filter span T of 20 s
(for cup and propeller anemometer) and 90 s (for Lidar mea-
surements) are used.

For better comparison of different mean wind speeds, the
instantaneous TKE is normalized 70

Enorm = E/u2
movavg (5)Figure 2. Koch curve of the order n.
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Figure 3. Koch curve f order 4 with one-dimensional slice and marked intervals of crossings with the Koch curve (a). The corresponding

intervals give the Cantor set like plot (b).

co-dimensions for intersecting sets

Df,3 =Df,2 +1 =Df,1 +2 (2)

the fractal dimension Df,d in higher embedding dimensions d can be estimated by data collected in a lower embedding di-

mensions (see Mandelbrot, 1982; Sreenivasan and Meneveau, 1986). Furthermore, the fractal dimension is bounded by the

embedding dimension d and the corresponding lower dimension d−1, e.g. a smooth surface in three-dimensional space would105

scale with Df = 2, whereas a space-filling surface would exhibit a fractal dimension of Df = 3.

Thereby, a simple way to estimate the fractal characteristic of a boundary in three-dimensional or two-dimensional space is

to consider a one-dimensional slice (e.g. a single point measurement of the wind speed). This slice (red dashed line in Fig. 3 (a))

is covered with intervals of size r and intervals with and without a boundary crossing are obtained (as indicated in Fig. 3 (b)).

The fractal dimension of this slice can be estimated after Eq. 1 by the number of intervals N(r) on the scale r that are needed110

to cover the boundary crossings. The result of this box counting approach is Df,1 = 0.262 and after Eq. 2 gives the correct

Df,2 = 1.262.

This clearly shows that the fractal dimension of higher-dimensional fractals can be estimated from a one-dimensional slice.

Consequently, an adequate estimate of the fractality of the TNTI in the atmosphere can be made from the available single point

measurements, which correspond to a slice through a three-dimensional wind field.115

3.3 Applied method

Typically, when applying methods to calculate the fractal dimension, the challenge lies in determining the interface using a

threshold. Details on the herein applied method are discussed for the FINO1 site. A similar procedure as in de Silva et al.

(2013) is used to estimate the TNTI. To determine the TNTI, the instantaneous turbulent kinetic energy (TKE) is used to

detect transitions between laminar and turbulent phase. Subsequently, the box counting approach just mentioned is applied to120

characterize the TNTI by its fractality.

The instantaneous TKE is approximated by

E =
1

2
(u−umovavg)

2 (3)
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Figure 4. Exemplary velocity time series at FINO1 on May 08,
2008 for different heights. Vertical gray bars indicate exemplary 10
minute sections shown in Fig. 5 and Fig. 6.

by the square of the moving averaged wind speed. The
threshold between turbulent and non-turbulent phase is set to
0.001, which is in the order of the threshold used by de Silva
et al. (2013). Data points where this threshold is crossed will
be referred to as crossings in the following.5

The next steps are shown examplarily for a day (May 8,
2008) of the FINO1 data set (Fig. 4), as this day exhibits
many laminar periods. The investigation is done for sections
of 10 minute length. In Fig. 5 crossings of the TNTI are vi-
sualized for the different heights.10

Fig. 5 (a) shows the behavior of a rather turbulent 10
minute section. Plenty crossings can be observed at different
heights. This is not always the case as shown by the selected
section of Fig. 5 (b) and (c). In Fig. 5 (b) a laminar phase at
high altitudes (100 m) with no crossings is shown whereas at15

lower altitudes crossings can be recognized. Fig. 5 (c) shows
the behavior of a section with laminar flow at all altitudes.
Almost no crossings of the threshold occur.

To estimate the fractal dimension (Eq. 1), our box counting
approach is applied for every individual 10 minute section for20

each height. Boxes of a certain size rBox (respectively dura-
tion TBox) are used. Taylor’s assumption of frozen turbulence
rBox = ⟨u⟩TBox is used to change the time dependence into a
spatial scale dependency (Taylor, 1938).

Next, the number of boxes with at least one crossing of25

the threshold is counted. After Eq. 1 the resulting number of
counted boxes NBox over box size rBox is plotted in a double
logarithmic presentation (Fig. 6). To improve the quality of
the estimated slope, boxes are overlapping 90%.

It can be recognized, that mainly three different slopes can30

be found. A slope of −1 is found for fully turbulent behav-
ior as shown in Fig. 6 (a). A slope of −0.36 was found for
sections with turbulent and laminar phases (Fig. 6 (b)). For
sections with mostly laminar flow, the slope is close to 0
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Figure 5. Crossings indicating the transition between laminar and
turbulent phase for an exemplary turbulent (May 08, 2008 04:00)
(a), turbulent/non-turbulent (May 08, 2008 16:00) (b) and laminar
(May 08, 2008 02:45) (c) section. A Cantor set like plot as shown
in Fig.3 (b).

(Fig. 6 (c)). Note the scaling ranges for different exponents 35

not always extend over the whole range, but is often limited
only to some sub ranges of the scales as seen in Fig. 6 (a,b).

The fractal dimension is determined by the negative slope
of the just discussed presentation. The selection of the sub
range of scales is motivated by our wind energy application. 40

We take scales from roughly 3m to 250m corresponding to
the order of a wind turbine chord length and rotor diameter,
respectively.

Not for all 10 minute sections a clear slope is obtained.
Sometimes a super position of different slopes is found. For 45

our purpose here, we take such events as ranges with no self-
similarity (constant slope). To do so, 10 minute sections ex-
hibiting residual standard errors Sr of the slope larger than
0.02 are neglected (NaN). By this only sections with a con-
stant fractality over roughly two decades are considered. For 50

the exemplary day (May 08, 2008) the resulting time series
of the fractal dimension Df are shown in Fig. 7. The values
for the three exemplary times (04:00, 16:00, and 02:45) are
given in Tab. 1.

4 Results 55

The analysis of the measurement sites is done in three steps.
First a basic analysis of the turbulence intensity at the differ-
ent sites and heights is done (Sec. 4.1). In the following the
presence of a typical TNTI fractal dimension is investigated

Figure 4. Exemplary velocity time series at FINO1 on May 08, 2008 for different heights. Vertical gray bars indicate exemplary 10 minute

sections shown in Fig. 5 and Fig. 6.

with the moving averaged wind speed

umovavg =
1

Tfs

T/2∑

∆t=−T/2

u(t+∆t). (4)125

Here the sampling frequency fs and the filter span T of 20 s (for cup and propeller anemometer) and 90 s (for Lidar measure-

ments) are used. These values are chosen, as they mark the boundary between 3D turbulence and large scale fluctuations (see

Sim et al., 2023). For the lidar measurements a larger window size is considered as a compromise between a sufficient amount

of samples for the estimation of the TKE and sufficiently small scales. To validate that choice, we performed a study on the

influence of a variation of T , which showed no significant changes for T > 20 s and thus shows a robust behavior for changes130

on large scales (see Appx. A).

For better comparison of different mean wind speeds, the instantaneous TKE is normalized

Enorm = E/u2
movavg (5)

by the square of the moving averaged wind speed. The threshold between turbulent and non-turbulent phase is set to 0.001,

which is in the order of the threshold used by de Silva et al. (2013). Data points where this threshold is crossed will be referred135

to as crossings in the following.

The next steps are shown examplarily for a day (May 8, 2008) of the FINO1 data set (Fig. 4), as this day exhibits many

laminar periods. The investigation is done for sections of 10 minute length (sensitivity on section length is shown in Appx. B).

In Fig. 5 crossings of the TNTI are visualized for the different heights.

Figure 5 (a) shows the behavior of a rather turbulent 10 minute section. Plenty crossings can be observed at different heights.140

This is not always the case as shown by the selected section of Fig. 5 (b) and (c). In Fig. 5 (b) a laminar phase at high altitudes
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(a), turbulent/non-turbulent (May 08, 2008 16:00) (b) and laminar
(May 08, 2008 02:45) (c) section. A Cantor set like plot as shown
in Fig.3 (b).

(Fig. 6 (c)). Note the scaling ranges for different exponents 35

not always extend over the whole range, but is often limited
only to some sub ranges of the scales as seen in Fig. 6 (a,b).

The fractal dimension is determined by the negative slope
of the just discussed presentation. The selection of the sub
range of scales is motivated by our wind energy application. 40

We take scales from roughly 3m to 250m corresponding to
the order of a wind turbine chord length and rotor diameter,
respectively.

Not for all 10 minute sections a clear slope is obtained.
Sometimes a super position of different slopes is found. For 45

our purpose here, we take such events as ranges with no self-
similarity (constant slope). To do so, 10 minute sections ex-
hibiting residual standard errors Sr of the slope larger than
0.02 are neglected (NaN). By this only sections with a con-
stant fractality over roughly two decades are considered. For 50

the exemplary day (May 08, 2008) the resulting time series
of the fractal dimension Df are shown in Fig. 7. The values
for the three exemplary times (04:00, 16:00, and 02:45) are
given in Tab. 1.

4 Results 55

The analysis of the measurement sites is done in three steps.
First a basic analysis of the turbulence intensity at the differ-
ent sites and heights is done (Sec. 4.1). In the following the
presence of a typical TNTI fractal dimension is investigated

Figure 5. Crossings indicating the transition between laminar and turbulent phase for an exemplary turbulent (May 08, 2008 04:00) (a),

turbulent/non-turbulent (May 08, 2008 16:00) (b) and laminar (May 08, 2008 02:45) (c) section. A Cantor set like plot as shown in Fig.3 (b).

(100 m) with no crossings is shown whereas at lower altitudes crossings can be recognized. Figure 5 (c) shows the behavior of

a section with laminar flow at all altitudes. Almost no crossings of the threshold occur.

To estimate the fractal dimension (Eq. 1), our box counting approach is applied for each individual 10 minute section

for each height. Boxes of a certain size rBox (respectively duration TBox) are used. Taylor’s assumption of frozen turbulence145

rBox = ⟨u⟩TBox is used to convert the time dependence into a spatial scale dependence (Taylor, 1938).

Next, the number of boxes with at least one crossing of the threshold is counted. After Eq. 1 the resulting number of counted

boxes NBox over box size rBox is plotted in a double logarithmic presentation (Fig. 6). To improve the quality of the estimated

slope, the boxes overlap by 90%.

It can be recognized, that mainly three different slopes can be found. A slope of −1 is found for fully turbulent behavior150

as shown in Fig. 6 (a). A slope of −0.36 was found for sections with turbulent and laminar phases (Fig. 6 (b)). For sections

with mostly laminar flow, the slope is close to 0 (Fig. 6 (c)). Note that the scaling ranges for different exponents do not always

extend over the entire range, but are often only limited to some sub-ranges of the scales, as can be seen in Fig. 6 (a,b).

The fractal dimension is determined by the negative slope of the just discussed presentation. The selection of the sub-range

of scales is motivated by our wind energy application. We take scales from roughly 3m to 250m corresponding to the order of155

a wind turbine chord length and rotor diameter, respectively.

Not for all 10 minute sections a clear slope is obtained. Sometimes there is a superposition of different slopes. For our

purpose here, we consider such events as ranges without self-similarity (constant slope). To do so, 10 minute sections that
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Figure 6. Number of boxes containing at least one threshold cross-
ings NBox as a function of the box size for three 10 minute sections
around May 08, 2008 04:00 (turbulent) (a), May 08, 2008 16:00
(TNTI) (b), and May 08, 2008 02:45 (laminar) (c), according to
Fig. 5.
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Figure 7. Estimated fractal dimension Df on May 08, 2008. Only
results are shown when a reasonable fractal dimensions could be
determined. Different colors stand for different heights. The dashed
line and the gray area mark the mean fractal dimension Df and its
standard deviation. Vertical gray bars indicate exemplary 10 min-
utes section shown in Fig. 5 and Fig. 6.

Table 1. Fractal dimension Df and residual standard error Sr on
May 08, 2008 at different times and for different heights. The entries
that were neglected due to Sr > 0.02 are colored red.

Time z [m] Df Sr

04:00 – Fig. 5 (a) & Fig. 6 (a)

100 0.5246 0.0328
80 0.4297 0.0407
60 0.4774 0.0409
40 0.4653 0.0460

16:00 – Fig. 5 (b) & Fig. 6 (b)

100 NaN NaN
80 0.3912 0.0350
60 0.3780 0.0096
40 0.3063 0.0127

02:45 – Fig. 5 (c) & Fig. 6 (c)

100 NaN NaN
80 NaN NaN
60 NaN NaN
40 NaN NaN

Figure 6. Number of boxes containing at least one threshold crossings NBox as a function of the box size for three 10 minute sections around

May 08, 2008 04:00 (turbulent) (a), May 08, 2008 16:00 (TNTI) (b), and May 08, 2008 02:45 (laminar) (c), according to Fig. 5.
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(TNTI) (b), and May 08, 2008 02:45 (laminar) (c), according to
Fig. 5.
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line and the gray area mark the mean fractal dimension Df and its
standard deviation. Vertical gray bars indicate exemplary 10 min-
utes section shown in Fig. 5 and Fig. 6.

Table 1. Fractal dimension Df and residual standard error Sr on
May 08, 2008 at different times and for different heights. The entries
that were neglected due to Sr > 0.02 are colored red.

Time z [m] Df Sr

04:00 – Fig. 5 (a) & Fig. 6 (a)

100 0.5246 0.0328
80 0.4297 0.0407
60 0.4774 0.0409
40 0.4653 0.0460

16:00 – Fig. 5 (b) & Fig. 6 (b)

100 NaN NaN
80 0.3912 0.0350
60 0.3780 0.0096
40 0.3063 0.0127

02:45 – Fig. 5 (c) & Fig. 6 (c)

100 NaN NaN
80 NaN NaN
60 NaN NaN
40 NaN NaN

Figure 7. Estimated fractal dimension Df on May 08, 2008. Only results are shown when a reasonable fractal dimensions could be deter-

mined. Different colors stand for different heights. The dashed line indicates the typical TNTI fractal dimension of 0.36 and the shaded gray

area a range of ±0.036 around this value. Vertical gray bars indicate exemplary 10 minutes section shown in Fig. 5 and Fig. 6.

Table 1. Fractal dimension Df and residual standard error Sr on May 08, 2008 at different times and for different heights. Valid entries

(Sr ≤ 0.02) are shown in a bold font and neglected entries (Sr > 0.02 or NaN) are shown in an italic font.

Time z [m] Df Sr

04:00 – Fig. 5 (a) & Fig. 6 (a)

100 0.5246 0.0328

80 0.4297 0.0407

60 0.4774 0.0409

40 0.4653 0.0460

16:00 – Fig. 5 (b) & Fig. 6 (b)

100 NaN NaN

80 0.3912 0.0350

60 0.3780 0.0096

40 0.3063 0.0127

02:45 – Fig. 5 (c) & Fig. 6 (c)

100 NaN NaN

80 NaN NaN

60 NaN NaN

40 NaN NaN

have residual standard errors Sr of the slope greater than 0.02 are neglected (NaN). By this only sections with a constant

fractality over roughly two decades are considered. For the exemplary day (May 08, 2008) the resulting time series of the160

fractal dimension Df are shown in Fig. 7. The values for the three exemplary times (04:00, 16:00, and 02:45) are given in

Table 1.
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4 Results

The analysis of the measurement sites is done in three steps. First a basic analysis of the turbulence intensity at the different

sites and heights is done (Sect. 4.1). In the following the presence of a typical TNTI fractal dimension is investigated (Sect. 4.2).165

Last, the likelihood of the presence of the TNTI and its fractal dimension at certain heights is investigated for all sites (Sect. 4.3).

4.1 Turbulence intensity

The turbulence intensity

TI = σ(udetrend)/⟨u⟩ (6)

is calculated by the standard deviation σ. udetrend denotes the velocity timeseries detrended by a linear fit, and ⟨u⟩ denotes the170

mean wind speed for a section of 10 minute length. Only 10 minute sections with at least 75% valid data are considered.

Figure 8 shows the resulting probability density functions (PDF) for the individual sites. All sites show an increase of low

turbulence intensity sections with height.

The general trend towards a lower TI at higher altitudes is illustrated by a decrease of the median TI (med(TI)) and an

increase in the portion of 10 minute sections with TI< 1.5% as a function of z (Fig. 9, see Appx. C for an analysis of the175

intermittency factor γ). The measurements at FINO1 revealed the lowest median TI. Compared to the two offshore sites

(FINO1 and Borssele), the measurements at the onshore site Cabauw show a significant higher TI at lower altitudes. The lidar

measurements (Cabauw Lidar ZP, Cabauw Lidar ZX, and Borssele) show comparable curves. However, a direct comparison

is difficult due to the different measurement methods, the different measurement periods and seasons. Thus these statistics are

based on different meteorological conditions which were selected.180

4.2 Fractal dimension of the TNTI

Next the fractal dimension of the TNTI is investigated for 10 minute sections with an overlap of 9min. Figure 10 shows the

individual probability density function (PDF) of the fractal dimension Df for different TI ranges. The PDFs are normalized

including invalid fractal dimensions (Sr > 0.02), which are not shown but would correspond to a peak in the PDF at "NaN".

As shown in Fig. 10 (a), for a low TI (< 2.5%), most found fractal dimensions are smaller than the expected typical TNTI185

fractal dimension of 0.36 (see Sect. 3.1). This is in accordance with Fig. 6, as laminar phases tend to exhibit a slope closer to 0.

For medium TI (2.5%< TI < 7.5%), significantly more valid fractal dimensions are found. As seen in Fig. 10 (b), the found

values match well with the expected value of 0.36. Further, a clear height dependence can be found with more 10 minute

sections with a typical TNTI fractal dimensions at higher altitudes.

For high TI (< 7.5%) only few valid fractal dimensions are found, see Fig. 10 (c). One peak in the PDF can be recognized at190

values slightly above the typical TNTI fractal dimension and one even smaller peak close to 1. Again in good agreement with

Fig. 6, as turbulent sections tend to exhibit slopes closer to 1.

10



0

0.1

0.2

(a)
FINO1

PD
F

100m
90m
80m
70m
60m
50m
40m
33m

0

0.1

0.2

(b)
Cabauw

T
I=

1.
5%

PD
F

200m
140m
80m
40m
20m

0

0.1

0.2

(c)
Cabauw Lidar ZP

PD
F

251m
199m
139m
79m
38m
19m
10m

0

0.1

0.2

(d) – Cabauw Lidar ZX

PD
F

299m
199m
139m
79m
38m
10m

0 5 10 15 20
0

0.1

0.2

(e)
Borssele

TI [%]

PD
F

249m
179m
145m
94m
63m
14m
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In Fig. 11 different probabilities of sections with a fractal dimension Df = 0.36 within a ±10% range are shown. These

probabilities are conditioned on the 10 minute section TI (Fig. 11 (a)), the mean wind speed ⟨u⟩ (Fig. 11 (b)), and the shear

exponent α (defined later) (Fig. 11 (c)).195

For periods with low TI (< 2.5%) and high TI (> 7.5%) only few events with a typical TNTI fractal dimension can be

recognized (Fig. 11 (a)). For sections with TIs in between (2.5%< TI < 7.5%), it is more likely to exhibit both (laminar and

turbulent) phases. Up to 17% of these observed 10 minute sections showed a typical TNTI fractal dimension.

At low mean wind speeds the percentage of sections with typical TNTI fractal dimension is rather indifferent over height

(Fig. 11 (b)). This changes with increasing mean wind speed. A typical TNTI fractal dimension becomes more likely at higher200

altitudes and less likely at lower altitudes. However, for high mean wind speeds (> 15m s−1) the probability for a typical TNTI

fractal dimension is reduced at all heights.

Figure 11 (c) shows results from data set conditioned on the shear exponent α. α is estimated for all 10 minute sections

by fitting the power law formulation u(z) = u(zref)
(

z
zref

)α
were zref is given by the highest altitude. Again, the probability of

a typical TNTI fractal dimension becomes more likely with height. With increasing shear the probability of a typical TNTI205

fractal dimension has a maximum at altitudes around 60m and decreases at higher altitudes. For extreme shear (α > 0.3), the

likelihood of a typical TNTI fractal dimension at higher altitudes (90m) is reduced by half compared to lower shear (α < 0.3).

Overall these probability investigations show that the occurrence of typical TNTI fractal dimensions are not negligible, but

often are higher then 10% of the data.

4.3 Universality210

Next an overview of results from all data sets is given. For the lidar measurements the estimation of the fractal dimension is

adapted due to the lower sampling rate. The 10 minute sections is extended to 90 minute sections and the fractal dimension is

12
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Figure 9. Median of the turbulence at different heights and for the
different data sets.

In Fig. 11 different probabilities of sections with a frac-
tal dimension Df = 0.36 within a ±10% range are shown.
These probabilities are conditioned on the 10 minute section
TI (Fig. 11 (a)), the mean wind speed ⟨u⟩ (Fig. 11 (b)), and
the shear exponent α (Fig. 11 (c)).5

For periods with low TI (< 2.5%) and high TI (> 7.5%)
only few events with a typical TNTI fractal dimension can
be recognized (Fig. 11 (a)). For sections with TIs in between
(2.5%< TI < 7.5%), it is more likely to exhibit both (lami-
nar and turbulent) phases. Up to 17% of these observed 1010

minute sections showed a typical TNTI fractal dimension.
At low mean wind speeds the percentage of sections with

typical TNTI fractal dimension is rather indifferent over
height (Fig. 11 (b)). This changes with increasing mean
wind speed. A typical TNTI fractal dimension becomes more15

likely at higher altitudes and less likely a lower altitudes.
However, for high mean wind speeds (> 15m s−1) the prob-
ability for a typical TNTI fractal dimension is reduced at all
heights.

Fig. 11 (c) shows results from data set conditioned on the20

shear exponent α. α is estimated for all 10 minute sections by
fitting the power law formulation u(z) = u(zref)

(
z
zref

)α
were

zref is given by the highest altitude. Again, the probability
of a typical TNTI fractal dimension becomes more likely
with height. With increasing shear the probability of a typical25

TNTI fractal dimension has a maximum at altitudes around
60 m and decreases at higher altitudes. For extreme shear
(α > 0.3), the likelihood of a typical TNTI fractal dimension
at higher altitudes (<90 m) is reduced by half compared to
lower shear (α < 0.3).30

Overall these probability investigations show that the oc-
currence of typical TNTI fractal dimensions are not negligi-
ble, but often are higher then 10% of the data.
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Figure 10. Probability density function of the fractal dimension
Df (only cases with residual standard error Sr smaller than 0.02
shown) conditioned on the different TI ranges: TI < 2.5% (a),
2.5%< TI < 7.5% (b), and TI > 7.5% (c). The red dashed line in-
dicates the typical TNTI fractal dimension of 0.36 and the shaded
red area a range of ±0.036 around this value.

4.3 Universality

Next an overview of results from all data sets is given. For 35

the lidar measurements the estimation of the fractal dimen-
sion is adapted due to the lower sampling rate. The 10 minute
sections is extended to 90 minute sections and the fractal di-
mension is estimated for scales from 200m to 2.5 km. Thus,
the lidar measurements are used to investigate the presence 40

of the TNTI on larger scales.
Fig. 12 shows the distribution of the fractal dimension

for the individual data sets, according to Fig. 10 (b) for
2.5%< TI < 7.5%. An accumulation of the fractal dimen-
sion for all data sets can be found. However, some deviations 45

can be recognized. At lower heights a stronger deviation to-
wards larger or smaller fractal dimensions can be recognized

Figure 10. Probability density function of the fractal dimension Df conditioned on the different TI ranges: TI < 2.5% (a), 2.5%< TI <

7.5% (b), and TI > 7.5% (c). The red dashed line indicates the typical TNTI fractal dimension of 0.36 and the shaded red area a range of

±0.036 around this value. The normalization of the PDFs is done based on all sections including invalid fractal dimensions (Sr > 0.02),

which are not shown but would correspond to a peak at "NaN". For a further quantification, see Fig. 11 (a).
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Figure 11. Percentage of data exhibiting a typical TNTI fractal di-
mension conditioned on different TI level (a), mean wind speeds
(b), and shear (c).

for the lidar measurements (Fig. 12 (c-e)). For more extreme
heights, the fractal dimension tends to be closer to the typical
TNTI fractal dimension of 0.36. However, a broader distribu-
tion and shifts towards higher and lower fractal dimensions
can be observed. 5

The propeller measurements at Cabauw show only few
events with a slightly towards lower values shifted fractal di-
mensions (Fig. 12 (b)). The results at 20m are questionable
and might be effected by ground structures.

In contrast to the other data sets, the best values for 10

the Cabauw Lidar ZP are obtained for 10m with 0.2± 0.1
(Fig. 12 (c)). The peak of the fractal dimension gets more
smeared out as the heights increase.

The results from Cabauw Lidar ZX show a consistent trend
from which only the low altitude deviates (Fig. 12 (d)). With 15

increasing height the peak of the fractal dimension becomes
narrower and is shifted towards lower fractal dimensions
from 0.56 at 38m to 0.43 at 299m.

Also the results from Borssele show a consistent picture
with clearer and more frequent fractal structures at higher 20

altitudes (Fig. 12 (e)). However, the fractal dimension peak
is at 0.46 and hence higher than the expected typical TNTI
fractal dimension of 0.36.

For all sites and data sets it can be recognized, that the
probability of the typical TNTI fractal dimension (0.324≥ 25

Df ≤ 0.396) increases with height (Fig. 13). The obtained
probabilities depend on sites and measurement methods. The
FINO1 data set shows the highest ratio of typical TNTI frac-
tal dimension. For the Cabauw site the dependence on differ-
ent measurement methods or, respectively, time resolution of 30

the measurements, is seen.

5 Discussion

A frequent presence of the turbulent/non-turbulent interface
(TNTI) in the atmospheric data is observed. A clear accu-
mulation of the fractal dimension of this TNTI around 0.36 35

is found, for the most reliable data set FINO1 with a high
temporal resolution and a long observation period. To our
interpretation this is in astonishing good agreement with ex-
periments in the laboratory (see de Silva et al. (2013)).

If investigating the individual sections of a data set, fractal- 40

ity (self similarity) on different scales can be observed. The
box counting approach showed mainly three different slopes,
1 for fully turbulent flow, 0.36 for the TNTI, and 0 for fully
laminar flow (Fig. 6). The slopes are not necessary constant
on different scales. Different slopes on different scale ranges 45

can be present (see also Sreenivasan and Meneveau (1986)).
When conditioning on the fit quality by the residual stan-
dard error, mostly the typical TNTI fractal dimension of 0.36
is observed (Fig. 10). By this approach only fractal dimen-
sions with a constant fractality over the investigated scales 50

(two decades) are considered. If the fractality changes over
the investigated scales, the fractal dimensions are neglected.

Figure 11. Percentage of data exhibiting a typical TNTI fractal dimension conditioned on different TI level (a), mean wind speeds (b), and

shear (c).
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estimated for scales from 200m to 2.5 km. Thus, the lidar measurements are used to investigate the presence of the TNTI on

larger scales.

Figure 12 shows the distribution of the fractal dimension for each data set, according to Fig. 10 (b) for 2.5%< TI < 7.5%.215

The PDFs are normalized including invalid fractal dimensions (Sr > 0.02), which are not shown but would correspond to a peak

in the PDF at "NaN". An accumulation of the fractal dimension can be observed for all data sets. However, some deviations can

be recognized. At lower heights, a stronger deviation towards larger or smaller fractal dimensions can be recognized in the lidar

measurements (Fig. 12 (c-e)). For more extreme heights, the fractal dimension tends to be closer to the typical TNTI fractal

dimension of 0.36. However, a broader distribution and shifts towards higher and lower fractal dimensions can be observed.220

The propeller measurements at Cabauw show only few events with a slightly towards lower values shifted fractal dimensions

(Fig. 12 (b)). The results at 20m are questionable and might be effected by ground structures.

In contrast to the other data sets, the best values for the Cabauw Lidar ZP are obtained for 10m with 0.2± 0.1 (Fig. 12 (c)).

The peak of the fractal dimension gets more smeared out as the heights increase.

The results from Cabauw Lidar ZX show a consistent trend from which only the low altitude deviates (Fig. 12 (d)). With225

increasing height the peak of the fractal dimension becomes narrower and is shifted towards lower fractal dimensions from

0.56 at 38m to 0.43 at 299m.

Also the results from Borssele show a consistent picture with clearer and more frequent fractal structures at higher altitudes

(Fig. 12 (e)). However, the fractal dimension peak is at 0.46 and hence higher than the expected typical TNTI fractal dimension

of 0.36.230

For all sites and data sets it can be recognized, that the probability of the typical TNTI fractal dimension (0.324≥Df ≤
0.396) increases with height (Fig. 13). The obtained probabilities depend on sites and measurement methods. The FINO1 data

set shows the highest ratio of typical TNTI fractal dimension. For the Cabauw site the dependence on different measurement

methods or, respectively, time resolution of the measurements, is seen.

5 Discussion235

A frequent presence of the turbulent/non-turbulent interface (TNTI) in the atmospheric data is observed. The presented method

provides information on how frequently TNTI features occur at the investigated heights, but does not allow the height position

of the TNTI to be determined. For the most reliable data set FINO1 with a high temporal resolution and a long observation

period, a clear accumulation of the fractal dimension of this TNTI around 0.36 is found. To our interpretation this is in good

agreement with experiments in the laboratory (see de Silva et al., 2013).240

If investigating the individual sections of a data set, fractality (self similarity) on different scales can be observed. The box

counting approach showed mainly three different slopes, 1 for fully turbulent flow, 0.36 for the TNTI, and 0 for fully laminar

flow (Fig. 6). The slopes are not necessary constant on different scales. Different slopes on different scale ranges can be present

(see Sreenivasan and Meneveau, 1986). When conditioning on the fit quality by the residual standard error, mostly the typical

TNTI fractal dimension of 0.36 is observed (Fig. 10). By this approach only fractal dimensions with a constant fractality over245
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Hence, if a partially typical TNTI fractal dimension would
be considered, even higher amounts of sections with a typi-
cal TNTI fractal dimension might be found.

As a side remark, we would like to point out that an in-
creased probability of fractal dimensions in the order of 2/3 5

is observed in the lidar measurements at low altitudes (see
Fig. 12 (c-e)). This could be interpreted as a consequence
of thermally driven (convective) flow fields exhibiting a 2/3
scaling (Grossmann and Lohse, 1994).

Differences are observed at different measurement loca- 10

tions and for different measurement techniques, including
temporal resolution, spatial resolution, and observed periods.
The resolution of the measurement is important to get proper
values. At higher altitudes more fractal subsets are seen. This
is expected, as in the meteorological context the TNTI can be 15

understood as the dynamic interface between the turbulent at-
mospheric boundary layer (commonly known as the Prandtl
layer) and the laminar flow (also referred to as laminar Ek-
man layer) that occurs at higher altitudes. The estimated frac-
tal dimension of the TNTI accumulates around a specific 20

value for all data sets - which is in a first order approximation
close to 0.36, the reference value of ideal lab experiments. Li-
dar measurements, which cover different (larger) scales, also
show an accumulation of the fractal dimension at a certain
value, suggesting a universal meaning of the fractality of the 25

TNTI. However, deviations (±0.1) of the fractal dimension
are found, which might be due to effects coming from dif-
ferent orography and measuring techniques and need to be
further investigated.

6 Conclusions 30

The presence of the turbulent/non-turbulent interface (TNTI)
in the atmosphere at different sites has been studied. Our re-

Figure 12. Probability density function (normalization according to Fig. 10) of the fractal dimension Df conditioned on the TI range

2.5%< TI < 7.5% for FINO1 (a), Cabauw (b), Cabauw Lidar ZP (c), Cabauw Lidar ZX (d), and Borssele (e). The red dashed line indicates

the typical TNTI fractal dimension of 0.36 and the shaded red area a range of ±0.036 (gray area ±0.1) around this value. For a further

quantification, see Fig. 13.
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Hence, if a partially typical TNTI fractal dimension would
be considered, even higher amounts of sections with a typi-
cal TNTI fractal dimension might be found.

As a side remark, we would like to point out that an in-
creased probability of fractal dimensions in the order of 2/3 5

is observed in the lidar measurements at low altitudes (see
Fig. 12 (c-e)). This could be interpreted as a consequence
of thermally driven (convective) flow fields exhibiting a 2/3
scaling (Grossmann and Lohse, 1994).

Differences are observed at different measurement loca- 10

tions and for different measurement techniques, including
temporal resolution, spatial resolution, and observed periods.
The resolution of the measurement is important to get proper
values. At higher altitudes more fractal subsets are seen. This
is expected, as in the meteorological context the TNTI can be 15

understood as the dynamic interface between the turbulent at-
mospheric boundary layer (commonly known as the Prandtl
layer) and the laminar flow (also referred to as laminar Ek-
man layer) that occurs at higher altitudes. The estimated frac-
tal dimension of the TNTI accumulates around a specific 20

value for all data sets - which is in a first order approximation
close to 0.36, the reference value of ideal lab experiments. Li-
dar measurements, which cover different (larger) scales, also
show an accumulation of the fractal dimension at a certain
value, suggesting a universal meaning of the fractality of the 25

TNTI. However, deviations (±0.1) of the fractal dimension
are found, which might be due to effects coming from dif-
ferent orography and measuring techniques and need to be
further investigated.

6 Conclusions 30

The presence of the turbulent/non-turbulent interface (TNTI)
in the atmosphere at different sites has been studied. Our re-

Figure 13. Percentage of data exhibiting a typical TNTI fractal dimension.

the investigated scales (two decades) are considered. If the fractality changes over the investigated scales, the fractal dimensions

are neglected. Hence, if a partially typical TNTI fractal dimension would be considered, even higher amounts of sections with

a typical TNTI fractal dimension might be found.

As a side remark, we would like to point out that an increased probability of fractal dimensions in the order of 2/3 is observed

in the lidar measurements at low altitudes (see Fig. 12 (c-e)). This could be interpreted as a consequence of thermally driven250

(convective) flow fields exhibiting a 2/3 scaling (Grossmann and Lohse, 1994).

Differences are observed at different measurement locations and for different measurement techniques, including temporal

resolution, spatial resolution, and observed periods. The resolution of the measurement is important to get proper values. As

the fractality describes the self similarity on different scales, the temporal (or spatial) resolution defines the lower bound until

which fractal features can be seen. While the met masts give information on the small scales (below the rotor diameter), the255

lidar data sets only give information on larger scales. For the investigated frequencies a robust behavior of the fractality is

observed. In Fig. 11, reduced probabilities are observed at 100m, which do not follow the trends. This phenomenon, that the

statistics of the measurement point at 100m deviate from those at the other heights, is known but unexplained for the FINO1

data set.

At higher altitudes, more fractal subsets are seen. This is expected, as in the meteorological context the TNTI can be260

understood as the dynamic interface between the turbulent atmospheric boundary layer (commonly known as the Prandtl layer)

and the laminar flow (which could be referred to as laminar Ekman layer) that occurs at higher altitudes. The estimated fractal

dimension of the TNTI accumulates for all data sets around a certain value, which is in a first order approximation close to 0.36,

the reference value of ideal laboratory experiments. Lidar measurements, which cover different (larger) scales, also show an

accumulation of the fractal dimension at a certain value, suggesting a universal meaning of the fractality of the TNTI. However,265
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deviations (±0.1) of the fractal dimension are found, which could be due to effects resulting from different orographies and

measuring methods and need to be further investigated.

6 Conclusions

The presence of the turbulent/non-turbulent interface (TNTI) in the atmosphere at different sites has been studied. Our results

of fractal dimension of 0.36± 0.1 we take as strong hint for comparable trends for the different measurements sites.270

The fractal dimension, a simple multi-scale approach, provides an effective method for characterizing the complexity of the

TNTI. The typical fractal dimension of the TNTI of 0.36 known from laboratory experiments is quite close to the values found

in the atmosphere. The highest likelihood for a typical TNTI fractal dimension is found at high altitudes. Hence, the geometry

of the TNTI for atmospheric cases and more ideal flow situations in laboratory experiments and numerical simulations seems

to be quite similar. This opens up new possibilities for further detailed studies.275

Independent of the measurement location and procedure, a significant amount of sections with a typical TNTI fractal dimen-

sion is detected. Our analysis of several data sets reveals that the fractality of the TNTI occurs at very different scales, from the

size of a wind turbine blade to several kilometers (as seen in lidar data). Up to more than 10% of the observed time, a TNTI

at small (for a wind turbine relevant) scales is present at heights above 60m (offshore, FINO1). This hints on a very frequent

presence of the TNTI at altitudes of a multi megawatt wind turbine rotor.280

Further and more detailed investigations need to be made to get a complete picture of the TNTI in the atmosphere. High

spatial and temporal resolved data over long periods are needed to gain further knowledge on its small scale behavior.

These findings make the consideration of laminar flows and the frequent presence of the TNTI at higher altitudes relevant for

wind turbine research. This is particularly important for large offshore wind turbines in the multi megawatt class. The sudden

jump between two significantly different turbulence states could cause additional load cycles for the turbine components.285

Experimental and numerical studies are needed to investigate the effects of the TNTI on wind turbines and to clarify whether

the TNTI needs to be considered in turbine design and operation. For this purpose, an indicated universal structure of the TNTI

is very helpful.

Data availability. Wind data for the Cabauw and Borssele site were made available by the Royal Netherlands Meteological Institute (KNMI)

Appendix A: Filter span290

Changing the filter span T can significantly influence the results. Since the fluctuations are determined by subtracting a moving

average velocity from the velocity time series, a filter span T that is too small would lead to a subtraction of relevant fluctuations

and, in extreme cases, a purely laminar time series would remain. The chosen moving average window size of 20 s comes from

the largest (3D) turbulent structures found in the atmosphere, which are of the order of 0.05Hz (see Sim et al., 2023). This
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frequency gives the largest turbulence length scale of 20 s. We have chosen a filter span T that correspond to the large scale295

turbulence structures for the mean wind speed and thus "highpass filtered" our results on the largest relevant scales. This also

makes our results comparable to wind tunnel studies where no wind speed fluctuations occur at such scales.

A systematic analysis on the influence of the filter span T on the fractal dimension Df is shown in Fig. A1. The cases

Fig. A1 (a-c) and Fig. A1 (d-f) correspond to the 60m cases shown in Fig. 6 (a) and Fig. 6 (b) (08.05.2008 4:00 and 16:00),

respectively. Up to a T of roughly 20 s a variation of the number of boxes NBox and the estimated fractal dimension Df can300

be recognized. For larger T only small deviations occur. This confirms our choice of the filter span T . A filter span T < 20 s

that is too small filters out relevant fluctuations and affects the analysis of the fractal dimension, whereas the method becomes

robust for larger scales.

The lidar data sets exhibit a lower sampling frequency, so a deviation from this scale was necessary. A compromise between

a sufficient amount of samples for the estimation of the turbulent kinetic energy and sufficiently small scales was found for a305

window size of 90 s. This value is close to the kink between "wall turbulence" and "3D turbulence" defined by Sim et al. (2023)

and is therefore still dominated by 3D turbulence. For the lidar data sets a similar behavior was found for T > 90 s.

Appendix B: Section length

Investigations on 10 minute sections are a common approach in the field of wind energy. For our analysis, it was found that

a sufficient amount of data is available for the analysis in a 10 minute section. For the appropriate length Sreenivasan and310

Meneveau (1986) found that the window sizes should be below 50 integral time scales to show fractal-like behavior, while on

larger scales random behavior with a fractal dimension of 1 occurred. In our case, 50 integral time scales correspond to 1000 s,

which is close to the 600 s we chose. Therefore, we assume our section length to be appropriate.

Fig. B1 shows the influence of section length Tsec on the analysis of the fractal dimension. The cases Fig. B1 (a-c) and

Fig. B1 (d-f) correspond to the 60m cases shown in Fig. 6 (a) and Fig. 6 (b) (08.05.2008 4:00 and 16:00), respectively.315

As expected, the number of boxes NBox increases with the section length. However, the trend of the curves NBox(rBox is

hardly influenced and only differs for short section lengths (Tsec < 600 s. For longer section lengths, the characteristics tend

to converge to a certain value for the fractal dimension Df as well as for the residual standard error Sr. However, for longer

section lengths more and different flow characteristics are considered and an average value is extracted. Hence, a section length

of 600 s seems to be a good compromise between a sensitive behavior on small section length changes and averaging over a320

long duration.

For the lidar measurements, longer sections (5400 s corresponding to roughly 300 integral time scales) were considered

due to the lower temporal resolution. However, for these cases we shifted the upper spatial limit for determining the fractal

dimension by a factor of 10. Hence, we are shifting the largest investigated scales and hence again having a section length

which is in the order of 50 times of the largest investigated scales.325
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Figure A1. Influence of the filter span T on the number of boxes NBox(a,d), the fractal dimension Df (b,e), and the residual standard error

Sr (c,f), respectively for a rather turbulent section (a-c) and a section with TNTI characteristics (d-f). The Colors (a, d) indicate the filter

span T from blue for low to yellow for high values as shown in (b), (c), (e), and (f). In black the results for the chosen filter span T of 20 s

are shown.

Appendix C: Intermittency factor

In Fig. C1 the intermittency factor

γ =
4

F
(C1)
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Figure B1. Influence of the section length Tsec on the number of boxes NBox(a,d), the fractal dimension Df (b,e), and the residual standard

error Sr (c,f), respectively for a rather turbulent section (a-c) and a section with TNTI characteristics (d-f). The Colors (a, d) indicate the

section length TSec from blue for low to yellow for high values as shown in (b), (c), (e), and (f). In black the results for the chosen section

length Tsec of 600 s are shown.

after Townsend (1951) with the flatness F = ⟨u4
τ ⟩/⟨u2

τ ⟩2 of the velocity increments uτ = u(t)−u(t+ τ) for the smallest

possible time interval τ = 1/fs defined by the sampling frequency fs for the different data sets in function of the height z is330

shown. A value of γ = 1 indicates turbulent flow, whereas 0 denotes laminar flow. The data sets show comparable trends with

a decrease of γ with height. The Cabauw data set deviates from this trend and exhibits very low γ trough out. The FINO1 data
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set shows an outlier at 80m, which is not further analyzed here (100m deviates from the FINO1 trend as discussed in Sect. 5).

The intermittency factor at low heights already exhibits comparatively low values, which may be caused by the presence of

laminar phases at lower heights.335
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Figure C1. Intermittency factor γ dependent on height z.
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