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Abstract. Energy scenarios and transition pathways require estimates of achievable technical wind energy potentials to evaluate

the integration of large scale wind energy into the electrical grid. Technical potential refers to the projected electrical generation

from regional scale wind turbine deployments, while accounting for the actual area available, turbine characteristics, losses

from inter-turbine interactions and energy conversion. These are distinct from resource potentials for wind park planning and

layout and are estimated using a typical approach in which the turbines’ power curves are forced by either observed or modelled5

hub-height wind speeds. This approach, which we refer to as the standard approach, implicitly assumes minimal impacts of

large scale wind energy generation on the regional wind resource and, thus, fixes the impacts of associated generation losses on

technical potential to 10%. However, the depletion of wind resource or the reduction in wind speed scales with the total capacity

installed within the deployment. Therefore, the standard approach overestimates the technical potential relative to estimates that

are derived using Weather Research and Forecasting (WRF) models with interactive wind farm parameterizations. Here, we10

test the extent to which these impacts of wind resource depletion on technical potential can be captured by using our KE Budget

of the Atmosphere (KEBA) approach over Kansas(USA) for a range of hypothetical deployment scenarios. KEBA estimates

wind resource depletion impacts by accounting for the kinetic energy (KE) removed by the turbines from the boundary layer

budget. We first evaluate its ability to replicate the numerically projected diurnal variations in wind resource depletion and then

account for the change in technical potential. KEBA captures the projected diurnal variations in to within 5 and 22% during day15

and night, respectively, whereas the standard approach projects no impact. Nighttime variation is underestimated by KEBA due

to stability effects. Overall, KEBA is able to reproduce the WRF simulated technical potential of Kansas within about 10%,

with the WRF potential being around 50% lower than the standard approach. Despite this, the WRF estimated potential of

Kansas remains about 3 to 5 times the total energy consumed in the state in 2018. KEBA is a simple yet adequate approach

to estimating technical potentials, and highlights the wind resource depletion effects that will occur from regional-scale wind20

deployment.
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1 Introduction

Estimates of technical wind energy potential are important for the design of energy transition pathways towards a future

sustainable energy system (Prakash et al., 2019; Ruijgrok et al., 2019; GEA, 2012; IEA, 2021). They are inputs to integrated

assessment models that deploy large scale wind and solar and evaluate the impact of the integration of these variable sources25

into the electrical grid (Eurek et al., 2017). Technical potentials are defined as theoretical estimates of electrical generation from

hypothetical regional scale wind turbine deployments while accounting for areas that are actually available for wind energy

development, wind turbine characteristics and, losses arising from inter-turbine interactions and energy conversion (Hoogwijk

et al., 2004; McKenna et al., 2022; Manwell et al., 2010). The actual area available for wind energy development pertains to that

over which wind turbines can be installed after accounting technical, ecological and social constraints (McKenna et al., 2022).30

Technical potentials pertain specifically to the projected generation from future large scale wind turbine deployments and are

highly policy relevant (McKenna et al., 2022). A significant part of the policy relevance stems from the fact that technical

potentials are significant control on the economic costs of wind energy development (Blanco, 2009; Ragheb, 2017).

These resource potential estimates are especially distinct from the resource estimation performed for wind park planning

and layout. The large scale at which these are estimated, typically spanning thousands of square kilometers with hundreds of35

GWs in deployed capacity, means that the detailed approaches used in wind park planning and layout such as the Weather

Research Forecasting (WRF) (Blahak and Wetter-Jetzt, 2010; Fitch et al., 2012; Volker et al., 2015; Boettcher et al., 2015),

Computational Fluid Dynamical (Wu and Porté-Agel, 2015) and engineering wake models (Katic et al., 1986; Frandsen et al.,

2006; Pedersen et al., 2022) are not employed. The use of such comprehensive, numerical models in energy scenario analysis

is impeded by their need for high performance computing infrastructure and subject matter expertise (Staffell and Pfenninger,40

2016). Thus, the typical approach for estimating technical potential for application in energy scenario analyses and integrated

assessment modelling relatively straighforward in comparison to the more comprehensive approaches mentioned above. In

this analysis, we use the term standard approach to refer specifically to the this approach and not those employed for resource

assessment for wind park planning and layout which is outside the scope of this study.

The standard approach to estimating technical potential is to force a single wind turbine’s power curve with observed or45

modelled time series of hub-height wind speeds. The potential then is a function of regional wind resource or wind speeds,

turbine power curve and the total number of wind turbines within the deployment area (Hoogwijk et al., 2004; Archer and

Jacobson, 2005; Lu et al., 2009; Schallenberg-Rodriguez, 2013; Eurek et al., 2017; Enevoldsen et al., 2019). This approach

differs from those typically employed in high resolution evaluations of wind park planning and layout, primarily, in its han-

dling of energy generation and conversion losses. The standard approach fixes these losses to 10% (Hoogwijk et al., 2004;50

Schallenberg-Rodriguez, 2013; Eurek et al., 2017). This stems from the implicit assumption that large scale wind energy gen-

eration minimally impacts the regional wind resource. This leads to an expectation of a linear relationship between technical

potential and capacity deployed. Further, it is implied that efficiency of the wind turbine deployment measured in terms of the

capacity factor or the ratio of actual to rated wind turbine generation remains constant relative to the size of the deployed capac-

2

https://doi.org/10.5194/wes-2023-82
Preprint. Discussion started: 10 November 2023
c© Author(s) 2023. CC BY 4.0 License.



ity. Therefore, larger deployed capacities at the regional scale with better turbines are expected to always lead to a proportionate55

increase in technical potential(Wiser et al., 2016).

However, meso and synoptic scale simulations of technical potentials from regional scale deployments using numerical

models of the atmosphere like WRF and Global Circulation models show that the standard approach significantly overestimates

technical potential and capacity factors when wind energy is intensively used at large scales (Adams and Keith, 2013; Miller

et al., 2015; Miller and Kleidon, 2016; Volker et al., 2017; Badger et al., 2020; Kleidon and Miller, 2020; Jacobson and Archer,60

2012). These studies highlight that technical potential and capacity factors do not scale linearly or remain constant, respectively,

with the deployed capacity. This sub-linear increase in technical potential and the erosion of the capacity factor results from the

depletion of regional wind resource (Miller et al., 2015; Miller and Kleidon, 2016; Kleidon and Miller, 2020; Kleidon, 2021)

because wind turbines remove kinetic energy (KE) from the boundary layer winds to generate electricity. This effect is borne

out in observation data.65

Wind resource depletion or the reduction in wind speeds behind wind turbine deployments has been observed in a variety

of measurement data from currently operating wind farms (Rajewski et al., 2013; Bodini et al., 2017; Lundquist et al., 2014;

Hasager et al., 2015; Platis et al., 2018; Ahsbahs et al., 2020; Nygaard and Newcombe, 2018; Nygaard et al., 2020). Referred

also to as wakes, wind speed reductions can extend up to 50 km behind operating wind farms (Cañadillas et al., 2020; Lundquist

et al., 2018). The reduced wind speeds interact with and reduce the electrical generation from downstream wind farms (Méchali70

et al., 2006; Schneemann et al., 2020; Maas and Raasch, 2021; Akhtar et al., 2021). Numerical simulations of this phenomenon

also compare reasonably well with the observations (Mirocha et al., 2015; Aitken et al., 2014; Siedersleben et al., 2018;

Fischereit et al., 2021). Thus, it can be assumed that the impact of wind resource depletion on wind energy generation will

persist as the scale of wind turbine deployment is increased and, thus, must be incorporated into energy scenario analyses.

For these to be incorporated in to energy scenario modelling, it is necessary to scale the impacts up to the proposed regional75

deployment scales while balancing the constraints on computational complexity and ease of implementation highlighted by

Staffell and Pfenninger. This means that the key physics that shape the regional wind resource depletion and its impact on

technical potential be understood. For this we need to look at how kinetic energy is generated and transported towards the

surface before it can be extracted by wind turbines.

The winds of the large-scale circulation and KE associated with their mean flow are predominantly generated in the free80

atmosphere by differences in potential energy due to differential solar radiative heating (Peixoto and Oort, 1992; Kleidon,

2021). This KE is transported vertically downwards into the boundary layer, the lowest layer of the atmosphere where most

of the KE is dissipated (Stull, 2009). The turbines extract some of the KE which would otherwise have been dissipated by

surface friction. Since the rate at which KE is transported into the boundary layer is limited, it leads to a fixed KE budget

being available for driving movement within the boundary layer(Kleidon and Miller, 2020). This means that the extraction of85

KE by a large number of wind turbines leads to less KE being available for the motion of the winds. Put another way wind

turbines generate electricity by depleting the boundary layer KE resource. As a result, larger rates of KE extraction from a

fixed KE budget causes slower winds and reduced capacity factors (Miller et al., 2011). This is supported by mesoscale WRF

simulations, which show that technical potentials from onshore deployments larger than 100 km2 are limited to yields of about

3

https://doi.org/10.5194/wes-2023-82
Preprint. Discussion started: 10 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 1. (a) Distribution of wind speeds averaged over a prospective deployment area in Kansas, central US, for daytime (red) and nighttime

(blue) in the absence of wind turbines. (b) The power curve for a Vestas V112 3MW wind turbine used in this study. It does not generate

electricity for wind speeds below the "cut-in" (3 m s−1, solid black line) and above the "cut-out" wind speed (25 m s−1, dotted black line).

Yields vary with the cube of wind speeds below the "rated" wind speed (11 m s−1, stippled black line) but remain at capacity above it.

(c) Deployment yields during daytime (red) and nighttime (blue) for the 5 MW km−2 scenario from an interactive WRF simulation (solid,

"WRF"), and using the standard approach (dashed outlines). WRF estimates that the total deployment yield during the day (WRFday =

63 GW ) is higher than nighttime (WRFnight = 42 GW), while the standard estimate yields higher potentials and the opposite response

(Standardday = 109 GW, Standardnight = 159 GW). Data taken from Miller et al. (2015).
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1.1 W m−2 for very intensive turbine densities (Adams and Keith, 2013; Miller and Kleidon, 2016; Jacobson and Archer, 2012;90

Marvel et al., 2012; Gustavson, 1979; Wang and Prinn, 2010, 2011; Volker et al., 2017), which contrast with standard estimates

ranging from 2-6 W m−2(Jacobson and Delucchi, 2011; Jacobson and Archer, 2012; Lu et al., 2009; Archer and Jacobson,

2005; Edenhofer et al., 2011; Capps and Zender, 2010). At the maximum potential, wind speeds are estimated to slow by 42%,

while capacity factors reduce by ∼ 50% relative to the standard estimate (Miller et al., 2015; Volker et al., 2017). A mean

of 1.1 W m−2 implies electricity generation of ∼ 900 - 1900 TWh yr−1 if all the available area for wind energy in a windy95

area like Kansas (100,000 - 200,000 km−2) is covered with wind turbines. These generation potentials are about a third lower

than the standard expectation of 2000 - 3000 TWh yr−1 (Brown et al., 2016; Lopez et al., 2012). Thus, the standard approach

to technical potential estimation in energy scenario analyses needs to incorporate the effects of wind speed reductions arising

from limitations imposed by the atmospheric KE budgets.

A simple yet physical approach to deriving technical potential estimates that includes the effects of KE removal on wind100

speeds is to constrain the wind speeds and turbine yields with an explicitly defined KE budget of the atmospheric boundary

layer. In this approach, known as the Kinetic Energy Budget of the Atmosphere (KEBA, Kleidon and Miller (2020)), first the

budget available to the deployment is estimated from the sum of the vertical and horizontal KE fluxes over the deployment. The

vertical component represents the KE input into the boundary layer from the free atmosphere while the horizontal component

represents the boundary layer wind flow. Both rates can be estimated from wind speed observations, but also depend on105

boundary layer height and surface friction. The reduction in wind speeds is estimated by accounting for the removal of KE

from the budget. The slower wind speeds are then used to estimate turbine yields(Kleidon and Miller, 2020). This approach

has previously been shown to compare well against numerical weather forecasting simulations of wind turbine deployments in

idealized onshore weather conditions(Kleidon and Miller, 2020) and in real weather conditions in offshore areas in the German

Bight of the North Sea (Badger et al., 2020). The goal here is to test this approach further in a realistic onshore region to110

understand the limits of its application for it to be used in technical potential estimation for energy scenario analyses.

In this study, we will use this approach to evaluate a seemingly counter-intuitive result (Fig. 1) reported by previous numer-

ical simulations of hypothetical large-scale wind turbine deployment scenarios in Kansas, central US, under realistic weather

conditions (Miller et al., 2015). These simulations showed that wind speeds are typically 40% lower during the day than at

night (Fig. 1a), but overall daytime electrical yields were about 50% higher than nighttime (Fig. 1c). This is an important result115

to evaluate with KEBA since the standard approach would estimate the opposite, higher nighttime yields due to higher wind

speeds. The result can be understood when one accounts for the effect of lower boundary layer heights and reduced mixing

at night, which reduces the size of the kinetic energy budget (Fig. 2). As a result the KE removal by the wind turbines has a

stronger effect on wind speed reductions at night (Fitch et al., 2013a; Abkar et al., 2015). During the day, because the KE bud-

get is larger, this depletion effect is proportionally smaller. Solar insolation drives vertical convection and the vertical growth120

of the boundary layer, resulting in higher downward replenishment of KE from the free atmosphere and a larger reservoir of

KE in the boundary layer. The absence of solar-driven convection at night leads to stratified or stable conditions that restricts

vertical KE replenishment. This leads to greater reduction in wind speeds at night compared to the the day, and therefore lower
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Figure 2. Differences between daytime (left) and nighttime (right) boundary layer conditions. Gray downward arrows represent the down-

ward flux of kinetic energy from the free atmosphere into the boundary layer. The red and blue arrows represent the horizontal kinetic energy

in- and outflow (from left to right) through the boundary layer volume bounding the regional scale wind turbine deployment (dotted box)

during day and night, respectively. The free atmosphere represents the part of the atmosphere in which large-scale motion is generated in the

absence of friction.

yields, despite higher incoming, undisturbed wind speeds. Thus, the differences in boundary layer characteristics during day

and night will affect wind resource potentials of regional deployments of wind turbines.125

Our goal in this paper is twofold: (1) to evaluate the effect just described to demonstrate the importance of a broader

accounting of the atmosphere in technical potential estimation, and (2) to quantify the role of KE removal in shaping technical

potentials at the regional scale. To accomplish our first goal, we will explicitly evaluate this difference between day and night

by evaluating separate daytime and nighttime budgets in the KEBA approach. This is accomplished by prescribing different

boundary layer heights in KEBA, which changes the size of the KE resource. Note that the effect of reduced turbulent mixing130

within the boundary layer is not accounted for. To accomplish our second goal, we use the scenarios of the previously published

study for Kansas (Miller et al., 2015). We use the wind speeds of their control simulation without deployment to evaluate

wind resource potentials using the standard approach as well as KEBA, and compare these to the estimates derived from the

interactive model simulations.
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Table 1. Turbine characteristics of a Vestas V112 3 MW turbine, as in Miller et al. (2015).

Description Symbol Value Units

Hub-height Hhub 84 m

Rotor diameter D 112 m

Rotor area Arotor 9852 m2

Rated power Pel,max 3.075 MW

Cut-in wind speed vmin 3 m s−1

Rated wind speed vrated 11.5 m −1

Cut-out wind speed vmax 25 m s−1

Power coefficient (max.) ηmax 0.42 -

In the following section, we provide a brief description of the KE budget approach, the turbine deployment scenarios, and135

the model parameters used. We then present the KE budgets diagnosed from the simulations for the different scenarios, the

reductions in wind speeds with greater wind energy use, and describe the effects on yield estimates and capacity factors. We

also evaluate the importance of accounting for different boundary layer heights for the estimates. After a brief account of

limitations, we then re-evaluate the wind resource potential and compare it to previously-published estimates (Lopez et al.,

2012; Brown et al., 2016). We close with a discussion and conclusions.140

2 Methods

We use the wind speeds, scenarios, and yield estimates from Miller et al.’s WRF simulations (Miller et al., 2015). We use

these simulations as the reference in which the effects of wind turbines on the atmosphere are fully accounted for, and refer

to the yield estimate as the "WRF" estimate. The simulations were performed with the WRF-ARW v3.3.1 regional weather

research and forecasting model (Skamarock et al., 2008) to simulate different levels of hypothetical deployments of wind145

turbines over 112 · 103 km2 in Kansas (Central US) using atmospheric conditions from May 15 to September 30, 2001. This

period is considered to be climatologically representative for this region (Trier et al., 2010). The deployment area is similar

to that assumed in previous resource evaluations (Lopez et al., 2012; Brown et al., 2016). Wind turbines are parameterized as

elevated momentum sinks and sources of additional Turbulent Kinetic Energy (TKE) (Fitch et al., 2013b). The large, idealized

deployments simulated a range of installed turbine capacity densities from 0.3125 to 100 MW km−2 which were equally150

distributed within the expansive wind farm area. Here we restrict the comparison to a maximum installed capacity density of

10 MW km−2, yielding a total installed capacity of 35 GW to 1.1 TW over the region. The turbine characteristics and wind

park scenarios, as well as the symbols used in the following, are summarized in Tables 1 and 2.

The "standard" and "KEBA" yield, or electricity, estimates were then calculated using hourly time series of wind speeds,

vin, from the WRF Control simulation, i.e., without any wind turbines present. The "standard" estimate replicates the standard155

approach used in existing policy side evaluations. It is based on the power curve of the turbine, the number of turbines in the
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Table 2. Scenarios of large-scale deployment of wind turbines in Kansas, Central US, evaluated here. Based on (Miller et al., 2015).

Description Symbol Value Units

Width W 360 · 103 m

Length L 312 · 103 m

Capacity density - 0.3125− 10 MW km−2

Number of turbines N 11.7× 103 - 3.7× 105 -

Deployment area Afarm 1.12× 1011 m2

scenario, and the wind speeds, vin. The electricity yield of the standard approach, Pel,std, is estimated from the turbine’s power

curve (Fig. 1b) by

Pel,std = N ·min(Pel,max,
ρ

2
· ηmax ·Arotor · v3

in) (1)

where N is the number of turbines, Pel,max is the rated capacity of the turbine, ρ is the air density (we used ρ = 1.2 kg m−3),160

ηmax is the maximum power coefficient, and Arotor is the rotor-swept area, and vin is the wind speed from the WRF Control

simulation (Table 1). This estimate assumes that the effects of the KE removal by the wind turbines is fully compensated for

by the inter-turbine spacing, which allows wind speeds and capacity factors to be unaffected by presence of a wind turbine

deployment in the region.

The "KEBA" estimate is derived from the KEBA model (Kleidon and Miller, 2020) augmented with information about day-165

and nighttime boundary layer heights derived from the WRF simulations. The budgeting of the KE fluxes of the boundary layer

over the deployment region results in a reduction factor fred. This factor encapsulates the effect of KE removal from the wind

by the turbines on wind speeds and turbine yields. In KEBA, the wake loss term is fixed as half of the deployment yield after

the work of Corten(Corten, 2001). First, fred is applied to the WRF control wind speeds (vin) to quantify the reduction in the

wind speeds (veff).170

veff = f
1
3

red · vin (2)

Then, veff is applied to the standard estimate (Equation 1) instead of vin to derive the KEBA estimate of deployment yields

(Pel,keba). This results in the following expression for deployment yield (see Kleidon and Miller (2020) for detailed derivation)

Pel,keba = N ·min(Pel,max,fred ·
ρ

2
· ηmax ·Arotor · v3

in) (3)

The reduction factor fred is represented by175

fred =
H + 2Cd ·L

H + 2Cd ·L + 3
2 · N

W · ηmax ·Arotor
(4)
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for wind speeds vin above the cut-in velocity vmin and below the rated velocity vrated when the turbine output is proportional

to the incoming wind speeds (2b); and

fred = 1− 3
2
· 1
H + 2Cd ·L

· H
L
· N ·Pel,max

Jin,h
(5)

for vin greater than the rated velocity vrated, but below the cut-out velocity, vmax. For this case, fred is computed only to180

simulate the effect of wind speed reduction for comparison. Note that the case of fred = 1, KEBA represents the standard

approach.

In these equations for fred, H is the height of the boundary layer (Table 3), Cd is the aerodynamic drag coefficient of the

surface (Table 3), L and W the length and width of the deployment (Table 2), and Jin,h the horizontal kinetic energy flux in the

boundary layer (ρ/2 · v3
in ·WH). The values for daytime and nighttime mean boundary layer heights are provided in Table 3.185

They were derived by comparison of the vertical velocity profiles of the WRF simulations with and without the wind turbine

deployment, yielding mean values of about 2000m (day) and 900m (night) (see Appendix A).

The kinetic energy budgets for the different scenarios are diagnosed from the time series of the velocity vin and fred and

then averaged, with the different terms estimated as in Kleidon and Miller (Kleidon and Miller, 2020). The budget is defined

for the boundary layer air volume enclosing the deployment of wind turbines, given by the dimensions W and L (Table 2),190

as well as the height of the boundary layer H (Table 3). The magnitude of the budget is set by the influx of kinetic energy,

which is determined by the horizontal (Jin,h = WH · ρ
2
v3

in) and vertical (Jin,v = WL ·ρCdv
3
in) influxes of kinetic energy into the

volume. This energy is then either dissipated by surface friction, used for electricity generation, dissipated by wake turbulence,

or exported downwind.

Table 3. Atmospheric and environmental specifications needed for the KEBA estimate.

Description Symbol Value Units Comments

Boundary layer height-Day Hday 2000 m Mean, fixed

Boundary layer height-Night Hnight 900 m Mean, fixed

Drag coefficient Cd 0.001 - Mean, fixed

3 Results & Discussion195

We posited that the KE budget is central to capturing the reduction in wind speeds with increased installed capacity to under-

stand the difference between daytime and nighttime yields as shown in Fig. 1, and quantifying the resulting technical potential.

Therefore, we start by showing the KE budgets during day and night for the different scenarios, the regional reduction in wind

speeds, before we describe the estimated yields and capacity factors. We then perform a sensitivity analysis to boundary layer

height to evaluate the effects of the day-night differences and compare these to the general effect of reduced wind speeds with200
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greater installed capacities. We end this section with a discussion on the limitations, the resulting resource potential estimate,

and the broader implications.

3.1 Kinetic Energy budgets

The KE budget of the boundary layer volume enclosing the deployment is central to KEBA estimates, with the magnitude of

the budget defining the wind speed reductions and limiting deployment yields. The horizontal influx accounts for a larger share205

of the KE budget than the vertical input: 76% during daytime and 60% during nighttime. The combination of lower daytime

wind speeds (vday,mean = 6.8 ms−1) and higher boundary heights (Hday = 2000m) and higher nighttime wind speeds (vnight,mean

= 9.5 m s−1) and lower boundary layer heights (Hnight = 900m) lead to similar influxes of kinetic energy of about 150 GW in

the mean. The 150 GW budget sets the overall magnitude of the bars in Fig. 3(a), with the distribution among the different

terms changing due to the different deployment scenarios.210

Within the boundary layer volume, KEBA determines the partitioning between the KE influx into frictional dissipation (red),

wind turbine yields (dark blue) and wake losses (light blue), and the downwind export of KE out of the deployment volume

(light red). KE extracted by wind turbines powers electricity generation (Pel,tot), with the wakes being dissipated by the mixing

behind the turbines (Dwake). KE extraction consumes KE that would have otherwise been dissipated at the surface by friction or

exported downwind. Thus, the increase in capacity density increases yields and wake losses at the expense of KE in downwind215

export and surface friction. Since individual turbine yields depend on wind speeds, higher nighttime mean wind speeds lead

to higher per turbine yield compared to the daytime. Consequently, about 2% more KE is extracted by the turbines from the

budget at night than during the day (Fig. 3(a)).

3.2 Wind speeds

The depletion of the KE budget with increased wind turbine deployment is associated with a reduction in wind speeds. This220

reduction is shown in Fig. 3(b), which shows how the mean wind speed over the deployment region (veff) reduces with the

amount of KE extracted by the wind turbines (in W m−2 of surface area). We chose to use the yield on the x-axis rather

than installed capacity, because in this way, it shows that wind speed reductions are almost linear with the amount of KE

extracted. Figure 3(b) shows these wind speed reductions for the WRF estimate (red) and the KEBA estimate (blue), while the

standard approach (grey) assumes no change in wind speeds. The rates of reduction can be quantified by the slope, m, of the225

linear regressions (dashed lines). Nighttime wind speed reductions (mKEBA,night =−6.21) are almost twice as strong as during

the day (mKEBA,day =−3.89). These reduction rates are similar in the WRF estimates (mwrf,night =−10.53,mwrf,day =−3.15).

Note that despite the faster rate of reduction in nighttime means, the wind speeds are nevertheless higher in magnitude than

during the daytime. Compared to the WRF simulations, KEBA slightly overestimates daytime and underestimates nighttime

wind speeds. Thus, the difference in daytime and nighttime wind speed reductions can be directly linked to the lower boundary230

layer height used in the nighttime KE budget in KEBA.
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Figure 3. (a) Daytime (left) and nighttime (right) KE budgets, with total yields (dark blue), wake loss (light blue), frictional dissipation (red)

and the downwind export (light red). (b) Estimates of wind speeds over the deployment region against the KE extracted by the wind turbines

for the "standard" (grey), "WRF" (red) and "KEBA" (blue) estimates. (c) Wind turbine yields as a function of installed capacity density

using a logarithmic scale for the “standard" (grey), "WRF" (red) and "KEBA" (blue) estimates. (d) Capacity factors against the rate of KE

extraction for the "standard" (grey), "WRF" (red) and "KEBA" (blue) estimates. Dashed lines denote linear fits, with m values providing the

slopes obtained from the linear regression.

3.3 Deployment yields

Figure 3(c) shows the variation in the wind turbine yields with increasing installed capacity density. Since KEBA models yields

as a function of the reduced wind speeds (veff) rather than the prescribed Control wind speeds (vin), its estimates (blue) are

lower than the standard estimates (gray). KEBA estimates lower additional increments in yields with the increase in installed235

capacity during both, day and night. Thus, the diminishing increments in yields with added turbines can be attributed directly

to the reduced wind speeds shown in Fig. 3(b). While KEBA estimates of nighttime yields are higher than day, WRF estimates

of yield (red) are lower at night than during the day. KEBA captures the trends in yields increments but does not estimate

the lower-than-daytime yields at night. It underestimates WRF’s mean daytime estimates by 8 - 15% while overestimating

nighttime yields by 20 to 75%. The standard estimate overestimates yields by up to 180% during daytime and up to 600%240

at night compared to the WRF estimates. The bias in KEBA estimates of yield compared to WRF can be attributed to higher

nighttime KEBA wind speed estimates.

3.4 Capacity Factors

The lower increments in yields with increased installed capacity indicates that more turbines within the deployment region

lowers the mean efficiency of individual turbines. This can be shown by directly looking at the capacity factors, as displayed245
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in Fig. 3(d). Both, KEBA (blue) and WRF (red) estimates show that increasing KE extraction leads to lower capacity factors.

The standard estimate (grey), however, assumes no change because no reduction in wind speeds is considered. Again, as in

the case for wind speeds, the capacity factors reduce almost linearly with increasing KE extraction. The slopes of the linear

regression show that turbine efficiencies reduce almost twice as fast during the night (mKEBA,night =−.32) than during the day

(mKEBA,day =−.22), which is similar to the WRF estimates (mwrf,night =−.48) and (mwrf,day =−.20). While KEBA, again,250

underestimates the strength of the reduction at night, the close match of KEBA estimates with the WRF estimates highlights

that the removal of KE from the boundary layer is the main effect that results in reduced turbine efficiencies and wind turbine

yields. KEBA is able to capture a large part of this trend because of the separate definition of day and night KE budgets as

opposed to a single KE budget for the whole day.

3.5 Role of diurnal variations in boundary layer height255

To evaluate how important the variation in boundary layer height is for estimating yields between day and night, we performed

an additional estimate with KEBA in which the boundary layer height is fixed to the mean value of H = 1268m (as in Miller

et al. (2015)). This comparison is shown in Fig. 4. Although the KEBA estimate with a single mean boundary layer height

represents a substantial improvement over the standard estimate, it shows a greater discrepancy to the WRF estimate. Nighttime

yields are overestimated by 20 to 107% while daytime yields are underestimated by 12 to 31%. The addition of diurnal260

variations in boundary layer height improves the estimates relative to WRF estimate, reducing the daytime bias to 10 to 17%

and nighttime bias to 20 to 60%. The improvement is more pronounced for the nighttime conditions.

Defining different day and nighttime budgets separately is thus an improvement over neglecting this variation. It captures

more of the underlying mechanism because the daytime solar insolation drives convective motion and higher mean boundary

layer heights. The absence of these motions at night lead to much lower boundary layer heights. The difference in the amount265

of mixing between day and night differentially affects the wind speeds and deployment yields during day and night (Fitch

et al., 2013a; Abkar et al., 2016). With all other variables in the KEBA model being fixed, a fixed boundary layer height in

KEBA results in a 58% lower daytime and 30% higher nighttime KE budget compared to a variable boundary layer height.

Although the bias is not entirely compensated for by including the varying boundary layer heights in the KEBA estimates, this

information clearly reduces the bias in the direction of the WRF estimate. However, the effect of these diurnal variations at the270

daily 24 hour scale is relatively muted. This is because the higher day and lower nighttime generations largely compensate for

each other implying that it is mainly the role of KE removal that needs to be incorporated in the policy focused estimation of

technical potentials.

3.6 Limitations

Although KEBA captures day and night trends produced by WRF better than the standard approach, it is unable to reproduce275

the lower-than-day, nighttime wind turbine yields from WRF. This is likely because KEBA assumes a well-mixed boundary

layer volume that is characterized by one effective wind speed, veff. This assumption is valid during the day when the convec-

tive boundary layer is well mixed. At night, however, stable conditions prevent vertical mixing because the insolation-driven
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Figure 4. Daytime (left) and nighttime (right) total yields estimated by WRF (red ⃝), KEBA with (blue ⃝) and without (blue □ ) diurnal

variations in boundary layer height, and the standard approach (grey ⃝).

convective motions are absent. The intensity of mixing within the boundary layer is thus an additional control on the rate at

which the KE deficit behind wind turbines is replenished within the boundary layer. The less-mixed nighttime boundary layer280

slows the replenishment rate, leading to a steeper decline in wind speeds, capacity factors and wind turbine yields (Fitch et al.,

2013a; Abkar et al., 2016).

This interpretation is supported by observations of velocity deficits, or wakes, behind operating offshore wind farms that

persist longer when the vertical mixing is lower (55km) than when it is higher (35km)(Cañadillas et al., 2020; Christiansen

and Hasager, 2005). Longer wakes during less mixed conditions imply lower downward replenishment than better mixed285

conditions, leading to slower recovery of wind speeds.

Reported simulated day- and nighttime mean wind speed reductions of 10 and 30% (Fitch et al., 2013a) from Kansas are

similar to the estimates of Miller et al. of 17% and 43%. WRF estimates for wind turbine yields during day ( 42% lower than

standard) and night ( 73%) are consistent with other simulations of idealized deployment yields over a full diurnal cycle which

found that reductions were twice as high at night (57%) than daytime (28%)(Abkar et al., 2016). Thus, it is likely that the290
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differences between WRF and KEBA could be reduced by accounting for stability effects, which could be taken up as a part

of future work.

Despite this limitation, KEBA represents a significant improvement over the standard approach, especially with greater

installed capacities over the region. Its nighttime yield estimates are within a factor of 2 of the WRF estimate. The standard

approach overestimates WRF yields by up to 6 times. Our results highlight the critical role of boundary layer information, in295

terms of height and mixing/stability, in determining KE budgets that shape the extent to which wind speeds, turbine efficiencies

and deployment yields are affected by the removal of KE. Thus, the KEBA estimate appears to be a suitable tool to evaluate

Kansas’s technical wind energy potential.

3.7 Reevaluating Kansas’s technical potential

Table 4. Comparison of previously published estimates of the technical wind energy potential of Kansas by (Lopez et al., 2012; Brown et al.,

2016) with the estimates from this study. For the comparison, we used the scenarios with installed capacity densities of 2.5 and 5 MW km−2,

which are close to these previous estimates. A 15% array efficiency reduction was applied to the Standard estimate.

Lopez et al. (2012) Standard KEBA WRF

Deployment area (km2) 190 000

Capacity density (MW km−2) 5 5 5 5

Capacity factor (%) 37 41 21 19

Yield (W m−2) 1.86 2.03 1.05 0.95

Technical potential (TWh yr−1) 3101 3379 1748 1581

Difference (%) +9.0 -43.6 -49.0

Brown et al. (2016) Standard KEBA WRF

Deployment area (km2) 157 890

Capacity density (MW km−2) 3 2.5 2.5 2.5

Capacity factor (%) 45 41 31 27

Yield (W m−2) 1.36 1.02 0.75 0.68

Technical potential (TWh yr−1) 1877 1410 1037 941

Difference (%) -24.9 -44.8 -49.9

To illustrate the relevance of these KE removal effects, we compare our estimates to the existing technical potentials for300

Kansas (Lopez et al., 2012; Brown et al., 2016). This comparison is summarised in Table 4. Previous studies estimate potentials

of 3101 TWh yr−1 and 1877 TWh yr−1 for capacity densities of 5 and 3 MW km−2 over 1.9 · 105 km2 and 1.6 · 105 km2,

respectively, which include a fixed, 15% loss in array efficiency. This results in capacity factors of 37% and 45%. Expressed in

terms of yields, these estimates imply 1.86 W m−2 and 1.36 W m−2 of generated electricity per unit surface area. Multiplied

by the deployment areas, these yield technical potentials of 3101 TWh/a and 1877 TWh/a for Kansas in these previous studies.305
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We first compare our standard estimate to these resource estimates, using our scenarios with installed capacity densities of

5 and 2.5 MW km−2. For these scenarios, the yield is on average 2.39 W m−2 and 1.19 W m−2, with a capacity factor of

48%. We reduce these estimates by the same 15% loss, which reduces the yields to 2.03 W m−2 and 1.02 W m−2 with a 41%

capacity factor. Multiplied by the deployment areas, these yield technical potentials of 3379 TWh/a and 1410 TWh/a, which

are within ±25% of the published estimates.310

KEBA estimates lower yields of 1.05 W m−2 and 0.75 W m−2 for the two scenarios, with capacity factors reduced to 21%

and 31%, respectively. These reductions compare well with the WRF estimates of 0.95 and 0.68 W m−2 and capacity factors

of 19% and 27% from Miller et al.. Multiplied by the deployment areas, these yield technical potentials of 1748 TWh/a and

1037 TWh/a using KEBA, and 1581 TWh/a and 941 TWh/a using WRF. These estimates for the technical potentials are lower

by 40-50% due to the reductions in wind speeds.315

Wind speed reductions are thus likely to play a substantial role in lowering regional-scale technical resource potentials than

those that use prescribed wind speeds. Note that the potential is nevertheless 3 to 5 times the total energy consumed by the

state in 2018 (kan (2018)).

3.8 Implications for technical wind energy potential estimation

The reduced technical potentials derived using KEBA are consistent with previous climate (GCM) and weather modelling320

(WRF) estimates. This is shown in Fig. 5 in which the variation of technical potential in Kansas is plotted against the capacity

density deployed. KEBA estimates are represented in blue, standard estimates in black and numerical estimates are shown in

red. Broadly, the black colour represents the exclusion of KE removal effects while blue and red represent partial (KEBA) and

complete inclusion (WRF and GCM), respectively. The stars represent results from this study while the black square (Lopez

et al., 2012) and circle (Brown et al., 2016) represent previously published estimates of Kansas’s potential. The black dotted325

lines represent the variation in potential linked to the standard estimates from this study (black stars (Miller et al., 2015)). The

red stars (Miller et al., 2015) and pentagons (Volker et al., 2017) represent previous WRF-based estimates of Kansas. The dotted

red line shows the peak average potential from large deployments in Central USA as estimated by Adams and Keith (Adams

and Keith, 2013). Similarly, the red circles (Jacobson and Archer, 2012) and squares (Miller and Kleidon, 2016) represent the

trends over global land (26% of global area) derived using GCMs. The blue band highlights the range of peak average global330

potentials estimated previously (Miller et al., 2011; Jacobson and Archer, 2012; Miller and Kleidon, 2016; Marvel et al., 2012;

Wang and Prinn, 2010, 2011; Gustavson, 1979). The red circle with a blue outline represents an observations - based study

of generation from currently operating onshore wind farms in the Central US(Miller and Keith, 2018). Numerical estimates

in Kansas show that beyond 1.5 MW km−2 of deployed capacity in Kansas leads to 50% lower potential (red) compared

to the standard estimates. Even though potential increases with increasing capacity deployment, it is not linear as implied by335

the standard estimates. This sub-linear increase with installed capacity shows that capacity factors reduce with the increasing

deployment. All the numerically simulated estimates display similar variation in potential with capacity and culminate near an

average peak of 1.1 W m−2. This variation is also consistent with global estimates over land, albeit higher, because Kansas

is winder than most places(Miller et al., 2015). In line with these estimates, Miller and Keith (Miller and Keith, 2018) showed
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that the actual yield from an average estimated onshore US capacity density of 2.7 MW km−2 is around 0.90 W m−2. The340

agreement between estimates from independent numerical modelling studies and relevant observational data analysis points

to the robustness of this trend. The variation in KEBA estimates (blue) is consistent with these trends. Although the match

between KEBA and the numerical estimates is not exact, it highlights the significance of the effects of KE removal effects on

technical potential.

Figure 5. Technical potentials per unit surface area plotted against the capacity density and number of turbines (x-axis). Black symbols

represent standard estimates (No KE removal), while red symbols represent meteorological estimates (With KE removal). Blue symbols

represent the KEBA estimates from this study. The blue band represents the range of average peak global potentials (Miller et al., 2011;

Jacobson and Archer, 2012; Miller and Kleidon, 2016; Marvel et al., 2012; Wang and Prinn, 2010, 2011; Gustavson, 1979). The red dotted

line represents the peak average potential of Kansas (Adams and Keith, 2013) while the dotted lines show the assumed capacity factors

without accounting for the removal of KE. Existing estimates of the Kansas resource potential are shown in black filled symbols(Brown

et al., 2016; Lopez et al., 2012).The red circle with the blue outline shows an observation-based estimate (Miller and Keith, 2018)

The comparison in Fig. 5 shows that the removal of KE is the predominant physical influence which shapes the technical345

potential of Kansas. The close agreement between KEBA, which only accounts for KE removal effects, and the WRF trends,
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which includes effects arising from both KE removal and stability, highlights the the role of the KE removal as the predominant

influence on technical potentials. The remaining difference indicates the secondary role of stability or the degree of mixing in

the boundary layer.

Including just the KE removal effect leads to a significant improvement in estimates over the standard estimates. Although350

diurnal variations in stability lead to variations in wind speeds reductions, yields and capacity factors during day and night, the

effect of these on the estimated technical potential is marginal over the whole time period. Including additional boundary layer

information into KEBA improves the agreement during day and night time but is unable to completely capture stability effects.

Nevertheless, KEBA still provides a straightforward physical framework through which the role of different physical influ-

ences on the resource potential, in this case diurnal variations, can be better understood and quantified.355

The reduced technical potentials and capacity factors significantly affect the economic potential of wind energy. This is

commonly considered by evaluating the economic cost of wind energy using the Levelised Cost of Energy (LCOE) (Ragheb,

2017; Blanco, 2009). We use the estimates from above and plot these in terms of a relative increase in the LCOE in Fig. 6.

In the standard approach, based on its assumption of constant wind speeds, standard capacity factors remain constant while

technical potential increases linearly. A doubling of capacity leads to a doubling of the potential. To estimate LCOE based on360

standard estimates, we assume that cost of wind energy is only a function of the number of turbines. Then, the LCOE becomes

an inverse function of the capacity (see supplementary materials for details). Thus, there is no change in the standard LCOE as

capacity factors remain unchanged (gray stippled line).

In the case of WRF (red circles) and KEBA (blue squares), however, technical potentials increase sub-linearly (Fig. 6a)

and the capacity factors reduce (Fig. 6b). Each doubling of turbines from the lowest scenario to the 2.5 MW km−2 scenario365

leads to an average of 70 - 75% stepwise increments in potential coupled with an average of 11 - 14% stepwise reduction in

capacity factors. Each doubling in capacity beyond this leads to average stepwise increment of 27 - 31% in potential coupled

with average reductions in capacity factors of 35 - 40%. Since we assumed that LCOE is only inversely related to capacity

factor, reductions in them lead to increases in LCOE, relative to the standard LCOE estimate. Thus, KEBA and WRF lead to

estimates of LCOE that are on average 80 - 120% higher than the standard estimates at an installed capacity density of 5 MW370

km−2.

This increase in LCOE due to KE removal remains unaccounted for in policy evaluation because the effect of KE removal on

technical potentials and capacity factors is implicitly neglected in the standard approach(Wiser et al., 2016). It should be noted

that although we present a simplified illustration, even a detailed LCOE calculation is likely to show similar trends given that

LCOE values are highly sensitive to variations in capacity factors (Blanco, 2009). Thus, the reduced potentials arising from375

KE removal have a significant impact on LCOE which need to be explicitly evaluated in policy evaluations.

4 Conclusions

We conclude that the KE removal effect is the predominant physical influence that shapes technical wind resource potentials at

the regional scale. Although day- and nighttime boundary layer heights and stability conditions affect the technical potential, it
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Figure 6. (a.) Variation in WRF(red ⃝) KEBA (blue □) and standard (gray stippled lines) estimates of technical potential,(b.) capacity

factors, and (c.) % change in the Levelised Cost of Energy (LCOE) relative to the standard LCOE estimate plotted as a function of capacity

densities (bottom) and number of turbines deployed (top).

is the removal of KE from the wind that, primarily, shapes the reduction in wind speeds and capacity factors. It leads to reduced380

potentials compared to the standard approach that have a significant impact on the economic potential of wind energy at larger

scales.

These impacts need to be assessed in policy evaluations of wind energy and the energy transition. For this KEBA is a

viable alternative to the standard approach because it is simple to implement (Kleidon and Miller, 2020) and accounts for the

effect of the key atmospheric control on technical potentials. This is not to negate the use of more physically comprehensive,385

numerical methods like WRF and GCMs in policy analyses but to enable energy scenario modellers without a background in
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meteorology to be able to incorporate the key physics without significantly increasing their models’ computational complexity.

The heavy computational requirements associated with physically accurate descriptions of the atmospheric circulations have

been reported to inhibit their widespread incorporation into policy side evaluations (Staffell and Pfenninger, 2016).

Lastly, despite these detrimental effects at larger deployment scales, KEBA’s estimates agree with previous research that has390

shown that wind energy is an abundant and renewable resource that can be harvested to meet a significant part of the future

energy demand through efficient, large scale deployment of wind turbines (Jacobson and Archer, 2012; Volker et al., 2017).

Code and data availability. Code and data related to this analysis is available through Max Planck Society’s Open Research Data Reposi-

tory(EDMOND). The associated doi is : https://doi.org/10.17617/3.78

Appendix A395

A1 Determining boundary layer heights for initialising KEBA

The KEBA model estimates park yield and mean wind speed reduction through the application of conservation of energy ((Klei-

don and Miller, 2020)). The kinetic energy (KE) generated in the atmospheric boundary layer is balanced by that consumed by

the wind turbines within the wind park and its wake, dissipated at the surface, and that which powers the remnant wind. The KE

conservation is applied to a hypothetical boundary layer volume which encompasses the wind turbine deployment and is math-400

ematically represented as Jin,v +Jin,h = Pel,keba+Pwake+Dsurface+Jout,h.The left hand side of this equation describes the

horizontal and vertical flux of KE in to the boundary layer volume while the right hand side describes how this is partitioned

within the volume. The vertical and horizontal KE fluxes into the volume can be expanded in to Jin,v = WL · ρCd · v3
in and

Jin,h = WH.
ρ

2
· v3

in.

Figure A1. Day and night time wind vertical wind speed profiles estimated by Miller et al. (2015) which show that mean day-time boundary

layer height is 2000m whereas that at night is 900m
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These expressions show that the KE budget available to the wind turbine deployment, is dependent on its geometry (cross-405

wind width W and downwind length L) and the height of the atmospheric boundary layer(H). In our analysis, the geometry of

the deployment is fixed, therefore the only control on the KE budget is the boundary layer height. Changes in boundary layer

height affect the horizontal input of KE flux (Jin,h). In line with the general definition of the atmospheric boundary layer as

the layer which responds quickly to changes in surface forcing (Stull (2009)), the boundary layer from a KE perspective can

be also defined as a layer, the kinetic energy content of which responds to changes in surface forcing i.e presence of large wind410

turbine deployments. Then the boundary layer height can be understood as the maximum height, up-till which the effects of

kinetic energy removal by the turbines can be observed. Since the extraction of KE reduces mean wind speeds, changes in

mean wind speeds induced by the turbines can be used estimate this height.

The mean wind speeds over the region of interest, Kansas in this case, were extracted by Miller et al. (2015) from their

WRF simulations. Mean wind speeds were estimated per vertical model level over Kansas for the time period of simulation.415

Such mean wind speed estimates were computed for all WRF simulations i.e those without wind parks (CTRL) and those

with (0.3125− 100MWi · km−2). These mean wind speeds from the different models when plotted against model height (m)

highlight the vertical variation of mean wind speeds or the vertical wind speed profiles. These are plotted for day and night

separately in Fig. A1. In both the plots, the vertical wind speed profiles for the CTRL simulation represent the background

circulation in the absence of any wind turbines and hence represent the undisturbed circulation. Vertical wind speed profiles for420

other simulations deviate from the CTRL trend because turbines extract KE from the wind speeds, thus slowing them down.

The larger the number of turbines within the wind park, the greater is the deviation from the CTRL or the undisturbed trend.

The mean day and night boundary layer heights for initialising the KEBA model are then those at which the vertical profiles

derived from simulations with wind parks realign themselves with the undisturbed trend. Using this approach Miller et al 2015,

estimated the day-time boundary layer height to be 2000m and the night-time boundary layer height to be 900m.425

A1 Wind speed reductions

Here we tabulate (Table S1) the mean wind speed data simulated by Miller et al. (2015) without any wind parks or control

(CTRL), and with the impact of wind parks with a range of turbine densities (0.3125− 10MWi km−2) split by day and night.

Along with it we also provide the mean wind speed reductions estimated by KEBA with different day and night mean boundary

layer heights.430

A1 Park yield and capacity factors

This section contains tables containing information about park yields and capacity factors estimated by Miller et al. (2015)

(WRF) and by us using the standard approach and the 2 different implementations of KEBA i.e with a single boundary layer

height (KEBA single) and another with 2 different average heights (KEBA variable) for day (2000m) and night(900m) for

all the capacity density scenarios simulated considered in (0.3125 - 10 MW km−2). Tables S2 and S3 contain the data split435

between day and night time, respectively, whereas Table S4 contains the undifferentiated data.
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Table A1. This table contains shows wind speed predictions by WRF and KEBA split by day and night. The column titled "standard"

represents the CTRL wind speeds i.e with out the impact of reduced wind speeds. Since the standard approach predicts no change to mean

wind speeds despite removal of kinetic energy. Thus day and night winds speeds remain constant and same as the CTRL wind speeds.

Capacity Density Standard Day WRF Day KEBA Day Standard Night WRF Night KEBA Night

MWi km−2 m s−1 m s−1 m s−1 m s−1 m s−1 m s−1

0.3125 6.85 6.96 6.85 9.54 8.45 9.22

0.625 6.85 6.86 6.67 9.54 7.86 8.91

1.25 6.85 6.57 6.40 9.54 7.00 8.35

2.5 6.85 6.27 5.96 9.54 6.29 7.49

5.0 6.85 5.65 5.37 9.54 5.39 6.43

10.0 6.85 4.86 4.67 9.54 4.40 5.36

Table B1. day-time: This table shows all the capacity density scenarios modelled, associated number of turbines, park yields (WRF) mod-

elled by Miller et al. (2015). It also shows the park yields estimated in this study using the standard approach, KEBA with a single boundary

layer height (KEBA single) and KEBA with different average bay and night-time boundary layer heights (KEBA variable). The computed

capacity factors, represented as fractions, from all the approaches are also included.

Capacity

Density

Number

of turbines
WRF Standard

KEBA

(fixed)

KEBA

(variable)

WRF

Capacity

Factor

Standard

Capacity

Factor

KEBA

fixed

Capacity

Factor

KEBA

variable

Capacity

Factor

MWi km−2 - We m−2 We m−2 We m−2 We m−2 - - - -

0.3125 11700 0.06 0.06 0.06 0.06 0.20 0.19 0.19 0.18

0.625 23400 0.12 0.12 0.10 0.11 0.19 0.19 0.16 0.17

1.25 46800 0.22 0.24 0.18 0.19 0.17 0.19 0.14 0.15

2.5 93600 0.38 0.49 0.28 0.32 0.15 0.19 0.11 0.13

5.0 187200 0.56 0.97 0.39 0.47 0.11 0.19 0.08 0.09

10.0 374400 0.69 1.94 0.48 0.60 0.07 0.19 0.05 0.06
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Table C1. night-time: This table shows all the capacity density scenarios modelled, associated number of turbines, park yields (WRF)

modelled by Miller et al. (2015). It also shows the park yields estimated in this study using the standard approach, KEBA with a single

boundary layer height (KEBA single) and KEBA with different average bay and night-time boundary layer heights (KEBA variable). The

computed capacity factors, represented as fractions, from all the approaches are also included.

Capacity

Density

Number

of turbines
WRF Standard

KEBA

(fixed)

KEBA

(variable)

WRF

Capacity

Factor

Standard

Capacity

Factor

KEBA

fixed

Capacity

Factor

KEBA

variable

Capacity

Factor

MWi km−2 - We m−2 We m−2 We m−2 We m−2 - - - -

0.3125 11700 0.07 0.09 0.08 0.08 0.22 0.28 0.26 0.26

0.625 23400 0.12 0.18 0.16 0.16 0.20 0.28 0.26 0.25

1.25 46800 0.19 0.35 0.29 0.27 0.16 0.28 0.22 0.22

2.5 93600 0.30 0.71 0.48 0.43 0.12 0.28 0.20 0.17

5.0 187200 0.39 1.42 0.68 0.58 0.08 0.28 0.14 0.12

10.0 374400 0.41 2.84 0.85 0.68 0.04 0.28 0.05 0.07

Table D1. Undifferentiated: This table shows all the capacity density scenarios modelled, associated number of turbines, park yields

(WRF) modelled by Miller et al. (2015). It also shows the park yields estimated in this study using the standard approach, KEBA with a

single boundary layer height (KEBA single) and KEBA with different average bay and night-time boundary layer heights (KEBA variable).

The computed capacity factors from all the approaches is also included.

Capacity

Density

Number

of turbines
WRF Standard

KEBA

(fixed)

KEBA

(variable)

WRF

Capacity

Factor

Standard

Capacity

Factor

KEBA

fixed

Capacity

Factor

KEBA

variable

Capacity

Factor

MWi km−2 - We m−2 We m−2 We m−2 We m−2 - - - -

0.3125 11700 0.13 0.15 0.14 0.14 0.42 0.48 0.45 0.45

0.625 23400 0.24 0.30 0.26 0.26 0.39 0.48 0.42 0.42

1.25 46800 0.41 0.60 0.46 0.47 0.33 0.48 0.37 0.37

2.5 93600 0.68 1.19 0.78 0.75 0.27 0.48 0.30 0.31

5.0 187200 0.95 2.39 1.05 1.05 0.19 0.48 0.21 0.21

10.0 374400 1.10 4.78 1.30 1.28 0.11 0.48 0.13 0.13
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D1 Comparison with published numerical weather model-based estimates of technical wind energy potential

In Fig. 5, we have compared KEBA estimates of technical potential from our analysis with those performed independently by

others over comparable regional and global scales using different numerical modelling approaches. For comparison in Kansas

and Central USA we used the studies performed by Adams and Keith; Miller et al. and Volker et al. (Adams and Keith, 2013;440

Miller et al., 2015; Volker et al., 2017). From Volker et al., we only use their estimates for their largest deployment scenario

( 105 km2) in Central US. This was the most pertinent case for our analysis.

All three of these studies use a version of WRF to model the wind turbine yields and parametrize the wind turbines as

momentum sinks. This means that they account for the fact that turbines extract momentum and kinetic energy from the wind

thereby lowering wind speeds.While Miller et al. and Adams and Keithuse a variation of the Fitch scheme (Fitch et al., 2013b),445

Volker et al. use the extended wake parameterization or EWP scheme (Volker et al., 2015). The main difference between the

Fitch scheme, its variation and the EWP is the while the latter does not include an explicit term to account for the Turbulent

Kinetic Energy (TKE) generated by the turbine, the former 2 do. The different schemes lead to differences in the amount

of mixing generated withing the boundary layer due to the turbine action. The Fitch scheme estimates more and the EWP

relatively less, even though their estimates of wind speeds largely agree with each other(Volker et al., 2015).450

It is important to appreciate these differences because Archer et al.(Archer et al., 2020) highlighted two bugs in implemen-

tation of the Fitch scheme in WRF versions prior to v4.2 that affect the Miller et al. study (Fischereit et al., 2021).It was shown

that the additional term in the Fitch scheme adds excessive TKE and a coding bug prevents the TKE from being advected

properly. Although preliminary analyses have shown that the two errors actually compensate for each other giving rise to TKE

estimates that agree with observations (Archer et al., 2020; Larsén and Fischereit, 2021), it would be useful to briefly evaluate455

any potential impacts on our results and conclusions.

First, according to a review by Fischereit et al. the conclusions of neither of the 3 studies based used in this study,(Adams

and Keith, 2013; Miller et al., 2015; Volker et al., 2015) are affected by the identified bug. Secondly, were these studies affected

by the bug or the impact significant one would have expected a more prominent deviation between the Fitch based studies and

the EWP based study. This is because the EWP schemes does not use the explicit TKE addition term with which the bug was460

related. Instead, it is observed that the different studies exhibit a similar trend of technical potential with installed capacity that

culminates to a peak average of 1.1 W m−2.

Further, the WRF trends in Kansas and Central US are consistent with previous studies that estimate global potentials.

Relevant estimates of global land from Jacobson and Archer and Miller and Kleidon are shown in Fig. 6. These estimates and

trends have been derived using global circulation models (GCMs). These are also unaffected by the errors in the Fitch scheme.465

These trends show the same variation in potentials as the WRF trends i.e. sub linear increase in potential beyond 1.5 MW km−2

and culmination to a peak global average range of 0.2 - 0.6 W m−2 Miller et al. (2011); Miller and Kleidon (2016); Jacobson

and Archer (2012); Wang and Prinn (2010, 2011); Marvel et al. (2012). The agreement between all the independent trends and

regional and global scale highlights that the impact of the errors in the Fitch scheme are unlikely to affect the insights and

conclusions generated from this study.470
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D2 Technical Potential, Capacity Factors and Levelized Cost of Energy (LCOE)

Figure 6b shows that as the number of turbines deployed over the hypothetical wind farm area increases, the removal of kinetic

energy (KE) reduces the capacity factor. This means that with the increasing deployed capacity , each turbine produces less

energy than what it would have, had it been operating in isolation. The reduction in per turbine efficiency increases with

increasing turbines. When the KE removal is neglected, the capacity factor remains unchanged (dotted gray line). While the475

addition of turbines generally increases the technical potential , the step-wise increments in generation reduce as the turbine

numbers increase Fig. 6a. The lower increments are driven by the reductions in capacity factors Fig. 6b. The effect of this

variation in capacity factors can be used to investigate their economic impacts using a standard economic cost metric known

as the levelized cost of energy or LCOE (Ragheb, 2017). LCOE is represented by the following formula (Ragheb, 2017):

LCOEwind =

∑n
t=1(It + O&Mt−PTCt−Dt + Tt + Rt) ·

1
(1 + i)t

CF ·∑t=n−1
t=0 Pt

(D1)480

In this equation, It and O&Mt refer to the capital and operations cost while PTCt, DT , Tt and Rt represent the credits,

levies, taxes and royalties, respectively. The term
1

(1 + i)t
is the present value factor which is used to account for the time

value of money with a discount factor, i, over the lifespan of a wind farm. t represents a year within the operational period of a

wind farm. CF is the capacity factor, which in this calculation would be different for different scenarios for WRF and KEBA

but same for the standard approach. Since we are interested in simply illustrating only the economic impact of reductions in485

capacity factors due to KE removal, we can simplify Eq.(D1) such that LCOE is only a function of capacity factor. For this,

we ignore tax related terms and assume that all costs and installed capacity terms (Pt) are sunk and installed at the once at the

beginning of the operational life. The time factor also remains constant for all scenarios. It should be noted that this calculation

is meant only to illustrate that capacity factor reduction arising from KE removal result in non-trivial increases in LCOE which

highlights their inclusion into the policy design. In reality, turbine installation will occur over many years and so will the cost490

investments. A real LCOE calculation would need specific and quality controlled inputs about the timing and values of costs,

levies and discount rates. With the simplification, Eq.(D1) would take the following form.

LCOEscenario =
1

CFscenario
× constant (D2)

In D2, the LCOE for each capacity density scenario is inversely related to the capacity factor. As the cost and installed

capacity terms are same for the standard and the WRF and KEBA approaches, the percent change relative to the standard495

approach for each scenario can be calculated. These values for each of the installed capacity density scenarios are plotted for

both WRF and KEBA estimates. For example, for the 2.5 MW km−2 case the standard approach assumes a 0.48 capacity

factor while KEBA and WRF estimates 0.31 and 0.27. Then, to estimate the percent change relative to the standard approach

the following approach is used:
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%changeinLCOE2.5 =
LCOE2.5,KEBA/WRF −LCOE2.5 ,standard

LCOE2.5 ,standard
(D3)500

These values are tabulated in the table below.

Table E1. Tabulation of capacity factors estimated by KEBA, WRF and the standard approach along with the estimated change in LCOE

(%) due to KE removal relative to the standard approach.

Capacity

Density

Number

of turbines

WRF

Capacity

Factor

Standard

Capacity

Factor

KEBA

variable

Capacity

Factor

WRF

LCOE

Change

KEBA

variable

LCOE

Change

MWi km−2 - - - - % %

0.3125 11700 0.42 0.48 0.45 14 6

0.625 23400 0.39 0.48 0.42 23 14

1.25 46800 0.33 0.48 0.37 45 30

2.5 93600 0.27 0.48 0.31 77 54

5.0 187200 0.19 0.48 0.21 150 130

10.0 374400 0.11 0.48 0.13 430 270

The change in LCOE is only calculated for the installed capacity range from 0.3125 to 10 MW km−2 because this is the

range that is typically assumed in wind energy policy scenarios. They show that as the capacity factor reduces the economic

cost of wind energy goes up because each of the turbines performs less efficiently.
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