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Abstract. Hybrid renewable power plants consisting of collocated wind, solar photo-voltaic (PV) and Lithium-ion battery

storage connected behind a single grid connection can provide additional value to the owners and to society in comparison

to individual technology plants such as only wind or only solar-PV. These benefits become significant in projects that have

requirements to supply a certain amount of energy during peak hours given a set of grid capacity constraints or when the

plant is selling the electricity with time-varying electricity prices.
:::
PV. The hybrid power plants considered in this article are5

connected to the grid and share electrical infrastructure costs across the different generation and storing technologies. In this

article, we propose a methodology for sizing of hybrid power plants as an optimization problemthat
:
a
::::::
nested

:::::::::::
optimization

:::::::
problem:

::::
with

:::
an

:::::
outer

:::::
sizing

:::::::::::
optimization

:::
and

:::
an

::::::
internal

:::::::::
operation

:::::::::::
optimization.

::::
The

::::
outer

::::::
sizing

::::::::::
optimization

:
maximizes

the net present values over capital expenditures and compares it with standard designs that minimize the levelized cost of

energy. The sizing problem formulation includes turbine selection (in terms of rated power, specific power and hub height),10

a wind plant wake losses surrogate, simplified photo-voltaic panel degradation ,
::::
wind

::::
and

:::
PV

::::::::::
degradation

:::::::
models,

:::::::
battery

:::::::::
degradation

::::
and an internal energy management system operation optimizationand battery degradation. The multi-disciplinary

:
.
:::
The

:::::
outer

::::::
sizing optimization problem is solved using a new parallel "efficient global optimization" algorithm. This new

algorithm is a surrogate-based optimization method that ensures a minimal number of model evaluations but ensures a global

scope in the optimization. The methodology presented in this article is available in an open-source tool called HyDesign. The15

hybrid sizing algorithm is applied for a peak-power plant use case at different locations in India where the renewable energy

auctions impose a monetary penalty when energy is not supplied at peak hours.
:::
We

:::::::
compare

:::
the

::::::
hybrid

::::::
power

::::
plant

::::::
sizing

:::::
results

:::::
when

:::::
using

::::
two

:::::::
different

::::::::
objective

:::::::::
functions:

:::
the

::::::::
levelized

::::
cost

::
of

::::::
energy

::::::::
(LCoE)

::
or

::::
the

::::::
relative

:::
net

:::::::
present

:::::
value

::::
with

::::::
respect

:::
the

::::
total

::::::
capital

::::::::::
expenditure

:::::
costs

:::::::::::
(NPV/CH ).

:::::::
Battery

::::::
storage

::
is
::::::::

installed
::::
only

:::
on

:::::::::::::::
NPV/CH -based

:::::::
designs,

::::
while

::::::
hybrid

::::::::
including

::::::
wind,

::::
solar

::::
and

::::::
battery

::::
only

::::::
occurs

::
on

::::
the

:::
site

::::
with

:::::
good

::::
wind

:::::::::
resources.

:::::
Wind

::::::
turbine

::::::::
selection

:::
on20

:::
this

:::
site

:::::::::
prioritizes

:::::::
cheaper

:::::::
turbines

::::
with

:::::
lower

::::
hub

:::::
height

::::
and

:::::
lower

::::
rated

::::::
power.

::::
The

:::::::
number

::
of

:::::::
batteries

::::::::
replaced

:::::::
changes

::
on

:::
the

:::::::
different

:::::
sites

::::::
ranging

::::::::
between

:::
two

::
or

:::::
three

::::
units

:::::
over

:::
the

:::::::
lifetime.

::
A

:::::::::
significant

:::::::::::::::
over-dimensioning

:::
of

:::
the

:::::::::
generation

::
in

::::::::::
comparison

::
to

:::
the

::::
grid

:::::::::
connection

::::::
occurs

:::
on

:::
all

::::::::::::::
NPV/CH -based

:::::::
designs.

:::
As

::::::::
expected

:::::::::::
LCoE-based

:::::::
designs

:::
are

::::::
single

:::::::::
technology

::::
with

::
no

::::::::
batteries.

:
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1 Introduction25

Hybrid power plants
:
A
::::::
hybrid

:::::
power

:::::
plant (HPP) consisting of collocated wind, solar photo-voltaic (PV )

::
PV

:
and Lithium-ion

battery storage connected behind a single grid connection point can provide better returns of investment than individual source

(wind or solar) plants in locations where the wind and solar resources are comparable and for electricity markets in which

fixed power purchase agreement electricity prices are not possible. HPP can be designed to have operational flexibility in terms

of dispatchability and ancillary service provision that makes them closer to traditional power plants in terms of achieving30

additional profitability in markets with time-varying electricity prices under grid connection constraints and that have reduced

costs due to the shared infrastructure (Gorman et al., 2020; Dykes et al., 2020).

Sizing of HPP plant is a multi-discipline analysis and optimization
::
is

:
a
:::::::::::::::
Multi-disciplinary

::::::
Design

:::::::
Analysis

::::
and

:::::::::::
Optimization

(MDAO) problem that requires detailed modeling of the wind and solar resources as well as the wind, PV and storage perfor-

mance, costs and operation (Dykes et al., 2020). Additionally, the selection of the wind turbine
::::
(WT)

:
characteristics (specific35

power, hub height) and PV characteristics (panel orientation) are additional degrees of freedom that can significantly modify

the results of the sizing. Traditional objective functions of the sizing optimization problem are maximizing net annual energy

production or minimizing levelized cost of energy (LCoE)
::::::
LCoE (Tripp et al., 2022), butin general ,

::
in

:::::::
general,

:
HPP designs

that include energy storage can produce more revenues relative to the cost increase. In this article, we compare HPP sizing

optimization for both LCoE
:::::
LCoE

:
and relative net revenues as objective functions.40

A detailed energy management system (EMS) is required to determine the operation of the battery given the time-series of

wind and solar generation and the battery’s capacity. EMS optimization will determine when to charge and discharge the battery

with the objective of maximizing the revenue obtained by the HPP. Several articles focus on formulating EMS optimization

problems and propose different formulations Al-Lawati et al. (2021); Das et al. (2020); Khaloie et al. (2021a, b); Wang et al.

(2019). Different levels of complexity can be studied in the implementation of EMS such as: (1) rule-base algorithms that pre-45

scribe the operation of the battery, (2) deterministic EMS optimization that maximizes the revenues assuming perfect forecasts

(full future-knowledge) on the price of electricity, the wind and solar generation time-series, (3) robust optimization of EMS

operation will provide battery operation under worst case scenarios of forecast errors of generation and prices time-series, and

(4) Stochastic optimization of EMS operation that will provide best operation over the entire distribution of forecasting error.

EMS operational optimization within the HPP sizing optimization is not common in the literature but it is required in order to50

unravel the value of hybrid plants
::::
HPP fully.

Furthermore, HPP sizing requires solving the long-term performance of the different components through the lifetime of

the HPPproject; this implies modeling the degradation in the performance of the individual components. Li-ion batteries
:
,

::::
wind

:::::::
turbines

:
and PV cells have significant degradation over time, several models of

:
.
::::::
Several

:::::::
models

::
of

::::
PV degradation

exist (Jordan et al., 2016), while wind turbine is assumed not to have significant performance degradationsince
:::
and

::::
PV55

:::::::::::
manufacturers

::::
can

:::::::
provide

:
a
::::::::
warranty

::
of

::::
the

::::::::::
degradation

:::::
curve,

:::::
while

::::::
recent

:::::::::::
publications

:::::
report

::::::::
measured

::::
PV

::::::::::
degradation

::::
rates

:::::::::::::::::::::::
(Theristis et al., 2023, 2020).

:::::
Wind

::::::
turbine

::::::::::
degradation

::
is

::::::::::
significantly

:::::
more

:::::::
complex

::
as

:::
the

::::::::::
performance

::::::::::
degradation,

::::
e.x.

:::
due

::
to

:::::
blade

::::::
erosion

:::::::::::::::::::::::::::::::::::::::::::::::::::
(López et al., 2023; Panthi and Iungo, 2023; Bech et al., 2018),

::
is
:::::::::::
compensated

:::
by

:
the internal wind tur-
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bine pitch control systemwill ensure that the rated power and performance of the turbine is kept approximately constant over its

lifetime
:
.
::::::
Several

::::::
studies

:::::
report

:::::::
different

:::::
levels

::
of

:::::
wind

::::
plant

::::::::::
degradation

::
as

:::::
losses

::
of

:::::::
capacity

:::::
factor

::::
over

:::
age

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hamilton et al., 2020; Jia et al., 2016; Staffell and Green, 2014; Astolfi et al., 2022)60

.

Typically, battery cells have to be replaced when their capacity degrades beyond a pre-defined
:::::::::::
manufacturer

::::::
defined

::::::
safety

threshold. The higher CAPEX of new batteries
::::
costs

:::
due

::
to

::::::
battery

::::::::::
replacement plays a dominant role in battery operation cost,

i. e. degradation cost.
:::
total

:::::
costs.

:
Therefore, considering battery degradation when sizing HPP can optimize the use of battery

and hence extend battery lifetime and reduce costs. Battery degradation is a complicated chemical process. Theoretical studies65

(Safari et al., 2008; Vetter et al., 2005) on battery degradation explains the detailed degradation mechanism of battery cells.

However, the required parameters and conditions of the battery cell can not be obtained in the sizing stage. To incorporate

the battery degradation model into the sizing problem, it is possible to use semi-empirical models (Xu et al., 2016) that only

require the state of charge time-series (SoC) as input to assess battery lifetime. This model considers the solid electrolyte inter-

phase film formation theory calibrated based on experimental observations and it is able to describe the non-linear degradation70

process.

To the authors’ knowledge, there is no available sizing methodology for the design of utility-scale grid-constrained hybrid

power plants considering all the above-mentioned characteristics. This article presents a general methodology for hybrid plant

sizing as a MDAO
::::::
nested

::::::::::
optimization

:
including several novel aspects: (1) turbine selection (2) PV

:::
and

:::::
wind degradation (3)

battery degradation
::::::
internal

:::::
EMS

::::::::
operation

:::::::::::
optimization

:::
(4)

::::::
battery

:::::::::::
degradation

:::::
based

::
on

::::::::
resulting

::::::::::
load-cycles

:
(4) internal75

EMS operation optimization. We apply the methodology and report the detailed result of the hybrid plant design in three

different locations in India: (a) solar dominant site (b) wind dominant site and (c) low wind and solar resources.
::::
The

:::::::
research

:::::::
objective

::
is

::
to

:::::
build

:
a
:::::::::
framework

:::
for

:::::::::::
optimization

::
of

::::::
hybrid

:::::
power

::::::
plants

:::
that

::
is

:::::::
flexible,

:::::::
modular

::::
and

:::
that

::::
can

::
be

::::::::
extended

::
to

::::
solve

:::::
sizing

::::
and

:::::::
physical

::::::
design

::
of

::::
HPP.

:

India is a large market in which hybrid plants
::::
HPPs

:
could become important because of the need to provide renewable80

energy that supports the demand patterns and because of the intermediate solar and wind resources. For this reason, Indian

sites are used as example cases in this article.

2 Methodology

The design of a HPP is an optimization problem that involves several sub-optimization problems such as: wind turbine

selection,
:::
WT

::::::::
selection,

:::::
wind

:::::
power

:::::
plant

::::::
(WPP) siting and layout optimization, PV array sitting, energy management system85

(EMS )
::::
EMS operation optimization coupled with battery degradation,

:
and electrical infrastructure optimization. Early HPP

sizing optimization focused on maximizing the viability of a HPP installation in a given location requires a simplified approach.

The XDSM diagram of the HPP sizing optimization problem
::::::::
proposed

:::::
nested

:::::::::::
optimization

:::
for

::::
HPP

:::::
sizing is presented in figure

:::::
Figure

:
1. In the sizing optimization several simplifications are

:::
this

:::::
sizing

::::::::::
optimization

::::::::::
formulation

::::::
several

:::::::::::::
simplifications

::::
have

::::
been performed in order to reduce the complexity of the optimization: (1) the

:::
The

:
WT Layout optimization is replaced by a sur-90

rogate of the wakes of sub-optimal wind turbine layouts,
:::::
WPP. (2) uncoupled battery

:::::::::
Uncoupled

::::::
battery,

:::::
wind and PV degrada-
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Figure 1. HPP sizing
:
as
::
a

:::::
nested

::::::::::
optimization. XDSM diagram.

tion models
::
are

::::
used

::
to

:
reduce the complexity of the EMS optimization,

:
:
::
the

:::::::
internal

::::::::
operation

::::::::::
optimization

::::::
solves a short-term

EMS optimization problems is proposed that considers a constrain in battery utilization,
:::::::
problem

:::::::
without

::::::::::
considering

::::::
battery

:::::::::
degradation

:::
but

::::
with

::
a
::::::
penalty

:::
for

::::::
battery

:::::
power

::::::::
ramping;

:
while a long-term operation rule-based EMS

::::
(EMS

::::::::::
Long-term)

:
cor-

rects the ideal
:::::
battery

:
operation for degradation ,

::
and

:::::::
forecast

::::::
errors. (3) approximate

::::::::
Simplified

:
electrical infrastructure costs95

are used. ,
:::::::
instead

::
of

::
an

::::::::
electrical

:::::
cable

::::
and

:::::::::::
infrastructure

:::::::::::
optimization.

:::
(4)

:::
No

:::::::::
interaction

:::::::
between

::::
WT

::::
and

:::
PV

::
is

::::::::
assumed,

::::::::
neglecting

:::
PV

::::::
losses

:::
due

:::
to

::::::
shadow

::::
and

::::::::
flickering

::::
and

:::::::
changes

::
in

:::
the

::::
wind

:::::::::
boundary

::::
layer

::::
due

::
to

:::
the

::::::::
presence

::
of

:::::
large

:::
PV

:::::
arrays.

:

2.1
::::
HPP

:::::
sizing

:::::::::::
optimization

:::
The

:::::
HPP

:::::
sizing

:::::::::::
optimization

::::::::
problem

:::::::
consists

::
of

::::::::::
minimizing

:::::::
LCoE

::
or

:::::::::::
maximizing

:::::::::
NPV/CH:::

by
::::::::

changing
::::

the
::::::
design100

::::::::
variables:

:::::::
rotor-tip

::
to

:::::::
ground

:::::
height

::::::::
clearance

::::
(hc ::

in [
::
m]

::
),

:::::::
turbine’s

:::::::
specific

::::::
power

:::
(sp

::
in

:
[
:::::::
MW/m2]

:
),

:::::::
turbine’s

:::::
rated

::::::
power

:::::
(Prated ::

in [
::::
MW]

::
),

::::::
number

::
of

:::::
wind

:::::::
turbines

:::::::
(NWT ),

:::::
wind’s

::::::::::
installation

::::::
density

::::
(ρW ,

:::
in [

:::::::
MW/km2]

:
),
:::::
solar

:::::::
capacity

:::::::
(SMW ),

:::
PV

::
tilt

:::::
angle

:::::
(θtilt),:::

PV
:::::::
azimuth

:::::
angle

:::::::
(θazim),

:::
PV

::::::
inverter

::::
AC

::
to

:::
DC

:::::
ratio

::::::
(rAD),

::::::
battery

:::::
power

::::::::
capacity

::::
(BP ::

in [
::::
MW]

::
),

::::::
battery

4



:::::
energy

:::::::
storage

:::::::
capacity

::
in

:::::
hours

::
at

::::::
battery

::::::
power

:::::::
capacity

::::::
(BEh)

::::
and

::::::
battery

:::::::::
fluctuation

::::::
penalty

::::::
factor

::::::
(Cbfl). :::::::::::

Furthermore,

::
the

::::::
sizing

:::
can

::
be

::::::
forced

::
to

::::
only

::::
take

::::::
integer

::::::
values

::
on

:::::
some

::::::
specific

::::::
design

::::::::
variables

::::
such

::
as

::::::
NWT .105

min y(x) =

−NPV/CH (x)

LCoE(x)

x= [hc, sp, Prated, NWT , ρW , SMW , θtilt, θazim, rAD, BP , BEh, Cbfl]
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(1)

2.2 Generic Wind Turbine

A look-up table is built based on DTU’s pywake
:::::::
pyWake generic turbine model (Pedersen et al., 2023). The interpolation

of this data is a surrogate that predicts the power and thrust coefficient curves given the turbine’s specific power, defined as

the ratio between the rated power and the rotor area (sp= Prated/A:::::::::::
sp= Prated/A). The wind turbine power curve and thrust110

coefficient curves are represented as PWT (WS) and CT (WS) in figure
:::::
Figure 1. Examples of the surrogate power and thrust

coefficient curves are given in figure 2.
:::::
Figure

::
2.

::::
The

::::
rotor

::::::::
diameter

:::::::::::::::::::
(D = 2

√
Prated/(πsp))

:::
and

::::
hub

:::::
height

:::::::::::::::
(hh= hc +D/2)

:::
can

::
be

:::::::::
computed

:::::
based

::
on

:::
sp

:::
and

:::
the

::::::::
clearance

::::::
height.
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Figure 2. Generic Wind Turbine
::::
wind

:::::
turbine

:
surrogate.

2.3 Generic Wind Power Plant Wake Model

A database of wind power plants is generated using circular plant borders and a simplified layout optimization that maximizes115

the distance between the turbines. Two example layouts are presented in figure 3.
:::::
Figure

:::
3.

::::
Here

::
it
::::
can

::
be

:::::
seen

:::
that

::::
the

::::::
layouts

:::
are

:::::::::
symmetric,

::::
and

:::
the

:::::::::
minimum

:::
WT

:::::::
spacing

::
is

:::
the

:::::::::::
consequence

::
of

:::::::::
specifying

:::
the

:::::::
number

::
of
::::::::

turbines
:::::::
(NWT ),

:::
the

::::::
turbine

::::
rated

::::::
power

::::::
(Prated)

:::
and

:::
the

:::::::::
installation

:::::::
density

::::
(ρW ,

:::::::::
plant-rated

::::::
power

::::
over

:::
the

::::
land

:::
use

::::
area,

:
[
::::::::
MW/km2]

:
).
:
Wakes are

simulated using pyWake’s implementation of Zong’s wake model (Pedersen et al., 2023; Zong and Porté-Agel, 2020) which

combines a Gaussian wind speed deficit with local turbulence dependent linear wake expansion, with squared sum wake deficit120

superposition model and Frandsen’s added turbulence model as specified in the IEC wind turbine design standard (IEC, 2017).

5



<latexit sha1_base64="ooPGGyloDdUHd+JCnq04bQtqHvs="></latexit>

D = 52 [m] NWT = 10
Prated = 2 [MW] ⇢W = 10.0 [MW/km2]
min(WTspacing) = 5.3D

<latexit sha1_base64="tQ9J0T5hTNUK+utW8f5bgWvMcvw="></latexit>

D = 52 [m] NWT = 21
Prated = 2 [MW] ⇢W = 4.0 [MW/km2]
min(WTspacing) = 8.3D

<latexit sha1_base64="ooPGGyloDdUHd+JCnq04bQtqHvs="></latexit>

D = 52 [m] NWT = 10
Prated = 2 [MW] ⇢W = 10.0 [MW/km2]
min(WTspacing) = 5.3D

<latexit sha1_base64="tQ9J0T5hTNUK+utW8f5bgWvMcvw="></latexit>

D = 52 [m] NWT = 21
Prated = 2 [MW] ⇢W = 4.0 [MW/km2]
min(WTspacing) = 8.3D

Figure 3. WPP example of generated layouts.

Detailed wake losses as a function of wind speed and wind direction are simulated for multiple WPP layouts with the same

number of turbines
::::::
(NWT )

:
and installation density (ρW , plant-rated power over the land use area, MW/km2) for a given

turbine
:::
WT’s specific power. The results ,

::::::
hence

:::::
given

::::::
power

:::
and

:::::
thrust

:::::::
curves.

::::
The

::::::::
resulting

::::
wake

::::::
losses

:
are aggregated

taking the 90-th larger quantile wake losses across wind directions and across 20 layouts generated using a different random125

seed number. A surrogate of the wake losses curve
:
as
::
a
:::::::
function

::
of

:::
the

::::
hub

:::::
height

:::::
wind

:::::
speed (WL(WS)) is built as a function

of the installation density, number of turbines and specific power of the turbine. Example results of the surrogate are presented

in Figure 4. Finally, the generic wind plant model will combine the turbine power curve with the expected wake losses to

provide a wake-affected plant power curve, see equation
:::::::
Equation 2.

WMW =NWT Prated

WL(WS)≈ ŴL(NWT ,sp,ρW ,WS)

PW (WS) =NWT ×PWT (WS)× (1−WL(WS))

(2)130

2.4 Weather

ERA5 (Hersbach et al., 2020) is used as a reanalysis dataset for wind resource calculations. The hourly wind velocity time-

series with a 0.25x0.25 degree resolution in latitude and longitude are interpolated into heights of 50, 100, 150 and 200

[m]. This dataset is stored and interpolated at the location of hybrid power plant using linear interpolation in the horizontal

coordinates, keeping the hub height dimension of the velocities in order to compute the effect of changing the hub height of135

the turbines in the optimization.
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Figure 4. Example wake losses as a function of the number of turbines, installation density MW/km2and turbine
:::
WT’s specific power.

The mean wind speed from the Global Wind Atlas 2 (GWA2) is used for correcting ERA5’s mean wind speed following

the approach presented in (Murcia et al., 2022). This scaling correction is necessary in order to include the first order effects

of terrain. The corrected wind speed time-series is provided on multiple heights (WS(y,t)) to the atmospheric boundary layer

(ABL) model. This model uses a piece-wise power law interpolation to determine the wind speed time-series at hub height140

(WShh(t)).

ERA5-land is used as a reanalysis of the hourly global horizontal irradiance time-series (GHI(t)) because it has a better

:::::
higher

:::::::::
horizontal

:
resolution than ERA5 ,

:
(0.1degrees versus 0.25 degrees in latitude and longitude resolution

::::
x0.1

::::::
degree),

and it shows a better validation metrics for individual plant
::
PV

:::::
plant

:::::::::
generation

:
modeling (Camargo and Schmidt, 2020).

Decomposition of GHI to direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI) is done in two steps: the145

DISC model is used to estimate the DNI (Maxwell, 1987) using the GHI and relative air mass model based (Kasten and Young,

1989). While the DHI is estimated using the solar position , see equation
::::::::
(θzenith(t)),

:::
see

::::::::
Equation 3.

DHI(t) = GHI(t)−DNI(t)∗×
:

cos(θzenith(t)) (3)
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2.5 Wind power plant model (WPP)

The wind generation time-series (W (t)) is obtained by interpolating the plant power curve at the hub height’s wind speed150

time-series, scaling the generation by the installed capacity. Additionally, an efficiency (ηW = 0.95) is assumed to cover the

electrical and availability losses, see equation
:::::::
Equation

:
4.

W (t) =NWT ∗×:P rated∗rated×
::::

PW (WShh(t))∗×
:
ηW (4)

::::
Wind

:::::::
turbine

::::::::::
degradation

::
is

::::::::
modelled

::
as

::
a

::::::
mixture

:::
of

:::
two

:::::::::::
performance

::::::::::
degradation

:::::::::::
mechanisms:

:::
(a)

::
a

::::
shift

::
in

:::
the

::::::
power

::::
curve

:::::::
towards

::::::
higher

:::::
wind

::::::
speeds

::::::::
represents

:::::
blade

::::::::::
degradation

::::
and

:::::::::
increasing

::::::
friction

::::::
losses

::::::::::::::::
(López et al., 2023)

:
.
::
(b)

::
a
::::
loss155

:::::
factor

::::::
applied

:::
to

:::
the

:::::
power

:::::
time

:::::
series

::::::::
represent

:::::::
increase

:::
in

:::::::::
availability

::::::
losses.

::::::
These

::::::::::
mechanism

:::
are

:::::::
depicted

:::
on

:::
the

::::
top

::::
plots

::
in

::::::
Figure

::
5.

:::
The

::::
WT

::::::::::
degradation

:::::
curve

::::::::
(dlW (t))

::::::::
prescribes

:::
the

:::::
level

::
of

::::
loss

::
in

:::::::
capacity

:::::
factor

::::
over

:::::
time,

:::
and

:::
the

::::::
power

::::::::
generation

:::::
with

::::::::::
degradation

::::::::
(Wdeg(t))

::
is

:::::::
obtained

:::
by

:::::
linear

::::::::::
interpolation

:::
of

:::
the

:::::::::
generation

:::::::::
time-series

::
of

:::
the

::::
new

::::::
(Wnew)

::::
and

::::
fully

::::::::
degraded

:::::
(Wfg)

::::::::::
generations,

:::
see

::::::::
Equation

::
5.

::
A

:::::
linear

::::::::::
degradation

::
on

:::
the

:::::
wind

::::::
turbine

:::
has

:::::
been

::::
used

:::
on

:::
the

::::
study

::::::
cases,

:::
see

:::::
Figure

::
5.

:
160

α(t) = dlW (t)/max(dlW (t))

Wdeg(t) = (1−α(t))×Wnew(t) +α(t)×Wfg(t)
:::::::::::::::::::::::::::::::::::::::::

(5)

2.6 PV power plant model (PVP)

Power conversion uses PVLib (Holmgren et al., 2018) based on a generic 1MW PV plant configuration (PV module, inverter

and open rack with glass-glass) with the irradiance projection transposition model (Davies and Hay, 1978), the Sandia array

performance model (SAPM) (King et al., 2004)and
:
,
:::
and

:::
the

:
Sandia performance model for grid-connected PV-inverter model165

(King et al., 2007). The final solar PV generation requires the plant capacity
::
PV

:::::
plant

:::::::
capacity

:::::::
(SMW ), the orientation of the

panels in terms of tilt and azimuth angles (θtilt,θazim), the ratio between DC and AC sides of the inverter (CS inverter::::
rDA), the

irradiances (DNI, DHI), the wind speed close to ground (WS1(t)) and the ambient temperature (T1(t)), see equation
:::::::
Equation

6.

S(t) = SMW ∗×: PV(θtilt, θazim, rDC−ACAD
::
, DNI(t), DHI(t),WS1(t), T1(t)) (6)170

The PV degradation model is a linear loss of capacity lost over the lifetime given a degradation per year (default value

of 0.5% per year).
:::
loss

:::::
factor

::::
that

::::::
follows

::
a
:::::::::
prescribed

:::
PV

::::::::::
degradation

:::::
curve

:::::::
dlS(t).

:::
The

:::::
solar

:::::::::
generation

:::::::::
time-series

:::::
with
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Figure 5.
::::
(top)

:::::::::
Mechanisms

::
of
::::
WT

::::::::
degradation

:::::
(left)

:::
shift

::
in

:::::
power

::::
curve

::::::
(center)

::::
loss

::::
factor

:::::
(right)

::::::::
50%-50%

::::::
mixture

::
of

::::
both

:::::::::
mechanism.

::::::
(bottom

:::
left)

:::::::
Example

::
of
::

2
::::
days

::
of

::::
WPP

::::::::
generation

:::::::::
time-series

::::
after

::
20

:::::
years.

::::::
(bottom

:::::
right)

::::::::
Prescribed

:::::::::
degradation

:::::
curve

:::
and

:::::::
resulting

::::
losses

::
in

:::
CF

:::
over

:::
the

::::
WPP

::::::
lifetime

::::
with

:::
the

::::
three

::::::::
mechanism

::
of

:::
WT

::::::::::
degradation.

:::::::::
degradation

::
is
::::::::
obtained

::
by

::::::::
applying

:::
the

:::
loss

:::::
factor

:::
to

::
the

::::::::::
generation,

:::
see

::::::::
Equation

::
7.

::
A

:::::
linear

::::::::::
degradation

:::::
curve

::
is

::::
used

::
in

:::
the

::::
study

::::::
cases.

Sdeg(t) = dlS(t)S(t)
::::::::::::::::

(7)175

2.7 Electricity price

The electricity price time-series in the Spot
:::
spot

:
market (Pr(t)) is an input to the model, note that the price time-series need to

be correlated with the weather time-series. This report
:::::
article focuses on valuation of time varying power purchase agreements

as the ones that have been seen in the Indian HPP market. This price signals
:::::
signal

:
has two levels of electricity price at peak

and non-peak (
::::
high demand) hours. An example of the peak non-peak PPA electricity price is presented in figure

:::::
Figure 6.180
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2.8 Energy management system optimization model (EMS)

The energy management system optimization model consists in selecting the
::::::::
determines

:::
the

:::::::
optimal amount of battery charge/dis-

charge and power curtailment that maximizes the revenue generated by the plant over a period of time (usually one or two

years), including a possible penalty for not meeting the requirement of energy generation and a penalty for battery power

ramping to control the amount of battery degradation, see equation 8. Note that the
::::::
number

::
of

::::::
battery

::::
load

::::::
cycles,

:::
see

::::::::
Equation185

::
8.

:::
The

:
EMS optimization is solved using linear programming

:::::::
applying

::
a
:::::::::
piece-wise

:::::::::::
linearization

:::
for

:::
the

::::::
change

::
of
:::::::

battery

::::::::
efficiency

::
in

::::::
charge

::::
and

::::::::
discharge

:::
and

:::
to

:::
the

:::::::
absolute

:::::
value

::
of
::::

the
::::::
battery

:::::
power

:::::::::::
fluctuations.

::::
The

:::::
EMS

::::::::::
optimization

:::::
does

:::
not

::::::
account

:::
for

:::::::
battery,

::::
WT

:::
nor

:::
PV

:::::::::::
degradation, and therefore does not compute the batterydegradation, instead, it assumes

new battery and PV panels (without degradation). The idealized EMS operation design also
::::
uses

:::
the

::::::::::
generations

:::::::
without

::::::::::
degradation.

:::::::::::
Furthermore,

:::
the

:::::
EMS

::::::::
operation

:::::::::::
optimization

:
assumes perfect knowledge of both the weather and price, and190

therefore there are neither forecasting errors on the prices nor weather.

The revenue is given by the product of electricity price (Pr(t)) and the HPP power generation (H(t)) minus the penalty over

the period (l) and minus the battery ramping penalty (lb). The HPP generation is defined as the total power from wind (W (t)),

solar PV (S(t)), battery charge or discharge (B(t)) and power curtailment (Pcurt(t)::::::
Pcurt(t)).

The penalty (l) is the missing energy generated at peak times with respect to the energy requirement over the period (El)195

times a mean peak electricity price (Pr(tpeak)
:::::::
Pr(tpeak)). The penalty can only be positive, which means that it can only

subtract revenue, and not give extra revenue to generate above the requirements.

The battery fluctuations penalty (lb) is defined as the sum of the products of the absolute battery power fluctuations (|∆B(t)|)
and the difference between max

::::
peak electricity price and the current price (Prmax−Pr(t)::::::::::::

Prpeak−Pr(t)). This means that

large fluctuations in the battery charge/discharge are allowed when the price is high. The battery fluctuation penalty factor200

(Cbfl) is a design variable that captures how strongly can the battery be ramped and therefore it controls the battery degradation,

when Cbfl is 0 then large changes in charge/discharge occur, see figure
::::::
Figure 6.

The constraints in the optimization keep track of battery level (ESOC(t) ) , enforcing the batteries energy (BE(t) ) and
::::
force

::
a

::::::::
minimum

::::
level

::
of

::::::
energy

::
in

:::
the

::::::
battery

::::::::
(ESoC(t))

:::::
when

::::::::::
discharging

::::::::
(BE depth),

::::::
ensure

:::
the

:::::
limits

:::
due

::
to

:::::::
batteries

:
power capacity
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(BP :::
BP )

:::
and

::::::
energy

::::::::
capacity

:::::::::::::
(BE =BEhBP ), force the grid constraints, including

:::::::
capacity

::::
(G),

:::
and

::::::
include

:
an asymmetric205

charging/discharging efficiency (ηcharge,ηdischarge), a minimum level of battery discharge (BEdepth)
::::::::::::
ηcharge,ηdischarge).

max
∑
t (Pr(t)×H(t))− l− lb

with l =

 El×Pr(tpeak) if El > 0

0 if El ≤ 0

El = (Epeakreqpeak req
::::

−∑ t∈tpeak t∈tpeak
::::

(H(t)∆t))

lb = Cbfl×
∑
t

(
|∆B(t)| × (Prmaxpeak

::
−Pr(t))

)

such that ∀t H(t) =W (t) +S(t) +B(t)−P curtcurt
::

(t)

H(t)≤G

ESOCSoC
:::

(t+ 1) =

 ESoC(t)− ηchargeB(t)∆t if B(t)≤ 0

ESoC(t)−B(t)∆t/ηdischarge if B(t)> 0

ESOCSoC
:::

(t)≥BE(t)E
:
× (1−BEdepthE depth)

:::::

ESOCSoC
:::

(t)≤BE(t)E
:

B(t)≤BP
B(t)≥−BP

(8)
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Figure 6. EMS comparison in an example HPP for two different battery fluctuation penalty factor Cbfl.
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2.9 Battery degradation model

The battery degradation model includes the
:
a
:

linear degradation rate regarding cycle numbers and the
::
as

::
a

:::::::
function

:::
of

:::::::::
load-cycles

:::
and

::
a non-linear degradation due to the solid electrolyte interphase

::::
(SEI) film formation process in the early stage210

of the battery life. A rainflow counting (Downing and Socie, 1982; Shi et al., 2018) is implemented
:::
The

::::::::
Rainflow

::::::::
counting

::::::::
algorithm

::::::::::::::::::::::::::::::::::::
(Downing and Socie, 1982; Shi et al., 2018)

::
is

::::
used

:
to obtain the depth of discharge (RDoD ::::::

RDoD,j), mean state

of charge cycle (RSoC::::::
RSoC,j), half or full cycle count (Rcount :::::::

Rcount,j), for a number of cycle frequencies (nR :::
load

::::::
cycles

:::::::::::
(j = 1, ...,nR) given a

::::::
relative state of charge time-series (ESOC(t)).

::::::::::::
ESoC(t)/BE).

::::
The

::::::
current

::::
age

::
of

:::
the

::::::
battery

::
at
:::::

each

:::
load

:::::
cycle

::
is

::::::
defined

:::
as

:::
tc,j .:215

The linear degradation rate (fd) in equation
:::::::
Equation 9 depends on a stress model due to the depth of discharge (SDoD(RDoD)

:::::
SDoD),

a stress model due to cycle count and
:::
the age of the battery (St(Rcount, tc)::

St), a stress model due to state of charge (SSoC(RSoC)
::::
SSoC),

and a stress model due to cell temperature (ST (Tc) :
in

::::::
Kelvin

::::
(ST ). The stress factor models are empirical relationships cali-

brated on measurements (Xu et al., 2016).
::::
Note

:::
that

::::
this

:::::
model

::
is
::::::::

consider
:::::
linear

:::::::
because

:::
the

::::::::::
degradation

:::
due

:::
to

::::
each

:::::
cycle

::
are

::::::::
summed

::::
over

:::
the

::::::::
lifetime.

:::
The

::::::::::
parameters

::
of

:::
the

::::::
model

:::
are

::::::::::::::
kδ1 = 1.4× 105,

::::::::::::::::::
kδ2 =−5.01× 10−1,

:::::::::::::::::
kδ3 =−1.23× 105,220

:::::::::
kσ = 1.04,

::::::::
σref = 0.5,

::::::::::::::::
kT = 6.93× 10−2,

:::::::::::
Tref = 293.15[

::
K]

:::
and

:::::::::::::::
kt = 4.14× 10−10

fd =

nR∑
j=1

SDoD(RDoD,j) +Stc(Rcount,j , tc)×SSoC(RSoC,j)STc(Tc)

fd =
∑nR
j=1 ((SDoD,j +Stc,j) SSoC,j ×STc)Rcount,j

SDoD,j = (kδ1RDoD,j
kδ2 + kδ3)−1

Stc,j = kt tc,j

SSoC,j(RSoC,j) = ekσ (RSoC,j−σref)

STc =

 ekT (Tc−Tref)Tref/Tc if Tc > Tref

1 if Tc <= Tref

(9)

The non-linear part of the degradation given in Eq.
:::::::
Equation

:
10 calculates the loss of storing capacity (LoC, L) using two

models: fresh
:::
new battery and used battery after the formation of SEI film. A pre-defined LoC level is used to determine in

which regime is the battery (L1). L
′

and fd
′

are the LoC and linear estimation of LoC when L exceeds
:
is
:::::
equal

::
to
:
L1at the225

first time. Where the parameters of the model take the following values
:::
are α= 0.0575and ,

:
β = 121

:::
and

:::::::::
L1 = 0.92.

L=

 1−α e−βfd − (1−α)e−f
d

if L≤ L1

1− (1−L′) e−fd+fd
′

if L > L1

(10)

Finally, the remaining
:::::::::
time-series

::
of

:::
the

:::::::::
degrading energy capacity of the battery BE , isthe remaining of loss factor of the

original energy storing capacity: BE(t) =BEnew × [1−L(t)]
::
is:

:::::::::::::::::::::::::::
BEdeg(t) =BEnew × [1−L(t)]. In this article, the battery

degradation model is not coupled to the EMS model, but instead it uses the resulting state of charge time-series (SoC
::::::
SoC(t))230
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estimated by the EMS optimization on an operation period (for example one or two years). The SoC operation period is

repeated to have a
:::::
obtain

:::
the full lifetime of operation

:
,
:::
and

::::
then

::::
used

:
to compute the degradation over the lifetime of the HPP.

The continuous degradation curve is discretized in periods of constant health levels in order to simplify the implementation

of the long-term operation correction. Finally, battery replacement occurs when the battery reaches a minimum health level

(70%), see Figure 7
::::::::
1−Lmin).

::::::
Figure

::
7
:::::::
presents

:
a
::::::::::

comparison
:::
of

:::
the

::::::::::
degradation

::
on

:::
the

::::::
battery

:::::::::
operating

::
in

:::
the

::::
same

:::::
HPP235

:::
but

::::
using

::::::::
different

::::::
battery

:::::::::
fluctuation

::::::
penalty

::::::
factors.
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Figure 7. Battery degradation comparison in an example HPP for two different battery fluctuation penalty factor
:::::
factors

:
Cbfl.

2.10 Long-term operation : Rule-based Energy management system correction model (EMS Long-term)

A ruled based
:::::::::
ruled-based

:
EMS is implemented in order to account for batterydegradation, degradation in PV and ,

:::
PV

::::
and

::::
wind

:::::::::::
degradation,

:::
and

:
forecast errors in estimated wind and solar generationwithout having to run new EMS optimizations.

The correction model consists in
::
of

:
the following general principles: (1) try to follow the ideal EMS operation if possible,240

:::::::
resulting

::::::::
operation

::::::::
obtained

::
in

:::
the

:::::
EMS

::::::::
described

::
in

:::::::
Section

:::
2.8

::::::
(B(t),

::::::::
ESoC(t)),

:
(2) update the state of charge to account

for
::
the

:
reduction in the available generation in the HPP and the new limits of the degraded battery, (3) recompute the battery

power operation and HPP curtailment accounting for the charge and discharge efficiencies.

The implementation consist in estimated
:::::::::
computing

:
the reduction in charging power due to the different available genera-

tionand curtailment (BLT (t)) ,
:
as presented in equation 11, update the SOC (ESOC−LT (t))

:::::::
Equation

:::
11.

::::
The

::::
SoC

:::::::::::
(ESoCLT (t))245

:
is
:::::::
updated

:
including the constraints of the new energy limits of the

::::::::
degraded

::::::
battery,

::::::::
Equation

::
12.

:::::::
Finally,

:::
the battery, equation

??, and finally recompute the batterypower (PBp::
’s

:::::
power

:::::::
(BLT (t)) to supply the SOC and curtailment (Pcurt−LT (t)) , equation

::::
SoC,

:::
and

:::
the

::::::::::
curtailment

::::::::::
(PcurtLT (t))

:::
are

:::::::
updated,

::::::::
Equation 13:

B0
LT (t) =

 −(Wdeg(t) +Sdeg(t)) if B(t)≤ 0 and −B(t)> (Wdeg(t) +Sdeg(t))

B(t) else
(11)
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ESoCLT (t+ 1) =

 ESoCLT (t)− ηchargeB
0
LT (t)∆t if B0

LT (t)≤ 0

ESoCLT (t)−B0
LT (t)∆t/ηdischarge if B0

LT (t)> 0

ESOC−LT SoCLT
:::::

(t)≥BEE deg
:::

(t)× (1−BEdepthE depth)
:::::

ESOC−LT SoCLT
:::::

(t)≤BEE deg
:::

(t)

(12)250

BLT (t) =

 (ESoCLT (t)−ESoCLT (t+ 1))/(ηcharge ∆t) if ESoCLT (t)−ESoCLT (t+ 1)≤ 0

(ESoCLT (t)−ESoCLT (t+ 1))/(∆t/ηdischarge) if ESoCLT (t)−ESoCLT (t+ 1)> 0

P curt−LT curtLT
::::

(t) = max(HactWdeg
:::

(t) +Sdeg(t)+
:::::::

BLT (t)−G,0)

HLT (t) =HactWdeg
:::

(t)+Sdeg(t)
:::::::

−P curt−LT curtLT
::::

(t) +BLT (t)

(13)

A comparison of the two versions of EMS is presented in Figure ?? for 500 different sizing capacities and levels of

degradation in 12 example locations (the 3 Indian example locations discussed in this article, and 3 locations in France, UK

and Germany each one of them using a time-varying Spot electricity price), a total of 6000 single year operations were run.

It can be seen that the rule-based EMS-LT correction is able to predict the revenue (Pr(t)H(t)) generated when the HPP is255

operating with degradation. Even though there is bias in the relative error shown in a median of 1.4%, a 25% quantile of 0.4%

and a 75% quantile of 2.9%, most of the cases (within the 5% and 95% quantiles) have relative errors are between 0.0% and

5.8%.

Cross-validation errors on rule.

2.11 Wind plant costs model260

A simple WPP cost model consist in estimating the total capital expenditure costs (CAPEX, CW ) and operational and main-

tenance costs (OPEX, OW ) as a function of the installed capacity (given as number of turbines times the rated power of

the turbines: WMW =NwtPrated ::::::::::::::::
WMW =NWTPrated), the cost of the turbines, their construction and civil infrastructure

(CWT +CW civil::::::::::::
CWT +CW civil). The OPEX is divided into fix

::::
fixed

:
costs that scaled with the rated capacity of the plant

(OW fixed:::::::
OW fixed) and variable costs (OW var::::::

OW var) that scales with the annual energy production of the wind turbines265

(AEPW ) and the ratio between the reference turbine and selected turbine power rating. The wind turbine cost fWT (D,Prated,hh)

trend
:::::::::::::::
fWT (D,Prated,hh)

:::::::::::::::::
(Dykes et al., 2018) depends on the rotor diameter, the WT rated power and the tower hub heightand

it is given by (Dykes et al., 2018). In order to have costs relative to a reference turbine, a user can provide the cost and the

characteristics of the reference turbine (fWT ref (Dref ,Pratedref ,hhref )), from where the reference costs can be scaled, see

equation .
::::
This

::::::
model

::::
uses

:::::::::
empirical

:::
fits

::
to

::::::::
estimate

:::
the

:::::
mass

::
of

:::
all

::::
WT

:::::::::::
components,

:::
and

::::::::
therefore

::::
for

::::::::
simplicity

::
is
::::

not270
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::::::::
presented

::::
here.

::::
The

::::
final

::::::
turbine

::::
costs

:::
are

::::::
scaled

::::
with

::::::
respect

::
to

:::
the

::::
costs

:::
of

:
a
::::::::
reference

:::
WT

:::::::::::::::::::::::::
(fWT ref(Dref,Prated ref,hhref)),

:::
see

:::::::
Equation

:
14.

CW = (fWT /fWT ref)(CWT +CW civil)WMW

OW =WMW ×OW fixed +AEPW (Prated ref/Prated)OW var

(14)

2.12 PV plant costs model

A simple PV plant cost model consists in
::
of estimating the total capital expenditure costs (CAPEX, CS) and operational and275

maintenance costs (OPEX, OS) as a function of the installed capacity (SMW ) ,
:::
and solar AC to DC ratio (rDC−AC). The user

provides
:::::
rAD).

:::::
using

:::
the PV cost per MW (DC),

:::
the

:
installation costs (CS +CSinstall:::::::::::

CS +CS install) and fixed operational costs

(OSfx::::::
OS fixed), while the inverter costs is

::
are provided per MW (AC) for a reference ratio of DC to AC (Cinv ref:::::

Cinv ref).

CS = (CPV +CS install)SMW × rAD +Cinv ref (rAD ref/rAD)SMW

OS =OS fixed×SMW × rAD
(15)

2.13 Battery costs model280

The battery plant cost model consists in
::
of estimating the total capital expenditure costs (CAPEX, CB) and operational and

maintenance costs (OPEX, OB) as a function of the number of batteries required during the plant lifetime (Nb, assuming

replacement of batteries after degradation) given the new battery energy (bE ::
BE) and power capacities (bP :::

BP ). The CAPEX

model splits the energy capacity costs (CbE ::::
CBE) and power capacity dependent costs which include power capacity, in-

stallation and control system costs (CbP +CbBOP +Cbcontrol:::::::::::::::::::::
CBP +CBBOP +CB control). An equivalent number of present285

batteries (NBeq) is used to reflect the decrease in costs of battery though out the lifetime of the battery given a battery price

reduction per year (fb:::
fB) and the time of replacement of the ib) battery in years (yb(ib)).

CB =Nbeq (CBE ×BE) + (CBP +CBBOP +CB control)BP

OB =OBE ×BE
NBeq =

∑Nb−1
ib=0 (1− fB)yb(ib)

(16)

2.14 Electrical and shared infrastructure cost model(ele_cost)

A simple electrical infrastructure cost model consists in
:
of

:
estimating the total capital expenditure costs (CAPEX, Cel :::

CE) as a290

function of the grid capacity (GMW ), and balance of system costs and grid connection costs (CBOS +Cgrid:::::::::::
CBOS +Cgrid) and

15



land costs.
::::
Note

:::
that

:::
the

::::
HPP

::::
land

:::
use

::::
area

::
is

:::::
shared

:::::::
between

:::::
wind

:::::
(AW )

:::
and

:::::
solar

:::::
(AS),

::::
given

:::::
their

:::::::::::
corresponding

::::::::::
installation

::::::::
densities:

:::
ρW :::

and
:::
ρS .

:

AW =WMW /ρW

AS = SMW × ρS
AHPP = max(AW ,AS)

CE = (CBOS +Cgrid)GMW +ClandAHPP

OE = 0

(17)

2.15 HPP financial model295

A simple financial model consists in
::
of

:
considering a different weighted average cost of capital (WACC) for wind, PV and

battery. The WACC after tax (WACCaftertax ::::::
WACCtx) then is the weighting sum of the WACCs for wind, PV, battery and

electrical by their corresponding CAPEX, taking the mean WACC for the electrical costs shared across all technologies.

CH = CW +CS +CB +CE

OH = OW +OS +Ob +OE

WACCm = (WACCW + WACCS + WACCB)/3

WACCtx = (CW WACCW +CS WACCS+

CB WACCB +CE WACCm)/CH

(18)

The financial model then estimates the yearly incomes (Iy) and cashflow (Fy) as function of the average revenue over the year300

(Ry = 〈Pr(t)H(t)− l〉y::::::::
including

::::::::
peak-hour

::::::::
penalties

:::::::::::::::::::::::
(Ry = 〈Pr(t)HLT (t)− l〉y), the tax rate (rtax) and WACCtx:::::::

WACCtx.
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Net present value (NPV)
:::::::
NPV ),

:::
the

:::::::
internal

:::
rate

:::
of

:::::
return

::::::
(IRR) and levelized costs of energy (LCoE

::::::
LCoE) can then be

calculated using the WACCtx :::::::
WACCtx:as the discount rate, as well as the internal rate of return (IRR).

Iy = (Ry −OH)(1− rtax)

Fy =

−CH for y = 0

Iy for y > 0

NPV =
∑
yFy/(1 + WACCtx)y

0 =
∑
yFy/(1 + IRR)y

CL =
∑
y(OH/(1 + WACCtx)y) +CH

AEPL =
∑
y(AEPy/(1 + WACCtx)y)

LCoE = CL/AEPL

(19)

3 HPP sizing optimization305

The HPP sizing optimization problem consists in minimizing LCoE or maximizing NPV over CAPEX by changing the design

variables: rotor-tip to ground height clearance (hc in m), turbine’s specific power (sp in m2/MW), turbine’s rated power (prated

in MW), number of wind turbines (Nwt), wind’s installation density (ρW , in MW/km2), solar capacity (SMW ), battery power

capacity (bP in MW) and battery energy storage capacity in hours at battery power capacity (bEh). Furthermore, the sizing is

forced to only take integer values of the design variables.310

min y(x)

y(x) =

−NPV/CH (x)

LCoE(x)

x= [hc, sp, prated, Nwt, ρW , SMW , θtilt, θazim, rDCAC , BP , BEh]

s.t. D = 2
√
Prated/(πsp)

hh= hc +D/2

WMW =Nwt prated

Aw =WMW /ρW

BE =BEhBP
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3 Surrogate based optimization

Surrogate-based optimization is used as the outer sizing optimization in order to reduce the number of full model evaluations

during a gradient-based optimization (Jones et al., 1998). In this work, we use the Gaussian process (or Kriging) implementa-

tion from the Surrogate Modeling Toolbox (SMT) (Bouhlel et al., 2019). Modern Kriging surrogates with partial least squares315

based training (KPLS) have been shown to be faster to train and evaluate because of the minimized number of meta-parameters

obtained by applying dimensional reduction techniques such principal component analysis to the inputs (Bouhlel et al., 2016b).

Furthermore, KPLS can be used to provide near optimal, initial conditions in the training of standard Kriging (KPLSK) (Bouh-

lel et al., 2016a). KPLSK with squared exponential kernel and linear trend are used as a surrogate model over the design

variables.320

An updated version of the parallel efficient global optimization (Roux et al., 2020) is proposed in order to use a two-

step approach to (a) explore (find regions with candidates for global optimal) and (b) refine (propose model simulations that

help the convergence of EGO optimization on local optima). See Algorithm ??. An initial database of model simulations is

generated using Latin hyper-cube sampling (LHS) (McKay et al., 2000; Jin et al., 2003). Then in each optimization iteration,

an exploration step identifies regions with candidates for global optimal based on the evaluation of the expected improvement325

of the surrogate. This is done by parallel execution over 104 random samples (per parallel process) in the design space. Then

the top-ranked (EIx) points are clustered using Elkan’s K-mean clustering algorithm (Elkan, 2003) and the best performing

point per cluster is selected as a candidate (x+EI ). A refinement step is performed around the current optimal perturbing of each

dimension at a time (x+opt), depending on the iteration convergence the refinement focuses on local perturbations or evaluations

of extremes per input dimension. Finally the model is evaluated in parallel (y+←M(x+)). The surrogate M̂ is then updated330

with the updated list of model evaluations (x+,y+).

Parallel explore and refine EGO algorithm x= LHS(n0) y =M(x) Initial simulation DB xopt = argminx(y) iiter < nmaxiterM̂← train(x,y)

Train surrogate modelEIx = EI(M̂,xopt,xx) Explore the expected improvement x+EI ← get_candidates(xx,EIx) Get optimal

candidates based on EI x+opt = perturb_around_point(xopt) Refine around current best x+opt = extremes_around_point(xopt)

Refine on single variable extremes x+ = [x+EI ,x
+
opt] Concatenate inputs for evaluation y+ =M(x+) Parallel model evaluation335

x,y← [x,x+], [y,y+] Update model evaluations ε= 1− yopt/min(y) Update epsilon xopt = argminx(y) Update current optimal

inputs yopt = min(y) Update current optimal
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Algorithm 1 Parallel explore and refine EGO algorithm

x = LHS(n0)

y = M(x) Initial simulation DB

xopt = argminx(y)

while iiter < nmaxiter do

M̂ train(x,y) Train surrogate model

EIx = EI(M̂,xopt,xx) Explore the expected improvement

x+
EI  get_candidates(xx,EIx) Get optimal candidates based on EI

if ✏ ✏tol then

x+
opt = perturb_around_point(xopt) Refine around current best

else if ✏ > ✏tol then

x+
opt = extremes_around_point(xopt) Refine on single variable extremes

end if

x+ = [x+
EI ,x

+
opt] Concatenate inputs for evaluation

y+ = M(x+) Parallel model evaluation

x,y [x,x+], [y,y+] Update model evaluations

✏ = 1� yopt/min(y) Update epsilon

xopt = argminx(y) Update current optimal inputs

yopt = min(y) Update current optimal

end while

5 Study cases

A summary of assumptions costs and general specifications of HPP are presented in table 1.

6 Results275

The detailed results of the hybrid plant sizing optimization based on LCoE or on NPV/CH in three different locations in India

are presented in tables 2 and ??, for the cheap battery and expensive battery scenarios correspondingly.

Table 2 shows that batteries are installed for NPV/CH -based optimal sizing at the current costs of batteries (expensive

batteries scenario), but the business case (IRR) for HPP with storage is marginal (0.08 or 0.07). In general, the optimizer tries

to minimize the penalties by over-planting the generation or by introducing storage. Over-planting is a concept that has been280

proposed to increase revenues on WPP when considering losses (Wolter et al., 2020). On the good solar site, an HPP of Wind,

PV and storage is obtained for the NPV/CH -based design, while a single technology PV plant is obtained for the LCoE-based

design. Note that the business case is negative for the LCoE-based design. On the good wind site a single wind plant with over-
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4 Results
:::::
Study

::::::
Cases

:::::
Three

::::::::
locations

::
in

:::::
India

:::
are

:::::::
selected

:::
as

:::::
study

:::::
cases,

:::
see

::::::
Figure

:::
8.

:::::
These

::::::::
locations

:::
are

::::::::
selected

:::::::
because

::::
they

::::
have

::
a
:::::
good

::::::
balance

:::::::
between

::::::
having

:::::
good

::::
wind

:::::::::
resources,

::::
good

:::::
solar

::::::::
resources,

::
or
:::::::::::

intermediate
:::::::::
resources.

:::
The

:::::
wind

:::::
speed

:::
and

:::::::::
irradiance340

:::::::
statistics

:::
are

::::::::
presented

::
in

::::::
Figure

::
9. A summary of assumptions costsand general specifications of HPP

:::::
costs,

::::::::::
assumptions

::::
and

:::::::::::
specifications

::::
used

:::
for

::::
this

:::::::
analysis

:
are presented in table 1 . Two different scenarios for battery costs are presented on the

example sites.
:::::
Tables

::
1

:::
and

::
2.

::::
The

::::
costs

:::
are

:::::
taken

::::
from

:::::
DEA

::::::::::
Technology

::::::::
Catalogue

:::::::::::::::::::::::::
Danish Energy Agency (2020)

:
,
:::::
while

:::
the

:::
PV

:::
and

::::
wind

::::::::::
degradation

::
of

:::::::::
0.5%/year

:::
are

:::::
taken

::::
from

::::::::::::::::::
Theristis et al. (2023)

:::
and

:::::::::::::::::::
Hamilton et al. (2020).

:::
For

::::
each

::::::::
location,

:::
the

::::::::::
optimization

:::::::
problem

::
is

::::::::
executed

:::::
based

::
on

:::
two

::::::::
different

::::::
(single)

::::::
design

:::::::::
objectives:

::::::
LCoE

:::
and

::::::::::
NPV/CH ::

in
::::
order

::
to

::::::::
illustrate345

::
the

:::::::
benefits

:::
of

::::
HPP

::::::
design

:::::
based

:::
on

::::::::
revenues.

:::::
Each

:::::::::::
optimization

::
is

::::::::
executed

::::
with

::
6

::::::::::
multi-starts

::
in

:::::
order

::
to

::::::
ensure

::::::
global

:::::::
optimal.

::::::
Finally

:::
we

::::::
present

:
a
:::::::::

sensitivity
:::::::
analysis

:::
on

:::
the

::::::::::
optimization

::::::
results

::
to

:::::::
varying

:::
all

::::::
battery

::::::
related

::::
costs

:::
by

:::::::
applying

::
a

:::::
factor.

:
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Figure 8.
:::::::
Location

::
of

::
the

::::
three

:::::::
example

::::
sites.
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Figure 9.
:::::
Hourly

:::::::
statistics

:::
per

:::::
month

::
for

::::
wind

:::::
speed

:::
and

:::::
direct

:::::
normal

::::::::
irradiance

::
on

:::
the

::::
three

:::::::
locations.
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Symbol Description Units Value Symbol Description Units Value

General PV

G Grid connection MW 300 CPV Solar PV cost Euro/MWDC 110000

− Simulation year - 2012 CS install Solar hardware installation cost Euro/MWDC 100000

Nlife Lifetime year 25 Cinv ref Solar inverter cost Euro/MW 20000

rAD ref Ratio AC/DC ref − 1.5

WPP OS fixed Solar fixed O&M cost Euro/MWDC 4500

CWT Wind turbine cost Euro/MW 640000 ρS Land use per Solar MW km2/MWDC 0.01226

CW civil Wind civil works cost Euro/MW 260000 - Tracking − No

OW fixed Wind fixed O&M cost Euro/MW/year 12600 - PV degradation curve’s year list year 0 25

OW var Wind variable O&M cost EUR/MWh 1.35 dlS PV degradation curve − 0 0.125

Dref Reference WT diameter m 145

hhref Reference WT hub height m 100 BES −
Prated ref Reference WT rated power MW 5 CBE Battery energy cost Euro/MWh 22500

ηW WPP efficiency − 1 CBP Battery power cost Euro/MW 8000

− Wind degradation curve’s year list year 0 25 CBBOP Battery BOP install. comm. cost Euro/MW 9000

dlW Wind degradation curve − 0 0.125 CB control Battery control system cost Euro/MW 2250

− Share between WT deg types − 0.5 OBE Battery energy O&M cost Euro/MW 0

BE depth Battery depth of discharge − 0.9

Shared Costs ηcharge Battery charge efficiency − 0.98

CBOS HPP BOS soft cost Euro/MW 119940 ηdischarge Battery charge efficiency − 0.98

Cgrid HPP grid connection cost Euro/MW 50000 fB Battery price reduction per year − 0.1

Cland Land cost Euro/MW 300000 1−min(L) Min. level of health − 0.7

NBmax Max No. of batteries − 5

Finance

WACCW Wind WACC − 0.052 Optimization

WACCS Solar WACC − 0.048 Nprocs No. of parallel processors − 32

WACCB Battery WACC − 0.08 NDOE No. of initial model evaluations − 160

rtax Tax rate − 0.22 Nclusters No. of clusters − 8

Nseed No. of random starts (seeds) − 6

Penalties NEI pred No. of EI predictions per processor − 2.50E+04

Prpeak = quant(Pr, q) Peak hour definition in quantile, q − 0.9 εtol Objective function tolerance − 1.00E-03

Epeak req =G×Nh Nh full power hours expected hours 2.55 Nmaxiter Max. No. of iterations − 20

per day at peak price Nconv iter Min. No. of converged iterations − 3

Table 1. Assumptions for the HPP sizing optimization with two scenarios for battery costs.

Design variable Description Units Lower Lim. Upper Lim. Type

hc clearance m 10 60 int

sp specific power W/m2 200 360 int

Prated WT rated power MW 1 10 int

NWT No. WT − 0 400 int

ρW Wind installation density MW/km2 5 9 float

SMW solar MW MW 0 400 int

θtilt PV surface tilt deg. 0 50 float

θazim PV surface_azimuth deg. 150 210 float

rAD DC-AC ratio − 1 2 float

BP Battery power MW 0 150 int

BEh Battery energy in hours h 1 10 int

Cbfl cost of battery P fluct. in peak price ratio − 0 30 float

Table 2.
::::::
Design

::::::
variable

::
in

::
the

::::::::::
optimization

:::::
setup.
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5
::::::
Results

The detailed results of the hybrid plant sizing optimization based on LCoE or on NPV/CH in
:::::::::
minimizing

::::::
LCoE

:::
or

:::
on350

::::::::::
maximizing

:::::::::
NPV/CH :::

for
:::
the

:
three different locations in India are presented in tables ?? and ??, for the cheap battery and

expensive battery scenarios correspondingly.

Table ?? shows
:::::
Table

::
3.

:
It
::

is
::::::::
observed

:
that batteries are installed for NPV/CH :::

only
::::::::
installed

::
for

::::::::::
NPV/CH -based optimal

sizingat the current costs of batteries (expensive batteries scenario), but the business case (IRR) for HPP with storage is

marginal (0.08 or 0.07). In general.
:::::

This
::
is

::
an

::::::::
expected

::::::
results

::
as

::::::::
batteries

::::
add

::
to

:::
the

:::::
costs

:::
and

:::
do

:::
not

::::::::
increase

:::
the

:::::
AEP,355

::::::
besides

:::
any

::::::::::
curtailment

::::::::
reduction,

::::
and

:::::::
therefore

:::
do

:::
not

::::::
reduce

:::
the

::::::
LCoE.

:::
On

::::::::::::::::
NPV/CH -optimal

:::::
plants, the optimizer tries to

minimize the penalties by over-planting the generation or
:::
and

:
by introducing storage.

:::::::::::
Over-planting

::
is

:
a
:::::::
concept

:::
that

:::
has

:::::
been

:::::::
proposed

::
to
:::::::
increase

::::::::
revenues

:::
on

::::
WPP

:::::
when

::::::::::
considering

:::::
losses

:::::::::::::::::
(Wolter et al., 2020).

:::
In

::::::
general

:::
the

:::::::::::
LCoE-based

:::::::
designs

:::
are

:::::
single

:::::::::
generation

::::::::::
technologies

:::::::
because

:::
the

::::
best

::::::::::
performing

:::::
(lower

:::::::
LCoE)

::::::
energy

::::::
source

::
is

:::::::::
prioritized;

::
a

::::
small

::::::::::::
over-planting

:
is
::::::::

observed
:::

to
::::::::::
compensate

:::
for

:::
the

::::::::::
degradation

::::
over

::::
the

:::::::
lifetime.

:::::::
Because

::::
the

::::::
LCoE

:::
do

:::
not

:::::::
account

:::
for

:::
the

:::::::::
penalties,

:::
the360

:::::::::::
LCoE-based

::::::
designs

:::::::
produce

:::::::
negative

::::::::
business

::::
cases

:::::::::::
(NPV < 0)

:::
for

:::
the

::::
good

:::::
solar

:::
and

::::
bad

::::
solar

::::
and

:::
bad

:::::
wind

::::
sites.

:::::
Note

:::
that

::::
llife::

in
:::::
Table

::
3

::::::::
represents

:::
the

::::
total

::::::::
penalties

:::::::
summed

:::::
over

:::
the

:::::::
lifetime,

:::
and

::::
can

::
be

:::::
twice

::
as

:::::
large

::
as

:::
the

::::
total

:::::::
CAPEX

:::
on

:::::::::::
LCoE-based

:::::::
designs.

::::::
AEcurt::::::::

represent
:::
the

:::::
mean

:::::
annual

::::::
energy

::::::::::
curtailment,

:::
and

:::::
tends

::
to

::
be

:::::::
smaller

:::
than

:::
the

:::::
AEP

:::
on

::
all

:::::
sites.

:::
The

::::
grid

:::::::::
utilization

:::::
factor,

:::::::
defined

::
as

:::
the

:::::
ratio

:::::::
between

:::
the

:::::
mean

::::
HPP

::::::
power

:::
and

:::
the

::::
grid

::::::::::
connection

::::::::::::::::::
GUF = E(H(t))/G,

:::::
better

:::::::
captures

:::
the

:::::::
capacity

:::::
factor

::
of

::
an

:::::
HPP,

::
as

:
it
::::::::
accounts

::
for

:::
the

::::::
energy

::::
sold

::
to

:::
the

::::
grid.

::
It

:::
can

::
be

::::
seen

::::
that

:::
the

:::
grid

:::::::::
utilization365

:::::
factor

:
is
::::::
larger

::
for

:::::::::::::::
NPV/CH=based

:::::::
designs

::
on

:::
the

:::::
solar

:::::
driven

::::
sites

:::::
while

::
it

::
is

::::::
slightly

:::::::
reduced

::
on

:::
the

:::::
good

::::
wind

::::
site.

:

On the good solar site, an HPP of Wind, PV and storage is obtained for the NPV/CH:::::::::
NPV/CH -based design

::::
with

:::::::::
significant

:::::::::::
over-planting, while a single technology PV plant is obtained for the LCoE-based design. Note that the business case is negative

for the LCoE-based design.
:::::::::::
LCoE-based

::::::
design.

::::
The

:::
PV

:::::
panel

:::::::::
orientation

::::
and

::::
rAD:::

are
::::
very

:::::::
similar

::
for

:::::
both

:::::
cases,

:::
but

:::
an

:::::::
increase

::
of

::
tilt

::::::::
indicates

::::
that

::
an

:::::
effort

::
to

:::::::
increase

:::
the

:::::::::
generation

:::::
closer

::
to

:::
the

:::::::
morning

:::::
peak

:::::
price.370

On the good wind site a single wind plant with
::::::
minimal

:
over-planting is selected for NPV/CH:::::::

obtained
:::
for

:::
the

::::::
LCoE-based

design, while a single windplant without
::::
with

::::
high

:::::
rated

::::::
power

:::
and

:::
tall

::::::
tower.

::
A

::::::
hybrid

:::::
wind,

::::
PV

:::
and

:::::::
storage

::::
plant

:::::
with

over-planting is obtained for LCoE-based designs. The final size is a combination of reductions of land costs and wake losses,

as it can be seen in the selection of larger spacing (ρW ) for the LCoE-based design
:::::::
selected

:::
for

::::::::::::::
NPV/CH -based

:::::::
design.

:::
On

:::
this

:::::
plant,

:::
the

:::::::
turbines

:::
are

:::::::
smaller

::::
with

:::::
lower

:::::::
towers,

:::
and

::::
with

:::::::::
additional

:::::::::
generation

::::::::
produced

:::
by

:::
PV.

::::
The

::::::::
resulting

::::::
battery375

:::::
power

:::
and

::::::
energy

::::::
rating

::
is

:::::::
reduced

::
in

::::::::::
comparison

::
to

:::
the

:::::
other

::::
sites,

::
a
:::::
result

::::
that

::::::
implies

::::
that

:::
the

::::::
hybrid

:::::::::
generation

:::::::
requires

:::
less

:::::::
shifting

::
of

::::::
energy

:::::
from

::::::::
non-peak

:::
to

::::
peak

::::::
hours.

:::
On

:::
the

::::::::
contrary

:::
this

::::
site

::::
uses

:::::
three

:::::::
batteries

:::::::
instead

::
of

::::
only

::::
two

:::
on

::
the

:::::
other

::::::::
locations. It is interesting to see that both designs have very similar final LCoE

::
on

::::
this

:::::::
location

::::
have

:::::::
similar

::::
final

:::::::::
NPV/CH :::

and
:::::::
LCoE values, which highlights the fact that you can meet an LCoE target

::::::
achieve

:::::::
similar

::::::::
objectives

:
with

multiple combinations of technologies.380

On the bad solar and bad wind site, a hybrid wind, PV and
::
PV

::::
with

:
storage plant is selected for the NPV/CH:::::::

obtained
:::
for

:::
the

:::::::::
NPV/CH -based designwith a marginally positive business case. This illustrates why it is not possible to size HPP sites based
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on IRR, there are several configurations that will produce negative business cases and therefore have undefined IRR.
:
. Note that

PV-only plants arein general ,
::
in

:::::::
general,

:
over-planted (320 MW over 300 MW grid), the reason for this is to obtain a better

annual energy production (AEP ) and grid utilization factor (GUF ).
::
An

:::::::
example

::::::
period

::
of

::::::::
operation

::
of

:::
the

:::::::::::::::
NPV/CH -based385

::::
HPP

:::
for

:::
all

::::
sites

:::
are

::::::
shown

::
in

:::::
Figure

:::
10.

:

Table ?? shows that hybrid plants only occur on NPV/CH

:::::
Figure

:::
11

::::::
depicts

:::
the

::::::
results

::
of

:::::::::
NPV/CH -based sizing optimization. This is in general an expected result from HPP sizing

based on LCoE, as the optimizer will only select to install the technology that will provide the lowest LCoE. NPV/CH -based

HPP designs include batteries in all locations in order to minimize the penalties except in
:::::::::::
optimizations

:::
run

::::
with

:::::::
varying

::::::
battery390

::::
costs.

:::::
Note

:::
that

:::
all

:::
the

::::::
battery

::::::
related

::::
costs

:::
are

::::::
scaled

::
by

:::
an

::::::
unique

:::::
factor.

::
It

:::
can

:::
be

::::
seen

:::
that

::::
cost

::
of

:::::::
batteries

:::
has

::
a
:::::::::
significant

:::::
impact

:::
on

:::
the

::::
final

::::
HPP

::::::
design

:::
and

:::::::::::
performance.

:::
The

::::::
overall

::::::::
business

:::
case

:::::::::::
(NPV/CH )

::
is

::::::
reduced

:::::
when

:::
the

:::::::
batteries

:::
are

:::::
more

::::::::
expensive

:::
for

::
all

:::::
sites.

:::
For

::::
both

:::
the

:::::
good

::::
solar

::::
site

:::
and

::::
bad

::::
wind

::::
and

:::
bad

:::::
solar

::::
site,

:::
the

::::::
optimal

::::
HPP

::
is
::::
very

:::::::
similar

::
in

:::::
terms

::
of

:::::
wind,

::::
solar

:::
and

:::::::
number

::
of

::::::::
batteries.

:::::
While

:::
on the good wind sitewhere it can meet the expected peak generation (and avoid

penalty) just by
:
,
:::::::
batteries

:::
are

:::
not

::::::::
installed

:
if
::::
they

:::
are

:::
1.5

:::::
more

:::::::::
expensive,

::::::
instead

:::
the

:::::::
amount

::
of

:::::
wind

:::
and

:::
PV

:
over-planting395

:::::::
increases

::
in
:::::
order

::
to

::::::
reduce

:::
the

:::::::
penalties

::::
and

:::::::
keeping

:
a
::::::
similar

:::::::
business

:::::
case.

::::::
Finally,

:::
the

::::::::
optimizer

::::::::
decreases

:::
the

::::::
power

:::::
rating

::
of the wind plant. In general, the lower costs of batteries produce better business cases on the NPV/CH -based sites, in particular

in the bad solar and bad wind. An example period of operation of the NPV/CH -based sites is shown in figure 10
:::::::
batteries

:::::
when

:::
they

:::
are

:::::
more

:::::::::
expensive,

:::
but

:
a
:::::
small

:::::::
increase

::
in

:::
the

::::::
energy

:::::::
capacity

::
is

::::
seen

:::
on

:::
the

::::
good

::::
solar

::::
site

:::
and

:::
the

:::
bad

:::::
wind

:::
site.

HPP Sizing optimization results in the example sites with respect NPV/CH and LCoE for expensive batteries scenario.400

HPP Sizing optimization results in the example sites with respect NPV/CH and LCoE for cheap batteries scenario.

6
::::::::::
Conclusions

::::
and

::::::
Future

::::::
Work

NPV-over-CAPEX optimal hybrid power plants
::::::
Hybrid

::::::
power

::::::
plants

::::
with

:::::::
storage are obtained across India in order

::
on

::::::::::::::
NPV/CH -based

:::::::
designs

::
as

::
a
:::::::::::
consequence

::
of

::::::
trying to mitigate the penalties of not reaching the expected energy gener-

ation at peak hours. Li-ion batteries are installed on sites that can not mitigate penalties by over-planting. the
:::
The

:
results405

show how changing from LCoE to NPV/CH -based
:::::
LCoE

::
to

::::::::::
NPV/CH :::::

driven
:
design allows the optimizer to over-plant the

HPP
:::::::::::::
over-dimension

:::
the

:::::::::
generation

:::
and

:::::::
include

::::::
storage to maximize the revenue by balancing the CAPEX, OPEXand power

curtailment coming from the oversized design
:
,
::::::
power

:::::::::
curtailment

::::
and

::::::::
penalties.

::::::
Hybrid

::::::
plants,

::::
that

:::::::
include

:::::
wind,

::::
solar

::::
and

::::::
battery,

::::
only

:::::
occur

:::
on

:::
the

::::
sites

::::::
where

:::
the

:::::
wind

:::
and

:::::
solar

:::::::::
generation

:::::::::::
complement

::::
each

:::::
other

::
to

:::::
match

::::
the

::::
spot

::::
price

::::::
signal

:::::
(good

:::::
wind).410

Battery degradation plays an important role in HPP sizing as the additional costs of replacing the battery two over three
:::
one

::
or

:::
two

:
times will change the financial viability of the project. For this reason, future

:::
The

:::::
sizing

:::::::::::
optimization

:::::::::
prioritizes

::::::
cheaper

:::::::
turbines

:::
for

:::
the

::::::::::::::
NPV/CH -based

:::::
HPP

::
on

:::
the

::::
good

:::::
wind

::::
site,

::
by

::::::::
selecting

:::::
lower

:::
hub

::::::
height

::::
and

:::::
lower

::::
rated

::::::
power.

:
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Site Good solar Good wind Bad solar bad wind

Design objective LCoE NPV/CH LCoE NPV/CH LCoE NPV/CH

Design Variables Units

hc m 10 10 10 10 10 10

sp W/m2 200 200 360 360 200 200

Prated MW 1 1 8 4 1 1

NWT - 0 0 38 66 0 0

ρW MW/km2 5.0 5.0 7.8 7.4 5.0 7.5

SMW MW 322 400 0 54 328 400

θtilt deg. 28.3 35.0 0.0 21.1 24.8 29.5

θazim deg. 210 210 150 210 210 210

rAD - 1.5 1.6 1.0 1.7 1.7 1.9

BP MW 0 104 0 57 0 150

bEh hours 1 7 4 4 1 7

Cbfl - 0.0 0.0 16.0 0.7 26.7 0.0

Design Summary

G MW 300 300 300 300 300 300

WMW MW 0 0 304 264 0 0

SMW MW 322 400 0 54 328 400

BP MW 0 104 0 57 0 150

BE MWh 0 728 0 228 0 1050

NB - 0 2 0 3 0 2

D m - - 168 119 - -

hh m - - 94 69 - -

Outputs

NPV/CH - -0.264 0.747 0.996 1.042 -0.548 0.537

NPV MEuro -42.5 178.0 304.9 304.8 -96.0 151.5

IRR - - 0.128 0.145 0.151 - 0.110

LCOE Euro/MWh 18.73 22.26 17.51 19.13 21.06 26.82

CH MEuro 160.9 238.3 306.2 292.6 175.1 282.3

OH MEuro 2.2 2.9 5.2 6.1 2.5 3.4

llife MEuro 372 3.8 99 41 417 2.9

AEP GWh 732 927 1564 1441 712 918

AEcurt GWh 4.5 1.3 0.9 0.0 7.2 2.3

GUF - 0.28 0.35 0.60 0.55 0.27 0.35

Optimization

Run time min 14 19 10 13 9 17

No. model eval. - 587 670 485 551 459 641

Table 3.
::::
HPP

:::::
Sizing

:::::::::
optimization

::::::
results

:
in
:::
the

:::::::
example

:::
sites

::::
with

:::::
respect

:::::::::
NPV/CH :::

and
::::::
LCoE.
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Figure 10.
:::::::
Example

:
of
:::
10

:::
days

::
of
::::::::
operation

::
on

::
the

::::
12th

:::
year

:::
for

:::
the

::::::::::::::::
NPV/CH -optimized

::::
HPPs

::::
(top)

::::
good

::::
solar

:::
site

:::::::
(bottom)

:::
bad

::::
solar

:::
bad

::::
wind

:::
site.
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Figure 11. Example
::::::::
Sensitivity of 10 days operation

::::
some

:::
key

::::::
outputs for NPV optimized HPPs (top) good solar site (bottom) good wind

site. Cheap
::::::::
NPV/CH::::::

optimal
:::::
plants

::
on

:::
the

::::
three

:::::::
locations

::::
when

::::::
scaling

::
all

:
battery scenario

:::::
related

::::
costs.

:::
The

::::::::
proposed

::::::
nested

::::::::::
optimization

::::::::
approach

:::::::
ensures

:::::::
realistic

::::
HPP

::::::::
operation

:::
and

::
at

:::
the

:::::
same

::::
time

::::::
allows

::
to

::::
have

:::::::::
non-linear415

:::::
sizing

:::::::::::
optimization.

::
In

:::
the

:::::::
proposed

::::::::::
framework

::::
both

::::
EMS

::::::
models

:::
are

::::::::
necessary

:::::
since

:
it
::
is

:::
not

::::::::::::::
computationally

::::::
feasible

::
to

:::::
solve

::
the

:::::::
internal

:::::
EMS

::::::::::
optimization

:::
for

:::::::
varying

::::::::::
degradation

:::::
states

:::
for

:::
the

:::
full

:::::::
lifetime

::::::
within

::
an

:::::
outer

:::::
sizing

:::::::::::
optimization.

:::::::
Instead

::
the

:::::::::
rule-based

:::::::::
long-term

::::
EMS

::
is

::::
used

::
to

:::::::
account

:::
for

:::::::::
component

::::::::::
degradation

::
in

:
a
::::::::::::::
computationally

:::::::
efficient

::::
way.

::::::
Hybrid

::::::
power

:::::
plants

::::::
should

::
be

::::::::
designed

:::::::::
considering

::
a
:::::::
realistic

:::::::::::
representation

:::
of

:::
the

::::::::::
technologies

::::::::
including

::::
their

:::::::::::
degradation.

:::
The

:::::
IRR

:
is
:::
not

:::::::
defined

:::::
when

::
the

::::::
NPV

::
is

:::::::
negative,

:::
but

::::
such

::::::::
business

::::
cases

:::::
occur

:::
on

::::::
several

::::
HPPs

::::::::
evaluated

::::::
during

:
a
::::::
sizing420

::::::::::
optimization

::::
and

::::
even

::
on

:::::
some

:::::::::::::
LCoE-optimal

::::::
HPPs.

::::
This

::::::::
illustrates

::::
why

::
it
::
is

:::
not

:::::::
possible

::
to
::::

size
::::
HPP

:::::
sites

:::::
based

::
on

:::::
IRR,

:::
but

::::::
instead

:::
we

::::::
propose

:::
the

:::
use

:::
of

:::::::::
NPV/CH ::::::

among
::::
other

::::::::
modified

:::::
IRRs.

:

:::::
Future

:
work will look into integrating constraints of the amount of battery load cycles or battery lifetime consumption within

the EMS optimization
::::::::
stochastic

:::::::::::
optimization

::
on

:::
the

:::::::
internal

::::::::
operation

:::::::::::
optimization,

::
in

:::::
order

::
to

::::
have

::::::::
operation

::::::::
strategies

::::
that

::
are

::::::
robust

::
to

:::
the

::::::
forecast

::::::
errors.

:::::::::::
Furthermore,

::::
HPP

:::::
sizing

:::::::::::
optimization

:::::
under

:::
cost

::::
and

:::::
future

::::
spot

::::
price

:::::::::::
uncertainties

:
is
:::::::
planned.425

Code and data availability. HyDesign is an open source code for design and control of utility scale wind-solar-storage based hybrid power

plant (HPP). The documentation and example interactive examples are available at(https://topfarm.pages.windenergy.dtu.dk/hydesign/); the
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input data including weather and price signals for the example Indian sites used in this article are available in the HyDesign repository under

examples (https://gitlab.windenergy.dtu.dk/TOPFARM/hydesign).
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