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Abstract. Hybrid renewable power plants consisting of collocated wind, solar photo-voltaic (PV) and Lithium-ion battery

storage connected behind a single grid connection can provide additional value to the owners and to society in comparison to

individual technology plants such as only wind or only PV. The hybrid power plants considered in this article are connected

to the grid and share electrical infrastructure costs across the different generation and storing technologies. In this article, we

propose a methodology for sizing of hybrid power plants as a nested optimization problem: with an outer sizing optimization5

and an internal operation optimization. The outer sizing optimization maximizes the net present values over capital expenditures

and compares it with standard designs that minimize the levelized cost of energy. The sizing problem formulation includes

turbine selection (in terms of rated power, specific power and hub height), a wind plant wake losses surrogate, simplified wind

and PV degradation models, battery degradation and an internal energy management system operation optimization. The outer

sizing optimization problem is solved using a new parallel "efficient global optimization" algorithm. This new algorithm is a10

surrogate-based optimization method that ensures a minimal number of model evaluations but ensures a global scope in the

optimization. The methodology presented in this article is available in an open-source tool called HyDesign. The hybrid sizing

algorithm is applied for a peak-power plant use case at different locations in India where the renewable energy auctions impose

a monetary penalty when energy is not supplied at peak hours. We compare the hybrid power plant sizing results when using

two different objective functions: the levelized cost of energy (LCoE) or the relative net present value with respect the total15

capital expenditure costs (NPV/CH ). Battery storage is installed only on NPV/CH -based designs, while hybrid including

wind, solar and battery only occurs on the site with good wind resources. Wind turbine selection on this site prioritizes cheaper

turbines with lower hub height and lower rated power. The number of batteries replaced changes on the different sites ranging

between two or three units over the lifetime. A significant over-dimensioning of the generation in comparison to the grid

connection occurs on all NPV/CH -based designs. As expected LCoE-based designs are single technology with no batteries.20

1 Introduction

A hybrid power plant (HPP) consisting of collocated wind, PV and Lithium-ion battery storage connected behind a single grid

connection point can provide better returns of investment than individual source (wind or solar) plants in locations where the

wind and solar resources are comparable and for electricity markets in which fixed power purchase agreement electricity prices
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are not possible. HPP can be designed to have operational flexibility in terms of dispatchability and ancillary service provision25

that makes them closer to traditional power plants in terms of achieving additional profitability in markets with time-varying

electricity prices under grid connection constraints and that have reduced costs due to the shared infrastructure (Gorman et al.,

2020; Dykes et al., 2020).

Sizing of HPP is a Multi-disciplinary Design Analysis and Optimization (MDAO) problem that requires detailed modeling

of the wind and solar resources as well as the wind, PV and storage performance, costs and operation (Dykes et al., 2020).30

Additionally, the selection of the wind turbine (WT) characteristics (specific power, hub height) and PV characteristics (panel

orientation) are additional degrees of freedom that can significantly modify the results of the sizing. Traditional objective

functions of the sizing optimization problem are maximizing net annual energy production or minimizing LCoE (Tripp et al.,

2022), but, in general, HPP designs that include energy storage can produce more revenues relative to the cost increase. In this

article, we compare HPP sizing optimization for both LCoE and relative net revenues as objective functions.35

A detailed energy management system (EMS) is required to determine the operation of the battery given the time-series of

wind and solar generation and the battery’s capacity. EMS optimization will determine when to charge and discharge the battery

with the objective of maximizing the revenue obtained by the HPP. Several articles focus on formulating EMS optimization

problems and propose different formulations Al-Lawati et al. (2021); Das et al. (2020); Khaloie et al. (2021a, b); Wang et al.

(2019). Different levels of complexity can be studied in the implementation of EMS such as: (1) rule-base algorithms that pre-40

scribe the operation of the battery, (2) deterministic EMS optimization that maximizes the revenues assuming perfect forecasts

(full future-knowledge) on the price of electricity, the wind and solar generation time-series, (3) robust optimization of EMS

operation will provide battery operation under worst case scenarios of forecast errors of generation and prices time-series, and

(4) Stochastic optimization of EMS operation that will provide best operation over the entire distribution of forecasting error.

EMS operational optimization within the HPP sizing optimization is not common in the literature but it is required in order to45

unravel the value of HPP fully.

Furthermore, HPP sizing requires solving the long-term performance of the different components through the lifetime of the

HPP; this implies modeling the degradation in the performance of the individual components. Li-ion batteries, wind turbines

and PV cells have significant degradation over time. Several models of PV degradation exist (Jordan et al., 2016), and PV

manufacturers can provide a warranty of the degradation curve, while recent publications report measured PV degradation50

rates (Theristis et al., 2023, 2020). Wind turbine degradation is significantly more complex as the performance degradation,

e.x. due to blade erosion (López et al., 2023; Panthi and Iungo, 2023; Bech et al., 2018), is compensated by the internal wind

turbine pitch control system. Several studies report different levels of wind plant degradation as losses of capacity factor over

age (Hamilton et al., 2020; Jia et al., 2016; Staffell and Green, 2014; Astolfi et al., 2022).

Typically, battery cells have to be replaced when their capacity degrades beyond a manufacturer defined safety threshold. The55

higher costs due to battery replacement plays a dominant role in battery total costs. Therefore, considering battery degradation

when sizing HPP can optimize the use of battery and hence extend battery lifetime and reduce costs. Battery degradation is a

complicated chemical process. Theoretical studies (Safari et al., 2008; Vetter et al., 2005) on battery degradation explains the

detailed degradation mechanism of battery cells. However, the required parameters and conditions of the battery cell can not
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be obtained in the sizing stage. To incorporate the battery degradation model into the sizing problem, it is possible to use semi-60

empirical models (Xu et al., 2016) that only require the state of charge time-series (SoC) as input to assess battery lifetime.

This model considers the solid electrolyte inter-phase film formation theory calibrated based on experimental observations and

it is able to describe the non-linear degradation process.

To the authors’ knowledge, there is no available sizing methodology for the design of utility-scale grid-constrained hybrid

power plants considering all the above-mentioned characteristics. This article presents a general methodology for hybrid plant65

sizing as a nested optimization including several novel aspects: (1) turbine selection (2) PV and wind degradation (3) internal

EMS operation optimization (4) battery degradation based on resulting load-cycles (4) . We apply the methodology and report

the detailed result of the hybrid plant design in three different locations in India: (a) solar dominant site (b) wind dominant site

and (c) low wind and solar resources. The research objective is to build a framework for optimization of hybrid power plants

that is flexible, modular and that can be extended to solve sizing and physical design of HPP.70

India is a large market in which HPPs could become important because of the need to provide renewable energy that supports

the demand patterns and because of the intermediate solar and wind resources. For this reason, Indian sites are used as example

cases in this article.

2 Methodology

The design of a HPP is an optimization problem that involves several sub-optimization problems such as: WT selection,75

wind power plant (WPP) siting and layout optimization, PV array sitting, EMS operation optimization coupled with battery

degradation, and electrical infrastructure optimization. HPP sizing optimization focused on maximizing the viability of a HPP

installation in a given location requires a simplified approach. The XDSM diagram of the proposed nested optimization for

HPP sizing is presented in Figure 1. In this sizing optimization formulation several simplifications have been performed in

order to reduce the complexity of the optimization: (1) The WT Layout optimization is replaced by a surrogate of the wakes80

of sub-optimal WPP. (2) Uncoupled battery, wind and PV degradation models are used to reduce the complexity of the EMS

optimization: the internal operation optimization solves a short-term EMS problem without considering battery degradation

but with a penalty for battery power ramping; while a long-term operation rule-based EMS (EMS Long-term) corrects the

ideal battery operation for degradation and forecast errors. (3) Simplified electrical infrastructure costs are used, instead of an

electrical cable and infrastructure optimization. (4) No interaction between WT and PV is assumed, neglecting PV losses due85

to shadow and flickering and changes in the wind boundary layer due to the presence of large PV arrays.

2.1 HPP sizing optimization

The HPP sizing optimization problem consists of minimizing LCoE or maximizing NPV/CH by changing the design vari-

ables: rotor-tip to ground height clearance (hc in [m]), turbine’s specific power (sp in [MW/m2]), turbine’s rated power (Prated

in [MW]), number of wind turbines (NWT ), wind’s installation density (ρW , in [MW/km2]), solar capacity (SMW ), PV tilt90

angle (θtilt), PV azimuth angle (θazim), PV inverter AC to DC ratio (rAD), battery power capacity (BP in [MW]), battery energy
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Figure 1. HPP sizing as a nested optimization. XDSM diagram.

storage capacity in hours at battery power capacity (BEh) and battery fluctuation penalty factor (Cbfl). Furthermore, the sizing

can be forced to only take integer values on some specific design variables such as NWT .

min y(x) =

8><>:�NPV/CH (x)

LCoE(x)

x = [hc, sp, Prated, NWT , ρW , SMW , θtilt, θazim, rAD, BP , BEh, Cbfl]

(1)

2.2 Generic Wind Turbine95

A look-up table is built based on DTU’s pyWake generic turbine model (Pedersen et al., 2023). The interpolation of this data is

a surrogate that predicts the power and thrust coefficient curves given the turbine’s specific power, defined as the ratio between

the rated power and the rotor area (sp = Prated/A). The wind turbine power curve and thrust coefficient curves are represented

as PWT (WS) and CT (WS) in Figure 1. Examples of the surrogate power and thrust coefficient curves are given in Figure 2.
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The rotor diameter (D = 2
p

Prated=(� sp )) and hub height (hh = hc + D=2) can be computed based onsp and the clearance100

height.

Figure 2. Generic wind turbine surrogate.

2.3 Generic Wind Power Plant Wake Model

A database of wind power plants is generated using circular plant borders and a simpli�ed layout optimization that maximizes

the distance between the turbines. Two example layouts are presented in Figure 3. Here it can be seen that the layouts are sym-

metric, and the minimum WT spacing is the consequence of specifying the number of turbines (NW T ), the turbine rated power105

(Prated) and the installation density (� W , plant-rated power over the land use area, [MW/km2]). Wakes are simulated usingpy-

Wake's implementation of Zong's wake model (Pedersen et al., 2023; Zong and Porté-Agel, 2020) which combines a Gaussian

wind speed de�cit with local turbulence dependent linear wake expansion, with squared sum wake de�cit superposition model

and Frandsen's added turbulence model as speci�ed in the IEC wind turbine design standard (IEC, 2017).

Detailed wake losses as a function of wind speed and wind direction are simulated for multiple WPP layouts with the110

same number of turbines (NW T ) and installation density (� W ) for a given WT's speci�c power, hence given power and thrust

curves. The resulting wake losses are aggregated taking the 90-th larger quantile across wind directions and across 20 layouts

generated using a different random seed number. A surrogate of the wake losses curve as a function of the hub height wind

speed (WL(WS)) is built as a function of the installation density, number of turbines and speci�c power of the turbine. Example

results of the surrogate are presented in Figure 4. Finally, the generic wind plant model will combine the turbine power curve115

with the expected wake losses to provide a wake-affected plant power curve, see Equation 2.

WMW = NW T Prated

WL(WS) � ŴL(NW T ;sp; � W ;WS)

PW (WS) = NW T � PW T (WS) � (1 � WL(WS))

(2)
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Figure 3. WPP example of generated layouts.

Figure 4. Example wake losses as a function of the number of turbines, installation density and WT's speci�c power.
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2.4 Weather

ERA5 (Hersbach et al., 2020) is used as a reanalysis dataset for wind resource calculations. The hourly wind velocity time-

series with a 0.25x0.25 degree resolution in latitude and longitude are interpolated into heights of 50, 100, 150 and 200120

[m]. This dataset is stored and interpolated at the location of hybrid power plant using linear interpolation in the horizontal

coordinates, keeping the hub height dimension of the velocities in order to compute the effect of changing the hub height of

the turbines in the optimization.

The mean wind speed from the Global Wind Atlas 2 (GWA2) is used for correcting ERA5's mean wind speed following

the approach presented in (Murcia et al., 2022). This scaling correction is necessary in order to include the �rst order effects125

of terrain. The corrected wind speed time-series is provided on multiple heights (WS(y; t)) to the atmospheric boundary layer

(ABL) model. This model uses a piece-wise power law interpolation to determine the wind speed time-series at hub height

(WShh (t)).

ERA5-land is used as a reanalysis of the hourly global horizontal irradiance time-series (GHI(t)) because it has a higher

horizontal resolution than ERA5 (0.1x0.1 degree), and it shows a better validation metrics for individual PV plant generation130

modeling (Camargo and Schmidt, 2020). Decomposition of GHI to direct normal irradiance (DNI) and diffuse horizontal

irradiance (DHI) is done in two steps: the DISC model is used to estimate the DNI (Maxwell, 1987) using the GHI and relative

air mass model based (Kasten and Young, 1989). While the DHI is estimated using the solar position (� zenith(t)), see Equation

3.

DHI(t) = GHI(t) � DNI(t) � cos(� zenith(t)) (3)135

2.5 Wind power plant model (WPP)

The wind generation time-series (W (t)) is obtained by interpolating the plant power curve at the hub height's wind speed

time-series, scaling the generation by the installed capacity. Additionally, an ef�ciency is assumed to cover the electrical and

availability losses, see Equation 4.

W (t) = NW T � Prated� PW (WShh (t)) � � W (4)140

Wind turbine degradation is modelled as a mixture of two performance degradation mechanisms: (a) a shift in the power

curve towards higher wind speeds represents blade degradation and increasing friction losses (López et al., 2023). (b) a loss

factor applied to the power time series represent increase in availability losses. These mechanism are depicted on the top

plots in Figure 5. The WT degradation curve (dlW (t)) prescribes the level of loss in capacity factor over time, and the power

generation with degradation (Wdeg(t)) is obtained by linear interpolation of the generation time-series of the new (Wnew) and145

fully degraded (Wfg) generations, see Equation 5. A linear degradation on the wind turbine has been used on the study cases,

see Figure 5.
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Figure 5. (top) Mechanisms of WT degradation (left) shift in power curve (center) loss factor (right) 50%-50% mixture of both mechanism.

(bottom left) Example of 2 days of WPP generation time-series after 20 years. (bottom right) Prescribed degradation curve and resulting

losses in CF over the WPP lifetime with the three mechanism of WT degradation.

� (t) = dlW (t)=max(dlW (t))

Wdeg(t) = (1 � � (t)) � Wnew(t) + � (t) � Wfg(t)
(5)

2.6 PV power plant model (PVP)

Power conversion uses PVLib (Holmgren et al., 2018) based on a generic 1MW PV plant con�guration (PV module, inverter150

and open rack with glass-glass) with the irradiance projection transposition model (Davies and Hay, 1978), the Sandia array

performance model (SAPM) (King et al., 2004), and the Sandia performance model for grid-connected PV-inverter model

(King et al., 2007). The �nal PV generation requires the PV plant capacity (SMW ), the orientation of the panels in terms of tilt

and azimuth angles (� tilt ; � azim), the ratio between DC and AC sides of the inverter (r DA ), the irradiances (DNI, DHI), the wind

speed close to ground (WS1(t)) and the ambient temperature (T1(t)), see Equation 6.155
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S(t) = SMW � PV(� tilt ; � azim; r AD ; DNI(t); DHI(t); WS1(t); T1(t)) (6)

The PV degradation model is a loss factor that follows a prescribed PV degradation curvedlS (t). The solar generation time-

series with degradation is obtained by applying the loss factor to the generation, see Equation 7. A linear degradation curve is

used in the study cases.

Sdeg(t) = dlS (t)S(t) (7)160

2.7 Electricity price

The electricity price time-series in the spot market (P r (t)) is an input to the model, note that the price time-series need to be

correlated with the weather time-series. This article focuses on valuation of time varying power purchase agreements as the

ones that have been seen in the Indian HPP market. This price signal has two levels of electricity price at peak and non-peak

(high demand) hours. An example of the peak non-peak PPA electricity price is presented in Figure 6.165

2.8 Energy management system optimization model (EMS)

The energy management system optimization model determines the optimal amount of battery charge/discharge and power

curtailment that maximizes the revenue generated by the plant over a period of time including a possible penalty for not

meeting the requirement of energy generation and a penalty for battery power ramping to control the number of battery load

cycles, see Equation 8. The EMS optimization is solved using linear programming applying a piece-wise linearization for the170

change of battery ef�ciency in charge and discharge and to the absolute value of the battery power �uctuations. The EMS

optimization does not account for battery, WT nor PV degradation, and uses the generations without degradation. Furthermore,

the EMS operation optimization assumes perfect knowledge of both the weather and price, and therefore there are neither

forecasting errors on the prices nor weather.

The revenue is given by the product of electricity price (P r (t)) and the HPP power generation (H (t)) minus the penalty over175

the period (l) and minus the battery ramping penalty (lb). The HPP generation is de�ned as the total power from wind (W (t)),

PV (S(t)), battery charge or discharge (B (t)) and power curtailment (Pcurt(t)).

The penalty (l ) is the missing energy generated at peak times with respect to the energy requirement over the period (E l )

times a mean peak electricity price (P r (tpeak)). The penalty can only be positive, which means that it can only subtract revenue,

and not give extra revenue to generate above the requirements.180

The battery �uctuations penalty (lb) is de�ned as the sum of the products of the absolute battery power �uctuations (j� B (t)j)

and the difference between peak electricity price and the current price (P rpeak� P r (t)). This means that large �uctuations in the

battery charge/discharge are allowed when the price is high. The battery �uctuation penalty factor (Cbf l ) is a design variable

that captures how strongly can the battery be ramped and therefore it controls the battery degradation, whenCbf l is 0 then

large changes in charge/discharge occur, see Figure 6.185
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The constraints in the optimization force a minimum level of energy in the battery (ESoC (t)) when discharging (BE depth),

ensure the limits due to batteries power capacity (BP ) and energy capacity (BE = BE h BP ), force the grid capacity (G), and

include an asymmetric charging/discharging ef�ciency (� charge; � discharge).

max
P

t (P r (t) � H (t)) � l � lb

with l =

8
<

:
E l � P r (tpeak) if E l > 0

0 if E l � 0

E l = Epeak req�
P

t 2 t peak
(H (t) � t)

lb = Cbf l �
P

t (j� B (t)j � (P rpeak� P r (t)))

such that8t H (t) = W (t) + S(t) + B (t) � Pcurt(t)

H (t) � G

ESoC (t + 1) =

8
<

:
ESoC (t) � � chargeB (t) � t if B (t) � 0

ESoC (t) � B (t) � t=� discharge if B (t) > 0

ESoC (t) � BE � (1 � BE depth)

ESoC (t) � BE

B (t) � BP

B (t) � � BP

(8)

Figure 6. EMS comparison in an example HPP for two different battery �uctuation penalty factorCbf l .
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2.9 Battery degradation model190

The battery degradation model includes a linear degradation rate as a function of load-cycles and a non-linear degradation due

to the solid electrolyte interphase (SEI) �lm formation process in the early stage of the battery life. The Rain�ow counting

algorithm (Downing and Socie, 1982; Shi et al., 2018) is used to obtain the depth of discharge (RDoD;j ), mean state of charge

cycle (RSoC;j ), half or full cycle count (Rcount;j ), for a number of load cycles (j = 1 ; :::;nR ) given a relative state of charge

time-series (ESoC (t)=BE ). The current age of the battery at each load cycle is de�ned astc;j .195

The linear degradation rate (f d) in Equation 9 depends on a stress model due to the depth of discharge (SDoD ), a stress model

due to the age of the battery (St ), a stress model due to state of charge (SSoC ), and a stress model due to cell temperature in

Kelvin (ST ). The stress factor models are empirical relationships calibrated on measurements (Xu et al., 2016). Note that this

model is consider linear because the degradation due to each cycle are summed over the lifetime. The parameters of the model

arek� 1 = 1 :4� 105, k� 2 = � 5:01� 10� 1, k� 3 = � 1:23� 105, k� = 1 :04, � ref = 0 :5, kT = 6 :93� 10� 2, Tref = 293:15[K] and200

kt = 4 :14� 10� 10

f d =
P n R

j =1 ((SDoD;j + St c ;j ) SSoC;j � STc ) Rcount;j

SDoD;j = ( k� 1 RDoD;j
k � 2 + k� 3) � 1

St c ;j = kt tc;j

SSoC;j (RSoC;j ) = ek � (R SoC;j � � ref)

STc =

8
<

:
ekT (Tc � Tref) Tref=Tc if Tc > T ref

1 if Tc < = Tref

(9)

The non-linear part of the degradation given in Equation 10 calculates the loss of storing capacity (LoC,L) using two

models: new battery and used battery after the formation of SEI �lm. A pre-de�ned LoC level is used to determine in which

regime is the battery (L 1). L
0

andf d0
are the LoC and linear estimation of LoC whenL is equal toL 1. Where the parameters205

of the model are� = 0 :0575, � = 121 andL 1 = 0 :92.

L =

8
<

:
1� � e � �f d

� (1 � � )e� f d
if L � L 1

1� (1 � L 0) e� f d + f d 0

if L > L 1

(10)

Finally, the time-series of the degrading energy capacity of the battery is:BE deg (t) = BE new � [1 � L (t)]. In this article,

the battery degradation model is not coupled to the EMS model, but instead it uses the resulting state of charge time-series

(SoC(t)) estimated by the EMS optimization on an operation period (for example one or two years). The SoC operation210

period is repeated to obtain the full lifetime of operation, and then used to compute the degradation over the lifetime of the

HPP. Finally, battery replacement occurs when the battery reaches a minimum health level (1 � L min ). Figure 7 presents a

comparison of the degradation on the battery operating in the same HPP but using different battery �uctuation penalty factors.
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Figure 7. Battery degradation comparison in an example HPP for two different battery �uctuation penalty factorsCbf l .

2.10 Long-term operation correction model (EMS Long-term)

A ruled-based EMS is implemented in order to account for battery, PV and wind degradation, and forecast errors in estimated215

wind and solar generation. The correction model consists of the following general principles: (1) try to follow the resulting

operation obtained in the EMS described in Section 2.8 (B (t), ESoC (t)), (2) update the state of charge to account for the

reduction in the available generation in the HPP and the new limits of the degraded battery, (3) recompute the battery power

operation and HPP curtailment accounting for the charge and discharge ef�ciencies.

The implementation consist in computing the reduction in charging power due to the different available generation, as220

presented in Equation 11. The SoC (ESoC LT (t)) is updated including the constraints of the new energy limits of the degraded

battery, Equation 12. Finally, the battery's power (BLT (t)) to supply the SoC, and the curtailment (PcurtLT (t)) are updated,

Equation 13:

B 0
LT (t) =

8
<

:
� (Wdeg(t) + Sdeg(t)) if B (t) � 0 and � B (t) > (Wdeg(t) + Sdeg(t))

B (t) else
(11)

ESoC LT (t + 1) =

8
<

:
ESoC LT (t) � � chargeB 0

LT (t) � t if B 0
LT (t) � 0

ESoC LT (t) � B 0
LT (t) � t=� discharge if B 0

LT (t) > 0

ESoC LT (t) � BE deg(t) � (1 � BE depth)

ESoC LT (t) � BE deg(t)

(12)225
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BLT (t) =

8
<

:
(ESoC LT (t) � ESoC LT (t + 1)) =(� charge� t) if ESoC LT (t) � ESoC LT (t + 1) � 0

(ESoC LT (t) � ESoC LT (t + 1)) =(� t=� discharge) if ESoC LT (t) � ESoC LT (t + 1) > 0

PcurtLT (t) = max( Wdeg(t) + Sdeg(t) + BLT (t) � G;0)

HLT (t) = Wdeg(t) + Sdeg(t) � PcurtLT (t) + BLT (t)

(13)

2.11 Wind plant costs model

A simple WPP cost model consist in estimating the total capital expenditure costs (CAPEX,CW ) and operational and main-

tenance costs (OPEX,OW ) as a function of the installed capacity (given as number of turbines times the rated power of

the turbines:WMW = NW T Prated), the cost of the turbines, their construction and civil infrastructure (CW T + CW civil ). The230

OPEX is divided into �xed costs that scaled with the rated capacity of the plant (OW �xed ) and variable costs (OW var) that

scales with the annual energy production of the wind turbines (AEP W ) and the ratio between the reference turbine and se-

lected turbine power rating. The wind turbine costf W T (D;P rated;hh) (Dykes et al., 2018) depends on the rotor diameter, the

WT rated power and the tower hub height. This model uses empirical �ts to estimate the mass of all WT components, and

therefore for simplicity is not presented here. The �nal turbine costs are scaled with respect to the costs of a reference WT235

(f W T ref(D ref;Prated ref;hhref)), see Equation 14.

CW = ( f W T =f W T ref) (CW T + CW civil ) WMW

OW = WMW � OW �xed + AEP W (Prated ref=Prated) OW var

(14)

2.12 PV plant costs model

A simple PV plant cost model consists of estimating the total capital expenditure costs (CAPEX,CS ) and operational and

maintenance costs (OPEX,OS ) as a function of the installed capacity (SMW ) and solar AC to DC ratio (r AD ). using the PV240

cost per MW (DC), the installation costs (CS + CS install) and �xed operational costs (OS �xed ), while the inverter costs are

provided per MW (AC) for a reference ratio of DC to AC (Cinv ref).

CS = ( CP V + CS install) SMW � r AD + Cinv ref (r AD ref=rAD ) SMW

OS = OS �xed � SMW � r AD

(15)

2.13 Battery costs model

The battery plant cost model consists of estimating the total capital expenditure costs (CAPEX,CB ) and operational and245

maintenance costs (OPEX,OB ) as a function of the number of batteries required during the plant lifetime (Nb, assuming

replacement of batteries after degradation) given the new battery energy (BE ) and power capacities (BP ). The CAPEX model
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splits the energy capacity costs (CB E ) and power capacity dependent costs which include power capacity, installation and

control system costs (CB P + CB BOP+ CB control). An equivalent number of present batteries (NB eq ) is used to re�ect the

decrease in costs of battery though out the lifetime of the battery given a battery price reduction per year (f B ) and the time of250

replacement of thei b) battery in years (yb(i b)).

CB = Nbeq (CB E � BE ) + ( CB P + CB BOP+ CB control) BP

OB = OB E � BE

NB eq =
P N b � 1

i b =0 (1 � f B )yb ( i b )

(16)

2.14 Electrical and shared infrastructure cost model

A simple electrical infrastructure cost model consists of estimating the total capital expenditure costs (CAPEX,CE ) as a

function of the grid capacity (GMW ), and balance of system costs and grid connection costs (CBOS+ Cgrid) and land costs.255

Note that the HPP land use area is shared between wind (AW ) and solar (AS ), given their corresponding installation densities:

� W and� S .

AW = WMW =� W

AS = SMW � � S

AHP P = max( AW ;AS )

CE = ( CBOS+ Cgrid) GMW + ClandAHP P

OE = 0

(17)

2.15 HPP �nancial model

A simple �nancial model consists of considering a different weighted average cost of capital (WACC) for wind, PV and260

battery. The WACC after tax (WACCtx) then is the weighting sum of the WACCs for wind, PV, battery and electrical by their

corresponding CAPEX, taking the mean WACC for the electrical costs shared across all technologies.

CH = CW + CS + CB + CE

OH = OW + OS + Ob + OE

WACCm = ( WACCW + WACCS + WACCB )=3

WACCtx = ( CW WACCW + CS WACCS+

CB WACCB + CE WACCm )=CH

(18)

The �nancial model then estimates the yearly incomes (I y ) and cash�ow (Fy ) as function of the average revenue over the

year including peak-hour penalties (Ry = hPr(t) HLT (t) � l i y ), the tax rate (r tax ) and WACCtx. Net present value (NPV ),265

the internal rate of return (IRR) and levelized costs of energy (LCoE ) can then be calculated using the WACCtx as the discount

rate.
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I y = ( Ry � OH )(1 � r tax )

Fy =

8
><

>:

� CH for y = 0

I y for y > 0

NPV =
P

y Fy =(1 + WACCtx)y

0 =
P

y Fy =(1 + IRR )y

CL =
P

y (OH =(1 + WACCtx)y ) + CH

AEP L =
P

y (AEP y =(1 + WACCtx)y )

LCoE = CL =AEPL

(19)

3 Surrogate based optimization

Surrogate-based optimization is used as the outer sizing optimization in order to reduce the number of full model evaluations270

during a gradient-based optimization (Jones et al., 1998). In this work, we use the Gaussian process (or Kriging) implementa-

tion from the Surrogate Modeling Toolbox (SMT) (Bouhlel et al., 2019). Modern Kriging surrogates with partial least squares

based training (KPLS) have been shown to be faster to train and evaluate because of the minimized number of meta-parameters

obtained by applying dimensional reduction techniques such principal component analysis to the inputs (Bouhlel et al., 2016b).

Furthermore, KPLS can be used to provide near optimal, initial conditions in the training of standard Kriging (KPLSK) (Bouh-275

lel et al., 2016a). KPLSK with squared exponential kernel and linear trend are used as a surrogate model over the design

variables.

An updated version of the parallel ef�cient global optimization (Roux et al., 2020) is proposed in order to use a two-

step approach to (a) explore (�nd regions with candidates for global optimal) and (b) re�ne (propose model simulations that

help the convergence of EGO optimization on local optima). See Algorithm??. An initial database of model simulations is280

generated using Latin hyper-cube sampling (LHS) (McKay et al., 2000; Jin et al., 2003). Then in each optimization iteration,

an exploration step identi�es regions with candidates for global optimal based on the evaluation of the expected improvement

of the surrogate. This is done by parallel execution over104 random samples (per parallel process) in the design space. Then

the top-ranked (EI x ) points are clustered using Elkan's K-mean clustering algorithm (Elkan, 2003) and the best performing

point per cluster is selected as a candidate (x+
EI ). A re�nement step is performed around the current optimal perturbing of each285

dimension at a time (x+
opt ), depending on the iteration convergence the re�nement focuses on local perturbations or evaluations

of extremes per input dimension. Finally the model is evaluated in parallel (y+  M (x+ )). The surrogateM̂ is then updated

with the updated list of model evaluations(x+ ;y+ ).
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4 Study Cases

Three locations in India are selected as study cases, see Figure 8. These locations are selected because they have a good290

balance between having good wind resources, good solar resources, or intermediate resources. The wind speed and irradiance

statistics are presented in Figure 9. A summary of costs, assumptions and speci�cations used for this analysis are presented in

Tables 1 and 2. The costs are taken from DEA Technology Catalogue Danish Energy Agency (2020), while the PV and wind

degradation of 0.5%/year are taken from Theristis et al. (2023) and Hamilton et al. (2020). For each location, the optimization

problem is executed based on two different (single) design objectives:LCoE andNPV=CH in order to illustrate the bene�ts295

of HPP design based on revenues. Each optimization is executed with 6 multi-starts in order to ensure global optimal. Finally

we present a sensitivity analysis on the optimization results to varying all battery related costs by applying a factor.
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Figure 8. Location of the three example sites.

Figure 9. Hourly statistics per month for wind speed and direct normal irradiance on the three locations.
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Symbol Description Units Value Symbol Description Units Value

General PV

G Grid connection MW 300 CP V Solar PV cost Euro=MW DC 110000

� Simulation year - 2012 CS install Solar hardware installation cost Euro=MW DC 100000

N life Lifetime year 25 Cinv ref Solar inverter cost Euro=MW 20000

r AD ref Ratio AC/DC ref � 1.5

WPP OS �xed Solar �xed O&M cost Euro=MW DC 4500

CW T Wind turbine cost Euro=MW 640000 � S Land use per SolarMW km 2=MWDC 0.01226

CW civil Wind civil works cost Euro=MW 260000 - Tracking � No

OW �xed Wind �xed O&M cost Euro=MW=year 12600 - PV degradation curve's year list year 0 25

OW var Wind variable O&M cost EUR=MWh 1.35 dlS PV degradation curve � 0 0.125

D ref Reference WT diameter m 145

hhref Reference WT hub height m 100 BES �

Prated ref Reference WT rated power MW 5 CB E Battery energy cost Euro=MW h 22500

� W WPP ef�ciency � 1 CB P Battery power cost Euro=MW 8000

� Wind degradation curve's year list year 0 25 CB BOP Battery BOP install. comm. cost Euro=MW 9000

dlW Wind degradation curve � 0 0.125 CB control Battery control system cost Euro=MW 2250

� Share between WT deg types � 0.5 OB E Battery energy O&M cost Euro=MW 0

BE depth Battery depth of discharge � 0.9

Shared Costs � charge Battery charge ef�ciency � 0.98

CBOS HPP BOS soft cost Euro=MW 119940 � discharge Battery charge ef�ciency � 0.98

Cgrid HPP grid connection cost Euro=MW 50000 f B Battery price reduction per year � 0.1

Cland Land cost Euro=MW 300000 1� min (L ) Min. level of health � 0.7

NB max Max No. of batteries � 5

Finance

WACCW Wind WACC � 0.052 Optimization

WACCS Solar WACC � 0.048 Nprocs No. of parallel processors � 32

WACCB Battery WACC � 0.08 NDOE No. of initial model evaluations � 160

r tax Tax rate � 0.22 Nclusters No. of clusters � 8

Nseed No. of random starts (seeds) � 6

Penalties NEI pred No. of EI predictions per processor� 2.50E+04

Pr peak = quant(Pr ;q) Peak hour de�nition in quantile,q � 0.9 � tol Objective function tolerance � 1.00E-03

Epeak req= G � Nh Nh full power hours expected hours 2.55 Nmax iter Max. No. of iterations � 20

per day at peak price Nconv iter Min. No. of converged iterations � 3

Table 1.Assumptions for the HPP sizing optimization with two scenarios for battery costs.

Design variable Description Units Lower Lim. Upper Lim. Type

hc clearance m 10 60 int

sp speci�c power W=m2 200 360 int

Prated WT rated power MW 1 10 int

NW T No. WT � 0 400 int

� W Wind installation density MW=km 2 5 9 �oat

SMW solar MW MW 0 400 int

� tilt PV surface tilt deg: 0 50 �oat

� azim PV surface_azimuth deg: 150 210 �oat

rAD DC-AC ratio � 1 2 �oat

BP Battery power MW 0 150 int

BE h Battery energy in hours h 1 10 int

Cbf l cost of battery P �uct. in peak price ratio � 0 30 �oat

Table 2.Design variable in the optimization setup.
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5 Results

The detailed results of the hybrid plant sizing optimization based on minimizingLCoE or on maximizingNPV=CH for the

three different locations in India are presented in Table 3. It is observed that batteries are only installed forNPV=CH -based300

optimal sizing. This is an expected results as batteries add to the costs and do not increase the AEP, besides any curtailment

reduction, and therefore do not reduce theLCoE . OnNPV=CH -optimal plants, the optimizer tries to minimize the penalties

by over-planting the generation and by introducing storage. Over-planting is a concept that has been proposed to increase

revenues on WPP when considering losses (Wolter et al., 2020). In general theLCoE -based designs are single generation

technologies because the best performing (lowerLCoE ) energy source is prioritized; a small over-planting is observed to305

compensate for the degradation over the lifetime. Because theLCoE do not account for the penalties, theLCoE -based designs

produce negative business cases (NPV < 0) for thegood solarandbad solar and bad windsites. Note thatl life in Table 3

represents the total penalties summed over the lifetime, and can be twice as large as the total CAPEX onLCoE -based designs.

AE curt represent the mean annual energy curtailment, and tends to be smaller than theAEP on all sites. The grid utilization

factor, de�ned as the ratio between the mean HPP power and the grid connectionGUF = E(H (t))=G, better captures the310

capacity factor of an HPP, as it accounts for the energy sold to the grid. It can be seen that the grid utilization factor is larger

for NPV=CH =based designs on the solar driven sites while it is slightly reduced on the good wind site.

On thegood solarsite, an HPP of PV and storage is obtained for theNPV=CH -based design with signi�cant over-planting,

while a single technology PV plant is obtained for theLCoE -based design. The PV panel orientation andr AD are very similar

for both cases, but an increase of tilt indicates that an effort to increase the generation closer to the morning peak price.315

On thegood windsite a single wind plant with minimal over-planting is obtained for theLCoE -based design, with high

rated power and tall tower. A hybrid wind, PV and storage plant with over-planting is selected forNPV=CH -based design.

On this plant, the turbines are smaller with lower towers, and with additional generation produced by PV. The resulting battery

power and energy rating is reduced in comparison to the other sites, a result that implies that the hybrid generation requires

less shifting of energy from non-peak to peak hours. On the contrary this site uses three batteries instead of only two on the320

other locations. It is interesting to see that both designs on this location have similar �nalNPV=CH andLCoE values, which

highlights the fact that you can achieve similar objectives with multiple combinations of technologies.

On thebad solar and bad windsite, a PV with storage plant is obtained for theNPV=CH -based design. Note that PV-

only plants are, in general, over-planted (320 MW over 300 MW grid), the reason for this is to obtain a better annual energy

production (AEP ) and grid utilization factor (GUF ). An example period of operation of theNPV=CH -based HPP for all325

sites are shown in Figure 10.

Figure 11 depicts the results ofNPV=CH -based optimizations run with varying battery costs. Note that all the battery

related costs are scaled by an unique factor. It can be seen that cost of batteries has a signi�cant impact on the �nal HPP design

and performance. The overall business case (NPV=CH ) is reduced when the batteries are more expensive for all sites. For

both the good solar site and bad wind and bad solar site, the optimal HPP is very similar in terms of wind, solar and number of330

batteries. While on the good wind site, batteries are not installed if they are 1.5 more expensive, instead the amount of wind and
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Site Good solar Good wind Bad solar bad wind

Design objective LCoE NP V=C H LCoE NP V=C H LCoE NP V=C H

Design Variables Units

hc m 10 10 10 10 10 10

sp W=m2 200 200 360 360 200 200

Prated MW 1 1 8 4 1 1

NW T - 0 0 38 66 0 0

� W MW=km 2 5.0 5.0 7.8 7.4 5.0 7.5

SMW MW 322 400 0 54 328 400

� tilt deg: 28.3 35.0 0.0 21.1 24.8 29.5

� azim deg: 210 210 150 210 210 210

r AD - 1.5 1.6 1.0 1.7 1.7 1.9

BP MW 0 104 0 57 0 150

bE h hours 1 7 4 4 1 7

Cbf l - 0.0 0.0 16.0 0.7 26.7 0.0

Design Summary

G MW 300 300 300 300 300 300

WMW MW 0 0 304 264 0 0

SMW MW 322 400 0 54 328 400

BP MW 0 104 0 57 0 150

BE MW h 0 728 0 228 0 1050

NB - 0 2 0 3 0 2

D m - - 168 119 - -

hh m - - 94 69 - -

Outputs

NP V=CH - -0.264 0.747 0.996 1.042 -0.548 0.537

NP V MEuro -42.5 178.0 304.9 304.8 -96.0 151.5

IRR - - 0.128 0.145 0.151 - 0.110

LCOE Euro=MW h 18.73 22.26 17.51 19.13 21.06 26.82

CH MEuro 160.9 238.3 306.2 292.6 175.1 282.3

OH MEuro 2.2 2.9 5.2 6.1 2.5 3.4

l life MEuro 372 3.8 99 41 417 2.9

AEP GW h 732 927 1564 1441 712 918

AE curt GW h 4.5 1.3 0.9 0.0 7.2 2.3

GUF - 0.28 0.35 0.60 0.55 0.27 0.35

Optimization

Run time min 14 19 10 13 9 17

No. model eval. - 587 670 485 551 459 641

Table 3.HPP Sizing optimization results in the example sites with respectNP V=CH andLCoE .
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Figure 10.Example of 10 days of operation on the 12th year for theNP V=CH -optimized HPPs (top) good solar site (bottom) bad solar bad

wind site.
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