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Abstract. Large-eddy simulations (LES) are commonly considered too slow to serve as a practical wind farm control model.

Using coarser grid resolutions, this study examines the feasibility of LES for real-time, receding-horizon control to optimize the

overall energy extraction in wind farms. By varying the receding-horizon parameters (i.e. the optimization horizon and control

update time) and spatio-temporal resolution of the LES control models, we investigate the trade-off between computational

speed and controller performance. The methodology is validated on the TotalControl Reference Power Plant using a fine-grid5

LES model as a wind farm emulator. Analysis of the resulting power gains reveals that the performance of the controllers is

primarily determined by the receding-horizon parameters, whereas the grid resolution has minor impact on the overall power

extraction. By leveraging these insights, we achieve near-parity between our LES-based controller and real-time computational

speed, while still maintaining competitive power gains up to 40 %.

1 Introduction10

Turbine-wake interactions can significantly impact the efficiency of energy extraction when many turbines are clustered to-

gether in large-scale wind farms. Standard control strategies do not anticipate for the wake interactions, but maximize perfor-

mance at turbine level, resulting in significant power deficits and increased loading in downstream regions. In the last decade,

much research has been done into dynamic receding-horizon optimal control strategies to mitigate these effects, both through

axial induction control and wake redirection (see Meyers et al. (2022) for a recent review). More recently, Goit and Meyers15

(2015), Goit et al. (2016) and Munters and Meyers (2017, 2018b) have developed an optimal control framework for wind farm

power maximization based on high-fidelity large-eddy simulations (LES) of the wind farm boundary layer. In their latest work

combining overinduction and wake redirection control, Munters and Meyers (2018b) report energy gains of up to 34 % for

an aligned 4× 4 wind farm. Despite its accuracy, LES is usually deemed impractical for real-time applications due to its high

computational cost. In that sense, the aforementioned optimal control studies were intended as benchmarking studies, aimed at20

exploring the potential of LES for power optimization in wind farms.

To achieve real-time optimal control, one option is to resort to models that are less computationally intensive (compared to

3D LES). For instance, in some dynamic flow models, the vertical dimension of the flow is either disregarded or approximated

to cope with the computational cost of 3D wake dynamics (see e.g., Soleimanzadeh et al., 2014; Rott et al., 2017; Boersma et al.,

2018). This results in a 2D LES-like model suitable for online wind farm control. Instead of LES, more simplified formulations25
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of the governing equations, such as the 2D dynamic wake meandering model (Jonkman et al., 2017) or the Reynolds-Averaged

Navier–Stokes equations (Iungo et al., 2015), can be employed to accelerate the computations. In Shapiro et al. (2017), an

even simpler 1D wake model is proposed for closed-loop receding-horizon control. However, these expeditious engineering

models potentially lack the necessary physical intricacies inherent to 3D LES, and may not capture the actual turbulent wake

dynamics.30

The present manuscript is a first investigation on the feasibility of using LES as a real-time plant model for receding-horizon

wind farm control. To overcome the challenge of computational speed, this study aims to leverage the insights from the earlier

work of Bauweraerts and Meyers (2019). In the context of turbulent flow forecasting in the atmospheric boundary layer, they

demonstrated that prediction errors only slowly increase when coarsening the grid. By resorting to coarser grid formulations

and incorporating an efficient spatial parallelization, they were able to reduce LES walltimes up to a factor of 300 compared to35

simulated time. We envisage a similar approach, but focusing on LES-based receding-horizon control. By varying the spatio-

temporal grid resolution of the LES plant model, we investigate the trade-off between computational speed and performance

of the controller. In view of the latter, we also study the influence of the parameters of the receding-horizon framework, i.e. the

optimization horizon, the control update time and number of optimization iterations. To take into account the computational

times for the optimization and allow for a practical, real-time control action, the framework from Munters and Meyers is40

applied in a time-decoupled fashion where the control signals are computed ahead of time (based on a prediction of the future

state, see e.g. Grüne and Pannek, 2017). The proposed methodology is demonstrated on the TotalControl reference power plant

(TCRWP) (see e.g. Andersen et al., 2018), combining yaw and induction control strategies.

In the context of wind farm modeling, the coarse LES models envisioned in this work may not fully capture all the relevant

dynamics in the turbulent wakes. In general, finer grids are required to accurately represent secondary flow features such as45

(the breakdown of) tip vortices and helical structures. For example, in the dynamic induction control (DIC) strategy proposed

by Munters and Meyers (2018a), one of the main mechanism to enhance wake mixing is the periodic shedding of vortex rings

from front-row turbines synchronized to the turbulent inflow. These vortex rings cannot be accurately represented on a coarse

resolution. More novel approaches, such as the helix-approach, also require finer grids to represent the helical structures in

the wakes, especially near the turbine rotor (Frederik et al., 2020). However, for other phenomena that are mostly triggered50

by large-scale motions in the flow, coarser grids may suffice. Examples of the latter include the overall deflection and gross

behavior of the wakes, and potentially also wake meandering triggered by the time-varying inflow conditions or incited by

dynamically yawing the turbines (Meyers et al., 2022).

The paper is organized as follows. In Sect. 2, we first summarize some important aspect of the LES modeling and introduce

the time-decoupled receding-horizon framework, and how this framework is adapted to incorporate the coarsening strategy55

from Bauweraerts and Meyers (2019). Next, the TCRWP test case and simulation setup are discussed in Sect. 3. In Sect. 4, we

present the results and discuss the influence of the grid resolution and receding-horizon parameters on the performance and

computational time of the LES-based controllers. Section 5 then leverages these insights to design a competitive controller (in

terms of power gains) as close to real-time as possible. Section 6 concludes the paper and summarizes the main contributions.
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2 Methodology60

We first discuss the time-decoupled receding-horizon optimal control framework in Sect. 2.1. Next, we describe the wind farm

optimization problem in Sect. 2.2 and highlight some aspects of turbine modeling in Sect. 2.3. The optimization method and

gradient computation are discussed in Sect. 2.4. Finally, the grid coarsening strategy is elaborated in Sect. 2.5.

2.1 Receding-horizon Optimal Control

Previous LES-based wind farm control studies (see e.g. Goit and Meyers, 2015; Goit et al., 2016; Munters and Meyers,65

2017, 2018b) have adopted a simplified model-predictive control (MPC) framework where the optimization is performed

on an accurate control model assuming perfect knowledge of the system state, see Fig. 1(a). This control loop was applied in

a receding-horizon fashion (see Fig. 1(b)), where time is divided into overlapping windows of length TA. In each consecutive

window, the controls φ were optimized over a prediction horizon T through a series of fine-grid forward and adjoint LES

simulations, and then applied to the wind farm over a control update time TA (with TA < T ). These controllers, however, are70

not realizable in practice, because full state information is not available and the fine-grid LES control model is unfeasible due

to its excessive computational cost. Moreover, in their framework, the computational time to solve the optimization problems

is ignored, since controls are first computed and then applied to the same time interval, which is not possible in real-time.

To account for computational time and allow real-time control, we propose a time-decoupled approach where controls are

computed with a predefined offset corresponding to the control update time TA from previous studies. The time-decoupled MPC75

loop, including state estimation, is shown in Fig. 2(a) (Grüne and Pannek, 2017). For t ∈ [tk, tk +TA], the estimator yields an

estimate q̂(tk) of the instantaneous flow at tk=kTA. The estimate is computed using LiDAR or SCADA measurements h(q(t))

that were collected over the past estimation window [tk−TSE , t
k] and stored in the estimation buffer (with h(·) the measure-

ment function), assuming moving horizon estimation with horizon TSE (note that the MPC loop may differ on the estimation

side when using other approaches such as e.g. a Kalman filter). Next, the predictor uses a flow model to propagate the estimate,80

yielding a prediction q̂(tk+TA) of the future wind farm state. This allows the optimizer to compute the optimal controls ahead

of time, resulting in φk+1(t) for t∈ [0,T ] (with T the optimization horizon). This set of controls is then stored in the actuator

buffer. In the next window (t∈ [tk+TA, t
k+2TA]), the subset ϕ(t)=φk+1

(
t−(k+1)TA

)
of controls corresponding to that

window is released by the buffer and applied to the farm. In a real-time setting, the update time TA should be long enough to

compensate for the computational time of estimation, prediction and optimization. Similar schemes have been proposed in e.g.85

Chen et al. (2000), Findeisen and Allgöwer (2003) and Su et al. (2013) for low-dimensional generic demonstration problems.

The time-decoupled control loop can be applied in a receding-horizon framework. The sequence of real-time computations

versus the corresponding receding-horizon computations (in simulated time) is outlined in Fig. 3. As described above, the state

estimate is typically generated based on past flow measurements over some estimation horizon TSE , whereas the optimization

is performed over a time horizon T with offset TA.90

To reduce the computational time, similar as in Bauweraerts and Meyers (2019), the prediction and optimization are per-

formed using a coarse grid wind farm model. The actual wind farm in Fig. 2(a) is represented by an emulator in the form of
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using a fine-grid LES model as a reference. Analysis of the resulting power gains reveals that the performance
of the controllers is primarily determined by the receding-horizon parameters, whereas the grid resolution has no
significant impact on the overall power extraction. Our findings indicate that the optimal yaw rates and thrust
coefficients are mostly governed by the large-scale spatio-temporal structures in the wind farm boundary layer,
which are sufficiently accurately captured by the proposed coarse control models. Finally, by leveraging these
insights, we achieve near-parity between our LES-based controller and real-time computational speed, while still
maintaining competitive power gains up to ?%.
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Figure 1. MPC approach from earlier studies (Goit and Meyers, 2015; Goit et al., 2016; Munters and Meyers, 2017, 2018b). (a) Control

loop. (b) Receding-horizon approach. In every window i, the optimization stage is represented by a series of forward and adjoint simulations,

resulting in controls φi that are applied to the farm over a control update time TA. Figures adapted from Munters and Meyers (2018b).
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Figure 2. (a) Time-decoupled MPC assuming moving horizon estimation. In the window t ∈ [tk, tk+TA], a state estimate q̂(tk) is computed

based on past measurements h(q(t)) stored in the estimation buffer; controls are computed with offset TA based on a prediction q̂(tk+TA) of

the future state, and buffered until they are applied in the next window t∈ [tk+TA, t
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emulator for the actual farm.
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fine-grid LES, to which the control action ϕ is applied. In the present study, we assume perfect state knowledge and hence omit

the state estimator. Instead, we just introduce a restriction operator to filter the exact wind farm state onto the coarse prediction

and optimization grids. Under this simplification, the exact state (but restricted to the coarse grid) is then propagated forward95

in time by TA in the predictor to generate the prediction q̂(tk+TA) of the future wind farm state. The restriction operator, used

to map system feedback from the fine LES grid to the coarser prediction and optimization grid, is discussed in more detail in

Sect. 2.5. The time-decoupled control loop, omitting state estimation, is shown in Fig. 2(b). Remark that this approach intro-

duces two sources of model mismatch between the coarse models and the fine-grid emulator. Firstly, a restriction error arises

from filtering the LES data from the emulator to the coarser resolution of the predictor and optimizer. Secondly, the predictor100

introduces a prediction error that is inherent to time-decoupled MPC and depends on the update time TA.

2.2 Wind Farm Optimization Problem

In the receding-horizon approach, in every optimization window, the overall wind farm power is optimized over the optimiza-

tion horizon T . The optimization problem is formulated as in Munters and Meyers (2018b):

min
φ(t),q(t)
0<t≤T

J (φ,q) =−
T∫

0

Nt∑
m=1

1

2
C ′

P,mV
3

mAmdt (1)105

s.t.
∂u

∂t′
+(u · ∇)u=−∇p

ρ
−∇ · τ sgs −

Nt∑
m=1

1

2
Ĉ ′

T,mV
2

mRm(x)e⊥,m in Ω× (0,T ], (2)

∇ ·u= 0 in Ω× (0,T ], (3)

τ
dĈ ′

T,m

dt
= C ′

T,m − Ĉ ′
T,m m= 1 . . .Nt in (0,T ], (4)

dθm
dt

= ωm m= 1 . . .Nt in (0,T ], (5)

C ′
T,min ≤ C ′

T,m ≤ C ′
T,max m= 1 . . .Nt in (0,T ], (6)110

ωmin ≤ ωm ≤ ωmax m= 1 . . .Nt in (0,T ]. (7)

u(x,0) = ûpred
0 in Ω, (8)

The flow through the wind farm is governed by the LES equations (2)–(3), with u and p the velocity and pressure. Subgrid-

scales are represented by the stress tensor τ sgs using a standard Smagorinsky model with constant coefficient Cs=0.14 in-

cluding wall damping. For the discretization, we employ a pseudo-spectral method in the stream- and spanwise direction, and115

a fourth-order energy-conservative finite difference scheme in the vertical direction. For the time stepping, we use an explicit

fourth-order Runge–Kutta scheme. Here, all four Runge–Kutta stages are stored on disc (as opposed to the aforementioned

LES studies that only store the first stage). This results in a more accurate representation of the gradients using the adjoint

method (see Sect. 2.4). In the vertical direction, a high Reynolds number wall stress boundary condition and symmetry bound-

ary condition are imposed on the bottom and top surface of the domain respectively. All simulations are performed using the120

in-house simulation code SP-Wind (for more information, see e.g. Goit and Meyers, 2015; Munters and Meyers, 2017, 2018b).
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Each turbine m (= 1 . . .Nt) is controlled by a time-dependent thrust coefficient setpoint C ′
T,m and yaw

rate ωm, both subject to box constraints (6)–(7). Put together, they constitute the vector of optimization variables:

φ(t) = [C ′
T,1(t), . . . ,C

′
T,Nt

(t),ω1(t), . . . ,ωNt(t)] = [C ′
T (t),ω(t)] for 0< t≤ T . To model the turbine response time, an expo-

nential filter (4) with time constant τ is applied to the thrust coefficient setpoints, resulting in the time-filtered disc-based thrust125

coefficients Ĉ ′
T (t) (Munters and Meyers, 2017). The yaw rates control the turbine yaw angles θ(t) through the yaw equa-

tion (5). All together, this results in the vector of state variables q = [u(x, t),p(x, t),Ĉ ′
T (t),θ(t)]. The disc-based thrust coef-

ficients and yaw angles determine the thrust force exerted on the flow and the power extracted by the turbine (see Sect. 2.3). For

a more detailed explanation on all the terms and equations, see Goit and Meyers (2015) and Munters and Meyers (2017, 2018b).

Remark that controls are computed ahead of time in line with the time-decoupled MPC loop from Sect. 2.1. In receding-130

horizon interval k (for t ∈ [tk, tk +TA], see Fig. 3), the exact state from the fine-grid emulator is first restricted to the coarse

grid, resulting in q̂(tk). Next, the prediction q̂(tk+TA) is computed by propagating q̂(tk) over TA using the same coarse-grid

LES model described by eqs. (2)–(7). This estimate is used as initial condition ûpred
0 for the optimization, see eq. (8). Also note

that the controls ϕ(t), that are actually applied to the wind farm emulator in the next time interval (for t ∈ [tk+TA, t
k+2TA]),

only comprise the first part of length TA from the optimal controls φk+1(t) (with TA ≤ T ).135

2.3 Wind Turbine Modeling

For the turbine modeling, a standard non-rotating actuator disc model is used. Based on actuator disc theory, the turbines

exert a force on the flow: fm =− 1
2 Ĉ

′
T,mV

2

mRm(x)e⊥,m, where Rm is a smoothed footprint of the rotor on the LES grid,

e⊥,m the unit vector perpendicular to the rotor plane and V m = M
Am

∫
Ω
Rmu · e⊥,mdx the (corrected) disc-averaged velocity

(with Am the rotor disc area and M a correction factor defined below). The power extracted from turbine m is then given by140

Pm = 1
2C

′
p,mV

3

mAm, where C ′
p,m denotes the disc-based power coefficient.

On present-day grid resolutions, power is typically overestimated due to the diffuse smearing of the rotor disc on the simu-

lation grid by the rotor footprint (Martínez-Tossas et al., 2015; Shapiro et al., 2019). To account for this, Munters and Meyers

(2017, 2018b) have proposed to set C ′
p = aĈ ′

T , where a is selected based on fitting LES data to 1D momentum theory. While

linear scaling is effective on intermediate grid resolutions for unyawed turbines, its performance deteriorates on coarser grids145

and for yawed turbines. This is illustrated in Fig. 4(a)-(b), where we show the empirical power coefficient Cp = P/
(
1
2U

3
∞A

)
for the DTU 10MW turbine for different values of a at yaw angles θ=0◦ and θ=30◦, computed using LES with uniform

inflow (U∞= 8 m s−1) on a grid resolution ∆x=∆y=1.6∆z=80 m (the coarsest resolution in this work). We also show

the effect of the correction from Shapiro et al. (2019), which is expressed as a correction factor on the disc-averaged velocity

Vm= 1
Am

∫
Ω
Rmu · e⊥,mdx. In particular, the corrected disc-averaged velocity is given by V m=M shVm, with150

M sh =
(
1+

Ĉ ′
T,m

4

1√
3π

∆

R

)−1

, (9)

the Shapiro factor, R the rotor radius and ∆ the filter width of Gaussian filtering Kernel. For comparison, the power coefficient

(for a= 1.0) on the reference resolution ∆x=∆y=2∆z=13.33 m (the resolution of the emulator) is also included, where

we also applied the Shapiro factor to better replicate 1D momentum theory.
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Figure 4. Empirical power coefficient versus disc-based thrust coefficient for different correction strategies at different yaw angles θ: linear

scaling C′
P = aĈ′

T and factor from Shapiro et al. (2019) in eq. (9) for θ = 0◦ (a) and θ = 30◦ (b), and look-up table approach for θ =

0◦, 12.5◦, 27.5◦ (c). For every simulation, uniform inflow velocity U∞ = 8 m s−1 is prescribed using a fringe region spanning the final

20 % of the domain, with domain size Lx=26.92D, Ly=13.46D, Lz=8.41D on the coarse grid ∆x=∆y=1.6∆z=80 m. In each plot,

we also show the empirical power coefficient (including Shapiro correction) at the reference resolution ∆x=∆y=2∆z=13.33 m.

In Fig. 4(a), the correction a= 0.775 performs relatively well compared to the reference. However, under yaw misalignment155

of 30◦ in Fig. 4(b), the same factor overestimates power for higher thrust coefficients. The Shapiro correction consistently

underestimates power on the coarse grid. In an optimal control setting, any mismatch between model and reference will result

in suboptimal thrust coefficients and yaw angles. Therefore, we take a= 1 and propose a look-up table approach to account

for discrepancies in power prediction on different grid resolutions. In particular, the disc-averaged velocity on the coarse grids

is corrected based on a look-up value M that depends on the thrust coefficient and the yaw angle:160

V m =M(Ĉ ′
T,m,θm)Vm. (10)

The look-up table is constructed in such a way that, for uniform inflow, the corrected disc-averaged velocity (and conse-

quently the power output) on the coarse grids matches the disc-averaged velocity from the reference for given (Ĉ ′
T ,θ). This

approach allows to match power calculation on the coarse grids arbitrarily well with a given reference turbine (depending

on the look-up table resolution in terms of Ĉ ′
T and θ). In the current work, we propose a look-up range ĈT

table×θtable =165

{0.0,0.5, . . . ,2.5,3.0}×{0◦,5◦, . . . ,35◦,40◦}, and we use bilinear interpolation on the look-up table to compute the correction

for given Ĉ ′
T and θ. The resulting look-up tables are tabulated in App. A, where we also briefly examine the performance of

the look-up table approach for turbulent inflow. The corrected power coefficient is shown in Fig. 4(c).

2.4 Optimization Method and Gradient Computation

As in Munters and Meyers (2018b), the optimization problem is solved in a reduced fashion by explicitly substituting state170

equations (2)–(5) into the cost function, i.e. by minimizing J̃ (φ) = J (φ,q(φ)) subject to box constraints (6)–(7). To solve

the optimization problem, we use the limited-memory Broyden–Fletcher–Goldfarb–Fanno method with box constraints (L-
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BFGS-B). In each iteration, this quasi-Newton method constructs a quadratic approximation of the objective function, where

the inverse Hessian is approximated by the BFGS formula. A search direction is then generated based on the minimum of the

quadratic model (Nocedal and Wright, 2006). We use a linesearch method to determine a step length in the search direction175

that satisfies the strong Wolfe conditions. In every optimization window, this procedure results in a sequence of function and

gradient evaluations (cf. Fig. 3). To compensate for the large-scale nature of the problems at hand, we use the limited-memory

version of BFGS that only stores a limited number of correction pairs. We use the L-BFGS-B Fortran library from Zhu et al.

(1997) and Morales and Nocedal (2011); for more information on the algorithm, the reader is referred to Byrd et al. (1995).

In contrast to previous LES-based wind farm control studies (Goit and Meyers, 2015; Goit et al., 2016; Munters and Meyers,180

2017, 2018b) that relied on a continuous adjoint approach to compute gradients, we follow up on the work in Yilmaz and

Meyers (2019) by using a temporally discrete adjoint method. In the continuous adjoint method, the adjoint equations are first

derived based on the description of the optimization problem in (1)–(8), and subsequently discretized and solved using LES

similar to a forward simulation. Conversely, the discrete adjoint method first discretizes and linearizes the state equations, and

then formulates the discrete adjoint of the linearized equations. Consequently, the discrete adjoint method obtains the gradient185

of the discretized cost functional, whereas the continuous adjoint method yields a discrete approximation of the gradient of the

continuous cost functional. In the limit of infinite grid resolution, both methods are equivalent (Giles and Pierce, 2000).

Below we directly formulate the temporally discrete adjoint Runge–Kutta 4 scheme, derived from a fourth-order Runge–

Kutta discretization of the state equations (2)–(5) and cost function. More details on the discretization are provided in App. B1.

For the Navier–Stokes equations, the thrust coefficient filter equation and the yaw equation, this results in the following (where190

i- and j-subscripts denote the Runge–Kutta stages, m is the turbine number and n the discrete time instant, i.e. tn = n∆t)):

ξni /∆t=
(
−(∇un
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with aij and βi the Runge–Kutta coefficients. In these equations, ξn, πn, σn
m, ηnm are the adjoint state variables associated200

to un, pn, Ĉ ′n
T,m, θnm, and ξni , πn

i , σn
i,m, ηni,m for i=1 . . .4 are the corresponding adjoint Runge–Kutta stages. Furthermore,

ξ̂ni , σ̂n
i,m and η̂ni,m are auxiliary variables (see App. B). As in Munters and Meyers (2018b), f∗

m denotes the adjoint turbine

force, Xm is the disc-averaged adjoint velocity, e∥,m the rotor-parallel unit vector and Dm the rotational rotor footprint. The

temporally discrete adjoint equations are derived in detail in App. B. For a detailed definition of all terms related to the turbine

modeling, see Goit and Meyers (2015) and Munters and Meyers (2018b). However, note that these studies only used the first205

forward Runge–Kutta stage, whereas here all four (forward) Runge–Kutta stages are used in the adjoint scheme, resulting in a

more accurate method.

Finally, the adjoint variables are used to compute the gradients with respect to the thrust coefficient setpoints and yaw rates:

∇φn
m
J̃N =

 ∂J̃N

∂C
′
T

n

,m

∂J̃N

∂wn
m

=

−∆t
∑4

i=1

(
biσ

n+1
m +

∑i−1
j=1 aijσ

n
m,i

)
−∆t

∑4
i=1

(
biη

n+1
m +

∑i−1
j=1 aijη

n
m,i

) . (18)

Remark that, as mentioned above, eq. (18) is an exact expression for the gradient of the discretized objective function. The210

discrete adjoint approach and gradient computation are validated in App. B5.

2.5 Coarse Grid Optimization and Coarsening Strategy

As discussed in Sect. 1, we investigate the influence of the spatio-temporal grid resolution of the LES wind farm control

model on the overall power gain and computational speed. To that end, as in Bauweraerts and Meyers (2019), we define three

coarse grid resolutions for prediction and optimization, as well as a fine reference grid for the wind farm emulator. For the grid215

specifications, the reader is referred to Sect. 3.1 where we discuss the case setup. Below, we discuss the coarsening strategy in

view of the time-decoupled MPC loop from Fig. 2(b).

2.5.1 Coarse Grid Prediction and Control Methodology

At the start of every window, feedback (i.e. the 3D flow field) from the fine-grid wind farm emulator (the reference) is provided

to the coarse predictor through a restriction operator (cf. Fig. 2(b)). In view of computational time, we allow different domain220

sizes for the LES models in the coarse-grid predictor and optimizer. In particular, for the predictor, we propose an upstream

domain length proportianal to the total prediction horizon T+TA, i.e. Lx,upstream=α(T+TA)U∞ (where α≥ 1 is a safety factor).

The predictor uses this domain to propagate the restricted reference field, which in turn yields the initial condition for the

optimization. For the optimization, we take Lx,upstream=αTU∞. Thus, the approach is characterized by cropping and restricting

the reference field to the prediction domain, and subsequently another cropping from the prediction to the optimization domain,225

as graphically illustrated in Fig. 5. The horizon-dependent upstream domain lengths ensure that inflow never reaches the

front-row turbines within the prediction and optimization windows, rendering fringe regions and turbulent inflow generation

superfluous in predictor and optimizer. The fringe region from the fine-grid reference simulation is therefore excluded upon

restriction which, along with the smaller domain sizes (for a given grid resolution), entails significant computational speed-

ups. We note that the lack of proper inflow may influence the optimized controls towards the end of the optimization window.230
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Figure 5. Coarsening strategy: the fine-grid reference field is cropped (removing the fringe region and retaining an upstream domain length

of αTU∞) and restricted to the coarser resolution for the optimization. The resulting field is used as initial condition for the optimization.

However, choosing an update time TA < T should suffice to counter these effects. Also note that, besides the horizon-dependent

streamwise cropping, we also allow for a spanwise and vertical cropping to further accelerate prediction and optimization.

2.5.2 Restriction from Reference to Optimization Resolution

Given the pseudo-spectral discretization in SP-Wind, the reference flow field from the emulator must be transformed from

fourier space into real space before applying the cropping. The cropped reference velocity in real space, û
3
2 ,ref, is then restricted235

to the coarser resolution used in the predictor and optimizer using linear interpolation (superscript ‘ref’ denotes the reference):
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where û
3
2 denotes the restricted velocity (in real space) and ∆xref, ∆yref and ∆zref the grid resolutions of the reference grid.

Note that the restriction takes place in real space, where the grid is a factor 3/2 finer in the horizontal directions for de-aliasing

using Orzag’s rule (hence the factors 3/2 in the equation above).240

3 Case Setup

This section provides a detailed description of the simulation cases and numerical setup that are used to evaluate the proposed

wind farm controller. Throughout this work, we consider the TotalControl Reference Wind Power Plant (TCRWP) (Andersen

et al., 2018) consisting of 32 DTU 10MW turbines arranged in an 8× 4 aligned pattern, as illustrated in Fig. 6. Turbines are

separated by an intermediate spacing of 5D in stream- and spanwise directions, where D = 178.3 m is the rotor diameter and245

turbines are placed at hub height zh = 119 m (based on the DTU 10MW reference turbine, as reported in Bak et al. (2013)).
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Figure 6. Layout of the TotalControl Reference Wind Power Plant. Axes in rotor diameter units, with D = 178.3 m. Figure adapted from

Andersen et al. (2018).

3.1 Simulation Setup

The grid resolutions for the numerical discretization on the three coarseness levels and the reference are summarized in Tab. 1.

Since SP-Wind requires a constant integration time step, T/∆t should be an integer. Furthermore, we use the same ∆ti for all

cases on grid level i. Therefore, the time steps in Tab. 1 are selected as the largest possible ones meeting these requirements250

and adhering to a CFL condition of 0.8. Note that based on the CFL condition only, the time step on the coarsest grid levels

could in principle still be higher hence speeding up the computation. The latter case is investigated in Sect. 5, where we design

a controller that is as close to real-time as possible.

For the fine-grid reference simulation in the wind farm emulator, we take the simulation setup from Andersen et al.

(2018) and Sood and Meyers (2020), consisting of 1200× 1200× 225 grid cells and a simulation domain with dimensions255

Lx ×Ly ×Lz = 16× 16× 1.5 km3, where the final 6.25 % of the domain in the streamwise direction is used as a fringe

region to impose the inflow conditions. The spatial extent of the domain suffices to keep blockage effects negligible in the

reference simulation. The simulations are performed using a standard offshore roughness length z0 = 2×10−4 m, and the flow

is driven by a pressure gradient ∂xp∞/ρ= 5.2267× 10−5 m s−2 resulting in a friction velocity uτ = 0.28 m s−1, which is a

typical value in offshore boundary layers.260

Prior to the wind farm simulations, a pressure driven precursor simulation with periodic boundary conditions was run on the

same (reference) domain to generate turbulent inflow. With the roughness length and pressure gradient specified above, this

results in a freestream wind speed roughly equal to 9.4 m s−1 at the turbine hub height. The precursor data (with a detailed

overview of the precursor simulation setup) is publicly available in Munters et al. (2019). Using this precursor, the flow is then

advanced through the wind farm for a spin-up period of 60 min to account for startup transients. Remark that here, turbines265

are modeled by non-rotating actuator discs, and the turbine locations are shifted backwards in the streamwise direction in

comparison to Sood and Meyers (2020). The latter is required to accomodate the entire flow field encompassed in the longest
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Table 1. Grid resolutions for the different coarseness levels.

Grid level i 0 1 2 reference

Resolution x [m] ∆xi 80 60 40 13.33

Resolution y [m] ∆yi 80 60 40 13.33

Resolution z [m] ∆zi 50 37.5 25 6.67

Resolution t [s] ∆ti 2.5 2.5 2.0 0.5

Figure 7. Snapshot of the initial condition for optimal control (on the reference resolution). Colors represent the instantaneous velocity

magnitude [m s−1]. The black dots represent wind turbine locations.

prediction windows (cf. Sect. 2.5). The resulting flow field, depicted in Fig. 7, is used as the starting point for the optimization.

Figure 8 shows the initial flow field after restriction to the resolutions of the coarse control models from Tab. 1.

As explained in Sect. 2.5, the upstream domain lengths for the coarse models in the predictor and optimizer are chosen270

proportional to the optimization horizon T and control update time TA. In this work, we consider four different horizons (see

also Sect. 3.1.1): T,TA ∈ {50,150,250,350}. The corresponding domain sizes and grid specifications for each combination of

T and TA are summarized in Tab. 2 for both predictor and optimizer. In all simulations, a high-Reynolds number wall model

is used at the bottom of the domain with roughness length z0 = 2× 10−4 m, and the top boundary is treated by a stress-free

condition. For the prediction and optimization, we use the same coarse grid resolutions from Tab. 1 and omit the fringe region275

(cf. Sect. 2.5).
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Figure 8. Snapshot of the initial condition for optimal control on the reference resolution and coarser optimization resolution from Tab. 1.

z-slices are taken at hub height, y-slices at the location of the first column of turbines. Colors represent the instantaneous velocity magnitude

[m s−1]. The black dots represent wind turbine locations. Grid resolutions are also indicated.
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Table 2. Grid specifications and domain sizes for the different coarseness levels in function of the optimization horizon T and control update

time TA for optimizer and predictor. Domain sizes in spanwise and vertical directions are equal for all cases: Ly=6.24 km and Lz=1.5 km.

Number of grid cells in spanwise and vertical direction (N i
y and N i

z) are equal for predictor and optimizer.

Optimization horizon T = 50 s Optimization horizon T = 250 s

Update time TA = 50 s TA = 50 s TA = 150 s TA = 250 s

Lx [km]: Optimizer 9.6 11.52 11.52 11.52

Predictor 10.56 12.48 13.44 14.4

Grid level i 0 1 2 0 1 2 0 1 2 0 1 2

N i
x: Optimizer 120 160 240 144 192 288 144 192 288 144 192 288

Predictor 132 176 264 156 208 312 168 224 336 180 224 360

N i
y: 78 104 156 78 104 156 78 104 156 78 104 156

N i
z: 30 40 60 30 40 60 30 40 60 30 40 60

Optimization horizon T = 150 s Optimization horizon T = 350 s

Update time TA = 50 s TA = 150 s TA = 50 s TA = 150 s TA = 250 s TA = 350 s

Lx [km]: Optimizer 10.56 10.56 12.48 12.48 12.48 12.48

Predictor 11.52 12.48 13.44 14.4 15.36 15.36

Grid level i 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

N i
x: Optimizer 132 176 264 132 176 264 156 208 312 156 208 312 156 208 312 156 208 312

Predictor 144 192 288 156 208 312 168 224 336 180 240 360 192 256 384 192 256 384

N i
y: 78 104 156 78 104 156 78 104 156 78 104 156 78 104 156 78 104 156

N i
z: 30 40 60 30 40 60 30 40 60 30 40 60 30 40 60 30 40 60

3.1.1 Receding-Horizon Optimal Control Setup

Wind farm operation is optimized over a total horizon of Ttot = 30 min, which comprises just under three through-flows for

the given wind farm (given a free-stream velocity U∞ ≈ 9.4 m s−1). In the receding-horizon framework, turbine controls are

optimized over windows of horizon T with offset TA (the control update time) corresponding to the prediction horizon of280

the predictor. Table 3 summarizes the different combinations of T and TA considered here. The longest optimization window

(T = 350 s) allows the optimizer to account for wake interactions over three consecutive rows. With every horizon reduction

of 100 s in Tab. 3, the optimizer looses control authority over one row of turbines in the wakes. For T = 50 s, wakes cannot

propagate to the next row within the optimization window; case 10 may therefore be considered as an ‘uncoordinated’ control

case. Note that optimization and prediction horizons are limited due to the natural divergence of trajectories in chaotic flows.285

In practice, for our setup, we find that gradients are still accurately represented for T = 350 s (the longest optimization horizon

considered in this work, see also App. B5 for the gradient verification.
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Table 3. Optimization horizons T and control update times TA.

Case 1 2 3 4 5 6 7 8 9 10

T [s] 350 250 150 50

TA [s] 350 250 150 50 250 150 50 150 50 50

Table 4. Specifications for the turbine control cases.

Case C′
T,min [−] C′

T,max [−] ωmax [
◦ s−1]

Reference (R) 2 2 0

Induction + yaw (IY) 0.5 2 0.4

Steady yaw (S) 2 2 0

All cases are initialized from the same flow field depicted in Fig. 7, that was generated by advancing the flow on the reference

grid using constant thrust coefficients for all turbines (C ′
T = 2, no yawing ω = 0◦ s−1), until a statistically stationary state is

achieved. As explained in Sect. 2.5, before each optimization run, the current flow field is taken from the reference simulation290

and restricted to the coarser prediction grid and propagated over the control update time TA in the predictor (Fig. 5). Turbine

controls are then optimized over the optimization horizon T , starting from initial guess C ′
T = 2 and ω = 0◦ s−1 for all turbines,

until a stopping criterion is met. The convergence criterion used here is based on the relative improvement of the objective

function over the L-BFGS-B iterations, i.e.
(
J k−1 −J k

)
/J k−1 ≤ 5× 10−6. The optimized controls are then applied to the

reference in the next time window. Since the time-dependent controls are optimized on the temporal grid of the optimizer, the295

optimized controls are first interpolated onto the finer temporal reference grid using a simple zero-order hold rule.

3.1.2 Turbine Control Cases

Three control scenarios are examined, see Tab. 4. First, we define a steady reference case (R) where turbines operate at Betz-

optimal thrust coefficients C ′
T = 2, aligned with the mean-flow direction (θ = 0◦ and ω = 0◦ s−1). Next, we consider a com-

bined induction and yaw control case (IY) with a maximum yaw rate ωmax = 0.4◦ s−1. The induction control part is restricted300

to the underinduction regime (i.e. C ′
T,max = 2) to avoid bias in the results due to the inherent inaccuracy of the ADM in the

overinduction regime. A response time τ = 15 s is adopted for the time filtering of the thrust coefficient setpoints. Finally, we

also consider the steady yaw control case from Sood and Meyers (2022), who used the recursive wake merging methodology

from Lanzilao and Meyers (2022) on the Bastankhah wake model (Bastankhah and Porté-Agel, 2016) in a basic optimization

framework to determine the yawing setpoints for the TCRWP, subject to a maximum yawing angle of 30◦. For the steady yaw305

case here, we simply take their setpoints, and initialize the turbines using these setpoint at the start of the simulation.
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4 Results and Discussion

This section presents and discusses the results of the optimal control cases. All simulations are conducted on the wICE super-

computing platform of the VSC (Vlaams Supercomputer Centrum), using Ice Lake nodes containing 2 Intel Xeon Platinum

8360Y CPUs (36 cores each).310

4.1 Allocation of resources

The focus of our study is to evaluate the performance of the control models in relation to their computational cost. Computa-

tional cost is measured in walltimes, which depend on the number of cores used and the spatial parallelization. For the spatial

parallelization, we employ a 2D domain decomposition, similar to the method used in earlier studies involving SP-Wind (see

e.g. Goit and Meyers, 2015; Goit et al., 2016; Munters and Meyers, 2018b, 2017).315

For each grid resolution, since the time integration in the forward and adjoint simulations is the predominant contribution

in the overall walltime, we select the number of compute cores that minimizes the walltime per Runge-Kutta step. Using a

maximum of one whole compute node, these scaling tests reveal an optimum of 30, 54 and 72 cores for grid level 0, 1 and 2

respectively. Note that, for every simulation, we reserve the full compute node and then allocate the optimal number of cores

using a ‘bunch’ processor mapping to distribute the cores evenly over both sockets of the Ice Lake node.320

4.2 Convergence Behavior

Table 5 reports the average number of PDE evaluations (i.e. sum of forward and adjoint simulations) per optimization window

required for formal convergence as specified by the convergence criterium from Sect. 3.1.1. Figure 9 shows the L-BFGS-B

iterations versus the number of PDE evaluations for the optimization window starting at t+TA = 750 s. To maintain clarity,

only cases 4, 7, 9 and 10 (for which TA = 50 s) are depicted in the figure. As expected, the number of PDE evaluations increases325

with the optimization horizon, as this increases the number of optimization variables. In general, higher resolutions also require

more function evaluations.

4.3 Power Gains versus Computational Time

Figure 10 shows the performance of the proposed controller versus the computational cost for the three grid resolutions from

Tab. 1 and the different combinations of T and TA. Error bars indicating the 95% confidence intervals are also depicted.330

The performance of the controllers is measured in terms of the power gains ηP and farm efficiency ηfarm:

ηP =
P farm

P
ref , ηfarm =

P farm

NtP
ref
R1

. (20)

The power gain compares the overall power extraction P farm against the power P
ref

extracted by the Betz-optimal reference

case. The farm efficiency evaluates performance against a fictional farm where all turbines operate in the free-stream flow.

In that case, the overall power extraction is compared against the average power P
ref
R1 extracted by a Betz-optimal, front-row335

17



Table 5. Number of PDE evaluations and L-BFGS-B iterations per optimization run, averaged over the windows, for the different grid

resolutions. Standard deviation on number of PDE evaluations is also shown. First window is excluded to account for startup of the controller.

Case 1 2 3 4 5 6 7 8 9 10

T [s] 350 250 150 50

TA [s] 350 250 150 50 250 150 50 150 50 50

level 0 27.6 26.3 22.7 23.8 19.3 17.8 17.9 10.2 11.0 8.1

L-BFGS-B iterations level 1 28.2 27.6 25.2 24.6 20.9 20.5 18.7 11.1 10.6 7.9

level 2 31.8 32.7 29.9 30.3 23.6 22.7 21.1 11.8 11.4 8.1

level 0 58.2 55.6 48.5 50.7 41.6 38.6 38.9 23.5 25.1 19.2

PDE evaluations level 1 59.4 57.9 53.4 52.2 44.7 43.9 40.5 25.2 24.2 18.9

level 2 66.6 68.4 62.8 63.7 50.1 48.5 45.3 26.6 25.9 19.1

level 0 4.1 6.0 4.5 5.9 3.2 4.2 3.6 4.0 4.3 1.3

Standard deviation level 1 3.8 5.9 4.7 6.2 6.0 5.3 4.2 4.2 4.1 1.4

level 2 3.8 4.6 5.5 7.2 4.0 3.6 4.9 4.4 4.7 0.8
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|Ĵ

i 0
|

0 10 20 30 40 50 60

−1.100

−1.050

−1.000 T = 350s

PDE evaluations

Figure 9. Cost function vs. number of PDE evaluations for cases 4,7, 9 and 10 (with TA=50 s) on each grid level for the optimization window

starting at t+TA = 750 s. Circles mark L-BFGS-B iterations. For every grid level i, the cost function Ĵ i is scaled by Ĵ i
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reference turbine. For the power computations, we only consider turbine operation after tstartup = 300 s to take into account the

startup time of the controllers. Error bars on ηP and ηfarm are computed starting from tstartup = 300 s using block bootstrapping

with window length 600 s.

Computational times are measured in terms of the real-time factor

RT =
twall

TA
, (21)340

where twall is the walltime per optimization run, averaged over all optimization windows of the corresponding case. Error bars

on the real-time factor are based on the deviations of the walltimes over the different optimization windows. In the time-delayed

MPC loop from Fig. 2(b) and Fig. 3, for real-time operation, all computations for a given receding-horizon window should be

performed within a time interval of length TA (the control update time). In the present study, we only consider the computational

time for the optimization and omit details of the state estimation. In practice, depending on the method, estimation may take345

as long as the optimization of the controls, such that RT <0.5 is expected to be sufficiently fast for real-time operation. Note

that the flow prediction subsequent to the state estimation (cf. Fig. 3) corresponds to one forward simulation on the coarse grid;

computational time for the prediction is hence negligible compared to that of optimization (and possibly estimation).

4.3.1 Analysis of Computational Cost

First of all, as can be appreciated in Fig. 10, all real-time factors are bigger than one, ranging from 1.79 to 270. Three observa-350

tions can be made: the real-time factor and hence the computational cost of the optimization increases if (a) the optimization

horizon T increases, (b) the update time TA is reduced, or (c) the grid is refined. Case 10 on grid level 0 — with T = 50 s,

TA=50 s and the lowest number of grid points of all simulations — is therefore the fastest and only a factor 1.79 (on average)

slower than real-time. Conversely, case 0 on grid level 2 is the most challenging in terms of walltime, with a real-time factor of

270. In terms of RT , Fig. 10 reveals that, in general, the relative order of the cases remains unchanged when refining the grid.355

4.3.2 Analysis of Power Gains and Farm Efficiency

The power gains from Fig. 10 are more clearly summarized in Fig. 11. As can be expected for the fully aligned farm layout,

the farm efficiency for the uncontrolled Betz-optimal reference case is relatively low at approximately 45 %. From Fig. 10 and

Fig. 11, it can be seen that all optimal control cases improve on the uncontrolled reference, except for case 10 due to its short

optimization horizon (T = 50 s, TA = 50 s). The highest power gain is observed for case 4 (T = 350 s, TA = 50 s) on grid360

level 1: ηP = 1.51. Two main trends can be observed: (a) increasing the optimization horizon T increases the power extraction,

and (b) decreasing the control update time TA increases the power extraction.

Interestingly, the grid resolution has no clear impact on the power gains. In some cases, refining the grid increases the power

extraction, sometimes the power extraction decreases. However, the performance gains and losses that come from refining or

coarsening the grid (for a given T and TA) are only marginal compared to the effects of changing T and TA and mostly fall365

within the bounds of the confidence interval. Overall, the influence of the receding-horizon parameters is hence much bigger

than that of the grid resolution.
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Figure 10. Gain factor (left axis) and farm efficiency (right axis) versus real-time factor for the optimal control cases, including error bars.

Betz-optimal reference case and steady yaw control case are also indicated.
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Figure 11. Gain factor (left axis) and farm efficiency (right axis) for the optimal control cases, including error bars. Betz-optimal reference

case and steady yaw control case are also indicated (dotted lines).

4.4 Yaw and Induction Characteristics

Figure 12 and Fig. 13 illustrate the time evolution of respectively the filtered thrust coefficients Ĉ ′
T and yaw angles θ for the

eight turbines in column C1 (see Fig. 6) for optimal control cases 1, 4, 5, 7, 8, 9 and 10 after optimization on grid level 0. We370

only show results for column C1, since the observations for the other turbine columns are similar. The thrust coefficients and

yaw angles for the other grid levels are shown in App. C, but the trends observed there are similar as the ones for grid level 0.

For comparison, the steady yaw angles from Sood and Meyers (2022) are shown in App. D.

For cases 8–10, characterized by the shortest time horizons T , wakes cannot propagate from one row of turbines to the

next row within the optimization window. In those cases, power is therefore maximized at the level of individual turbines:375

all turbines operate at the Betz limit Ĉ ′
T =2 while oscillating around the flow-aligned yaw angle of 0◦. The magnitude of the

oscillations increases for downstream turbines to account for the higher flow angles that exist in downstream regions of the

wind farm due to the unsteadiness in the local flow. For these cases, the control update time TA has no impact on the controls.

As the time horizon increases, significant yaw angles emerge for upstream turbines, with even some quasi-static yawing

behavior for the cases with short update times. This is particulary evident for case 4 (T =350 s, TA=50 s), where front-380

row turbines are immediately redirected to a yaw angle of ±30◦. Downstream turbine rows 2–4 exhibit similar behavior,

but at lower misalignment angles and with more complex oscillations in response to the local unsteadiness of the flow. In

contrast, the last few rows again operate around the unyawed position. Note that the misalignment angles of ±30◦ for the

21



N. JANSSENS, J. MEYERS

KU Leuven
Department of Mechanical Engineering

Celestijnenlaan 300A, B3001 Leuven, Belgium
e-mail: nick.janssens1@kuleuven.be

Key words: wind farms, large-eddy simulation, optimal control, adjoint method, real-time

Abstract. In the last decade, receding-horizon control strategies based on large-eddy simulations (LES) have
demonstrated potential (in simulation environment) for mitigating the effects of turbine-wake interactions in
wind farms, hence increasing the total power output. Despite their effectiveness, high-fidelity simulations such
as LES are commonly considered too slow for practical applications. This study is a first examination on the
feasibility of LES for real-time, receding-horizon wind farm control by using coarse grid resolutions. We focus
on combined dynamic induction and yaw control of individual turbines to optimize the overall energy extraction.
By varying the receding-horizon parameters (i.e. the optimization horizon and control update time) and spatio-
temporal resolution of the LES control models, we investigate the trade-off between computational speed and
controller performance. The methodology is validated on the fully-aligned TotalControl Reference Power Plant
using a fine-grid LES model as a reference. Analysis of the resulting power gains reveals that the performance
of the controllers is primarily determined by the receding-horizon parameters, whereas the grid resolution has no
significant impact on the overall power extraction. Our findings indicate that the optimal yaw rates and thrust
coefficients are mostly governed by the large-scale spatio-temporal structures in the wind farm boundary layer,
which are sufficiently accurately captured by the proposed coarse control models. Finally, by leveraging these
insights, we achieve near-parity between our LES-based controller and real-time computational speed, while still
maintaining competitive power gains up to ?%.

0

2
R1

Case 1

0

2
R1

Case 4

0

2
R1

Case 5

0

2
R1

Case 7

0

2
R2

0

2
R2

0

2
R2

0

2
R2

0

2
R3

0

2
R3

0

2
R3

0

2
R3

0

2
R4

0

2
R4

0

2
R4

0

2
R4

0

2
R5Ĉ
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Figure 12. Time evolution of filtered thrust coefficients Ĉ′
T for turbine column C1 for different optimal control cases for grid level 0. For

cases 8–10 (not shown), the thrust coefficients do not deviate from the Betz-optimal value Ĉ′
T = 2.

front-row turbines matches the value obtained using the static yaw controller from Sood and Meyers (2022). However, the

main difference compared to the steady yaw case is the distinct yawing of downstream turbines (starting in row 2 already),385

resulting in significant gains. Case 7 behaves similar to case 4 in terms of yawing, but the quasi-static yawing is less pronounced

due to the shorter optimization horizon. Also note that transitions of the yaw angle between −30◦ and 30◦, as observed for

front-row turbines for case 4 and case 7, is propagated in the mean flow to downstream turbines, as indicated by the red line in

Fig. 13.

Increasing the control update time TA (see e.g. case 1 and 5) eliminates the quasi-static yawing behavior observed in the390

upstream turbines (as discussed above for case 4). This is because the controller redirects yawed turbines to the unyawed

position at the end of the optimization window, as the corresponding wakes cannot propagate to the next turbine row anymore,

rendering yaw control disadventageous. This end-of-time effect is detrimental to the long-term power extraction, since it is

merely an artefact of the finite optimization horizon. For case 4 (TA = 50 s, and analogeously for case 7), the end-of-time

effect is mitigated by the shorter control update time (TA ≪ T ). In contrast, for case 1 (TA = 350 s), upstream turbines are395

steered towards a yawed position at the start of every optimization window, but then redirected at the end of the window due to

the end-of-time effect. This process repeats for the consecutive windows. Case 5 exhibits similar behavior, but the time spent

in the yawed position is shorter due to the shorter optimization window (a larger portion of the windows is affected by the
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Figure 13. Time evolution of yaw angles θ for turbine column C1 for different optimal control cases for grid level 0.
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end-of-time effect). Case 2 and 3, and case 6 (not shown in Fig. 12 and Fig. 13) display behavior similar to cases 1 and 5

respectively, but the end-of-time effect is less pronounced due to the shorter control update time.400

Overall, yaw control emerges as the dominant control mechanism for the TotalControl wind farm. Only for longer opti-

mization horizons (T ≥ 250 s), induction control is used resulting in minor deviations from the Betz-optimal thrust coefficient.

Interestingly, for cases 1, 4, 5 and 7 and for the front-row turbines, it seems that the dips in CT for the upstream turbines roughly

coincide with the zero-crossings of the yaw angle of those turbines. This shows the connection between yaw and induction

control: for the given setup, yaw control is the dominant control mechanism, and induction control is used as an additional405

control mechanism when there is no (instantaneous) yawing. Simulations (not shown here) suggest that yaw control only (i.e.

disabling induction control) does not entail a significant performance reduction.

Remark that the discussion in this section was limited to the effect of the receding-horizon parameters on the thrust coeffi-

cients and yaw angles. More general aspects of wind farm control — such as the curtailing of power of front-row turbines in

favor of downstream turbines, the typical absence of yawing for downstream turbines etc. — are similar to previous wind farm410

control studies such as the ones in Munters and Meyers (2017, 2018b), the reader is referred there for a more fundamental view

on the physics of wind farm control.

4.5 Discussion

Figure 11 clearly shows that all optimal control cases outperform the Betz-optimal reference case in terms of power gain,

except case 10 (due to its short optimization horizon T = 50 s). If the time horizon is long enough, i.e. T > 150 s (cases 1–7),415

we also obtain significant improvements over the steady yaw controller from Sood and Meyers (2022). This is a non-trivial

observation, given the coarseness of the control models and the accompanying model mismatch compared to the fine-grid

reference, especially in context of the time-decoupled MPC loop including the prediction step. This suggests that large-scale

structures (in space and time) in the wind farm boundary layer may already suffice to extract an adequat control signal. Short-

term evolutions of the boundary layer are not accurately captured by the coarser control models, resulting in only limited gains420

(for cases 8 and 9) or even losses (case 10) compared to the Betz-optimal reference. Extending the time horizon allows the

optimizer to tailor the controls based on the large-scale spatio-temporal structures, that are described sufficiently accururately

by the control model, hence resulting in significant improvements. It must also be noted that increasing the horizon (either

through T or TA) increases the variability on the results, resulting in larger error bars on the power gains (compare e.g. the

error bars of cases 1–4 to those of cases 8–10). Furthermore, increasing TA entails performance losses not only due to the425

end-of-time effect, but also due to the increased prediction error in the predictor.

The substantial power gains compared to the steady yaw controller from Sood and Meyers (2022) originate from the dynamic

yaw steering throughout the whole farm in response to the turbulent inflow. As shown in App. D for the framework of Sood and

Meyers, only front-row turbines are effectively yawed to ±30◦, whereas we also observe significant yawing in the downstream

regions of the farm. On the one hand, for case 4 in particular, there is the quasi-static wake steering — with occasional turnovers430

from 30◦ to −30◦ and vice versa depending on the inflow — that persists downstream in turbine rows R2–R4/R5. On the other

hand, towards the end of the farm, we also observe dynamic yawing around a mean angle of approx. 0◦ to optimally align

24



the turbines to the turbulent inflow that has become increasingly unsteady due to the superimposed wakes from the upstream

turbines. This also entails a significant power gain that cannot be captured with a steady yaw controller. Finally, we note that

the proposed LES-based controller is able to account for secondary steering effects that are not included in the Bastankhah435

wake model that was used to optimize the yaw setpoints in Sood and Meyers.

Interestingly, refining the optimization resolution does not significantly improve the results in terms of power gain, and

can even be disadvantageous in some cases (at least in the range of resolutions considered in this paper). This effect may be

attributed to the model mismatch: upon refining, the controls are tuned to account for the additional small(er)-scale variations,

but these (incremental) adjustments are not necessary optimal on the fine-grid reference. In Bauweraerts and Meyers (2019)440

(in the context of turbulent forecasting), it was shown that modeling errors even slightly decrease with grid coarsening, due to

the decreasing subgrid-scale errors in the LES and the decreased effect of chaotic divergence of solution trajectories on coarser

grids. In other words: it may be better to only optimize for the large scales than to also take into account smaller scales that

may be inaccurately modeled. However, it must be noted that even the finest optimization resolution (level 2) is still more than

three times coarser than the reference resolution. It is expected that further grid refinements would eventually improve on the445

coarse grid results, when the actual small-scale variations are sufficiently accuratley described by the control models. However,

these kind of similations would be prohibitive due to excessive computational costs.

Finally, it must be noted that the coarse control models are incapable of capturing all the turbulent dynamics governing the

optimal wind farm control problem. On the one hand, it seems that they can accurately model large-scale motions in the flow,

such as the general deflection of the wake under yawed conditions and the gross behavior of the wakes. On the other hand,450

the shedding of vortex rings, that play a crucial role in enhancing wake mixing when dynamically controlling turbine thrust

(Munters and Meyers, 2018a), cannot be represented on coarse grids. As such, the proposed methodology is less eligible for

dynamic induction control, and yaw control emerges as the dominant mechanism for coarse-grid LES-based control, where in

that case the gains mainly originate from dynamically steering away the wakes from downstream turbines, synchronized to the

turbulent inflow.455

5 Towards real-time Optimal Wind Farm Control

The discussion in Sect. 4.3 has revealed that, on the one hand, the optimization horizon T needs to be long enough to take

into account wake interactions over subsequent turbine rows. On the other hand, the control update time needs to be short

enough to discard end-of-time effects. Furthermore, it was shown that refining the grid resolution significantly increases the

computational cost without a signficant improvement in the performance of the controller in terms of power gain. By leveraging460

these insights, we now design a competitive (in terms of power gains) controller that is as close to real-time as possible.

5.1 Case setup

For the receding-horizon parameters, we propose T = 300 s and TA = 120 s. An optimization horizon of T = 300 s allows

the controller to account for wake interactions during the optimization. With TA = 120 s, the final 180 s of the optimization
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Table 6. Case description for the case from Sect. 5.

Simulation setup Remarks

Space resolution [m3] ∆x×∆y×∆z 80× 80× 50 Grid level 0

Time resolution [s] ∆t 4 Coarser compared to Tab. 1

Grid cells Nx×Ny×Nz 144× 52× 15

Domain size [km3] Lx×Ly×Lz 11.52×4.16×0.75 Cropping in y- and z-direction compared to Tab. 2

Pressure grad [m/s2] ∂xp∞/ρ 1.045× 10−4 Changed due to cropping in z-direction compared to Tab. 2

Receding-horizon parameters Remarks

Horizon [s] T 300

Update time [s] TA 120

/ Case (a)

L-BFGS-B iterations Nopt,max 10 Case (b)

5 Case (c)

window are discarded, which is roughly the portion of the window affected by end-of-time effects. Based on the analysis in465

Sect. 4.3, longer update times are expected to reduce performance due to end-of-time effects. Although further decreasing TA

could potentially improve the power gains by mitigating the model mismatch, the benefits would be relatively insignificant

compared to those that come from addressing the end-of-time effect, and would hence result in an undue increase in the real-

time factor. Regarding the convergence criteria, we consider three cases: case (a) that uses the same convergence criterium as

in Sect. 3.1.1 (i.e.
(
J k−1 −J k

)
/J k−1 ≤ 5× 10−6), and cases (b) and (c) that additionally impose a maximum number of470

optimization iterations, respectively Nopt,max = 10 and Nopt,max = 5. Furthermore, given the limited contribution of induction

control in the overall power gains, all thrust coefficients are kept constant to the Betz-optimal value C ′
T = 2. By disabling

induction control, the number of optimization variables decreases by a factor 2, which may potentially speed up the convergence

of the optimization problems.

To further minimize the real-time factor, simulations are performed on the coarsest grid level (level 0). We use the streamwise475

domain length from the cases with horizon T = 250 s (cf. Tab. 2): Lx = 11.52 km. Earlier results (not shown) suggest that

this domain is still big enough to prevent recycling of the wakes into the front-row turbines. Furthermore, in comparison to

Table 2, we apply an additional cropping of the optimization domain in the spanwise and vertical directions to further reduce

computational costs, resulting in Ly = 4.16 km and Lz = 0.75 km. To keep a friction velocity of uτ = 0.28 m s−1 for the new

vertical dimension, the pressure gradient is adjusted to ∂xp∞/ρ= 1.0453× 10−4 m s−2. For the time step, we take ∆t= 4 s,480

which is the coarsest time step that still respects a CFL number of 0.8. The simulation setup is summarized in Table 6.
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Table 7. Gain factor versus real-time factor for the optimal control cases. Error bars are also shown in the brackets.

Case (a) Case (b) Case (c)

Gain ηP 1.39 [0.09,0.07] 1.38 [0.07,0.05] 1.31 [0.04,0.03]

Real-time factor 4.08 [0.14,0.13] 2.33 [0.002,0.002] 1.33 [0.001,0.002]

5.2 Results and discussion

The results for cases (a), (b) and (c) are summarized in Tab. 7. By tailoring the control model and through a sensible choice

for the receding-horizon parameters as described above, for case (c) we achieve a real-time factor of 1.33 with only a minor

decrease in power gain compared to cases (a) and (b) (1.31 versus 1.39 and 1.38 respectively). Apparently, just 5 L-BFGS-B485

iterations already suffice to extract an adequate control action.

It is important to note that the setup used here was tailored to the fully aligned TCRWP, and therefore the results may not

directly translate to other farm configurations. Nevertheless, the observations suggest that using coarse-grid LES for real-time

wind farm control is a viable approach, if another order of magnitude (factor 10) in computational or algorithmic speed-up

can be found (since, for practical wind farm control, the optimization process must be at least twice as fast as real-time to490

perform state estimation within the computational window). However, as CPU computing power continues to advance, and

since this first investigation already achieves near real-time speed, a factor 10 still remains within reach. Further speed-ups

may also be attained through GPU-accelerated computing. Furthermore, it is worth mentioning that the SP-Wind code can also

be enhanced. For instance, a new version of the code is currently being developed that employs 3D domain decomposition for

the spatial parallelization (as opposed to the 2D domain decomposition used in this work). This upgrade will be necessary to495

handle even bigger optimization cases in real-time. Very recently, Janssens and Meyers (2023, In press) proposed a multiple

shooting algorithm for large-scale optimal control cases, such as the ones considered here. The additional speed-up due to the

temporal parallelization in that case may potentially narrow the gap towards achieving actual, practical wind farm control in

real-time.

6 Conclusions500

In the current manuscript, we investigated the influence of the grid resolution of the LES-based control model and receding-

horizon parameters on the performance of the controller, both in terms of power gain and computational cost. To that end, we

defined a set of optimal control cases with varying optimization horizons and control update times, as well as a fine-grid LES

emulator model, applied to the TotalControl Reference Wind Power Plant. For each case, we defined three grid resolutions for

the LES-based control model, and performed a complete optimal control simulation on each of the grids.505

Regarding the receding-horizon parameters, on the one hand the results indicate that the optimization horizon should be

long enough to take into account turbine-wake interactions over subsequent turbine rows. In that case, upstream turbines
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are misaligned to steer away the wakes from downstream turbines in a quasi-static way, resulting in significant power gains

compared to the uncontrolled reference case and steady yaw control case. Downstream turbines are yawed as well, but to

a lesser extent and in a more complex pattern, mostly in response to the local unsteadiness of the flow. On the other hand,510

the control update times should be short enough to mitigate end-of-time effects, i.e. to discard controls near the end of the

optimization window that are affected by the finiteness of the optimization window. Taking this into account, optimal control

case 4 (with T = 350 s and T = 50 s, i.e. the longest horizon and shortest update time), consistently produce the highest power

gains, up to ηP = 1.51 on grid level 1. Furthermore, it must be noted that all optimal control cases improve on the uncontrolled

reference case in terms of power gain, except case 10 (T = 50 s, TA = 50 s) due to the short optimization horizon. Moreover,515

cases 1–7 (where T ≥ 250 s) also outperform a steady yaw control case that was optimized based on the Bastankhah wake

model combined with a recursive wake merging merhod (see Sood and Meyers, 2022). Obviously, increasing the optimization

horizon and decreasing the control update time both increase the real-time factor.

Somewhat surprisingly, the grid resolution has no significant impact on the performance of the controllers, at least not in

the range of resolutions considered here. Sometimes refining the grid resolution results in higher gains, sometimes the gains520

decrease. This may be attributed to the existence of many local optima in the wind farm optimization problem, as well as the

model uncertainty, since the finest grid in this work was still more than three times coarser than the reference simulation. It

is expected that finer grids (with resolutions close to that of the reference), would eventually improve on the coarse models

investigated here, as soon as the small scales are represented sufficiently accurately to take them into account in the control

action. However, optimizations on these kind of resolution would be prohibitive due to computational cost and outweigh the525

potential gains originating from the decreased model mismatch. It must also be noted that we did not investigate the influence

of the convergence criterion, therefore it is possible that somewhat better results can be obtained on each of the grid levels by

tweeking the stopping criterium.

In terms of power gains, the coarse grid control models investigated in the current manuscript perform surprisingly well,

with gains up to and above 40% if the time horizon is sufficiently long and the update time sufficiently short. This is a powerful530

result, given the model uncertainty due to the additional prediction step in the time-delayed MPC loop. Regarding the complex

physics underlying wind farm control, the results suggest that the large-scale spatial and temporal structures in the wind farm

boundary layer (i.e. the ones that are accurately represented by the coarse LES models), suffice to extract an efficient yaw

controller. From the viewpoint of real-time LES-based optimal control, this means that high-performance controllers can be

obtained at only a fraction of the computational cost by coarsening the grid resolution, potentially bridging the gap between535

theoretical studies based on LES and practical, real-time wind farm control. Via a proper choice of the receding-horizon

parameters and optimal control domain, we achieved a gain of 31 % with real-time factor 1.33, i.e. only 1.33 times slower than

real-time. Even better control signals (in terms of the resulting power gains) may be obtained through an enhanced wake mixing

by better exploiting dynamical induction control (Munters and Meyers, 2018a) or via the helical wake structures originating

from individual pitch control (Frederik et al., 2020). However, this would require a much finer numerical grid, which currently540

does not allow for a real-time implementation in LES.
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It must be noted that, upon the restriction from the actual wind farm (the fine-grid LES wind farm model) to the coarse res-

olution of the prediction and control model by the restriction operator, we still assume the entire flow field from the reference

simulation is available. In practice, this is not the case; the flow field is only available in the form of discrete measurements,

for example LiDAR measurements or SCADA data. Consequently, for a practical controller, the flow field must first be recon-545

structed from these measurements in a state estimator, for example using Kalman filtering or 4D variational data assimilation

(see e.g. Bauweraerts and Meyers, 2021). Future work should therefore focus on the design of an efficient state estimator

tailored to wind farm control, which can then be incorporated into the LES-based wind farm control methodology proposed

here. As shown in previous work from Bauweraerts and Meyers (2019), LES-based state estimation may potentially benefit

from grid coarsening as well. However, in that case, the question still remains whether combined LES-based state estimation550

and control can be fast enough for real-time applications, and how the additional reconstruction errors originating from the

state estimation will affect the performance of the controllers. This would be the next step towards actual, practical wind farm

control.

We also admit that the considered test case (TCRWP) is quite susceptible to high power gains due to the fully aligned

turbine configuration. Applying the proposed wind farm controller to other wind farm layouts could be a topic for future555

research, although it is expected that the controller will still be able to produce competitve gains. To increase the credibility

of the proposed control strategy in general, another interesting direction would be to use more accurate turbine models in the

wind farm emulator model (e.g. actuator-sector models (ASM) or actuator-line models (ALM)), instead of the very basic non-

rotating, actuator-disc model used here. In the first place, one could investigate the effect of the additional model mismatch

when using an ADM control model in the coarse LES in combination with an ASM or ALM reference model.560

Appendix A: Look-up Tables for Power Correction

This appendix lists the correction factors M from eq. (10) for the disc-averaged velocity for different values of the thrust

coefficient Ĉ ′
T and yaw angle θ for the three grid resolutions considered in the present manuscript. The corrections are chosen

is such a way that the corrected disc-averaged velocity on the coarse grid equals the disc-averaged velocity on the reference

grid for a given thrust coefficient and yaw angle for uniform inflow. The resulting look-up values are summarized in Tab. A1,565

Tab. A2 and Tab. A3 for grid level 0, grid level 1 and grid level 2 respectively. These tables are constructed based on uniform

inflow simulations with U∞ = 8 m s−1, prescribed using a fringe region spanning the final 20 % of the simulation domain. All

simulations are conducted for a single DTU 10MW reference turbine using the same domain size Lx ×Ly ×Lz = 26.92D×
13.46D× 8.41D, where D = 178.3 m is the rotor diameter. For the resolution of the reference, we use ∆x×∆y×∆z =

13.33×13.33×6.67 m3 as prescribed by Tab. 1. For a given Ĉ ′
T and θ, the corresponding correction factor M is computed by570

(linearly) interpolating the look-up tables.

Finally, we also briefly examine the performance of the look-up table approach for turbulent inflow. To that end, as an

example, we take the setup of case 1 from Tab. 2 and Tab. 3 on grid level 0. For Ĉ ′
T = 2.0 and θ = 0◦, Fig. A1 shows the

corrected (i.e. using the look-up table approach) and uncorrected power predictions on the coarse grids compared to the fine-
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Table A1. Look-up table for grid level 0 (∆x×∆y×∆z = 80×80×50m3): correction factor M from eq. (10) for different thrust coefficient

Ĉ′
T and yaw angle θ.

Ĉ′
T

0.5 1.0 1.5 2.0 2.5 3.0

0◦ 0.9498 0.9020 0.8571 0.8147 0.7752 0.7385

5◦ 0.9499 0.9023 0.8576 0.8156 0.7763 0.7398

10◦ 0.9502 0.9037 0.8593 0.8180 0.7794 0.7434

15◦ 0.9508 0.9057 0.8620 0.8218 0.7843 0.7492

θ 20◦ 0.9516 0.9067 0.8654 0.8267 0.7906 0.7567

25◦ 0.9525 0.9102 0.8694 0.8323 0.7978 0.7655

30◦ 0.9536 0.9129 0.8734 0.8381 0.8057 0.7752

35◦ 0.9549 0.9158 0.8786 0.8440 0.8137 0.7852

40◦ 0.9563 0.9179 0.8838 0.8508 0.8222 0.7952

Table A2. Look-up table for grid level 1 (∆x×∆y×∆z = 60× 60× 37.5 m3): correction factor M from eq. (10) for different thrust

coefficient Ĉ′
T and yaw angle θ.

Ĉ′
T

0.5 1.0 1.5 2.0 2.5 3.0

0◦ 0.9596 0.9205 0.8834 0.8468 0.8125 0.7803

5◦ 0.9597 0.9208 0.8834 0.8476 0.8136 0.7816

10◦ 0.9601 0.9217 0.8850 0.8500 0.8167 0.7852

15◦ 0.9606 0.9240 0.8874 0.8535 0.8213 0.7907

θ 20◦ 0.9612 0.9247 0.8904 0.8578 0.8269 0.7974

25◦ 0.9621 0.9281 0.8938 0.8627 0.8332 0.8051

30◦ 0.9630 0.9290 0.8974 0.8678 0.8398 0.8133

35◦ 0.9641 0.9313 0.9011 0.8730 0.8466 0.8217

40◦ 0.9652 0.9337 0.9048 0.8781 0.8532 0.8297

grid reference for a horizon of 300 s. With the look-up table approach, the error on the average power prediction is decreased575

by 7%, i.e. from an overestimation of 21% for the uncorrected prediction to an underestimation of 14% for the corrected one.
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Table A3. Look-up table for grid level 2 (∆x×∆y×∆z = 40×40×25m3): correction factor M from eq. (10) for different thrust coefficient

Ĉ′
T and yaw angle θ.

Ĉ′
T

0.5 1.0 1.5 2.0 2.5 3.0

0◦ 0.9709 0.9430 0.9141 0.8869 0.8606 0.8354

5◦ 0.9709 0.9423 0.9144 0.8873 0.8611 0.8360

10◦ 0.9711 0.9427 0.9152 0.8884 0.8625 0.8376

15◦ 0.9714 0.9434 0.9163 0.8902 0.8648 0.8403

θ 20◦ 0.9716 0.9455 0.9180 0.8926 0.8680 0.8440

25◦ 0.9723 0.9460 0.9194 0.8954 0.8718 0.8488

30◦ 0.9728 0.9481 0.9219 0.8985 0.8760 0.8543

35◦ 0.9734 0.9477 0.9241 0.9016 0.8802 0.8599

40◦ 0.9741 0.9491 0.9263 0.9048 0.8845 0.8772

N. JANSSENS, J. MEYERS

KU Leuven
Department of Mechanical Engineering

Celestijnenlaan 300A, B3001 Leuven, Belgium
e-mail: nick.janssens1@kuleuven.be
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Abstract. In the last decade, receding-horizon control strategies based on large-eddy simulations (LES) have
demonstrated potential (in simulation environment) for mitigating the effects of turbine-wake interactions in
wind farms, hence increasing the total power output. Despite their effectiveness, high-fidelity simulations such
as LES are commonly considered too slow for practical applications. This study is a first examination on the
feasibility of LES for real-time, receding-horizon wind farm control by using coarse grid resolutions. We focus
on combined dynamic induction and yaw control of individual turbines to optimize the overall energy extraction.
By varying the receding-horizon parameters (i.e. the optimization horizon and control update time) and spatio-
temporal resolution of the LES control models, we investigate the trade-off between computational speed and
controller performance. The methodology is validated on the fully-aligned TotalControl Reference Power Plant
using a fine-grid LES model as a reference. Analysis of the resulting power gains reveals that the performance
of the controllers is primarily determined by the receding-horizon parameters, whereas the grid resolution has no
significant impact on the overall power extraction. Our findings indicate that the optimal yaw rates and thrust
coefficients are mostly governed by the large-scale spatio-temporal structures in the wind farm boundary layer,
which are sufficiently accurately captured by the proposed coarse control models. Finally, by leveraging these
insights, we achieve near-parity between our LES-based controller and real-time computational speed, while still
maintaining competitive power gains up to ?%.
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Figure A1. Power predictions for turbine column C1 without correction (blue) and using the look-up table approach (red) compared to the

fine-grid reference for Ĉ′
T = 2.0 and θ = 0◦.
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Appendix B: Derivation and Verification of the temporally discrete Adjoint Method and Gradient

In this Appendix, we formulate the temporally discrete adjoint method and derive expression (18) for the cost functional

gradients. These gradients are also validated via finite differences. The derivation and notation are similar to the one from

Yilmaz and Meyers (2019), differences are explicitly formulated throughout the text.580

B1 Discretization of the Optimal Control Problem

The discrete adjoint method first discretizes and then linearizes the state equations, next it formulates the discrete adjoint of

the linear system (Giles and Pierce, 2000). Using an explicit fourth order Runge–Kutta discretization with N time steps, the

discretization of the optimization problem (1)–(7) can symbolically be written as

min
φ,q

J̃N =

N∑
n=1

In s.t. qn
i = qn +∆t

4∑
j=1

aijY (qn
j ,φ

n) i= 1 . . .4, (B1)585

qn+1 = qn +∆t

4∑
i=1

biY (qn
i ,φ

n), (B2)

where qn = [un,pn, Ĉ ′n
T ,θn] and φn = [C ′n

T ,ωn] are respectively the state variables and controls at time instant tn = n∆t.

In the Runge–Kutta stage equations, Y denotes the right-side of the governing equations consisting of the Navier-Stokes

equations, thrust coefficient filter equation and yaw rate equation. In denotes the discretized objective functional. Below,

we continue the derivation for a general explicit (j < i) fourth-order Runge–Kutta scheme; the simulations in SP-Wind are590

carried out using classical Runge–Kutta 4, for which the nonzero Butcher tableau coefficents are a21 = a32 = 1/2, a43 = 1,

b1 = b4 = 1/6 and b2 = b3 = 1/3.

As opposed to the basic first-order discretization from Yilmaz and Meyers (2019), in this work the intermediate Runge–Kutta

stages are also used in the discretization of the cost functional. In order to achieve this, the continuous cost functional (1),

here symbolically written as J̃ (φ,q(φ)) =
∫ T

0
J(φ,q(φ))dt, is first rewritten in the form of an ordinary differential equation595

(ODE),

dJt(t)

dt
= J(φ(t),q(t)) Jt(0) = 0, (B3)

where J̃ (φ,q(φ)) = Jt(T ). The ODE in (B3) is then discretized using Runge–Kutta 4, yielding a new expression for the

discretized cost function that is of fourth-order accuracy:

J̃N =

N∑
n=1

In =

N∑
n=1

(
∆t

4∑
i=1

biJ(φ
n,qn

i )
)
. (B4)600

Remark that compared to Yilmaz and Meyers, the control variables φn in the Runge–Kutta discretization in (B1)–(B2) are

kept constant over the Runge–Kutta stages, since (in practice) controls are kept constant over the control time step (which we

assume here is equal to the discretization time step ∆t).
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B2 Linearization of the State Equation

Analogeously to Yilmaz and Meyers, the discretized state equations in (B1)–(B2) can be linearized, resulting in a linear system605

for every time step n:

KnLn = Mn, (B5)

K =



−1 0 0 0 0 0

1 −1 0 0 0 0

1 a21∆tYq(q
n
1 ,φ

n) −1 0 0 0

1 a31∆tYq(q
n
1 ,φ

n) a32∆tYq(q
n
2 ,φ

n) −1 0 0

1 a41∆tYq(q
n
1 ,φ

n) a42∆tYq(q
n
2 ,φ

n) a43∆tYq(q
n
3 ,φ

n) −1 0

1 b1∆tYq(q
n
1 ,φ

n) b2∆tYq(q
n
2 ,φ

n) b3∆tYq(q
n
3 ,φ

n) b4∆tYq(q
n
4 ,φ

n) −1


, (B6)

L =



δqn

δqn
1

δqn
2

δqn
3

δqn
4

δqn+1


M =−



0

0∑1
j=1 a2j∆tYφ(q

n
j ,φ

n)δφn∑2
j=1 a3j∆tYφ(q

n
j ,φ

n)δφn∑3
j=1 a4j∆tYφ(q

n
j ,φ

n)δφn∑4
i=1 bi∆tYφ(q

n
i ,φ

n)δφn


. (B7)610

B3 Adjoint Equations

Denote the adjoint vector for time step n by Nn=
(
q∗n

q∗n

1 q∗n

2 q∗n

3 q∗n

4 q∗n+1
)

, where q∗n

= [ξn,πn,σn,ηn] are the adjoint

variables associated to the state vector qn. Again in the notation of Yilmaz and Meyers, we define the adjoint variables as the

solution of the adjoint equation:(
NnKn

)T

= In
q =

(
Inqn Inqn

1
Inqn

2
Inqn

3
Inqn

4
Inqn+1

)T

. (B8)615

As opposed to Yilmaz and Meyers, the partial derivatives of the cost function (B4) with respect to the Runge–Kutta stages are

now nonzero (due to the more elaborate discretization):

Inqn
i
= bi∆tJq(φ

n,qn
i ) i= 1 . . .4, (B9)

Inqn = Inqn+1 = 0. (B10)

Based on eq. (B8), the temporally discrete adjoint equations become:620

q∗n

i = bi∆t
(

YT
q (q

n
i ,φ

n)q∗n+1 − Jq(q
n
i ,φ

n)
)
+∆t

4∑
j=i+1

ajiYT
q (q

n
i ,φ

n)q∗n

j i= 1 . . .4, (B11)

q∗n

= q∗n+1

+

4∑
i=1

q∗n

i . (B12)
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These equations run backward in time, starting from terminal conditions q∗N = INqN = 0. Since each Runge–Kutta stage

contributes to the (discretized) cost function, the cost function gradient Jq now appears as a source term in each equation. Note

that, structurally, the temporally discrete adjoint equations differ from the forward Runge–Kutta scheme, since the method is625

not self-adjoint.

Due to the linearity of the adjoint equations, the stage equations from (B12) can be rewritten as follows:

q∗n

i =∆tYT
q (q

n
i ,φ

n)
(
biq

∗n+1

+

4∑
j=i+1

ajiq
∗n

j

)
− bi∆tJq(q

n
i ,φ) i= 1 . . .4. (B13)

To ease the notation in the remainder of the derivation, we introduce the auxiliary variable q̂∗n

i = [ξ̂ni , π̂
n
i , σ̂

n
i , η̂

n
i ],

q̂∗n

i = biq
∗n+1

+

4∑
j=i+1

ajiq
∗n

j i= 1 . . .4. (B14)630

such that we arrive at the following adjoint equations:

q∗n

i =∆tYT
q (q

n
i ,φ

n)q̂∗n

i − bi∆tJq(q
n
i ,φ) i= 1 . . .4. (B15)

that can be solved backwards, starting from i= 4.

For the wind farm power optimization problem at hand, the adjoint Jacobians YT
q and Jq are exactly equal to the ones

used in Munters and Meyers (2018b) where the continuous adjoint approach was used. To apply the temporally discrete adjoint635

equations to wind farm control problem (1)–(7), we can therefore recycle these expressions, however, here we must also include

the extra dependency of the look-up correction factor in (10) on the thrust coefficient and yaw angle. As such, we arrive at the

following temporally discrete adjoint Runge–Kutta 4 scheme for the Navier–Stokes equations (where here V and V denote the

uncorrected and corrected disc-averaged velocities, cf. eq. (10)):

ξni /∆t=
(
−(∇un

i )
T +(un

i ·∇)
)
ξ̂ni −∇πn

i /ρ−∇·τ ∗
sgs

(
un
i , ξ̂

n
i

)
+

Nt∑
m=1

f∗n

m,i i= 1 . . .4, (B16)640

∇2πn
i /ρ=∇ ·

[(
−(∇un

i )
T +(un

i ·∇)
)
ξ̂ni −∇·τ ∗

sgs

(
un
i , ξ̂

n
i

)
+

Nt∑
m=1

f∗n

m,i

]
i= 1 . . .4, (B17)

ξn = ξn+1 +

4∑
i=1

ξni , (B18)

where (B17) represents the Poisson equation obtained from the time-discrete adjoint momentum equations (B16) for the

Runge–Kutta stages. The Poisson equation is solved at every time step and for every stage using a direct method. The ad-

joint wind farm force in Runge–Kutta stage i in (B16)–(B17) then becomes (with m the turbine number):645

f∗n

m,i =
1

2
Ĉ

′
T

n

,mM
(
Ĉ

′
T

n

,m,θnm
)
V

n

m,i(3biV
n

m,i − 2X̂n
m,i)Rmen⊥,m i= 1 . . .4, (B19)

where X̂n
m,i =

1
Am

∫
Ω
Rmξ̂ni · en⊥,mdx denotes the disc-averaged adjoint velocity based on ξ̂ni , and V

n

m,i the corrected disc-

averaged forward velocity based on un
i (cf. eq. (10)).
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Analogeously, for the thrust coefficient filter and yaw rate equations, we get (i- and j-subscripts denote Runge–Kutta stages,

m-subscripts denote turbine numbers):650

σn
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σn
m,i−

1

2
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σn
m = σn+1

m +

4∑
i=1

σn
m,i, (B21)

and
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2
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′
T
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,mV
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Ω
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(3biV
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ηnm = ηn+1
m +

4∑
i=1

ηnm,i. (B23)

For a more detailed explanation on all the terms and equations, as well as the derivation of the adjoints, the reader is referred

to Goit and Meyers (2015) and Munters and Meyers (2017, 2018b).

B4 Adjoint Gradients

The total variation of the cost functional follows from the chain rule:660

δJ̃N =

N∑
n=1

δIn =

N∑
n=1

(
Ln

)T
In
q + Iφδφ

n. (B24)

We can now plug in the adjoint equation (B8) and then the linarization (B5), such that

δJ̃N =

N∑
n=1

δIn =

N∑
n=1

(
Ln

)T (
Kn

)T (
Nn

)T
+ Iφδφ

n =

N∑
n=1

(
Mn

)T (
Nn

)T
+ Iφδφ

n. (B25)

The derived expression hence does not require the forward sensitivity matrix L, which would otherwise have to be determined

for every control perturbation making the computation very expensive. From (B25), we can derive the gradient in any control665

direction. In practice, the L-BFGS-B library needs the gradient for every control variable δφn, which amounts to:

∂J̃N

∂φn
=−∆t

4∑
i=1

( i−1∑
j=1

(
aijYT

φ(q
n
j ,φ

n)q∗n

i

)
+ bi

(
YT

φ(q
n
i ,φ

n)q∗n+1 − Jφ(q
n
i ,φ

n)
))

. (B26)

Note that (B26) is the exact gradient of the discretized objective function in (B2), which converges to the gradient of the

continuous problem in the limit of ∆t→ 0 (Giles and Pierce, 2000).

Applied to the wind farm control problem (1)–(7), we arrive at the following simplified expressions for the gradient of the670

wind farm power objective function with respect to the thrust coefficients and yaw rates (i-subscripts denote Runge–Kutta
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Abstract. In the last decade, receding-horizon control strategies based on large-eddy
simulations (LES) have demonstrated potential (in simulation environment) for mitigat-
ing the effects of turbine-wake interactions in wind farms, hence increasing the total
power output. Despite their effectiveness, high-fidelity simulations such as LES are com-
monly considered too slow for practical applications. This study is a first examination on
the feasibility of LES for real-time, receding-horizon wind farm control by using coarse
grid resolutions. We focus on combined dynamic induction and yaw control of individ-
ual turbines to optimize the overall energy extraction. By varying the receding-horizon
parameters (i.e. the optimization horizon and control update time) and spatio-temporal
resolution of the LES control models, we investigate the trade-off between computational
speed and controller performance. The methodology is validated on the fully-aligned To-
talControl Reference Power Plant using a fine-grid LES model as a reference. Analysis
of the resulting power gains reveals that the performance of the controllers is primarily
determined by the receding-horizon parameters, whereas the grid resolution has no sig-
nificant impact on the overall power extraction. Our findings indicate that the optimal
yaw rates and thrust coefficients are mostly governed by the large-scale spatio-temporal
structures in the wind farm boundary layer, which are sufficiently accurately captured
by the proposed coarse control models. Finally, by leveraging these insights, we achieve
near-parity between our LES-based controller and real-time computational speed, while
still maintaining competitive power gains up to ?%.
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Figure B1. Baseline controls for which the gradient is computed and adjoint gradients versus finite difference verification.

stages, m-subscripts denote turbine numbers):

∇φn
m
J̃N =

 ∂J̃N

∂C
′
T

n

,m

∂J̃N

∂wn
m

=

−∆t
∑4

i=1

(
biσ

n+1
m +

∑i−1
j=1 aijσ

n
m,i

)
−∆t

∑4
i=1

(
biη

n+1
m +

∑i−1
j=1 aijη

n
m,i

) . (B27)

B5 Gradient Verification

In this section, expression (B27) for the gradient of the objective function, resulting from the temporally discrete adjoint675

method, is validated via finite differences. For the gradient verification, we consider the same numerical setup from Sect. 3.1.

Via finite differences, the Gateaux derivative of the objective function in the direction δφ is approximated as:(
∇J̃N , δφ

)
≈ J̃N (φ+αδφ)−J̃N (φ)

α
, (B28)

where we set α= 10−6. To limit computational costs, we only examine the gradients for turbines R1C1 and R8C4 (respectively

front and last row in Fig. 6) for a control horizon T = 350 s (the longest horizon considered in this work) and for a limited680

amount of time instants. The baseline controls, resulting adjoint gradients and finite difference verification are shown in Fig. B1.
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Appendix C: Yaw and Induction Characteristics

Figure C1 and C2 and Fig. C3 and C4 display the time evolution of the optimized filtered thrust coefficients Ĉ ′
T and yaw

angles θ for the eight turbines in column C1 for respectively grid level 1 and grid level 2. As in Sect. 4.4 for grid level 0,

only the turbines in column C1 are shown for cases 1, 4, 5, 7, 8, 9 and 10. Regarding the influence of the receding-horizon685

parameters, the conclusions are similar as for grid level 0. Note that for level 1 and level 2, the dips in Ĉ ′
T are more prominent

than for grid level 0 in Sect. 4.4. However, in each of the cases, yaw control remains the dominant control mechanism.

Appendix D: Steady yaw angles from Sood and Meyers (2022)

The steady yaw angles from Sood and Meyers (2022) for the TotalControl Reference Wind Power Plant are shown in Fig. D1.

In their framework, only front-row turbines are significantly yawed to ±30◦, whereas all other (downstream) turbines remain690

mostly unyawed. For a comparison with the yaw angles obtained by the proposed LES-based controller, see Sect. 4.5.
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Abstract. In the last decade, receding-horizon control strategies based on large-eddy simulations (LES) have
demonstrated potential (in simulation environment) for mitigating the effects of turbine-wake interactions in
wind farms, hence increasing the total power output. Despite their effectiveness, high-fidelity simulations such
as LES are commonly considered too slow for practical applications. This study is a first examination on the
feasibility of LES for real-time, receding-horizon wind farm control by using coarse grid resolutions. We focus
on combined dynamic induction and yaw control of individual turbines to optimize the overall energy extraction.
By varying the receding-horizon parameters (i.e. the optimization horizon and control update time) and spatio-
temporal resolution of the LES control models, we investigate the trade-off between computational speed and
controller performance. The methodology is validated on the fully-aligned TotalControl Reference Power Plant
using a fine-grid LES model as a reference. Analysis of the resulting power gains reveals that the performance
of the controllers is primarily determined by the receding-horizon parameters, whereas the grid resolution has no
significant impact on the overall power extraction. Our findings indicate that the optimal yaw rates and thrust
coefficients are mostly governed by the large-scale spatio-temporal structures in the wind farm boundary layer,
which are sufficiently accurately captured by the proposed coarse control models. Finally, by leveraging these
insights, we achieve near-parity between our LES-based controller and real-time computational speed, while still
maintaining competitive power gains up to ?%.
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Figure C1. Time evolution of filtered thrust coefficients Ĉ′
T for turbine column C1 for different optimal control cases for grid level 1.
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Abstract. In the last decade, receding-horizon control strategies based on large-eddy simulations (LES) have
demonstrated potential (in simulation environment) for mitigating the effects of turbine-wake interactions in
wind farms, hence increasing the total power output. Despite their effectiveness, high-fidelity simulations such
as LES are commonly considered too slow for practical applications. This study is a first examination on the
feasibility of LES for real-time, receding-horizon wind farm control by using coarse grid resolutions. We focus
on combined dynamic induction and yaw control of individual turbines to optimize the overall energy extraction.
By varying the receding-horizon parameters (i.e. the optimization horizon and control update time) and spatio-
temporal resolution of the LES control models, we investigate the trade-off between computational speed and
controller performance. The methodology is validated on the fully-aligned TotalControl Reference Power Plant
using a fine-grid LES model as a reference. Analysis of the resulting power gains reveals that the performance
of the controllers is primarily determined by the receding-horizon parameters, whereas the grid resolution has no
significant impact on the overall power extraction. Our findings indicate that the optimal yaw rates and thrust
coefficients are mostly governed by the large-scale spatio-temporal structures in the wind farm boundary layer,
which are sufficiently accurately captured by the proposed coarse control models. Finally, by leveraging these
insights, we achieve near-parity between our LES-based controller and real-time computational speed, while still
maintaining competitive power gains up to ?%.
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Figure C2. Time evolution of yaw angles θ for turbine column C1 for different optimal control cases for grid level 1.
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demonstrated potential (in simulation environment) for mitigating the effects of turbine-wake interactions in
wind farms, hence increasing the total power output. Despite their effectiveness, high-fidelity simulations such
as LES are commonly considered too slow for practical applications. This study is a first examination on the
feasibility of LES for real-time, receding-horizon wind farm control by using coarse grid resolutions. We focus
on combined dynamic induction and yaw control of individual turbines to optimize the overall energy extraction.
By varying the receding-horizon parameters (i.e. the optimization horizon and control update time) and spatio-
temporal resolution of the LES control models, we investigate the trade-off between computational speed and
controller performance. The methodology is validated on the fully-aligned TotalControl Reference Power Plant
using a fine-grid LES model as a reference. Analysis of the resulting power gains reveals that the performance
of the controllers is primarily determined by the receding-horizon parameters, whereas the grid resolution has no
significant impact on the overall power extraction. Our findings indicate that the optimal yaw rates and thrust
coefficients are mostly governed by the large-scale spatio-temporal structures in the wind farm boundary layer,
which are sufficiently accurately captured by the proposed coarse control models. Finally, by leveraging these
insights, we achieve near-parity between our LES-based controller and real-time computational speed, while still
maintaining competitive power gains up to ?%.
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Figure C3. Time evolution of filtered thrust coefficients Ĉ′
T for turbine column C1 for different optimal control cases for grid level 2.
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demonstrated potential (in simulation environment) for mitigating the effects of turbine-wake interactions in
wind farms, hence increasing the total power output. Despite their effectiveness, high-fidelity simulations such
as LES are commonly considered too slow for practical applications. This study is a first examination on the
feasibility of LES for real-time, receding-horizon wind farm control by using coarse grid resolutions. We focus
on combined dynamic induction and yaw control of individual turbines to optimize the overall energy extraction.
By varying the receding-horizon parameters (i.e. the optimization horizon and control update time) and spatio-
temporal resolution of the LES control models, we investigate the trade-off between computational speed and
controller performance. The methodology is validated on the fully-aligned TotalControl Reference Power Plant
using a fine-grid LES model as a reference. Analysis of the resulting power gains reveals that the performance
of the controllers is primarily determined by the receding-horizon parameters, whereas the grid resolution has no
significant impact on the overall power extraction. Our findings indicate that the optimal yaw rates and thrust
coefficients are mostly governed by the large-scale spatio-temporal structures in the wind farm boundary layer,
which are sufficiently accurately captured by the proposed coarse control models. Finally, by leveraging these
insights, we achieve near-parity between our LES-based controller and real-time computational speed, while still
maintaining competitive power gains up to ?%.
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Figure C4. Time evolution of yaw angles θ for turbine column C1 for different optimal control cases for grid level 2.
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Abstract. In the last decade, receding-horizon control strategies based on large-eddy simulations (LES) have
demonstrated potential (in simulation environment) for mitigating the effects of turbine-wake interactions in
wind farms, hence increasing the total power output. Despite their effectiveness, high-fidelity simulations such
as LES are commonly considered too slow for practical applications. This study is a first examination on the
feasibility of LES for real-time, receding-horizon wind farm control by using coarse grid resolutions. We focus
on combined dynamic induction and yaw control of individual turbines to optimize the overall energy extraction.
By varying the receding-horizon parameters (i.e. the optimization horizon and control update time) and spatio-
temporal resolution of the LES control models, we investigate the trade-off between computational speed and
controller performance. The methodology is validated on the fully-aligned TotalControl Reference Power Plant
using a fine-grid LES model as a reference. Analysis of the resulting power gains reveals that the performance
of the controllers is primarily determined by the receding-horizon parameters, whereas the grid resolution has no
significant impact on the overall power extraction. Our findings indicate that the optimal yaw rates and thrust
coefficients are mostly governed by the large-scale spatio-temporal structures in the wind farm boundary layer,
which are sufficiently accurately captured by the proposed coarse control models. Finally, by leveraging these
insights, we achieve near-parity between our LES-based controller and real-time computational speed, while still
maintaining competitive power gains up to ?%.
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Figure D1. Steady yaw angles [◦] from Sood and Meyers (2022) for the TotalControl Reference Wind Power Plant. Axes in rotor diameter

units, with D = 178.3 m. Figure adapted from Andersen et al. (2018).

References

Andersen, S., Madariaga, A., Merz, K., Meyers, J., Munters, W., and Rodriguez, C.: TotalControl: Advanced integrated supervisory and wind

turbine control for optimal operation of large Wind Power Plants - Reference Wind Power Plant D1.03, https://www.totalcontrolproject.eu/

dissemination-activities/public-deliverables, accessed: 2023-20-01 via https://www.totalcontrolproject.eu/dissemination-activities/public-705

deliverables, 2018.

Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Hansen, M. H., Blasques, J. P. A. A., Gaunaa, M., and Natarajan, A.: The

DTU 10-MW reference wind turbine, in: Danish wind power research 2013, 2013.

Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, Journal of Fluid Mechan-

ics, 806, 506–541, https://doi.org/10.1017/jfm.2016.595, 2016.710

Bauweraerts, P. and Meyers, J.: On the Feasibility of Using Large-Eddy Simulations for Real-Time Turbulent-Flow Forecasting in the

Atmospheric Boundary Layer, Boundary-Layer Meteorology, 171, https://doi.org/10.1007/s10546-019-00428-5, 2019.

Bauweraerts, P. and Meyers, J.: Reconstruction of turbulent flow fields from lidar measurements using large-eddy simulation, Journal of

Fluid Mechanics, 906, A17, https://doi.org/10.1017/jfm.2020.805, 2021.

Boersma, S., Doekemeijer, B., Vali, M., Meyers, J., and van Wingerden, J.-W.: A control-oriented dynamic wind farm model: WFSim, Wind715

Energy Science, 3, 75–95, https://doi.org/10.5194/wes-3-75-2018, 2018.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal on Scientific

Computing, 16, 1190–1208, https://doi.org/10.1137/0916069, 1995.

Chen, W.-H., Ballance, D., and O’Reilly, J.: Model predictive control of nonlinear systems: Computational burden and stability, Control

Theory and Applications, IEE Proceedings -, 147, 387 – 394, https://doi.org/10.1049/ip-cta:20000379, 2000.720

Findeisen, R. and Allgöwer, F.: Computational Delay in Nonlinear Model Predictive Control, IFAC Proceedings Volumes, 37,

https://doi.org/10.1016/S1474-6670(17)38769-4, 2003.

Frederik, J. A., Doekemeijer, B. M., Mulders, S. P., and van Wingerden, J.-W.: The helix approach: Using dynamic individual pitch control

to enhance wake mixing in wind farms, Wind Energy, 23, 1739–1751, https://doi.org/https://doi.org/10.1002/we.2513, 2020.

42

https://www.totalcontrolproject.eu/dissemination-activities/public-deliverables
https://www.totalcontrolproject.eu/dissemination-activities/public-deliverables
https://www.totalcontrolproject.eu/dissemination-activities/public-deliverables
https://doi.org/10.1017/jfm.2016.595
https://doi.org/10.1007/s10546-019-00428-5
https://doi.org/10.1017/jfm.2020.805
https://doi.org/10.5194/wes-3-75-2018
https://doi.org/10.1137/0916069
https://doi.org/10.1049/ip-cta:20000379
https://doi.org/10.1016/S1474-6670(17)38769-4
https://doi.org/https://doi.org/10.1002/we.2513


Giles, M. and Pierce, N.: An Introduction to the Adjoint Approach to Design, Flow, Turbulence and Combustion, 65, 393–415,725

https://doi.org/10.1023/A:1011430410075, 2000.

Goit, J. and Meyers, J.: Optimal control of energy extraction in wind-farm boundary layers, Journal of Fluid Mechanics, 768, 5–50,

https://doi.org/10.1017/jfm.2015.70, 2015.

Goit, J. P., Munters, W., and Meyers, J.: Optimal Coordinated Control of Power Extraction in LES of a Wind Farm with Entrance Effects,

Energies, 9, https://www.mdpi.com/1996-1073/9/1/29, 2016.730

Grüne, L. and Pannek, J.: Variants and Extensions, pp. 297–342, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-

319-46024-6_10, 2017.

Iungo, G. V., Viola, F., Ciri, U., Rotea, M. A., and Leonardi, S.: Data-driven RANS for simulations of large wind farms, Journal of Physics:

Conference Series, 625, 012 025, https://doi.org/10.1088/1742-6596/625/1/012025, 2015.

Janssens, N. and Meyers, J.: Parallel-in-time multiple shooting for optimal control problems governed by the Navier-Stokes equations,735

Computer Physics Communications, 2023, In press.

Jonkman, J. M., Annoni, J., Hayman, G., Jonkman, B., and Purkayastha, A.: Development of FAST.Farm: A New Multi-Physics Engineering

Tool for Wind-Farm Design and Analysis, https://doi.org/10.2514/6.2017-0454, 2017.

Lanzilao, L. and Meyers, J.: A new wake-merging method for wind-farm power prediction in the presence of heterogeneous background

velocity fields, Wind Energy, 25, 237–259, https://doi.org/https://doi.org/10.1002/we.2669, 2022.740

Martínez-Tossas, L. A., Churchfield, M. J., and Leonardi, S.: Large eddy simulations of the flow past wind turbines: actuator line and disk

modeling, Wind Energy, 18, 1047–1060, https://doi.org/https://doi.org/10.1002/we.1747, 2015.

Meyers, J., Bottasso, C., Dykes, K., Fleming, P., Gebraad, P., Giebel, G., Göçmen, T., and van Wingerden, J.-W.: Wind farm flow control:

prospects and challenges, Wind Energy Science, 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, 2022.

Morales, J. L. and Nocedal, J.: Remark on “Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound Constrained Optimiza-745

tion”, ACM Trans. Math. Softw., 38, https://doi.org/10.1145/2049662.2049669, 2011.

Munters, W. and Meyers, J.: An optimal control framework for dynamic induction control of wind farms and their interaction with the

atmospheric boundary layer, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375,

20160 100, https://doi.org/10.1098/rsta.2016.0100, 2017.

Munters, W. and Meyers, J.: Towards practical dynamic induction control of wind farms: analysis of optimally controlled wind-farm boundary750

layers and sinusoidal induction control of first-row turbines, Wind Energy Science, 3, 409–425, https://doi.org/10.5194/wes-3-409-2018,

2018a.

Munters, W. and Meyers, J.: Dynamic strategies for yaw and induction control of wind farms based on large-eddy simulation and optimiza-

tion, Energies, 11, https://doi.org/10.3390/en11010177, 2018b.

Munters, W., Sood, I., and Meyers, J.: Precursor dataset PDk, https://doi.org/10.5281/zenodo.2650100, 2019.755

Nocedal, J. and Wright, S. J.: Numerical Optimization, Springer, New York, NY, USA, 2e edn., 2006.

Rott, A., Boersma, S., van Wingerden, J.-W., and Kühn, M.: Dynamic Flow Model for Real-Time Application in Wind Farm Control, Journal

of Physics: Conference Series, 854, 012 039, https://doi.org/10.1088/1742-6596/854/1/012039, 2017.

Shapiro, C. R., Bauweraerts, P., Meyers, J., Meneveau, C., and Gayme, D. F.: Model-based receding horizon control of wind farms for

secondary frequency regulation, Wind Energy, 20, 1261–1275, https://doi.org/https://doi.org/10.1002/we.2093, 2017.760

Shapiro, C. R., Gayme, D. F., and Meneveau, C.: Filtered actuator disks: Theory and application to wind turbine models in large eddy

simulation, Wind Energy, 22, 1414–1420, https://doi.org/https://doi.org/10.1002/we.2376, 2019.

43

https://doi.org/10.1023/A:1011430410075
https://doi.org/10.1017/jfm.2015.70
https://www.mdpi.com/1996-1073/9/1/29
https://doi.org/10.1007/978-3-319-46024-6_10
https://doi.org/10.1007/978-3-319-46024-6_10
https://doi.org/10.1007/978-3-319-46024-6_10
https://doi.org/10.1088/1742-6596/625/1/012025
https://doi.org/10.2514/6.2017-0454
https://doi.org/https://doi.org/10.1002/we.2669
https://doi.org/https://doi.org/10.1002/we.1747
https://doi.org/10.5194/wes-7-2271-2022
https://doi.org/10.1145/2049662.2049669
https://doi.org/10.1098/rsta.2016.0100
https://doi.org/10.5194/wes-3-409-2018
https://doi.org/10.3390/en11010177
https://doi.org/10.5281/zenodo.2650100
https://doi.org/10.1088/1742-6596/854/1/012039
https://doi.org/https://doi.org/10.1002/we.2093
https://doi.org/https://doi.org/10.1002/we.2376


Soleimanzadeh, M., Wisniewski, R., and Brand, A.: State-space representation of the wind flow model in wind farms, Wind Energy, 17,

627–639, https://doi.org/https://doi.org/10.1002/we.1594, 2014.

Sood, I. and Meyers, J.: Reference Windfarm database PDk 90, https://doi.org/10.5281/zenodo.3688716, 2020.765

Sood, I. and Meyers, J.: Validation of an analytical optimization framework for wind farm wake steering applications, in: AIAA SCITECH

2022 Forum, https://doi.org/10.2514/6.2022-1920, 2022.

Su, Y., Tan, K. K., and Lee, T. H.: Computation delay compensation for real time implementation of robust model predictive control, Journal

of Process Control, 23, 1342–1349, https://doi.org/https://doi.org/10.1016/j.jprocont.2013.09.006, 2013.

Yilmaz, A. E. and Meyers, J.: LES-based Optimal Flow Control with Applications to Wind Turbines, 2019.770

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimiza-

tion, ACM Trans. Math. Softw., 23, 550–560, https://doi.org/10.1145/279232.279236, 1997.

44

https://doi.org/https://doi.org/10.1002/we.1594
https://doi.org/10.5281/zenodo.3688716
https://doi.org/10.2514/6.2022-1920
https://doi.org/https://doi.org/10.1016/j.jprocont.2013.09.006
https://doi.org/10.1145/279232.279236

