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Abstract. We assess the performances
::::::::::
performance of two control strategies on the IEA 15 MW reference floating wind

turbine through OpenFAST simulations. The multivariable feedback controller tuned by the toolbox of the Reference Open

Source Controller (ROSCO) is considered the
::
as

:
a
:
benchmark for comparison. We then tune the feedback gains for the multi-

variable controller, considering two cases: with and without lidar-assisted feedforward control. The tuning process is performed

using OpenFAST simulations,
:
considering realistic offshore turbulence spectral parameters. We reveal that the optimally tuned5

controllers are robust to changes in turbulence parameters caused by atmospheric stability variations. Compared to the baseline

multivariable controller, the one with optimal tuning significantly reduced the tower damage equivalent load, which results in

a lifetime extension of 19.2 years. With the assistance of feedforward control provided by a typical four-beam lidar, compared

with the optimally tuned MVFB control, the lifetime of the tower can be extended by 5.1 years.

1 Introduction10

In recent years, more and more floating wind projects have emerged, such as Hywind Scotland, WindFloat Atlantic (Portugal),

Kincardine (Scotland), Hywind Tampen (Norway), Sanxia Yinling Hao (China), and Fuyao (China). One thing in common

is that all these projects use Floating Offshore Wind Turbines
:::::::
floating

:::::::
offshore

::::
wind

:::::::
turbines

:
(FOWTs) with rotor diameters

above 150 m. Similar to the bottom-fixed wind turbine, using large wind turbines with higher capacity is the key driver to

reduce the levelized cost of energy for floating wind projects (CATAPULT, 2021).15

The floating wind turbines have extra Degrees of Freedoms
::::::
degrees

::
of

:::::::
freedom

:
(DOF) compared to a bottom-fixed turbine.

Both the aerodynamic forces from the wind and the hydrodynamic forces from the wave can excite the structural motions of the

FOWT, resulting in fatigue loads. Under the same wind speed conditions, when the rotor radius increases, the rotor-swept area

::
At

:::
the

:::::
same

::::
wind

::::::
speed,

:::
the

:::::
rotor

:::::::::
swept-area

:
of the turbine increases squarely

::::::::::
quadratically

:::::
when

:::
the

:::::
rotor

:::::
radius

::::::::
increases,

and the aerodynamic thrust on the rotor increases accordingly. As the rotor becomes larger, the inertia of the FOWT system20

also increases, leading to a smaller natural frequency of most structural motions (Wu and Kim, 2021). Typically, the platform

of FOWT is designed to have a natural frequency of the platform pitch motion outside and lower than the range where the

variation of wave height has most of the energy. However, there are more large-scale coherent variations of turbulent wind at

lower frequency ranges (Knight and Obhrai, 2019; Bachynski and Eliassen, 2019; Nybø et al., 2020; Guo et al., 2023; Rivera-
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Arreba et al., 2022); therefore, the most important motions such as platform surge and pitch are dominated by the turbulent25

wind for large FOWTs. The platform pitch fore-aft motion causes changes in the relative wind speed and imposes the tower

bottom bending moment. In addition, the platform surge causes tension changes in the mooring system (Somoano et al., 2021).

Thus, the aerodynamic-driven pitch and surge motions of FOWTs are significant for mechanical loads, and they lead to a

challenging control system design (Lemmer, 2018; Lemmer et al., 2020).

The lidar system can remotely measure the Line-of-sight
::::::::::
line-of-sight (LOS) wind speed, which is the wind velocity

:::::
vector30

projected onto the laser beam direction. A lidar-assisted control (LAC) system processes the LOS speed measurements and pro-

vides a preview of the incoming turbulent wind, namely the lidar-estimated rotor effective wind speed (REWS) for feedforward

control of wind turbines. Currently, lidar-assisted collective pitch feedforward (LACPF) control has been applied commercially

for bottom-fixed turbines, and it has been revealed by several authors to be able to improve rotor speed regulation and reduce

structural loads, e.g., by Bossanyi et al. (2014); Schlipf (2015); Lio et al. (2022); Meng et al. (2022); Guo et al. (2023). In terms35

of applying LACPF to floating turbines, Schlipf et al. (2015) found better rotor speed regulations and lower structural loads for

a floating spar-type 5.0MW turbine. In these
::
the

:
studies above, the LAC system is designed to compensate for aerodynamic

torque changes caused by wind and therefore aims to improve rotor speed regulation. On the other hand, Schlipf et al. (2020)

designed a lidar-assisted pitch control algorithm that offsets the aerodynamic thrust force variation owing to the turbulent wind

and utilizes the generator torque to compensate for the aerodynamic torque change resulting from blade pitch actions. This40

algorithm improves rotor speed regulation and reduces tower and blade fatigue loads for the DTU 10 MW Triple Spar floating

turbine (Bredmose et al., 2017), but it requires a high level of variability in the generator torque.

In addition, the multivariable feedback (MVFB) controller is also considered beneficial for stabilizing the fore-aft pitch mo-

tion and reducing structural loads on FOWTs. Compared with the conventional single variable (rotor
::::::::::::
single-variable

:::::::::
(generator

speed) feedback controller, variables associated with fore-aft motion, such as tower top position (van der Veen et al., 2012),45

velocity (Abbas et al., 2022), or platform pitch angle (Fleming et al., 2019)
:
,
:::
are

::::
also

:::
fed

:::::
back

::
in

::
a

:::::::::::
multivariable

::::::::
feedback

::::::::
controller. These signals provide additional blade pitch signals through a feedback loop that, if properly adjusted, can increase

the damping of the floating platform.

Currently, there is a lot of literature available on optimizing the parameters of floating wind turbine controllers. Many of these

optimizations aim for controller parameters that minimize turbine fatigue loads while staying within safe operating boundaries.50

For example, in the studies by Sandner et al. (2014), Lemmer et al. (2017) and Lemmer et al. (2020), the reduced-order model

is applied to find optimized gains for the conventional Proportional-Integral (PI) controllergains. There are also studies that

use nonlinear aeroelastic simulations to find optimized parameters for a multi-variable feedback controller, such as the study

by Zalkind et al. (2022). In terms of re-tuning and optimizing feedback gains with LAC, Schlipf et al. (2018) used a sequential

approach to improving the benefits of LAC for onshore turbines, considering a reduced-order nonlinear turbine model.55

In this work, we perform optimization of feedback gains for a MVFB controller and a LACPF+MVFB controller using non-

linear OpenFAST simulations. After optimizing controller parameters, the controller’s performance is assessed using realistic

offshore turbulence characteristics and considering the variability of turbulence parameters related to atmospheric stability

conditions.
::
A

:::::::::::
nomenclature

::
of

:::::::
symbols

:::::
used

::
in

:::
this

:::::
paper

::
is

:::::::
provided

:::
in

::::
Table

::
1.
:
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Table 1.
:::::::::::
Nomenclature.

:::::::
Symbols

::::::::
Definitions

: ::::
Units

:

:::::
U10min ::::

mean
::::
wind

:::::
speed

:
at
:::
10

::
m

::::
above

:::
sea

::::
level m s−1

::::
Uhub :::::

turbine
:::::::::
hub-height

::::
mean

::::
wind

::::
speed

:
m s−1

::::
URef ::::

mean
::::
wind

:::::
speed

::
for

::::::::
turbulence

:::::::::
convection m s−1

::
Tp ::::

peak
::::
wave

::::::
spectral

:::::
period s

::
Hs ::::::

spectral
::::::::
significant

::::
wave

:::::
height m

:::::
PUhub ::::::::

probability
:::::::::
distribution

::
of

::::::::
hub-height

::::
mean

::::
wind

:::
and

:::::
wave

::::::::
conditions

:
-

:
L

::::::::
turbulence

:::::
length

::::
scale m

:
Γ

::::::::
turbulence

::::::::
anisotropy

:
-

:::::
αε2/3

:::::
energy

::::
level

::::::
constant

:
m4/3 s−2

:
ζ

::::::::
atmosphere

:::::::
stability

:::::::
parameter

:
-

:
f

:::::::
frequency

:
Hz

:
γ

::::
eddy

::::::
lifetime

:::::::
parameter

:
s

:::
Psta ::::::::

probability
::::::::::
distributions

:
of
::::::::::

atmospheric
::::::
stability

:
-

::
Ωg :::::::

generator
:::::
speed rad s−1

::
β̇p ::::::

platform
::::
pitch

::::
rate

::::::
(angular

:::::
speed)

:
rad s−1

:::::
kp,float ::::::

floating
:::::::
feedback

:::
gain

:
s

::::
θfloat ::::

blade
::::
pitch

::::::::
command

::
by

:::
the

::::::
floating

::::::
feedback

::::
loop

:
rad

:::::
θc,RFB ::::

blade
::::
pitch

::::::::
command

::
by

:::
the

:::::::
reference

::
PI

:::::
control

:
rad

::
kp :::::::::

proportional
::::
gain s

::
TI ::::::

integral
:::
time

:::::::
constant s

:::::
vlos,mc :::::::::::::::

motion-compensated
::::
lidar

::::
LOS

::::
speed

::::::::::
measurement

:
m s−1

:::
vlos :::

raw
::::
lidar

:::
LOS

:::::
speed

::::::::::
measurement

:
m s−1

::::
vlidar :::

lidar
::::::::::

translational
::::::
velocity

:
m s−1

::
n

:::
unit

:::::
vector

:::::
aligns

:::
with

:::
the

::::
lidar

::::
beam

:::::::
direction

:
-

:::::
uLL,est: :::::::::::

lidar-estimated
:::::
REWS

:
m s−1

:::
θ̇FF :::::::::

feedforward
::::
blade

::::
pitch

::::
rate rad s−1

::::
GRL ::::::

transfer
::::::
function

::::
gain

:
-

:::
SRL :::::::::::

cross-specturm
:::::::
between

:::::::::::
lidar-estimated

:::
and

::::::::
rotor-based

:::::::
REWSs m2 s−2 Hz−1

:::
SLL ::::::::::

auto-spectrum
::

of
::::::::::::
lidar-estimated

:::::
REWS

:
m2 s−2 Hz−1

:::::
fcutoff ::::

filter
::::
cutoff

::::::::
frequency Hz

:::::
Tbuffer :::::

buffer
:::
time

::
of

:::
the

:::::::::
feedforward

:::::::
controller

:
s

::::
Tlead :::::

leading
:::::::

preview
:::
time

::
or

::::
time

::::::
required

:::
for

::::::::
turbulence

::::::::
convection

:
s

::::
Tfilter :::

time
:::
lag

:::::
caused

:::
by

::::::
filtering s

:::::
Tpitch :::

time
:::
lag

::
of

:::
the

::::
blade

::::
pitch

::::::
actuator

:
s

::::
Tlidar :::

lidar
:::::::

full-scan
::::
time s

:::
∆x

::::::
distance

:::::::
between

::
the

:::::::::::
lidar-measured

:::::
plane

:::
and

::
the

::::
rotor

:::::::
position m

::::
URef ::::

mean
::::
wind

:::::
speed

::
of

::::::::
turbulence

::::::::
convection m s−1

:::
βoa :::

lidar
:::::

beam
::::::
opening

::::
angle

:
deg

:::
Aeq: ::::::::

equivalent
:::
load

::::::::
amplitude

:::
load

::::::
specific

:

::
m

::::::
Wöhler

:::::::
exponent

:
-
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The rest of this paper is structured as follows: Section 2 provides some background about the floating turbine model, en-60

vironment conditions, and lidar system; Section 3 illustrates the design of MVFB and LACPF+MVFB controllers; Section

4 presents the tuning of the feedback gains; Section 5 assesses the optimally tuned controllers; Lastly
:::
and

:::::
lastly, Section 6

concludes this paper and proposes further work.

2 Background

This section provides background about the FOWT, wind and wave conditions, and
:::
the lidar system.65

2.1 Floating wind turbine model

The IEA 15MW semi-submersible floating wind turbine, developed collaboratively by NREL, DTU, and UMaine (Gaertner

et al. 2020), is considered in this work. This reference floating turbine has a rotor diameter of
:::
240 m and a hub height of

:::
150

:
m.

It uses a steel semi-submersible floating structure designed by UMaine (Allen et al., 2020). The turbine model has been made

openly available from the IEA Wind Task 37 GitHub repository. The latest FOWT model built for the OpenFAST version70

3.0 is used in this research1. A sketch of the reference turbine and the inertial coordinate system is shown in Figure 1. The

longitudinal direction (along the x axis) is considered as the mean wind direction. The directions of platform motions in this

work follow the right-hand rule according to the inertial coordinate system.

2.2 Wind and wave

To assess the controller’s performance using realistic offshore environment conditions, we consider the wind and wave joint75

distribution, according to the study by Bachynski and Eliassen (2019). The data was selected by Bachynski and Eliassen (2019)

according to the analysis of hindcast data by Li et al. (2013). The selected site corresponds to site No. 14, which locates at
::
is

::::::
located

::
in

:::
the North Sea and is 30 km far away from the western Norwegian coast. The water depth of this site is 202 m which

is close to the design depth (200 m) of the FOWT model (Allen et al., 2020). This site data is also used by Bachynski and

Eliassen (2019) to analyze the fatigue loads of FOWT. According to Li et al. (2013), the probability distribution of the one-80

hour mean wind speed at 10 m above sea level (U10m) follows a Weibul
:::::::
Weibull distribution with shape and scale parameters

equivalent to 2.02 and 9.41, respectively. We use this
::::
these

:
Weibull parameters and assume a power log shear exponent of 0.14,

as specified by the IEC 61400-1 (2019) standard, to obtain the probability distribution
:::::::
(PUhub) of turbine hub-height mean

wind speed (Uhub), which is summarized by
:
in

:
Table 2. The second and third rows correspond to the peak wave spectral period

Tp and the spectral significant wave height Hs, respectively. For a specific mean wind speed, these are the most representative85

conditions (Bachynski and Eliassen, 2019). The stochastic irregular waves are generated using these two wave parameters
:
,

according to the JONSWAP spectra (IEC 61400-3, 2009).

The extended four-dimensional (4D) Mann turbulence model (Guo et al., 2022a) is considered to model turbulent wind

fields, which considers turbulence evolution. The 4D Mann model assumes stationary stochastic turbulence fields, meaning

1Accessible: https://github.com/IEAWindTask37/IEA-15-240-RWT/tree/ed7e726062a1355fd0355cdb4fba739fb682ff9e.
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Fairlead 2
Fairlead 3

Anchor 1

Anchor 2

Anchor 3

Fairlead 1

Figure 1. A sketch of the investigated IEA 15MW reference turbine equipped with a four-beam nacelle lidar system and
:
a UMaine semi-

submersible floating platform, drawn using the CAD data provided by the IEA Wind Task 37 GitHub repository. The coordinate system

follows right hand
::
the

::::::::
right-hand rule (with a unit in m) and is applicable to the full paper. Note that the positions of the anchors are not true

values due to the limitations of the figure frame.

Table 2. Distribution
:::::::::
Distributions of mean wind and wave characteristics used for aeroelastic simulations.

Uhub [m s−1] 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0

U10m [m s−1] 2.7 4.1 5.5 6.8 8.2 9.6 11.0 12.3 13.7 15.1 16.4

Hs [m] 1.5 1.7 1.8 2.0 2.3 2.6 3.0 3.4 3.8 4.2 4.7

Tp [s] 9.3 9.5 9.6 9.8 10.0 10.3 10.5 10.7 11.0 11.3 11.6

PUhub [-] 0.056 0.076 0.088 0.092 0.087 0.077 0.064 0.050 0.037 0.026 0.017

that the statistics of both upstream and downstream turbulence fields follow the statistics described by
:::
the Mann spectral tensor90

(Mann, 1994). The main reason to use the extended Mann model for the assessment in this work is that the lidar system needs

to measure at a far distance in front of the rotor for LAC (as discussed in Section 3.2.2); therefore, it is not realistic to assume

Taylor’s frozen hypothesis (Taylor, 1938) with which the turbulence structures are assumed to be unchanged when propagating

from upstream to downstream positions. More details about the 4D Mann turbulence model can be found in the work by Guo

et al. (2022a).95
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As studied by several authors (de Maré and Mann, 2014; Cheynet et al., 2017; Peña, 2019; Putri et al., 2022), the turbu-

lence spectral parameters can vary from the values specified in the IEC 61400-1 (2019) standard, and they change by
::::
with

atmospheric stability. Thus, we fit the Mann turbulence parameters: length scale L and anisotropy
::::::::
parameter Γ,

:
according to

the spectral analysis results of offshore FINO1 site2 data performed by Cheynet et al. (2018). The fitting process relies on

minimizing the root mean square error between the FINO1 data- and the Mann model-based spectra (see Guo et al. (2023)100

for the detailed fitting process). Another concern with considering the offshore turbulence spectral parameter is that these pa-

rameters are related to lidar wind preview for turbine control Guo et al. (2023)
::::::::::::::
(Guo et al., 2023), and the platform motion is

primarily linked to the turbulence length scale for a certain Turbulence Intensity
:::::::::
turbulence

:::::::
intensity

:
(TI) level. With a larger

length scale, there are more large
:::::
larger coherent turbulent eddies, and they have greater potential to excite the low-frequency

platform modes more severely, resulting in higher structural loads (Bachynski and Eliassen, 2019). The three most frequent105

stability classes from the study by Cheynet et al. (2018) are considered in this paper. These stability classes are characterized

by a stability parameter ζ related to the reference height and Obukhov length Obukhov (1971)
:::::::::::::
(Obukhov, 1971). Table 3 sum-

marizes the fitted Mann parameters and the probability distribution (Cheynet et al., 2018) of the three stability classes in each

mean wind speed range. In terms of the energy level constant αε2/3, it is scaled to follow a TI level corresponding to the Class

C turbine specified by IEC 61400-1 (2019). The equations provided by the offshore standard IEC 61400-3 (2009) are used to110

calculate the standard deviations of the wind velocity components. Figure 2 shows the fitted spectra of longitudinal velocity

components, where the fitted spectra generally agree with the estimated spectra from
::
the

:
FINO1 measurement site. Note that

we only consider the frequency range with 0.001<f<2 Hz in the fitting process and ignores
:::::
ignore the turbulence fluctuations

of lower frequencies because they are less significant for the turbine motions and loads.

In the 4D Mann turbulence model, there is an additional parameter that defines the severity of turbulence evolution, namely,115

the eddy lifetime γ. Thus far, there is limited literature that studies the distribution of this parameter under different atmospheric

stability classes in an offshore environment. We chose this parameter according to the study by Guo et al. (2023), which is

summarized from
:
a
::::::::
summary

::
of

:
several works that studied turbulence evolution by onshore measurements (coastal, flat terrain).

In this work, the eddy lifetimes of unstable, neutral, and stable atmospheric conditions used by Guo et al. (2023) are used for

stability 1, 2, and 3, respectively, because the of
:
of

:::
the

:
high similarity of the stability parameter ζ.120

To perform aeroelastic simulations using OpenFAST, we generate turbulence boxes using the 4D Mann turbulence genera-

tor3. Each 4D turbulence box has dimensions of 2048× 2× 64× 64 grid points, corresponding to the time , and the x, y and z

directions. The lengths in the y and z directions are both 288 m. Note that the original turbulence boxes have a dimension of

128 grid points in both the y and z directions, but they are cropped to avoid the periodicity inherited from the three-dimensional

inverse Fourier transform (Mann, 1998). The two y-z planes in the x direction are used for simulating lidar measurements and125

turbine aerodynamics, respectively. We
:::::
Since

:::
the

::::
total

:::::::
number

::
of

::::
time

:::::
steps

:
is
::::::

2048,
::
we

:
chose a time step of 0.293 s for the

turbulence field, which leads to a total time length of 600 s.
::::
Note

:::
that

:::
the

:::::::::
simulation

::::
time

::::::
length

::
of

:::
600

:
s

:
is
:::::::
selected

:::::::::
according

2FINO1 is an offshore research platform located at North Sea in a water depth close to 30m: https://www.fino1.de/de/standort.html
3The 4D Mann turbulence generator is accessible from https://github.com/MSCA-LIKE/4D-Mann-Turbulence-Generator
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Table 3. The Mann model parameters under different atmospheric stability conditions fitted using the spectral analysis of FINO1 data by

Cheynet et al. (2018) ) and their probability distributions Psta [%
:
-] in

:
at
:
different mean wind speeds. The atmospheric stability is classified

by the stability parameter ζ. The energy level constant αε2/3 [m4/3 s−2] are
::
is scaled to follow a TI level corresponding to the Class C

turbine specified by IEC 61400-1 (2019).

Stability 1 Stability 2 Stability3

ζ ∈ [-0.3,-0.1) [-0.1,0.1) [0.1,0.3)

L [m] 139 73 26

Γ [-] 2.3 2.6 2.8

γ [s] 600 400 200

Uhub Psta αε2/3 Psta αε2/3 Psta αε2/3

4.0 75
::::
0.75 0.02 12.5

::::
0.125 0.03 12.5

::::
0.125 0.05

6.0 70
::::
0.70 0.03 20

:::
0.20 0.04 10

:::
0.10 0.07

8.0 55
::::
0.55 0.04 20

:::
0.20 0.05 25

:::
0.25 0.09

10.0 30
::::
0.30 0.05 50

:::
0.50 0.06 20

:::
0.20 0.12

12.0 20
::::
0.20 0.06 62.5

::::
0.625 0.08 17.5

::::
0.175 0.15

14.0 10
::::
0.10 0.07 75

:::
0.75 0.10 15

:::
0.15 0.19

16.0 5
:::
0.05

:
0.09 80

:::
0.80 0.12 15

:::
0.15 0.23

18.0 3
:::
0.03

:
0.11 87

:::
0.87 0.15 10

:::
0.10 0.28

20.0 2
:::
0.02

:
0.13 93

:::
0.93 0.18 5

:::
0.05

:
0.33

22.0 0
:::
0.00

:
0.16 100

:::
1.00

:
0.21 0

:::
0.00

:
0.39

24.0 0
:::
0.00

:
0.18 100

:::
1.00

:
0.25 0

:::
0.00

:
0.46

::
to

::
the

::::::::::::::::::
IEC 61400-1 (2019)

:::::::
standard. Similarly, the irregular waves are generated using the same time step and length as that of

the turbulent wind. Both wind fields and waves are assumed
::
to

::
be

:
periodic in time.

2.3 Lidar system130

We consider a typical four-beam commercially available pulsed lidar configuration for this study. In practice, the pulsed lidar

system is able to provide measurements from different range gates along the laser direction. We only consider one measurement

range gate in this work. As a result, this lidar system only relies on a simple lidar data processing algorithm for feedforward

control. Before implementing the LAC, the lidar measurement trajectory optimization is presented in Section 3.2.2, which aims

to find optimal opening angles of laser beams and upstream focused distance.135

To simulate a realistic lidar system in the OpenFAST environment, we use the lidar module-integrated OpenFAST version

3.0, in which a realistic lidar simulation module is updated by Guo et al. (2022b). The updated lidar module considers realistic

lidar measurement properties, including the probe volume averaging effect along the LOS direction, the contribution of the

nacelle movement to the LOS measurement, laser beam blockage caused by turbine blade passing, the turbulence evolution, and

the adjustable measurement availability. In some special weather patterns, such as extreme fog, heavy rain, and an extremely140
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Figure 2. The estimated spectra using FINO1 measurement data by Cheynet et al. (2018) and the fitted Mann model-based spectra (indicated

as MM fit in the legend). The spectra shown here are calculated assuming a mean wind speed of 16 m s−1. The spectra are normalized to

have
::
the standard deviations σu corresponding

::::::::
correspond to TI=12%.

clear sky, the lidar system does not always provide reliable measurements due to
:
a low carrier-to-noise ratio caused by low

backscattering. However, in this work, we ignore the low availability caused by special weather conditions and only consider

the remaining three characteristics in the simulations.

3 Controller design

In this section, we first describe the MVFB controller and then discuss the design of the lidar-assisted controller.145

3.1 Multivariable feedback controller

Apart from the generator speed Ωg, the MVFB control additionally feeds back the platform pitch rate β̇p:
, or rotational speed

:
,

in another word, as shown in Figure 3. We
:
In

::::
this

:::::
work,

:::
we

:
have modified the lidar-integrated OpenFAST 3.0 and ROSCO

version 2.6.0 (NREL, 2021) to be able to use the platform pitch rate for the floating feedback loop. In the floating feedback

loop, the pitch angle θfloat is simply determined by150

θfloat = kp,floatβ̇p,BPF, (1)

where βp,BPF :::::
β̇p,BPF:is the band-pass filtered platform pitch rate and kp,float is a constant gain.

:
A
:::::::
detailed

:::::::::
description

::::
and

:::
the

:::::
source

::::
code

:::
of

:::
the

:::::
NREL

:::::::
ROSCO

:::::::::
controller

:::
can

::
be

::::::
found

::
in

:::
the

:::::
works

::
by

::::::::::::::::::::::::::::
Abbas et al. (2022); NREL (2021)

:
.

Depending on the sign of floating feedback gain kp,float, the floating feedback loop can compensate
::
for

:
the relative wind

speed change caused by platform motion or provide damping effects to the platform pitch motion. Based on the coordinate155

system used in this work, a positive gain is selected that aims for platform damping. For example, a positive platform pitch
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Wind & Wave

Generator torque 
control

Motion compensation and 
wind field reconstruction

Lidar system 
with IMU

Feedforward pitch (FFP)

Collective blade pitch 
feedback control

Floating feedback

+

+ +

Filtering

Figure 3. The overall control diagram for a floating wind turbine. Note that the real time
::::::
real-time

:
pitch angle (θ) signal is also used in the

generator torque control and collective blade pitch feedback control modules for controller scheduling, but the lines are omitted.

motion means that the rotor is pushed backwards, which leads to an increase in blade pitch and eventually a decrease in

aerodynamic thrust on the rotor.

As for the regular collective blade pitch feedback loop, we use the PI controller already developed in ROSCO, i.e.,

θc,RFB = kp∆Ω +
1

s
(
kp

TI
∆Ω), (2)160

with ∆Ω = Ωg,LPF−Ωg,ref . Here, θc,RFB is the pitch command of the reference feedback-only control (without LAC), kp is

the proportional gain, TI is the integral time constant, Ωg,ref is the speed control reference, and Ωg,LPF is the low-pass filtered

generator speed.

:::::
Figure

::
4

:::::
shows

:::
the

:::::::
response

::
of

:::
the

::::
IEA

::::::
15MW

::::::
floating

::::::
turbine

::
to

:::
an

::::::
extreme

::::::::
operating

::::
gust

::::::
(EOG)

::::::
defined

::
by

:::
the

:::::::::::::::::
IEC 61400-1 (2019)

:::::::
standard.

:::::
Here,

::
no

:::::
wave

::::::::::
disturbance

:
is
:::::::::
considered

::
in
:::::
order

::
to

:::::::::
emphasize

:::
the

:::::::
response

::
to

:::::
wind

::::::::::
disturbance.

:::
The

::::::::
openloop

::::::
results165

::::
mean

::::
that

::::
both

:::
the

::::
blade

:::::
pitch

:::::
angles

::::::::
generator

::::::
torque

:::
are

::::
kept

::
as

:::::::
constant

::::::
(steady

::::
state

::::::
value).

::
It

:::
can

::
be

::::
seen

::::
that

::
the

:::::
open

::::
loop

::::::
system

:
is
::::::

stable
::::
after

:::
the

:::::
EOG.

:::::::::
However,

::::
with

:::
the

:::::::
baseline

::::::::::::
single-variable

:::::::::
(generator

::::::
speed)

::::::::
feedback

:::::::
control,

:::
the

::::::
system

::
is

:::
not

:::::
stable

:::
due

::
to

:::
the

::::::
famous

:::::::::
“negative

::::::::
damping”

:::::::
problem

::
of

:::::::
floating

:::::::
turbines

:::::::::::::::::::::::::::::
(Jonkman, 2008; Ward et al., 2019).

::::
The

::::::
system

:::::::
becomes

:::::
stable

:::::
again

::
by

::::::::::
introducing

:::
the

:::::::
floating

:::::::
feedback

:::::
loop

::
in

:::
the

::::::
MVFB

::::::::
controller.

:

9



Figure 4.
:::
Time

:::::
series

::
of

:::
the

:::::::::
OpenFAST

:::::::::
simulations

:::::::
response

::
to

::
an

::::::
extreme

::::::::
operating

:::
gust

::::::
defined

:::
by

:::
the

:::::::::::::::
IEC 61400-1 (2019)

:::::::
standard.

::::::
Baseline

:::
FB:

:::::::::::
single-variable

::::::::
(generator

:::::
speed)

:::::::
feedback

::::::::
controller.

3.2 Lidar-assisted controller170

3.2.1 Controller implementation

The LAC control in this work is designed for feedforward rotor speed regulation, mainly based on the work by Schlipf (2015).

An open-source LAC implementation for onshore turbines has been developed by Guo et al. (2023). In this open-source LAC

frame work
:::::::::
framework, a wrapper DLL calls first a lidar data processing (LDP) module, then a feedforward pitch (FFP) module,

and lastly the ROSCO module. All these modules are written following the Bladed style
::::::::::
Bladed-style

:
DLL data exchange175

interface (DNV-GL, 2016). Compared to the onshore version of LAC, there are only two updates made for the LAC of floating

10



turbines; therefore, we only point out the differences in this work. For a more detailed description of LAC, please see the work

by Guo et al. (2023); Schlipf (2015).

First, because the lidar LOS measurements are deteriorated by the nacelle motion , and the motion is much more significant

in the coupled-frequency ranges for floating turbines, the LOS measurement needs to be motion compensated (Schlipf et al.,180

2020). For onshore turbines, the nacelle motion is mainly caused by excitation of tower natural frequency and it
::
the

:::::::
tower’s

::::::
natural

:::::::::
frequency,

:::::
which

:
lies in the frequency range above the cutoff frequency of the low-pass filter implemented in LAC.

The amplitudes of tower top motions in the onshore cases are smaller than that
::::
those

:
of the floating cases; therefore, it may

not be necessary to have a compensation algorithm. Differently, the natural frequencies of platform modes of floating turbines

are in the low-frequency range, and they are not necessarily or completely filtered out by a standard filter design of LAC. If185

not compensated, the contribution of nacelle motions becomes unnecessary pitch actuation in LAC and can result in undesired

control behavior. Thus, we implement a compensation algorithm assuming a perfect inertial measurement unit (IMU), i.e.,

vlos,mc = vlos +vlidar ·n. (3)

Herevlos,mc is the motion compensated LOS speed, vlos is the LOS measurement by the lidar system, vlidar is the lidar

transnational velocities
::::::::::
translational

::::::::
velocity vector provided by the IMU, and n = (cosβ cosφ,cosβ sinφ,sinβ) is a unit190

vector aligns
::::::
aligned with the lidar beam direction,

::::
and

::::::
vlos,mc ::

is
:::
the

::::
LOS

:::::
speed

::::
after

:::::::
motion

:::::::::::
compensation. The unit vector

n can be simply calculated after knowing the azimuth angle φ and elevation angle β of the lidar beam. We assume
:::
the pos-

itive x axis has zero azimuth and
::
the

:
positive z axis has 90◦ elevation. After motion compensation, the identical wind field

reconstruction algorithm used by Guo et al. (2023) is applied in this work to obtain the lidar-estimated REWS
::::::
uLL,est.

Second, in the FFP module
::::::
previous

::::
FFP

:::::::
module

:::
by

::::::::::::::
Guo et al. (2023), only a low-pass filter is

:::
was applied to the lidar-195

estimated REWSbut .
::
In

::::
this

:::::
work, a notch filter is additionally introduced in the FFP module for the LAC of floating turbines.

The main reason for the notch filter is to avoid conflicting with the floater damping control in the MVFB control. The floater

damping is tuned to add a damping effect to the floater
::
’s fore-aft pitch motion by changing rotor thrust force, but the LAC aims

to compensate for the change in aerodynamic torque. In
:::
the

:
above-rated operation of typical turbine rotors, when the blade

pitch is adjusted, both aerodynamic torque and rotor thrust increase or decrease together, so that only one control objective can200

be achieved. Therefore, the notch filter is designed to have a cut-off frequency of 0.029 Hz, which is slightly smaller than the

cutoff
:::
the

::::::
natural frequency of the low-pass filter in the floater damping loop

::::::
floating

:::::
pitch

::::::
motion. After low-pass and notch

filtering the lidar-estimated REWS, the FFP module sends a blade pitch rate signal to the integrator of the collective pitch

controller, as shown in Figure 3. Thus, the overall pitch command of the lidar-assisted feedforward multivariable feedback

controller becomes205

θc = kp∆Ω +
1

s
(
kp

TI
∆Ω + θ̇FF) + kp,floatβ̇p,BPF, (4)

where s is the complex frequency.
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3.2.2 Lidar Trajectory optimization

Due to several inherent characteristics, such as the misalignment to
::
the

:
longitudinal direction, turbulence evolution, and non-

continuously available measurement, the lidar system does not provide a perfect estimation of the REWS (Guo et al., 2022a).210

However, with a reasonable lidar data processing algorithm, it is able to provide a REWS that well-estimates the low frequency

::::::::::::
low-frequency variation of the actual effective wind speed acting on the rotor. The quality of lidar preview can be defined by

the following transfer function
:
:
:
(Schlipf, 2015; Simley and Pao, 2013; Guo et al., 2023)

|GRL(f)|= |SRL(f)|
SLL(f)

, (5)

where SLL is the auto-spectrum of lidar-estimated REWS and SRL is the cross-specturm
::::::::::::
cross-spectrum

:
between lidar-215

estimated and rotor-based REWSs. An analytical solution of SRL and SLL for specific Mann turbulence parameters, turbine

rotor size, and lidar trajectory configuration has been derived by, e.g., Mirzaei and Mann (2016); Held and Mann (2019); Guo

et al. (2022a, 2023). In practice, a first-order linear low-pass filter is designed to have a cutoff frequency fcutoff ,
:

which cor-

responds to the frequency where the transfer function |GRL(f)| reaches -3 dB (Schlipf, 2015; Simley et al., 2018). A higher

value of fcutoff indicates that more frequency components in the lidar-estimated REWS can be used for feedforward pitch220

control.

Once the cutoff frequency of the low-pass filter is determined, a butter
:::::
buffer time Tbuffer can be further determined, which

ensures the feedforward pitch command is activated at the proper time. It can be calculated by (Schlipf, 2015; Guo et al., 2023)

Tbuffer = Tlead−Tfilter−Tpitch−
1

2
Tlidar, (6)225

where Tlead is the time required by turbulence fields to propagate the lidar-focused position to the rotor plane (also called

leading time), Tpitch :
is
:
the time delay of the pitch actuator, Tlidar is the lidar full-scan time, and Tfilter is

:::
the time delay caused

by low-pass and notch filtering. For the four-beam lidar considered here, Tlidar equals 1 s because each beam direction takes

0.25 s to finish measurement. Tlead can be approximated by ∆x/URef:,:::::
where

::::
∆x

::
is

:::
the

:::::::
distance

:::::::
between

:::
the

::::
lidar

:::::::::
measured

::::
plane

::::
and

:::
the

::::
rotor

:::::::
position,

::::
and

::::
URef::

is
:::
the

::::
mean

:::::
wind

:::::
speed

::
of

:::::::::
turbulence

:::::::::
convection

:::::::
(usually

:::::::
assumed

::
to

::
be

::::::
Uhub). The time230

delays of the pitch actuator and filter can be both
::::
both

::
be

:
calculated using the frequency responses of their transfer functions

as

Tfilter(f) =
θfilter(f)

360f
and Tpitch(f) =

θpitch(f)

360f
, (7)

where θfilter and θpitch are the lagging phase responses of the filters and pitch actuator transfer functions in degrees, respec-

tively. They are both functions of frequency, and the values at 0.025 Hz are chosen for the IEA 15 MW turbine because this235

is the critical frequency near where the rotor has higher fluctuations. In the current
::::
used ROSCO (version 2.6.0), the pitch

actuator of the 15 MW turbine is modeled as a second-order system with a natural frequency of 0.25 Hz and a damping ratio

of 0.7 (Abbas et al., 2022).
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Figure 5. The cutoff frequencies of low-pass filters for lidar-assisted control under various lidar measurement trajectories, calculated with a

mean wind speed of 16 m s−1.

Because Stability 2 in Table 3 has a dominant probability of occurrence, we choose its turbulence parameters and consider

the IEA 15 MW turbine rotor with a four-beam pulsed lidar to calculate fcutoff under different lidar trajectory configurations.240

The four lidar beam directions are assumed to have an identical opening angle βoa with the negative x-axis direction, and their

projections on the yz-plane have angles of 45◦, 135◦, 225◦, and 315◦ to the positive y axis, respectively. The optimization

variables are the opening angle of the four beams and the focused upstream distance ∆x. For each above rated wind speeds

::::
With

:::
the

:::::::::
discussion

:::::
above,

:::
the

:::::
lidar

::::::::
trajectory

::::::::::
optimization

:::::::
problem

::::
can

::
be

:::::::::
formulated

:::
as

max
βoa,∆x

fcutoff ,

s.t. |GRL(fcutoff)|=−3,dB and Tbuffer > 0.
::::::::::::::

(8)245

::
To

::::
find

::
an

:::::::
optimal

::::::::
trajectory

::::::
defined

:::
by

:::
the

:::::::
opening

:::::
angle

:::
βoa:::

and
:::
the

:::::::
focused

:::::::
distance

::::
∆x,

::::::
several

:::::::
discrete

::::::::::::
configurations

::
are

::::::::::
considered.

:::
For

:::::
each

:::::::::
above-rated

:::::
wind

:::::
speed from 12 m to 24 m, we calculate fcutoff and Tbuffer, considering βoa varying

from 16◦ to 24◦ with a step of 2◦ and ∆x varying from 120 m to 300 m with a step of 10 m. Figure 5 shows the cutoff

frequencies of low-pass filters under various lidar measurement trajectories for a mean wind speed of 16 m s−1. It can be seen

that the maximum cutoff frequency for a smaller opening angle βoa appears at a farther focused distance ∆x. The maximum250

cutoff frequency of different opening angles is generally similar.

In Figure 6, we show the cutoff frequency and buffer time as a function of the mean wind speeds to further help us selecting

:::::
select the optimal trajectory. Here, we only selected the lidar trajectories that have a peak cutoff frequency in Figure 5. In

Figure 6 (a), it can be seen that the cutoff frequencies vary with the mean wind speed linearly, and there are no observable

differences for the compared lidar trajectories. However, in Figure 6 (b), there are obvious differences in the buffer time.255

When the buffer time is negative, it means that the lidar-estimated REWS is too late in time after data processing and filtering,

such that it contradicts the feedforward control concept; therefore, the trajectories with
:::::::::
trajectories

::::
with

::
a
:
negative buffer

13



Figure 6. The cutoff frequencies and buffer times as a function of the mean wind speeds for several lidar measurement trajectories with

highest
::::
whose

:
cutoff frequency

::::::::
frequencies

:::
are

::::::
highest

:
(in Figure 5).

time in above rated
::
at

::::::::::
above-rated wind speeds should be avoided in principle. In the end, the trajectory with βoa = 16◦ and

∆x= 280 m is chosen
:
as
:::
the

:::::::
optimal

:
for our analysis later in this paper.

4 Tuning of controller feedback gains260

In this section, we perform aero-elastic
:::::::::
aeroelastic

:
simulations with various feedback gains to find the optimized values.

The optimal gains bring a lower tower base fore-aft bending load, do not lead to rotor overspeed under extreme turbulence

conditions, and do not lead to a significant increase in the load on other turbine components.

4.1 Rotor speed feedback gains

To find the optimized gains for the PI controller in the above-rated conditions, we consider
::
the

:
Stability 2 condition with Uhub265

values vary
::::::
varying from 10 to 24 m s−1 listed in Table 3 and perform simulations with different kp and TI values. Although

the rated wind speed of the IEA 15MW turbine (Gaertner et al.) is 10.59 m s−1, the Uhub=10 m s−1 condition is considered to

find the initial gains for gain scheduling. For each mean wind speed condition, the value of kp is varied from 0.2 to 1.4 s with
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a step of 0.2 s and the value of TI is varied from 5 to 20 s with a step of 5 s. The
:::
We

::::
have

:::::::
selected

:::
the

:::::::
variation

::::::
ranges

::
of

:::::
these

::::
gains

:::::::::
following

:::
the

::::::
studies

::
by

::::::::::::::::::
Lemmer et al. (2020)

:::
and

:::::::::::::::::
Zalkind et al. (2022)

:
.
:::
As

:::
for

:::
the

:::
step

::::
size

::::::::
selection,

:::
we

::::::::
consider

:::
the270

::::
time

:::::::::::
consumption

::
of

:::::::::
simulation

:::
and

:::::
make

:::::
some

::::::::::::
compromises.

::::
The

::::::
overall

:::::::
number

::
of

:::::::::
simulation

:::::
cases

::::
and,

:::::
hence,

::::
the

::::
time

:::::::
required,

::::
will

:::
rise

:::::::::::
dramatically

::
if

:
a
:::::::
smaller

::::
step

:::
size

::
is
:::::::
chosen.

::::::::
However,

::::::
Figure

::
7

:::::
shows

::::
that

:::
the

::::
step

::::
size

::
we

::::::
chose

::::::
clearly

:::::::
indicates

:::::
trends

::
in
:::::
tower

::::::
loads.

:::
The

:
floating feedback loop gain kp,float is considered to be 10 s in these simulations, which will

be further optimized in the next section. Also, the feedback gains only depend on the mean wind speed in these simulations.

For each mean wind speed with specific kp and TI values, six independent simulations are performed that have different275

random seed numbers for generating turbulence and waves. Also, we perform simulations for both design load cases (DLC)

1.2 and 1.3 (IEC 61400-1, 2019). For each DLC with the variations discussed above, there are 1344 simulation cases in total.

Each simulation case is executed for 700 s using the periodic turbulence fields and waves, and the initial 100 s results are

ignored.

For the results of DLC 1.2, we collect the time series and apply the rain flow counting method (Matsuishi and Endo, 1968)280

to get load amplitudes (Ai) and number
:::::::
numbers

:
of cycles (ni). After that, the equivalent load amplitude is calculated by

Aeq = (
∑

Ami ni)
1
m , (9)

according to the Palmgren-Miner linear damage hypothesis, wherem is the Wöhler exponent. In this work,m= 4 is considered

for the tower and shaft load
::::
loads, m= 10 is considered for the blade load

:::::
loads, and m= 3 is considered for the mooring chain

load
::::
loads

:
(Barrera et al., 2020). The average value of Aeq by six random seeds is eventually calculated and used as the

::
an285

indication for selecting the optimized gains. The definition of Aeq is that if a stress with an amplitude of Aeq is applied to the

material once, the resulting damage is equivalent to that caused by the stochastic load. As for the results of DLC 1.3, we collect

the maximum values over results by
:::
the

:::::
results

:::
of different seeds.

Figure 7 shows the equivalent load amplitudes of tower base fore-aft bending moments (TwrBsMyt) and maximum generator

speeds by different PI gains under three mean wind speeds as examples. Here, the dark dashed line indicates an overspend290

::::::::
overspeed

:
threshold, which should be avoided during turbine operation and is chosen to be 125% of the rated generator speed

(Zalkind et al., 2022). In general, a higher kp results in higher tower load amplitudes because the proportional controller is

more aggressive to regulate
::::::::
regulating the rotor speed by adjusting blade pitch angles; therefore, the rotor thrust force varies

more. For a lower mean wind speed, a larger kp is required to avoid rotor speed exceeding the 125% threshold, which is similar

to the observations by Zalkind et al. (2022). A smaller integral time constant also results in higher loads since the integral295

controller is more sensitive under the same proportional gain. It would be preferred to use a larger TI for load reduction.

Comparing the solid and dashed lines, using LACPF control leads to lower load amplitudes and maximum generator speeds

than MVFB control. With MVFB control, it is observed that none of the gains satisfy the rotor speed maximum limit for a very

high mean wind speed of 24 m s−1. While, when kp =0.4 s and TI =15 s, introducing LACPF control limits the maximum

generator speed within the selected threshold.300

Overall, we select the gains according to the following criteria: a) the maximum rotor speed is smaller than the threshold,

and b) the gain has
::::
gains

:::::
result

::
in the smallest load amplitudeand ,

::::
and

::::
they satisfy a). In the case of MVFB control, where a)
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Figure 7. Comparisons of equivalent tower base fore-aft bending moment amplitudes and maximum generator speeds under different gains of

the PI controller. The dark dashed line indicate
:::::::
indicates an overspend

:::::::
overspeed

:
threshold. Simulated using turbulence spectral parameters

from Stability 2. Only part
:::
parts

:
of the mean wind speed conditions are shown.

could
:::
can not be satisfied, the gains that result in the smallest maximum rotor speed are selected. Figure 8 shows the selected

optimal gains, the corresponding scheduled gains by interpolation, and the baseline gain scheduling provided by the ROSCO

tool box4 (Abbas et al., 2022) developed by NREL. Note that the blade pitch angle is used for gain scheduling instead of the305

mean wind speed. The steady-state blade pitch curve is used for conversion from the mean wind speed to pitch angle. The

baseline gain scheduling will be compared with the optimal gain scheduling in Section 5. With LACPF control, it is clear that

the PI controller can be less aggressive,
:
especially in small blade pitch angle ranges (the range slightly above

:::
the rated wind

speed).

4.2 Platform feedback gain310

In this section, the floating platform pitch feedback gain is further optimized.

We perform simulations for DLC 1.2 using the PI gains obtained from Section 4.1, with kp,float ranging from 0 to 30 s or

20 s with a step of 2 s. The kp,float values above 20 s are not considered for very high mean wind speeds because they result in

a significantly high blade pitch rate. Here, only the DLC case
::::
cases

:
with a mean wind speed above 10 m s−1 are considered.

4https://github.com/NREL/ROSCO
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Figure 8. The selected optimal gains and the gain scheduling curve for the PI controller. The baseline tuning is provided by the ROSCO

toolbox.

The Aeq, standard deviation (STD), and energy production (EP) are calculated and then compared. Similar to the calculation315

of Aeq, the average value of standard deviations and energy productions by six random seeds are
:
is

:
computed.

To clearly show the control performances of different kp,float values, we calculate the relative change from the case kp,float =0 s,

which means no floating feedback is considered. The considered variables are some of the most important ones for a floating tur-

bine, i.e., the tower base fore-aft bending moment, the low-speed shaft torque (LSShftTq), the blade 1 root out-of-plane bending

moment (RootMyb1), the collective blade pitch velocity (BldPitchRate), and the platform fore-aft pitch motion (PtfmPitch).320

The blade pitch rate is considered because it is related to the damage of
:
to

:
the blade pitch gear and bearing (Guo et al., 2023).

Panels (a) to (d) show the results simulated using MVFB control with optimal PI controller tuning. In general, the STDs

of blade pitch rates show parabolic patterns. At the bottom of the parabolic, the blade pitch rate is minimal, meaning a best

reduction in the blade pitch activities. As kp,float increases
::::::
increase, the tower load and platform motion generally tend to be

lower (except for the case with a mean wind speed of 14 m s−1). However, their gradients become very small for high values325

of kp,float. As for the blade and shaft loads, there are also valley points at which the kp,float values are close to the kp,float at
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Figure 9. Relative changes of equivalent load amplitudes, standard deviations, and energy production under different gains of the platform

feedback loop relative to the case kp,float =0 s, simulated using turbulence spectral parameters from Stability 2. Only part of the mean wind

speed conditions are shown. (a) to (d): MVFB control using optimal PI controller tuning. (e) to (h): LACPF+MVFB control using optimal PI

controller tuning.

the trough of the blade pitch rate. Except for the case with a mean wind speed of 14 m s−1, there is negligible dependence of

EP on different floating feedback gains.

Panels (e) to (h) show the results simulated using LACPF+MVFB control with optimal PI controller tuning. In general, the

relative changes show a similar trend to that simulated using MVFB control. The
:::
For

:
a
:::::

mean
:::::
wind

:::::
speed

:::::
equal

::
to

:::
10 m s−1

:
,330

::
the

:
main difference is that in LACPF+MVFB control, the trough of the blade pitch rate for mean wind speed equals to

10 appears at a smaller kp,float value
:
in

::::::::::::::
LACPF+MVFB

::::::
control than in MVFB control.

For both MVFB and LACPF+MVFB controls, at a mean wind speed of 14 m s−1, it can be observed that the reductions

in all variables are especially significant if the floating feedback gain is considered. The floating feedback loop, in particular,

increases the EP in the MVFB control scenario. These are caused by the fact that at this mean wind speed, instability occurs335

if kp,float=0 s. For this special case, some examples of time series from one of the six random simulations are provided in

Appendix A.

Therefore, based on the discussions above, it is preferable to select kp,float where all the structural loads and the blade pitch

rates are small. The corresponding kp,float values fulfill
:::::::
fulfilling

:
the criteria above are those close

::
to the trough of the blade

pitch rate. Although a very high kp,float helps reduce the platform pitch further, this is undesirable because the structure loads340

can either be higher or reduced marginally while the blade pitch rate becomes much higher. Table 4 summarizes the selected
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Table 4. The baseline and optimal (MVFB and LACFF+MVFB) floating platform feedback gains kp,float for three control configurations.

Uhub [m s−1] 4 6 8 10 12 14 16 18 20 22 24

Baseline 0 0 0 9.25 9.25 9.25 9.25 9.25 9.25 9.25 9.25

MVFB 0 0 0 24 20 12 12 10 10 10 10

LACFF+MVFB 0 0 0 10 10 10 10 10 10 10 10

optimal floating gains
:
4
::::::::::
summarizes

::::
the

::::::::
optimally

:::::::
selected

:::::::
floating

::::
gains

::::
that

:::
are

:
scheduled as a function of the mean wind

speed. In addition, the value provided by the ROSCO toolbox (Abbas et al., 2022) is used for the baseline control configuration.

5 Controller assessment

In this section, we assess the performances of the three controllers: a) Baseline MVFB controller with ROSCO tuning, b) MVFB345

controller with optimal tuning, and c) LACPF+MVFB controller with optimal tuning. Three different groups of turbulence

spectral parameters representing realistic offshore turbulence characteristics are considered in the fatigue assessment of DLC

1.2, as listed in Table 3. The spectral parameters for Stability 2 with a higher probability are considered for maximum value

evaluations of DLC 1.3.

5.1 Performance under different environmental conditions350

The maximum generator speed, platform pitch, platform surge, and blade tip out-of-plane deflection simulated by the three

control configurations are shown in Figure 10. Compared with the baseline tuning of the MVFB controller, the optimally tuned

MVFB controller generally has a lower maximum generator speed overshoot. However, the maximum values are above the

defined threshold (dashed dark line) for most of the above-rated wind speed conditions. The observations here partly contradict

the optimizations in Figure 7. For example, the generator speed does not exceed the threshold in Figure 7 for a mean wind355

speed equal to 20 m s−1, but it does in Figure 10. This can be caused by the fact that the PI controller gains are scheduled

only depending on the mean wind speed in Figure 7, while they are scheduled depending on the blade pitch angle here. It is

also observed that the optimal PI gains chosen to limit the generator speed have a higher maximum platform pitch and blade

deflection than the baseline gains at very high average wind speeds. As for the maximum surge, the values
:::::::
obtained by optimal

tuning are slightly lower than those by the baseline tuning.360

Introducing LACPF to MVFB control generally gives the lowest maximum values for all the investigated variables. In

the case of mean wind speeds equivalent to 10 and 12 m s−1, the generator speed overshoots are slightly higher than the

threshold, which should be further improved by more advanced algorithms such as model predictive control .
::::::
(MPC).

:::
A

::::
MPC

:::::::::
algorithm

::::::
utilizes

:::
the

::::::
current

::::
state

::::::::
variables

::::
and

:::
the

:::::
future

:::::
wind

::::::
preview

::::
and

::::
then

::::::::
calculates

:::
the

:::::::
control

:::::::::
trajectories

:::
by

::::::
solving

::
an

:::::::::::
optimization

:::::::
problem

:::::::::
subjective

::
to

::::::
certain

::::::::::
constraints.

::::
The

:::::::::
overspeed

::::::::
constraint

::::
can,

::
of

:::::::
course,

::
be

::::::::::
considered

::
in365

:
a
:::::::::::
lidar-assisted

:::::
MPC

::::::::
algorithm

::::::::::::::::::::::::::::::::::::::::::::::::::
(Schlipf et al., 2013; Raach et al., 2014; Lemmer et al., 2015).

:
Except for that, the threshold is

not exceeded in other wind speed conditions. It is also clear that the maximum values are much lower than that
::::
those

::::::::
achieved
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Figure 10. Maximum values of some most interested variables for secure operation collected from DLC 1.3, simulated using the turbulence

spectra parameters of Stability 2.

by the controllers without the assistance of lidar systems. For very high mean wind speeds, LACPF+MVFB significantly

constraints
::::::::
constrains

:
the maximum values of platform pitch and blade tip deflection

:
, which are the shortages

:::::::::
deficiencies

:
of

MVFB optimal tuning control.370

Figure 11 shows the relative changes of some important variables by optimally tuned MVFB and LACPF+MVFB controllers

relative to the baseline tuning
:::::::::::
baseline-tuned

:
MVFB controller. As for Stability

::::::
stability

:::::::
classes 1 and 3, the simulations are

executed excluding the cases with mean wind seeds higher than 12 m s−1 due to
:::
their

:
very low probability to occur

::
of

::::::::
occurring.

Note that the first fairlead tension (FAIRTEN1) is selected for comparison.

Considerable load reductions are achieved in the tower, shaft, and mooring fairlead using the optimally tuned controllers.375

However, a small increment in fairlead tension load is observed for optimally tuned MVFB control. Decrements in platform

pitch and rotor speed are also significant with the optimal tuning. On the contrary, the EPs are slightly increased, and the

increments are more observable close
:::::
closer to the rated wind speed. In terms of the blade pitch activities, the optimal tuning

::::::::
optimally

:::::
tuned MVFB controller gives higher blade pitch rates, which are even doubled for very high mean wind speed ranges.

Comparing the performances between optimally tuned LACPF+MVFB and MVFB controls, LACPF+MVFB generally380

surpasses MVFB control
::::::
controls. More load reductions, higher EP increments, and lower blade pitch consumption are observed

in LACPF+MVFB control. Although the LACPF control module is designed using the turbulence spectra parameters from

Stability 2, these benefits are generally observed in other stabilities
:::::::
stability

:::::::::
conditions

:
as well. Specially, the tower loads

:::
load

:
by LACPF+MVFB is slight

::::::
slightly

:
higher than that by MVFB control in Stability 3, but only in

:
at
:

very high wind

speeds
:
, where the probability of Stability 3 is much lower than that of Stability 2. Also, using LACPF+MVFB control clearly385

reduces the blade pitch rate STD close to the rated mean wind speed. And
::
In

:::::::
addition, the increment in blade pitch rate by

LACPF+MVFB are
::
is much lower than those by MVFB-only control.
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Figure 11. Relative changes of equivalent load amplitudes, standard deviations, and energy productions under different mean wind speeds.

The relative changes are calculated using the values by
:::::
results

::
of optimally tuned MVFB and LACPF+MVFB controllers relative to that by

::::
those

::
of the MVFB controller with baseline tuning.

5.2 Evaluating lifetime performance

For a more clear indication of the controller’s performance, we calculate the lifetime Damage Equivalent Load (DEL) and

annual energy production (AEP) by390

DEL = (
∑
i

∑
j

Ameq,ij ·
N10min

Nref
·PUhub,i ·Psta,j)

1
m , (10)

and

AEP =
∑
i

∑
j

EPij ·
N10min

20
·PUhub,i ·Psta,j . (11)

Here, i and j are index numbers for mean wind speeds and stability classes. The number N10min = 8765.8 · 6 is the number of

10 min duration per year and Nref is a reference cycle number chosen to be 26 (Schlipf, 2015). The designed turbine lifetime395

is considered to be 20 years.

When comparing different DELs, it is convenient to use the extended lifetime (EL)

EL = 20
::

((
DELi
DELj

)−m

−20−1
::

)
, (12)
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Table 5. The DEL (in MNm unless specified), EL (in years) and AEP (in MWh) by the three control configurations.

Controllers
TwrBsMyt LSShftTq RootMyb1 FAIRTEN1 AEP

[MWh]

relative change

[%]DEL EL DEL EL DEL EL DEL [MN] EL

MVFB Baseline 409.17 3.79 53.80 1.14 63708.09

MVFB Opt. tuned 345.89 19.16 3.78 0.29 54.63 -2.85 1.12 0.63 63874.86 0.26

LACPF+MVFB Opt. tuned 335.49 24.25 3.73 1.43 53.15 2.58 1.07 4.15 63915.17 0.33

where i and j are the indexes of different controllers.
:::::
Here,

:::
we

::::
have

:::::
used

:
a
:::::::::
definition

::::::
slightly

::::::::
different

:::::
from

:::
the

:::::::
existing

::::::::
literature,

::::
e.g.,

:::
the

:::::
study

::
by

::::::::::::::::
Simley et al. (2020)

:
.
::
In

:::
the

:::::
work

::
by

:::::::::::::::::
Simley et al. (2020),

:::
the

::::
term

:::::::::::

(
DELi

DELj

)−m
,
::::::
which

::
is

:::
the

::::
ratio400

::
of

:::::::
lifetimes

:::::::
between

::::
two

:::::::::
controllers,

::
is
:::::::::
considered

::
to
::::::::
quantify

:::
the

::::::
benefits

::
of

:::::
LAC.

:

Table 5 summarized
:::::::::
summarizes

:
the DEL, EL, and AEP of the three controllers. Note that the EL and relative change are

all calculated relative to the baseline MVFB control.

In comparison with the baseline controller, with the optimally tuned MVFB controller, the DEL of tower is reduced obviously

::
the

::::::
tower

:
is
:::::::::

obviously
:::::::
reduced, leading to an extended lifetime of 19.2 years. Besides, the loads of

::
on

:::
the

:
shaft and fairlead405

are slightly reduced. However, the blade root load is clearly increased; therefore, the lifetime is reduced by about 2.9 years.

In terms of the AEP, there is a slight increment of about 0.26%. Introducing feedforward control supported by lidar further

improves the overall control performance. With LACPF+MVFB control, the further reduction in tower base load corresponds

to a lifetime extension of 5.1 years. Also, the shaft and blade root loads are slightly reduced. As a consequence, the negative

impact of optimal
:::::::
optimally

:
tuned MVFB control on blade root load is avoided. The AEP increment by

::::
under

:
LACPF+MVFB410

control is also slightly higher than that under MVFB-only control. Further, there is a clear load reduction on the fairlead of the

mooring system using LACPF control.

6 Conclusions

This paper assesses lidar-assisted collective pitch feedforward (LACPF) and multi-variable feedback (MVFB) controls for the

IEA 15.0 MW reference turbine. The main contributions of this work include: (a) optimization of a four-beam pulsed lidar for415

controlling a large floating turbine, ;
:
(b) optimal tuning of speed regulation gains and platform feedback gains for the MVFB,

and LACPF+MVFB controllers,
:
;
:::
and

:
(c) assessing the benefits of the two control strategies using realistic offshore turbulence

spectral characteristics.

The IEC 61400-3 (2009) standard for offshore turbine design does not specify turbulence spectral parameters for an offshore

condition
::::::
offshore

:::::::::
conditions. The typical parameter listed in IEC 61400-1 (2019) tends

::
to

:
underestimate the occurrence of420

the large
::::::::
large-scale

:
coherent turbulent eddies. In the time domain, these eddies are reflected as low-frequency and spatially

correlated turbulence. We have defined realistic turbulence parameters representative for
:
of

:
an offshore site based on literature,

which are further used for load and extreme value assessments.
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A four-beam
:
, single-range gate pulsed lidar is optimized for control. For the large rotor floating turbine, it is found that a

lidar focusing at a further distance can better estimate the rotor-effective wind speed. A notch filter is necessary for floating425

turbines to avoid LACPF conflicting with MVFB. Because of the notch filter, additional time delay is
:::::
delays

:::
are

:
introduced by

the filtering. A further focusing distance for the lidar system helps to avoid the LACPF command reacting too late.

The speed regulating
:::::::::::::
speed-regulating

:
proportional-integral controllers are re-tuned, aiming for minimizing

::
to

::::::::
minimize the

tower loads and avoiding overspend
::::
avoid

:::::::::
overspeed. When tuning with LACPF, the optimal values for the proportional gains

are found to be lower than that
::::
those

:
tuned without LACPF. In very high wind speed ranges, the tuning results with or without430

LACPF are similar. The optimal integral time constants are found to be generally similar, whether considering LACPF or not.

The floating feedback gains are also optimized. The optimal values are found to be close to the valley where the blade pitch

rates are the lowest. After the valley, increasing the floating feedback gains has marginal reductions in tower load but amplify

:::::::
amplifies

:
the blade pitch actions significantly.

The control performances of the optimally tuned controllers are assessed and compared to that by
::::
those

::
of

:
a baseline con-435

troller provided by the NREL’s Reference OpenSource Controller
::::::
toolbox. It is observed that the re-tuning of the gains clearly

reduces the maximum generator speed. While , there are still some overshoots of generator speed higher than the selected

threshold (125 %of rated speed). The overspeed is minimal using LACPF control and is slightly higher than the threshold,

which should be further improved in future work. Significant reductions in the maximum values of blade tip deflection and

platform pitch are observed using LACPF+MVFB control. In terms of the fatigue load, the most significant improvement of440

::::
from re-tuning the feedback loops with MVFB control are

::
is the extension of the tower lifetimes by 19.2 years. If a lidar system

is deployed, the tower lifetime can be extended by 24.3 years, and the fairlead lifetime can be 4.2 years longer. There are also

extensions of shaft and blade lifetimes of 1.4 and 2.6 years, respectively.

For both MVFB and LACPF+MVFB controls, there are clearly increase of
:
is
::::::
clearly

:::
an

:::::::
increase

::
in

:
blade pitch activities

for
:
at
:

very high wind speed
:::::
speeds, which can potential

::::::::
potentially

:
cause more damage to the gear and bearing of the pitch445

actuator. For the LACPF+MVFB control, there are decrements in the pitch activities close to
:::
the rated wind speed. Because

the mean wind speed has a higher probability here, it could be possible that the LACPF+MVFB control overall does not cause

higher
::::
more damage to the pitch actuator. However, a more detailed assessment can be further improved by a more complicated

modeling of the pitch actuator damage.

Also, the fatigue analysis of the mooring system can be further extended. The potential of LACPF on reducing the load of450

::
to

:::::
reduce

:::
the

::::
load

:::
on mooring systems can be further explored by other feedforward control strategies.

Code availability. The OpenFASTv3.0 version with a lidar simulator integrated, the 4D Mann turbulence generator, and the source code of

a reference lidar-assisted controller are all available from the repository: https://github.com/MSCA-LIKE.
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Appendix A

An example time series of the OpenFAST simulations is shown in Figure A1. For the three control configurations, the results are460

simulated using the turbulence fields generated by the identical random seed. Panel (a) shows the raw line-of-sight measurement

provided by the LidarSim
:::::::::
“LidarSim”

:
module. The measurements are performed at different beam directions; therefore, there

are considerable high-frequency fluctuations caused by the uncorrelated high-frequency components in the turbulence field.

The missing and unconnected points are the unusable
:::::::::
unavailable

:
line-of-sight measurements due to blade blockage. Panel (b)

shows the lidar estimated and filtered REWS, which is the coherent low-frequency component in the turbulence.465
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Figure A1. Example time series of the OpenFAST simulations, simulated with a mean wind speed of 12 m s−1.
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