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Abstract: This paper proposes a fractal-based technique for simulating multivariate nonstationary 18 

wind speed fields by the stochastic Weierstrass Mandelbrot function. Upon conducting a systematic 19 

fractal analysis, it was found that the structure function method is more suitable and reliable than the 20 

box counting method, variation method, and R/S analysis method for estimating the fractal dimension 21 

of the stochastic wind speed series. Wind field measurement at the meteorological gradient tower with 22 

a height of 356 m in Shenzhen was conducted during Typhoon Mangkhut (2018). Significant non-23 

stationary properties and fractal dimensions of typhoon wind speed data at various heights were 24 

analyzed and used to demonstrate the effectiveness of the proposed multivariate typhoon wind speed 25 

simulation method. The multivariate wind speed components simulated by the proposed fractal-based 26 

method are in good agreement with the measured records in terms of the fractal dimension, standard 27 

deviation, probability density function, wind spectrum and cross-correlation coefficient. 28 
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1 Introduction 31 

Many patterns observed in nature, i.e. snowflake, involve invisible recurrent layers that are 32 

connected through a scaling factor, resulting in self-similarity across different scales. This creates a 33 

cascade of activity that repeats at smaller scales (Shlesinger, 1990). Processes with this feature were 34 

regarded as fractals (Mandelbrot, 1983, 1994). It is worth noting that fractals focus on the 35 

representation of complex physical systems that cannot be appropriately demonstrated in the 36 

framework of Euclidean terms. The fractal dimension, which quantifies the degree of self-similarity in 37 

natural processes, is a fundamental parameter for investigating the underlying simplicity in the 38 

organization of these processes (Rubalcaba, 1997). 39 

The fractal dimensional analysis on wind speed time series has received increasing attention 40 

(Sakamoto et al., 2007; Chang et al., 2012; Fortuna et al., 2014; Harrouni, 2013, 2018; Cadenas et al., 41 

2019). At present, there are several algorithms available for estimating the fractal dimension of a given 42 

wind speed time series, including the box counting method (Sarkar and Chaudhuri, 1994; Breslin and 43 

Belward, 1999; Fortuna et al., 2014; Cadenas et al., 2019; Shu et al., 2021), variation method (Dubuc 44 

et al., 1987; Syu and Kirchhoff, 1993), R/S analysis method (Peters, 1991; Zhong et al, 2012; Jiang et 45 

al., 2017), and structure function method (Ganti and Bhushan, 1995; Zhong et al, 2012; Wang and 46 

Xiang, 2013). Syu and Kirchhoff (1993) employed the variation method to obtain a fractal dimension 47 

of 1.60±0.03 for six different wind speed records from Altamont. Li et al (2001) calculated the fractal 48 
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dimension of the high-frequency part of the wind turbulence signal using the variation method and 49 

found that it had a fixed dimension of 1.7 in average, which indicates a clear self-similarity feature of 50 

the wind speed time history record. Sakamoto et al (2007) applied the Higuchi method (Higuchi, 1988) 51 

and obtained the fractal dimensions, i.e., 2, 1.9 and 1.7 for the upwind, easterly and northerly winds, 52 

respectively. Chang et al. (2012) found that the annual mean fractal dimension values extracted by the 53 

box counting method ranged between 1.61 and 1.66. Tijera et al. (2012) observed that the fractal 54 

dimensions of horizontal and vertical velocity fluctuations at different heights (5.8 m, 13.5 m, and 32 55 

m) using the box counting method ranged from 1.30 to nearly 1.00. Harrouni (2013) used the 56 

rectangular coverage method to collect the fractal dimension of daily wind speed series and found that 57 

the average dimension for one year was 1.92. Fortuna et al. (2014) reported average fractal dimension 58 

values of 1.19 and 1.41 for daily and hourly mean wind speeds, respectively, using mono-fractal, multi-59 

fractal, and power spectra approaches. It is evident that the estimation of the fractal dimension of the 60 

wind speed records shows significant discrepancy due to the different methods used. Therefore, there 61 

is a pressing need to find a suitable method for estimating fractal dimensions in practical applications, 62 

and it is necessary to conduct a detailed comparative analysis of methods for fractal dimension 63 

estimation. 64 

Additionally, generating wind speed time series numerically is a topic of great interest in many 65 

engineering applications, such as structural dynamic analysis, reliability estimation, fragility analysis 66 

and resilience assessment in structural wind engineering design (Huang et al. 2020). Various methods 67 

for generating time series of wind speed have been proposed, including the harmonic superimposing 68 

method (HSM) (Shinozuka and Jan, 1972), linear filtering method (Mignoler and Spanos, 1987), fuzzy 69 
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set theory (Zhu et al., 2011), neural network techniques (Olaofe, 2014), support vector machines (Liu 70 

et al., 2014), Kalman filtering method (Chen et al., 2014), and time-mapping technique (Yassin et al., 71 

2023). In wind engineering field, HSM has been widely used due to its simplicity and effectiveness. It 72 

is noteworthy that these methods were developed by modelling the intrinsic characteristics of turbulent 73 

wind (Shinozuka and Jan 1972; Yassin et al. 2023) or employing new kind of regression methods 74 

(Mignoler and Spanos 1987; Chen et al. 2014). However, none of them could fully capture the fractal 75 

characteristics of wind speed time series. Therefore, further research is needed to explore wind speed 76 

simulation methods that incorporate fractal characteristics. For this purpose, the Weierstrass 77 

Mandelbrot (WM) fractal function method is a suitable candidate, as it has been increasingly studied 78 

and utilized to simulate fractal surface profiles due to its ability to describe the fractal characteristics 79 

of time series (Berry and Lewis, 1980; Majumdar et al., 1990,1991; Ganti and Bhushan, 1995; Wang 80 

and Xiang, 2013). Humphrey et al. (1992) used the deterministic multi-fractal WM function with 81 

fractal dimensions of 1.95 and 1.62 to simulate the turbulent velocity records in the case of high-speed 82 

flow over an obstruction. Barszcz et al. (2012) developed a wind speed modelling method based on a 83 

deterministic WM function. Due to the randomness of wind, stochastic WM functions are more 84 

appropriate for simulating turbulent wind speed time series than the deterministic WM functions. Liu 85 

et al. (2013) discussed the use of stochastic WM function to simulate fractal wind fluctuations with a 86 

constant fractal dimension of 1.7. Wu et al. (2015) employed the stochastic WM function to simulate 87 

fluctuating wind speeds, and compared the results to the observed wind speed data in terms of fractal 88 

dimension, probability distribution, power spectrum, and cross-correlation coefficients. Lyu et al. 89 

(2018) proposed a combined simulation method based on weighted amplitude wave superposition and 90 
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stochastic WM function, but with a fixed fractal dimension of 1.7. Since the fractal dimension of wind 91 

speed time series can vary with different wind conditions, it is recommended in this work to employ 92 

stochastic WM functions with varying fractal dimensions for numerical simulation of wind speed time 93 

series. Furthermore, natural winds may not satisfy the stationary assumption when dealing with wind 94 

speed data during extreme weather conditions, i.e., typhoon, thunderstorms or tornadoes (Cai et al. 95 

2022). The current fractal-based simulation method is lack of ability to capture the nonstationary 96 

feature of wind speeds. In this paper, a new fractal-based numerical simulation method is developed 97 

for generating multivariate nonstationary typhoon wind speeds. 98 

The paper is organized as follows: Section 2 firstly discusses the fractal-dimension estimation 99 

methods, then the stochastic WM function-based numerical simulation method (SWM method) is 100 

proposed for synthesizing multivariate nonstationary typhoon wind speeds. Section 3.1 provides 101 

details on the wind speed data collected during Typhoon Mangkhut. Section 3.2 compares the fractal 102 

dimensions estimated by various methods for typhoon wind speed data recorded at different heights. 103 

Section 3.3 presents the numerical simulation results of typhoon wind speeds using the proposed 104 

fractal-based SWM method. Finally, some concluding remarks are provided in Section 4. 105 

2 Methodology 106 

2.1 Fractal Analysis 107 

This section aims to compare the following four commonly used methods, i.e., the box counting 108 

method, variation method, R/S analysis method and structure function method, based on their 109 

performance in estimating fractal dimension of the stochastic WM functions. Its goal is to identify and 110 
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recommend the most appropriate fractal dimension estimation method for wind speed data. 111 

2.1.1 Methods for estimating fractal dimensions of wind speed series 112 

The box counting method mainly consists of placing the wind speed time series with grids, and 113 

then counting the number of non-overlapping boxes completely covering the time series. The 114 

relationship between the number of boxes, N(L), and the width of the box, L, can be given by 115 

𝑁𝑁(𝐿𝐿) ∝ 𝐿𝐿−𝐷𝐷 (1) 

The dimension D can be computed by the least-square fit of the curve log2(N(L)) versus log2(1/L). 116 

The variation method was originally proposed by Dubuc et al (1987) as a means of estimating the 117 

fractal dimension of rough surfaces. Given a wind speed time series u(x), boxes with a bottom edge 118 

length of 2𝜖𝜖 are used to cover the series. The side edge of the box 𝑣𝑣(𝑥𝑥, 𝜖𝜖) is defined by 119 

𝑣𝑣(𝑥𝑥, 𝜖𝜖) = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠(𝑥𝑥′) − 𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠(𝑥𝑥′), 𝑥𝑥′ ∈ [𝑥𝑥 − 𝜖𝜖, 𝑥𝑥 + 𝜖𝜖] (2) 

The 𝜖𝜖 variation 𝑉𝑉(𝜖𝜖,𝑠𝑠) of wind speed u(x) is then calculated as the sum of the areas of all the boxes, 120 

given by 121 

𝑉𝑉(𝜖𝜖,𝑠𝑠) = �𝑣𝑣(𝑥𝑥, 𝜖𝜖) ∙ 2ϵ (3) 

The fractal dimension D will be obtained from the least square line passing through the points 122 

(log2(1 𝜖𝜖⁄ ) , log2(𝑉𝑉(𝜖𝜖,𝑠𝑠) 𝜖𝜖2⁄ )). The detailed procedures were presented in the reference by Syu and 123 

Kirchhoff (1993). 124 

For the purpose of determining the fractal dimension, the R/S analysis method employs the 125 

following measures. At a given scale n, the mean value is calculated by 126 

𝑠𝑠�𝑛𝑛 =
1
𝑖𝑖
�𝑠𝑠(𝑥𝑥)
𝑛𝑛

𝑥𝑥=1

 (4) 

and the total accumulative deviation is given by 127 
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𝑠𝑠(𝑥𝑥,𝑖𝑖) = �[𝑠𝑠(𝑥𝑥) − 𝑠𝑠�𝑛𝑛]
𝑛𝑛

𝑥𝑥=1

 (5) 

The extreme difference, R(n), is obtained as 128 

𝑅𝑅(𝑖𝑖) = max
1≤𝑥𝑥≪𝑛𝑛

𝑠𝑠(𝑥𝑥,𝑖𝑖) − min
1≤𝑥𝑥≪𝑛𝑛

𝑠𝑠(𝑥𝑥,𝑖𝑖) (6) 

Additionally, the standard deviation is 129 

𝑆𝑆(𝑖𝑖) = �
1
𝑖𝑖
�[𝑠𝑠(𝑥𝑥)
𝑛𝑛

𝑥𝑥=1

− 𝑠𝑠�𝑛𝑛]2 (7) 

Using the relationship 𝑅𝑅(𝑖𝑖)/𝑆𝑆(𝑖𝑖) ∝ 𝑖𝑖𝐻𝐻(Peters, 1991), the Hurst exponent H could be obtained by 130 

linear fitting between the values log2(n) and log2(R(n)/S(n)), and the fractal dimension is then given by 131 

D=2-H (Rehman and Siddiqi, 2009). 132 

The structure function of order p was defined as 133 

𝑆𝑆𝑝𝑝(𝑟𝑟) = 1
𝐿𝐿−𝑟𝑟 ∫ {𝑠𝑠(𝑥𝑥 + 𝑟𝑟) − 𝑠𝑠(𝑥𝑥)}𝑝𝑝𝑑𝑑𝑥𝑥𝐿𝐿−𝑟𝑟

0 , (8) 

where r is called the interval scale, which was originally introduced to describe the fine structure of 134 

turbulence in fluid mechanics (e.g., Shivamoggi, 1995; Arenas and Chorin, 2006)). Later, it became a 135 

popular tool for investigating surface roughness (e.g., Ganti and Bhushan, 1995). Notably, the order-2 136 

structure function, S(r), is closely related to the autocovariance function, R, through S(r)=2{R(0)-R(r)}, 137 

and includes the same information as R and its power spectral density function, but provides more 138 

practical merit (Thomas et al, 1999). For a fractal profile, the S(r) is a function of the fractal dimension 139 

D, with 140 

𝑆𝑆(𝑟𝑟) ∝ 𝑟𝑟4−2𝐷𝐷 (9) 

After plotting the log2(r) versus the value log2(S(r)) and fitting a line to the plot curve, the fractal 141 

dimension is obtained by 𝐷𝐷 = (4 − K)/2, where the K is the slope of the fitted line. The more detailed 142 
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process could be found in Thomas et al (1999) and Zhong et al (2012). 143 

For a pure random sequence, it is easy to get that the structure function almost keeps constant for 144 

each interval scale. This results in a zero slope of the fitted line, indicating a fractal dimension of 2 for 145 

the concerned random sequence. On the other hand, if the series very slowly over time, the fractal 146 

dimension is close to unit with a constant slope of K=2. 147 

2.1.2 Comparison of the fractal dimension estimation methods based on the WM function 148 

To determine the most appropriate method for estimating the fractal dimension of wind speeds, it 149 

is necessary to introduce the WM function with the known fractal dimension D. Notably, the WM 150 

function is continuous but non-differentiable at all points and possesses no scale (Berry and Lewis, 151 

1980), as follows 152 

𝑊𝑊(𝑡𝑡) = �
(1 − 𝑒𝑒𝑖𝑖𝛾𝛾𝑛𝑛(𝑙𝑙)𝑡𝑡)𝑒𝑒𝑖𝑖∅(𝑙𝑙)

𝛾𝛾(2−𝐷𝐷)∙𝑛𝑛(𝑙𝑙)

∞

𝑛𝑛(𝑙𝑙)=−∞

  (1 < 𝐷𝐷 < 2, 𝛾𝛾 > 1,∅ = 𝑎𝑎𝑟𝑟𝑎𝑎𝑖𝑖𝑡𝑡𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎 𝑠𝑠ℎ𝑎𝑎𝑠𝑠𝑒𝑒𝑠𝑠) (10) 

where D represents the fractal dimension of the graph of W(t); The frequencies 𝛾𝛾𝑛𝑛 form a ‘Weierstrass 153 

spectrum’, spanning the range from zero to infinity; The phases ∅ could be chosen to make W(t) show 154 

deterministic or stochastic behavior. Berry and Lewis (1980) reported that the deterministic formula 155 

including cosine series or alternating sign sine series shows a tendency to increase gradually with time. 156 

On the other hand, considering the random characteristic of wind, the stochastic WM function is thus 157 

more suitable for simulating fluctuating wind speed time series with the mean equal to zero. Since W(t) 158 

is complex, the stochastic real part R(t) adopted in this study can be expressed as 159 

𝑅𝑅(𝑡𝑡) = 𝐴𝐴 �
𝑐𝑐𝑐𝑐𝑠𝑠(∅(𝑙𝑙)) − 𝑐𝑐𝑐𝑐𝑠𝑠 (𝛾𝛾𝑛𝑛(𝑙𝑙)𝑡𝑡 + ∅(𝑙𝑙))

𝛾𝛾(2−𝐷𝐷)∙𝑛𝑛(𝑙𝑙)

∞

𝑛𝑛(𝑙𝑙)=−∞

 (1 < 𝐷𝐷 < 2, 𝛾𝛾 > 1) (11) 

where ∅ is taken as a set of random numbers ranging from 0 to 2π; A is an amplitude parameter to 160 
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be determined. The parameter 𝛾𝛾 of the WM function determines the density of the spectrum and the 161 

relative phase differences between the spectral modes (Majumdar and Tien, 1990). It is suggested to 162 

be 1.08 for the parameter 𝛾𝛾 in order to provide dense spectral information (Berry and Lewis, 1980). 163 

For a given fractal dimension, Eq. (11) provides an efficient way to simulate random time series. More 164 

details of simulation will be discussed in Section 2.3. 165 

For this comparison study, a fractal dimension of 1.7, which is the common value for wind speed 166 

series reported in the literature (Li et al., 2001; Cui et al., 2022), was applied in Eq. (11) to generate 167 

the time series, as shown in Fig. 1. Four estimation methods were then used to estimate the fractal 168 

dimension of the generated time series of Fig. 1, and the log-scale fitting plots corresponding to four 169 

estimation methods were presented in Fig. 2. Fig. 2 shows that the structure function method provides 170 

the most accurate result of 1.6941 with the smallest relative error of 0.35%. By randomly sampling the 171 

phase number ∅  in Eq. (11), 50 different time series have been generated with the same set of 172 

parameters (i.e., A=1, D=1.7 and 𝛾𝛾=1.08). Fig. 3 presents the estimated results of fractal dimensions 173 

for 50 generated time series samples. The structure function method consistently obtained the best 174 

estimates around 1.7 compared to other three methods, i.e., box counting method, variation method 175 

and R/S analysis method. For a range of fractal dimensions from 1.4 to 1.8, different time series were 176 

also generated by Eq. (11), and the fractal dimensions were estimated respectively by four methods 177 

and reported in Fig. 4 against the given values. As shown in Fig. 4, the structure function method is 178 

the most accurate method to estimate the fractal dimension of a given time series. 179 
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 180 

Fig. 1 The generated stochastic function time series 181 
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(c) (d) 

Fig. 2 Log-scale fitting plots corresponding to four fractal dimension estimation methods  182 
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 183 

Fig. 3 Estimation results of fractal dimensions for 50 generated time series samples  184 

 185 

Fig. 4 The estimated fractal dimensions with the actual value 186 
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In extreme wind environments, such as tropical cyclones, thunderstorms, downbursts, and strong 188 

winds, the wind speed history exhibits significant non-stationary characteristics (Gurley and Kareem, 189 

1997; Wood et al., 2001; Pinelli et al., 2004; Jung and Masters, 2013; Solari et al., 2015). Therefore, 190 

the associated overall wind speed series in these environments need to be considered as the sum of the 191 

time-varying mean (TVM) component (i.e., non-fractal component, reflecting the non-stationarity of 192 
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the extreme wind speed field) and the fluctuating component (fractal component). Additionally, the 193 

adopted WM function R(t) is a zero-mean Gaussian random function because it is the sum of infinite 194 

terms with random phases (Guariglia, 2017). Therefore, for simulation of non-stationary wind speeds, 195 

the TVM of the overall wind speed time series should be firstly determined by an appropriate method. 196 

It is desirable that the de-trended wind speed fluctuation components remain zero-mean over the entire 197 

length of the time series. 198 

Cai et al. (2022) proposed a wavelet transform-based method for determining the TVM of non-199 

stationary wind speed series. The measured wind speed time series U(t) can be decomposed as the sum 200 

of several detail functions 𝐷𝐷𝑗𝑗(𝑡𝑡) and the approximation function 𝐴𝐴𝐴𝐴(𝑡𝑡) (Cai et al. 2022) 201 

𝑈𝑈(𝑡𝑡) = �𝐷𝐷𝑗𝑗(𝑡𝑡)
𝑀𝑀

𝑗𝑗=1

+ 𝐴𝐴𝐴𝐴(𝑡𝑡)   (12) 

where M represents the total number of decomposition levels. A series of TVMs of U(t) can be 202 

characterized as the superimposition of the approximation function 𝐴𝐴𝐴𝐴(𝑡𝑡)  and N (non-negative 203 

integer) detail functions 𝐷𝐷𝑗𝑗(𝑡𝑡) of the original wind speed series as 204 

𝑇𝑇𝑉𝑉𝑇𝑇𝑁𝑁 = �

𝐴𝐴𝐴𝐴(𝑡𝑡),    𝑁𝑁 = 0

� 𝐷𝐷𝑗𝑗(𝑡𝑡) + 𝐴𝐴𝐴𝐴(𝑡𝑡),
𝑀𝑀

𝑗𝑗=𝑀𝑀+1−𝑁𝑁

   1 ≤ 𝑁𝑁 ≤ 𝑇𝑇 − 1 (13) 

Subsequently, the relative fluctuating component u(t) of the original wind speed U(t) can be obtained 205 

by subtracting the derived TVMs from the original wind speed series, as follows 206 

𝑠𝑠(𝑡𝑡) = � 𝐷𝐷𝑖𝑖(𝑡𝑡)
𝑀𝑀−𝑁𝑁

𝑖𝑖=1

 (14) 

According to conditions proposed by Cai et al (2021a, 2021b), the optimal TVM for a wind speed 207 

series with a 10-minute time interval has adequate local maxima points but less than six. For better 208 
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characterizing natural wind, stationary or nonstationary wind models could be classified based on the 209 

use of constant mean wind speed or the TVM in decomposing wind speed data (Cai et al. 2022). 210 

2.3 Univariate simulation of fluctuating wind speeds 211 

For practice, numerical implementation of Eq. (11) with finite terms can be approximated as 212 

𝑅𝑅(𝑡𝑡) = 𝐴𝐴 �
𝑐𝑐𝑐𝑐𝑠𝑠�∅(𝑙𝑙)� − cos �𝛾𝛾𝑛𝑛(𝑙𝑙)𝑡𝑡 + ∅(𝑙𝑙)�

𝛾𝛾(2−𝐷𝐷)∙𝑛𝑛(𝑙𝑙)

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑛𝑛

(𝛾𝛾𝑛𝑛(𝑙𝑙𝑚𝑚𝑚𝑚𝑛𝑛) = 2𝜋𝜋𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛, 𝛾𝛾𝑛𝑛(𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚) = 2𝜋𝜋𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥)

 (15) 

where 𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥 could be determined by the minimum and maximum cut-off frequencies of 213 

the fluctuating wind speed spectrum, respectively. According to Cai et al. (2021a, 2021b), the main 214 

frequency of optimal TVM is slightly below 0.01Hz. Thus, 𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛  could be approximated as 215 

𝑖𝑖(𝑙𝑙𝑚𝑚𝑖𝑖𝑛𝑛) = ln(2𝜋𝜋𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛) ln𝛾𝛾⁄ = −35.96. For wind engineering practice, a sampling frequency of 10 Hz 216 

is normally adopted for full-scale measurements and numerical simulation of turbulent wind. Due to 217 

Nyquist-Shannon sampling theorem, the maximum cut-off frequency of the wind speed signal is 5 Hz. 218 

Consequently, 𝑖𝑖(𝑙𝑙𝑚𝑚𝑚𝑚𝑥𝑥) could be estimated as  ln(2𝜋𝜋𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥) ln𝛾𝛾⁄ = 44.79. 219 

For the stochastic WM function W(t), its time-average correlation 〈|𝑊𝑊(𝑡𝑡 + 𝜏𝜏)𝑊𝑊∗(𝑡𝑡)|〉𝑡𝑡 is 220 

〈𝑊𝑊(𝑡𝑡 + 𝜏𝜏)𝑊𝑊∗(𝑡𝑡)〉𝑡𝑡 = lim
𝑇𝑇→∞

1
2𝑇𝑇

� 𝑊𝑊(𝑡𝑡 + 𝜏𝜏)𝑊𝑊∗(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇

−𝑇𝑇
 (16) 

The power spectrum 𝑆𝑆(𝜔𝜔) is proportional to the Fourier transform of the 〈|𝑊𝑊(𝑡𝑡 + 𝜏𝜏)𝑊𝑊∗(𝑡𝑡)|〉𝑡𝑡, and 221 

is presented, apart from a zero-frequency term, by 222 

𝑆𝑆(𝜔𝜔) = �
𝛿𝛿(𝜔𝜔 − 𝛾𝛾𝑛𝑛(𝑙𝑙))
𝛾𝛾(4−2𝐷𝐷)∙𝑛𝑛(𝑙𝑙)

∞

𝑛𝑛(𝑙𝑙)=−∞

 (17) 

After averaging discrete spectrum 𝑆𝑆(𝜔𝜔)  over a range ∆𝜔𝜔  including ∆𝑖𝑖  frequencies 𝛾𝛾𝑛𝑛 , a 223 

continuous spectrum �̂�𝑆(𝜔𝜔) of the stochastic WM function can be obtained as 224 

�̂�𝑆(𝜔𝜔) = 1
∆𝜔𝜔 ∫ 𝑆𝑆(𝜔𝜔 + 𝜔𝜔′)𝑑𝑑𝜔𝜔′

1
2∆𝜔𝜔

−12∆𝜔𝜔
≈ ∆𝑛𝑛

∆𝜔𝜔𝛾𝛾(4−2𝐷𝐷)∙𝑛𝑛𝜔𝜔
, (18) 
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where 𝑖𝑖𝜔𝜔 = ln (𝜔𝜔)
ln (𝛾𝛾)

. This leads to d𝑛𝑛𝜔𝜔
𝑑𝑑𝜔𝜔

= 1
ω∙ln (𝛾𝛾)

, so that 225 

�̂�𝑆(𝜔𝜔) ≈
d𝑖𝑖𝜔𝜔/𝑑𝑑𝜔𝜔
𝛾𝛾(4−2𝐷𝐷)∙𝑛𝑛𝜔𝜔

=
1

𝑙𝑙𝑖𝑖𝛾𝛾 ∙ (𝜔𝜔)5−2𝐷𝐷
 (19) 

The detailed derivation process is available in Berry and Lewis (1980). When the spectrum is inferred 226 

in the Hertz instead of the radian 𝜔𝜔 of Eq. (19), associated continuous Weierstrass spectrum �̂�𝑆(𝑖𝑖) is 227 

given as follows 228 

�̂�𝑆(𝑖𝑖) ≈
2π

𝑙𝑙𝑖𝑖𝛾𝛾 ∙ (2𝜋𝜋𝑖𝑖)5−2𝐷𝐷
 (20) 

. As a result, the continuous Weierstrass spectrum 𝑆𝑆𝑅𝑅(𝑖𝑖) of the adopted stochastic real part of W(t), 229 

presented in Eq. (15), is approximately estimated as 230 

𝑆𝑆𝑅𝑅(𝑖𝑖) = 𝐴𝐴2�̂�𝑆(𝑖𝑖) ≈
2π ∙ 𝐴𝐴2

𝑙𝑙𝑖𝑖𝛾𝛾(2𝜋𝜋𝑖𝑖)5−2𝐷𝐷 (21) 

Additionally, a general expression of the wind spectrum 𝑆𝑆𝑢𝑢(𝑖𝑖), given by Olesen et al (1984), was 231 

employed as the target spectrum of wind field simulation, as follows 232 

𝑖𝑖𝑆𝑆𝑢𝑢(𝑖𝑖)
𝑠𝑠∗2

=
𝑎𝑎𝑖𝑖𝑛𝑛

𝑒𝑒

(1 + 𝑎𝑎𝑖𝑖𝑛𝑛𝑐𝑐)𝑑𝑑   (𝑖𝑖𝑛𝑛 =
𝑖𝑖𝑓𝑓
𝑈𝑈�

) (22) 

Where 𝑈𝑈� denotes the 10-min mean wind speeds; 𝑓𝑓 is the height of the simulation point; 𝑠𝑠∗ is the 233 

friction velocity; 𝑎𝑎, 𝑎𝑎, 𝑐𝑐,𝑑𝑑  and 𝑒𝑒  are constants, depending on the atmospheric conditions. A 234 

coefficient 𝑔𝑔(𝐴𝐴) is newly defined to quantify the difference between the simulated wind spectrum 235 

and target spectrum of the fluctuating wind component, given by 236 

𝑔𝑔(𝐴𝐴) = �(𝑆𝑆𝑅𝑅(𝑖𝑖)− 𝑆𝑆𝑢𝑢(𝑖𝑖))2
𝑓𝑓

 (23) 

After calculating the derivative of 𝑔𝑔(𝐴𝐴) with respect to 𝐴𝐴2, Eq. (24) can be directly obtained. 237 

𝜕𝜕
𝜕𝜕(𝐴𝐴2)

𝑔𝑔(𝐴𝐴) = � 2 �𝐴𝐴2�̂�𝑆(𝑖𝑖) − 𝑆𝑆𝑢𝑢(𝑖𝑖)� �̂�𝑆(𝑖𝑖)
𝑓𝑓

 (24) 

By taking 𝜕𝜕
𝜕𝜕(𝐴𝐴2)

𝑔𝑔(𝐴𝐴) = 0, the amplitude parameter A is computed as 238 
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𝐴𝐴 = �
∑ 𝑆𝑆𝑢𝑢(𝑖𝑖) ∙ �̂�𝑆(𝑖𝑖)𝑓𝑓

∑ (�̂�𝑆(𝑖𝑖))2𝑓𝑓
 (25) 

Then the univariate fluctuating wind speed time histories can be simulated by Eq. (15). 239 

2.4 Multivariate synchronous simulation of wind speeds 240 

Unlike the univariate wind speed simulation, the spatial correlations of wind velocity field should 241 

be accounted for the multivariate synchronous simulation of wind speeds (Huang et al, 2020). For this 242 

purpose, a following novel way was developed. 243 

The commonly used cross-correlation coefficient to evaluate the correlation of synchronous wind 244 

speed time histories (i.e., 𝑋𝑋𝑗𝑗(𝑡𝑡) and 𝑋𝑋𝑘𝑘(𝑡𝑡)) at two measured points (P𝑗𝑗 and P𝑘𝑘) was given by 245 

𝜌𝜌𝑗𝑗𝑘𝑘 =
𝐸𝐸��𝑋𝑋𝑗𝑗(𝑡𝑡) −𝑚𝑚𝑗𝑗(𝑡𝑡)�[𝑋𝑋𝑘𝑘(𝑡𝑡) −𝑚𝑚𝑘𝑘(𝑡𝑡)]�

�𝐸𝐸 ��𝑋𝑋𝑗𝑗(𝑡𝑡) −𝑚𝑚𝑗𝑗(𝑡𝑡)�
2
� 𝐸𝐸{[𝑋𝑋𝑘𝑘(𝑡𝑡) −𝑚𝑚𝑘𝑘(𝑡𝑡)]2}

 (26) 

where 𝑚𝑚𝑗𝑗(𝑡𝑡) and 𝑚𝑚𝑘𝑘(𝑡𝑡) denote the constant means or TVM of wind speed time histories. 246 

Assume that the univariate simulation of fluctuating wind speeds has been implemented by Eq. 247 

(15) at the first point P𝑗𝑗, and corresponding phase parameter ∅𝑗𝑗  has been temporarily stored. At this 248 

situation, the synchronous simulation at the second point P𝑘𝑘  can be carried out by introducing a 249 

Gaussian random sequence 𝜑𝜑 with zero mean and standard deviation of 𝜎𝜎𝜑𝜑 (i.e., 𝜑𝜑~𝑁𝑁(0,𝜎𝜎𝜑𝜑2)) in 250 

Eq. (15), as follows 251 

𝑅𝑅𝑘𝑘(𝑡𝑡) = 𝐴𝐴𝑘𝑘 �
𝑐𝑐𝑐𝑐𝑠𝑠�∅𝑗𝑗(𝑙𝑙) + 𝜑𝜑(𝑙𝑙)� − 𝑐𝑐𝑐𝑐𝑠𝑠 (𝛾𝛾𝑛𝑛𝑡𝑡 + ∅𝑗𝑗(𝑙𝑙) + 𝜑𝜑(𝑙𝑙))

𝛾𝛾(2−𝐷𝐷𝑘𝑘)∙𝑛𝑛(𝑙𝑙)  
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑛𝑛

 (27) 

where 𝐴𝐴𝑘𝑘 is the amplitude parameter estimated by Eq. (15); 𝐷𝐷𝑘𝑘 is the fractal dimension of wind 252 

speed series at the second point P𝑘𝑘. The value of (∅𝑗𝑗 + 𝜑𝜑) was converted to [0 2π] by applying the 253 

expression ∅𝑗𝑗 + 𝜑𝜑 − 2π ∙ 𝑖𝑖𝑙𝑙𝑐𝑐𝑐𝑐𝑟𝑟(∅𝑗𝑗+𝜑𝜑
2π

), where 𝑖𝑖𝑙𝑙𝑐𝑐𝑐𝑐𝑟𝑟(𝑥𝑥) devotes the floor function and returns the 254 

greatest integer less than or equal to x. If the standard deviation parameter 𝜎𝜎𝜑𝜑 of Gaussian distribution 255 
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approaches zero, the phase difference between (∅𝑗𝑗 + 𝜑𝜑) and (∅𝑗𝑗) becomes negligible, resulting in 256 

a perfect correlation between simulated fluctuating speed time histories at points (P𝑗𝑗 and P𝑘𝑘) by using 257 

Eq. (15) and Eq. (27), respectively. Consequently, their cross-correlation coefficient 𝜌𝜌𝑗𝑗𝑘𝑘 computed 258 

using Eq. (26) approaches the unity. Additionally, as 𝜎𝜎𝜑𝜑  increases, the larger phase difference 𝜑𝜑 259 

weakens their correlation, leading to a smaller 𝜌𝜌𝑗𝑗𝑘𝑘 until they become irrelevant. To investigate this 260 

relationship, 10000 samples of 𝜎𝜎𝜑𝜑 were taken from 0 to 𝜋𝜋, and corresponding variation of 𝜌𝜌𝑗𝑗𝑘𝑘 with 261 

the standard deviation parameter 𝜎𝜎𝜑𝜑 was plotted in Fig. 5. The figure clearly shows a decreasing trend 262 

of 𝜌𝜌𝑗𝑗𝑘𝑘 with increasing 𝜎𝜎𝜑𝜑, and a fitted expression is provided as 263 

𝜌𝜌 =
1
𝜋𝜋

arctan �−
7
6
𝛼𝛼3 −

1
8
𝛼𝛼2 −

5
4
𝛼𝛼 +

9
25
� +

1
2

     (𝛼𝛼 = 𝑙𝑙𝑐𝑐𝑔𝑔2(𝜎𝜎𝜑𝜑)) (28) 

 264 

Fig. 5 The variation of cross-correlation coefficient 𝜌𝜌𝑗𝑗𝑘𝑘  with the standard deviation parameter 𝜎𝜎𝜑𝜑  265 

It is easy to obtain that the value of 𝜌𝜌 in Eq. (28) falls between 0 and 1, and decrease with the 266 

increase of 𝜎𝜎𝜑𝜑  after proving 𝜕𝜕𝜌𝜌/𝜕𝜕𝛼𝛼 < 0 . So far, once the synchronous wind speed data was 267 

measured at two different spatial points P𝑘𝑘 and P𝑗𝑗, 𝜌𝜌𝑗𝑗𝑘𝑘 can be easily calculated using Eq. (26). The 268 

corresponding unique value of 𝜎𝜎𝜑𝜑 can then be determined by taking the inverse of Eq. (28), enabling 269 

the implementation of multivariate wind velocity field simulation using Eq. (15) and Eq. (27). It should 270 

be noted that if the estimated correlation of 𝜌𝜌𝑗𝑗𝑘𝑘 for the measured wind speed data sample is negative, 271 
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the expression of fluctuating wind speed in Eq. (27) could be modified by adding the phase 𝜋𝜋 in Eq. 272 

(27), as follows 273 

𝑅𝑅𝑘𝑘(𝑡𝑡) = 𝐴𝐴𝑘𝑘 �
𝑐𝑐𝑐𝑐𝑠𝑠�∅𝑗𝑗(𝑙𝑙) + 𝜑𝜑(𝑙𝑙) + 𝜋𝜋� − 𝑐𝑐𝑐𝑐𝑠𝑠 (𝛾𝛾𝑛𝑛(𝑙𝑙)𝑡𝑡 + ∅𝑗𝑗(𝑙𝑙) + 𝜑𝜑(𝑙𝑙) + 𝜋𝜋)

𝛾𝛾(2−𝐷𝐷𝑘𝑘)∙𝑛𝑛(𝑙𝑙)  
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑛𝑛

 (29) 

where the associated standard deviation 𝜎𝜎𝜑𝜑 of Gaussian distribution 𝜑𝜑 was derived by taking the 274 

inverse of Eq. (28) as 𝜌𝜌 = −𝜌𝜌𝑗𝑗𝑘𝑘 was set. 275 

It is worth noting that if measured wind speed data is not available, the classical spectra known 276 

as the Davenport spectrum (Davenport, 2010), von Karman spectrum (Von Karman, 1948), Simiu 277 

spectrum (Simiu and Scanlan, 1996), or Harris spectrum (Harris, 1968) can be considered as the target 278 

spectrum in Eq. (22). In such situation, the mean fractal dimension D=1.75 estimated by the structure 279 

function method in the following section 3.2 is suggested for use in Eq. (15), Eq. (27), and Eq. (29) to 280 

simulate the wind speed field. 281 

The detailed multivariate synchronous simulation of wind speed time histories in this paper 282 

mainly includes the following steps, as shown in Fig. 6. 283 

Step 1. To check the stationarity of the wind speed sample using the run test (Rouillard, 2014). 284 

Subtract the constant mean component to obtain the fluctuating wind speed for stationary data, and 285 

subtract the time-varying mean component for non-stationary sample. 286 

Step 2. To estimate each fractal dimension 𝐷𝐷 (𝐷𝐷𝑘𝑘 and 𝐷𝐷𝑗𝑗) of fluctuating wind speeds at two 287 

different points (P𝑘𝑘 and P𝑗𝑗) by using the structure function method. 288 

Step 3. To derive the desired target spectrum 𝑆𝑆𝑢𝑢(𝑖𝑖) based on the measured wind speed data, and 289 

determine the parameter 𝐴𝐴 (𝐴𝐴𝑘𝑘 and 𝐴𝐴𝑗𝑗) by Eq. (25). 290 

Step 4. To simulate the fluctuating wind speed at reference point P𝑗𝑗 by Eq. (15), and record the 291 
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phase parameter ∅𝑗𝑗 at this step. 292 

Step 5. To evaluate the cross-correlation coefficient 𝜌𝜌𝑗𝑗𝑘𝑘 of measured fluctuating wind speeds at 293 

two points P𝑘𝑘 and P𝑗𝑗; determine the standard deviation 𝜎𝜎𝜑𝜑 using the inverse of Eq. (28); generate a 294 

Gaussian random sequence 𝜑𝜑~𝑁𝑁(0,𝜎𝜎𝜑𝜑2), and then simulate synchronous fluctuating wind speed time 295 

series at the point P𝑘𝑘 by Eq. (27) for 𝜌𝜌𝑗𝑗𝑘𝑘 < 0 or Eq. (29) for 𝜌𝜌𝑗𝑗𝑘𝑘 > 0. 296 

 297 

Fig. 6 Flowchart of the multivariate synchronous simulation of wind speeds 298 

3 Results and discussions 299 

3.1 Data source and description 300 
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The wind speed data in this study were continuously recorded by four three-dimensional (3D) 301 

sonic anemometers during the occurrence of super typhoon Mangkhut from September 15 to 302 

September 18, 2018. The recorded data consists of 526 consecutive 10-minute wind speed samples, 303 

with an accuracy of ±0.1 m/s. Four sonic anemometers were installed at the meteorological gradient 304 

tower with a height of 356 m in Shenzhen, China (22°38’59’’N, 113°53’36’’E), as shown in Fig. 7. 305 

The technical parameters of the sonic anemometers and their install heights are detailed in Table 1. 306 

Typhoon Mangkhut initiated as a tropical depression at 12°N, 170°E and ultimately made landfall 307 

over Guangdong, China, on September 16, before moving inland. The associated typhoon track is 308 

presented in Fig. 7. The means of longitudinal wind speed data with a fixed period of 10 min during 309 

the passage of Mangkhut were recorded at length, as shown in Fig. 8. It is evident that the mean wind 310 

speed increases gradually with the increase of recorded heights. Maximum wind speeds were 311 

synchronously recorded for four anemometers around 14:00, on September 16, with a maximum of 35 312 

m/s at the height of 320 m. 313 

Table 1 Key parameters of the sonic anemometers. 314 
Instrument Measured height Observation content Sampling 

frequency 
Measured 

range 
Accuracy 

CSAT3 3D 
sonic 

anemometers 

10 m, 40 m,160 m, 
and 320 m above 
the ground level 

Three directional 
wind components 
and sonic virtual 

temperature 

10Hz 0-75 m/s ±0.1 m/s 

 315 
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 316 

Fig. 7 The location and ambient terrain of the meteorological gradient tower and the track of typhoon Mangkhut 317 

 318 
Fig. 8 10-min longitudinal mean wind speeds at each height 319 

3.2 Analysis of fractal dimensions 320 

The fractal dimensions of the longitudinal fluctuating wind speed data during super typhoon 321 

Mangkhut were estimated for both stationary and nonstationary wind models. Fig. 9 shows the 322 

variation of the relative frequency value (RF-value) of obtained fractal dimensions, where the numbers 323 

marked on the X axis are middle values of segment intervals. Furthermore, the difference values (D-324 

value) between corresponding RF-values utilizing stationary and nonstationary wind models lie in the 325 

bottom line of each subgraph in Fig. 9. The zoom-in views of bottom graphs in the Fig. 9(a) and Fig. 326 

9(d) are respectively presented in the interval of [-0.02 0.02] and [-0.04 0.04] to provide a more detailed 327 

view. As shown in Fig. 9(a) and (d), the results of estimated fractal dimension seem no obvious 328 

South China Sea

Pacific Ocean

https://typhoon.slt.zj.gov.cn

https://www.cma.gov.cn
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difference between stationary and nonstationary wind models when applying variation method or 329 

structure function method. On the other hand, if box counting method or R/S analysis method is used, 330 

significant difference of estimated fractal dimension could be observed between stationary and 331 

nonstationary models, as shown in Fig. 9(b) and (c). Relevant statistical parameters including mean, 332 

standard deviation, maximum and minimum values of fractal dimensions are given in Table 2. Fig. 10 333 

presents the mean fractal dimensions by averaging results corresponding to four measurement heights. 334 

Additionally, fractal dimension estimations using the same types of methods by other researchers are 335 

reported in Table 3 for further comparison. 336 

According to the findings presented in Fig. 9, there are notable discrepancies in the fractal 337 

dimensions obtained from different methods. The variation method yielded a smaller fractal dimension 338 

than the box counting method for the same Typhoon wind speed data depicted in Fig. 9(a) and Fig. 339 

9(b). Its main concentration range of the fractal dimension is from 1.354 to 1.502, accounting for more 340 

than 90%, and smaller than those calculated by Syu and Kirchhoff (1993) and Li et al (2001) for the 341 

normal wind in Table 3 when the same variation method was adopted. 342 

In the case of the box counting method, the mean fractal dimension of winds measured at four 343 

heights of 10, 40, 160, and 320 m (i.e., 1.5296, 1.5412, 1.5351 and 1.5423) in Table 2 are close to the 344 

values of seasonal monsoon reported by Shu et al. (2021) (i.e., 1.582, 1.570, 1.554 and 1.547) collected 345 

from the same meteorological gradient tower. The fractal dimension estimated by the box counting 346 

method for typhoon Mangkhut is ranged from 1.4026 to 1.6597, which are similar to the results given 347 

by Chang et al (2012), Shu et al (2020), Yan et al (2020) and Cui et al (2022) as reported in Table 3.  348 

For the R/S analysis method, it produced a minimum estimate close to 1, as depicted in Fig. 9(c) 349 
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and Table 2. Although the fractal dimension obtained in this study was comparable to those reported 350 

by Tsekouras and Koutsoyiannis (2014) and Balkissoon et al. (2020), it was far lower than the values 351 

suggested by most of researchers in Table 3. Furthermore, since the extraction of TVM of nonstationary 352 

wind speeds greatly affects the dimension D obtained by the R/S analysis method from Fig. 9(c) and 353 

Fig. 10(c), it is not a reliable approach for determining fractal dimensions of wind speed series. 354 

Regarding the structure function method, it yielded the mean fractal dimension of 1.7512 close to 355 

the representative value of 1.7. Additionally, the estimated fractal dimension by the structure function 356 

method is quite robust and insensitive to stationary or nonstationary wind models used. Therefore, it 357 

is reasonable to recommend the structure function method as the effective and reliable approach for 358 

estimating the fractal dimension of wind speed series. 359 

  
(a) Variation Method (b) Box Counting Method 
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(c) R/S Analysis Method (d) Structure Function Method 

Fig. 9 Relative frequency value of fractal dimensions of fluctuating wind speed samples at each measured height 360 
based on stationary and nonstationary wind models (Note: Sta: Stationary, Non: Nonstationary) 361 

 362 
Table 2 Statistical summary of fractal dimensions of 526 10-min wind speed samples at each measured height in 363 
longitudinal wind directions based on the stationary and nonstationary wind model  364 

Measured height 10 m 
(Sta/Non) 

40 m 
(Sta/Non) 

160 m 
(Sta/Non) 

320 m 
(Sta/Non) 

Structure 
Function 
Method 

Mean 1.7374/1.7409 1.7575/1.7621 1.7453/1.7505 1.7647/1.7695 
Std 0.0461/0.0452 0.0405/0.0397 0.0469/0.0459 0.0516/0.0506 
Max 1.8800/1.8820 1.8730/1.8760 1.9100/1.9120 1.9270/1.9280 
Min 1.6069/1.6128 1.6316/1.6352 1.6470/1.6532 1.6723/1.6822 

Box Counting 
Method 

Mean 1.5296/1.5431 1.5412/1.5584 1.5351/1.5544 1.5423/1.5597 
Std 0.0289/0.0252 0.0298/0.0264 0.0256/0.0224 0.0288/0.0267 
Max 1.6068/1.6113 1.6180/1.6284 1.6334/1.6370 1.6372/1.6597 
Min 1.4137/1.4026 1.4466/1.4447 1.4704/1.4523 1.4514/1.4571 

Variation 
Method 

Mean 1.3907/1.3911 1.4272/1.4276 1.4278/1.4284 1.4401/1.4406 
Std 0.0246/0.0245 0.0308/0.0307 0.0292/0.0290 0.0299/0.0297 
Max 1.4940/1.4944 1.5428/1.5429 1.5356/1.5358 1.5508/1.5510 
Min 1.3299/1.3305 1.3458/1.3464 1.3430/1.3435 1.3564/1.3576 

R/S Analysis 
Method 

Mean 1.0474/1.1460 1.0342/1.1363 1.0306/1.1305 1.0327/1.1322 
Std 0.0239/0.0273 0.0228/0.0271 0.0231/0.0276 0.0228/0.0288 
Max 1.1162/1.2368 1.1177/1.2873 1.1308/1.2855 1.1217/1.2870 
Min 0.9942/1.0488 0.9784/1.0367 0.9899/1.0565 0.9822/1.0593 

 365 
  366 
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Table 3 The fractal dimension estimation result for the wind speed data from different references 367 

References 
Applied 
method 

Details about obtained fractal dimension Type of wind 

Syu and Kirchhoff 
(1993) variation method D=1.60±0.03 for six different wind speed records 

from Altamont taken on different days Normal wind 

Li et al (2001) variation method average about 1.70 Normal wind 
This study variation method Vary from 1.3299 to 1.5510 Typhoon wind 
    

Barszcz et al (2012) box counting 
method 

mean fractal dimension of 1.3552 for the 
fluctuating wind speed Normal wind 

Chang et al (2012) box counting 
method 

Annual mean fractal dimension values ranging 
from 1.61 to 1.66 Normal wind 

Tijera et al (2012)  box counting 
method 

Fractal dimensions of 1.30 to nearly 1.00 for the 
5-min horizontal and vertical velocity 
fluctuations 

Normal wind 

Fortuna et al (2014)  box counting 
method 

D=1.19 for daily mean wind speeds Normal wind D=1.41 for hourly mean wind speeds 

Wu et al. (2015) box counting 
method 

D=1.46, 1.35 and 1.24 for the 10-min fluctuating 
wind speed at the measured height of 3.5 m, 6.5 
m and 10 m, respectively. 

Normal wind 

Shu et al (2020) box counting 
method 

Mean fractal dimension varying from 1.31 at an 
offshore weather station to 1.43 at an urban 
station 

Normal wind 

Yan et al (2020) box counting 
method 

Daily fractal dimensions of 10-min wind speed 
time series estimated between 1.32 and 1.47 
based on 6-year continuous anemometric data 

Normal wind 

Shu et al (2021) box counting 
method 

D=1.582, 1.570, 1.554, and 1.547 for the 10-min 
vertical wind velocity of seasonal monsoon at the 
measured heights of 10, 40, 160, and 320 m, 
respectively. 

Normal wind 

Cui et al (2022) box counting 
method 

D varied from 1.55 to 1.75 for the measured 10-
min horizontal wind speeds during the three 
typhoons landing (Typhoon Lionrock, Fanapi 
and Megi) 

Typhoon wind 

This study box counting 
method Vary from 1.4026 to 1.6597  Typhoon wind 

    
Tsekouras and 
Koutsoyiannis (2014) 

R/S analysis 
method 

The majority of the D of wind speeds lying in the 
interval (1.1, 1.4) Normal wind 

Balkissoon et al 
(2020) 

R/S analysis 
method 

The fractal dimensions varying from 1.1 to 1.3 
for the monthly wind speed time series.  Normal wind 

This study R/S analysis 
method Vary from 0.9784 to 1.2873 Typhoon wind 

    

This study Structure 
Function Method Vary from 1.6069 to 1.9280 Typhoon wind 

 368 
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(a) (b) 

  

(c) (d) 
Fig. 10 Mean fractal dimensions under stationary and nonstationary wind models 369 

3.3 Simulation of fluctuating wind speeds 370 

Fluctuating wind speeds at two heights of 160 m and 320 m were simulated based on two 371 

synchronously measured records. The optimal TVMs extracted by the wavelet transform-based method 372 

in section 2.2 are presented in Fig. 11 after determining that these two wind speed samples were non-373 

stationary based on the run test method. 374 

As for the fluctuating wind speed at the height of 320 m, the fractal dimension D=1.7427 was 375 

estimated by structure function method, and corresponding least-square fit result of the curve log2(S(r)) 376 

with log2(r) was presented in Fig. 12(a). After getting the fitted target spectrum 𝑆𝑆𝑢𝑢(𝑖𝑖) and calculating 377 

the amplitude parameter A=0.0520 by Eq. (25), the wind speed time series were then simulated using 378 
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Eq. (15), as illustrated in Fig. 13 and Fig.14. The fractal dimension of the simulated wind speed time 379 

series was determined using the structure function method, yielding a value of D=1.7163, as depicted 380 

in Fig. 12(b). These results indicate that the simulated wind speeds exhibit similar fractal 381 

characteristics with the original wind component. Moreover, the standard deviations of the actual and 382 

simulated fluctuating wind speeds were found to be 1.2030 and 1.2125, respectively, with a negligible 383 

relative error of 0.79%. 384 

 385 

Fig. 11 Measured 10-minute wind speed samples and their TVMs at the height of (a)160 m and (b)320 m 386 

 387 
Fig. 12 Plot of log2(S(r)) versus log2(r) and relative least-square fitting result (red line): (a) Original fluctuating 388 

wind (b) Simulated fluctuating wind at the height of 320m 389 

Additionally, wind speed time histories were also simulated using the conventional HSM for 390 

comparison with the proposed SWM method, as shown in Figs. 13 and 14. Fig. 13(b) demonstrates 391 

that the probability density functions of simulated fluctuating wind by the proposed SWM in this study 392 
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and commonly used HSM method are similar to that of the measured wind record, and each probability 393 

distribution fits well with the Gaussian distribution. According to Fig. 14, it can be observed that the 394 

original wind speed spectrum shows a tendency to deviate from the classical von Karman spectrum 395 

beyond a frequency of 2 Hz, which might be attributed to the existence of Gaussian white noise in the 396 

measured wind data as reported by Kaimal and Finnigan (1994). Fig. 15 shows the evolutionary power 397 

spectral density (EPSD) of nonstationary wind speeds to reveal the turbulent energy distribution both 398 

in time and frequency domain (Priestley, 1965). The similarity of wind spectra and EPSDs between 399 

the actual and simulated wind in Figs. 14 and 15 provides the strong evidence for the effectiveness of 400 

the proposed wind speed simulation method. 401 

 402 
Fig. 13 (a) Simulated and original fluctuating wind speed time series, and (b) corresponding probability density 403 

function at the height of 320m 404 
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 405 
Fig. 14 Wind spectra of the fluctuating wind speeds 406 

  
(a) EPSD of the fluctuating wind simulated by SWM (b) EPSD of the fluctuating wind simulated by HSM 

 
(c) EPSD of the actual fluctuating wind 

Fig. 15 Estimated EPSD 407 
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Based on multivariate synchronous measurement at two heights of 160 m and 320 m, the cross-408 

correlation coefficient of two wind speed series in Fig. 11 was calculated by Eq. (26) as 𝜌𝜌𝑗𝑗𝑘𝑘 =409 

0.115 > 0. After the parameter 𝜎𝜎𝜑𝜑=2.12 was obtained by taking the inverse of Eq. (28), Eq. (27) could 410 

be used to generate fluctuating wind series at the height of 160 m. Fig. 16 shows the simulation results 411 

in terms of spectrum and fractal dimension. It was found the proposed SWM method can generate the 412 

fluctuating wind series of second variate (at the height of 160 m) with very close properties to the 413 

measured wind speed sample, i.e., wind spectrum, standard deviation, fractal dimension and the 414 

specified cross-correlation to the first variate (at the height of 320 m). 415 

 416 
Fig. 16 Simulation result of second variate at the height of 160 m (a) Wind spectra and (b) Fluctuating wind speeds 417 

To further verify the effectiveness of the proposed SWM method, the 22-hour typhoon wind speed 418 

samples from 7 am September 15 to 5 am September 16, i.e., 132 10-minute samples measured at two 419 

representative heights of 160 m and 320 m were utilized. The 10-minute fluctuating wind series are 420 

then recursively generated for the two different heights as time marching with a time step of 10-minute. 421 

The fractal dimensions of the real and simulated fluctuating wind components were estimated by the 422 

structure function method. Fig. 17 demonstrates that there is almost no difference in fractal dimensions 423 

between the real and simulated wind fluctuations of the first variate (at the height of 320 m). For the 424 
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second variate, slight difference of fractal dimension was observed between the real and simulated 425 

wind series due to the introduction of the Gaussian random phase variable 𝜑𝜑 in Eq. (27) or Eq. (29). 426 

Fig. 18 shows that the evolution of standard deviation of the simulated wind series by the SWM method, 427 

which are in close agreement with those of the real fluctuating winds during 7 am September 15 to 5 428 

am September 16, 2018. By combining the TVM components, the proposed SWM is able to reproduce 429 

nonstationary typhoon wind speed series effectively. 430 

 

(a) 160 m 

 

(b) 320 m 
Fig. 17 Fractal dimensions of real and simulated fluctuating wind speeds 431 
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(a) 160 m 

 

(b) 320 m 
Fig. 18 Standard deviation of real and simulated fluctuating wind speeds with the mean of each TVM  432 

4 Conclusions 433 

This paper focuses on determining an appropriate method for the fractal dimension estimation of 434 

wind speeds, and then propose the stochastic WM function-based numerical simulation method (SWM 435 

method) for the multivariate wind speed simulation. The study shows that the structure function 436 

method is a more suitable technique for estimating the fractal dimension than the box counting method, 437 

variation method, and R/S analysis method. Field-measured wind data recorded during Typhoon 438 

Mangkhut (2018) were used to present the performance of the proposed method. The specific findings 439 

are as follows 440 

(1) Various methods to determine the fractal dimension of winds affect the accuracy of the estimated 441 
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fractal dimension estimation. The mean fractal dimension of 1.75 obtained by the structure function 442 

method is closest to the representative value of 1.7 than other three methods. Furthermore, the 443 

estimated fractal dimension by the structure function method is quite robust and insensitive to 444 

stationary or nonstationary wind models used. 445 

(2) The multivariate wind speed components simulated by the proposed fractal-based SWM method 446 

are in good agreement with the measured records in terms of fractal dimension, standard deviation, 447 

probability density function, wind spectrum and cross-correlation coefficients. The proposed SWM 448 

method combined with the TVM components is capable of generating nonstationary multivariate 449 

typhoon wind speeds. 450 
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