
Dear Reviewer #2: 

Thank you for your comments and suggestions. Those comments are all valuable and very helpful for revising 

and improving our paper, as well as the important guiding significance to our researchers. We have studied comments 

carefully and have made correction which we hope meet with approval. Now I response the comments with a point 

by point. Full details of the files are listed. We sincerely hope that you find our response and modifications satisfactory 

and that the manuscript is now acceptable for publication. 

 

Responds to the reviewer's comments: 

Comment 1: 

In line 200-202, authors should describe the transfer-matrix method (TMM) to let the reader better understand. 

 

Response 1: 

Thank you very much for pointing out these problems, we will add the following to the revised paper in section 

3.2. 

Add content to the original lines 200-201: “To ensure the applicability of the model, modal analysis is carried 

out and compared with the transfer-matrix method (TMM) and the test data, taking the calculation of the flap-wise 

direction as an example, as shown in Table 1. The transfer matrix method is an approximate theoretical method used 

to calculate the natural frequencies and modes of systems with chain structures. The transfer matrix method separates 

the structure with inertia and elasticity and obtains the relationship between the discrete elements. The natural 

frequencies and modes of the systems can be solved according to the boundary conditions. The transfer matrix method 

belongs to the physical discrete method of continuous system, which is suitable for numerical solution of blade model.” 

 

Detailed description of TMM 

For the cantilever beam model of blades, a typical element is composed of massless beam and concentrated 

mass. The deflection y, angle θ, bending moment M and shear force Q at each section are selected to form the state 

vector Z. The force analysis of massless beam and concentrated mass is shown in Fig. m+1, where mk is the 

concentrated mass, lk is the length of the beam, EIk is the bending stiffness of the beam, xk is the span-wise coordinate 

of the section k, the subscript i represents the unit number, and the superscript L and R are used to distinguish the 

state vector of the left and right sections of the concentrated mass. 

 

Fig. m Cantilever beam model of wind turbine blade 

 

Fig. m+1 Force analysis diagram of massless beam and concentrated mass  



The transfer matrix B

iH  of the state vector for the massless beam from left to right is 
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The transfer matrix M

iH  of the state vector for the concentrated mass from left to right is 
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Since the state vector of the left section of the massless beam i is the same as that of the right section of the 

concentrated mass i-1, and the mechanical state of the element is represented by the state vector of the right section 

of the concentrated mass, the transfer relationship of the state vector between adjacent elements is shown as 

BM

iii HHH = . The transfer matrix of each element can be multiplied left to establish the total transfer matrix from the 

root to the tip as 12HHHH n= . Then, the transformation relationship between the root state vector R

0Z  and the 

tip state vector R

nZ  is shown as follows. 
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By substituting the boundary conditions at the root 0R

0 =y , 0R

0 =θ  and the tip 0R =nM , 0R =nQ into the Eqs. 

(n+2), the local matrix relationship is obtained as 
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Since the deflection and shear force at the root are nonzero, according to the condition that the homogeneous 

linear equations have non-zero solutions, that is to say, the determinant of the coefficient matrix is zero, the following 

relation can be obtained 

 043344433 =− hhhh  （n+3） 

The coefficients of the total transfer matrix include the vibration frequency ω, and the modal frequencies of the 

blade can be obtained by solving the above equation. 

  



Comment 2: 

In section 4.3, effects of virtual masses on biaxial test are considered and described in Figure 11. Authors should 

add a figure to describe the biaxial trajectory of the blade when the virtual masses are translational. The comparison 

of the two results (translation and rotation of virtual masses) can better illustrate the effect of virtual masses on blade 

biaxial test. 

 

Response 2:  

Taking 94m blade as an example, two conditions of virtual masses translation and rotation are compared to 

obtain the motion trajectory of the blade during biaxial test under the simulation environment. The exciting 

parameters and the tuning masses are the same as those in Section 3.3 and Table 3.  

For rotation, select mechanism dimension as 𝑅 = 4𝑚, 𝐿 = 4𝑚. 

 

Fig. m+2 Motion trajectory at exciting point 

For ideal translation, select mechanism dimension as 𝑅 = ∞, 𝐿 = ∞ to simulate the virtual masses acting in 

only one vibration direction. 

 

Fig. m+3 Motion trajectory at exciting point 

When the exciting force amplitude keeps the same, the vibration amplitude is more stable and larger under the 

condition of virtual masses translation, and the motion trajectory is regular quadrilateral. 

  



Comment 3: 

What effect does the nonlinear effect introduced by virtual masses have on the actual test? Authors need to add 

further explanations. 

 

Response 3:  

As mentioned in the paper, the nonlinear effects during the blade fatigue testing are mainly due to the rotation 

of the virtual masses while the rotation radius and blade amplitude will affect the resonance frequency of the blade. 

According to the amplitude-frequency characteristic curve, when the excitation frequency deviates from the 

resonance region, the amplitude of the blade will drop sharply, resulting in the waste of energy of the fatigue test 

equipment. At the same time, specific areas of the blade are not sufficiently loaded to meet the certification 

requirements, but further loading requires additional energy consumption. Therefore, in view of the nonlinear effects 

introduced by virtual masses, it is necessary to improve the rapidity and accuracy of resonance frequency search 

during actual test. 

 

 

 

 

 

  



Comment 4: 

In Figure 8(d), there is (a) in this figure. Please check. 

 

Response 4: 

Thank you for your careful examination. The (a) in Fig. 8(d) is redundant and should be eliminated. 

 

Figure 8: (d) 94m blade in edge-wise direction 

 

 

 

 

 

We will make corresponding changes in the future revised paper and try our best to improve the manuscript. 

These changes will not influence the content and framework of the paper. Please do not hesitate to contact us if there 

are any questions. We appreciate for your hard work, and hope that the correction will meet with approval. Once 

again, thank you very much for your comments and suggestions. 

 

 

Yours sincerely, 

Jinlei Shi 

 

 

 


