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Abstract. To analyze the nonlinear effects of the virtual masses used for load decoupling on the vibration characteristics in 9 

the biaxial fatigue test of wind turbine blades, the equivalent dynamic model of the blade-virtual masses test system is 10 

established using the Lagrange method firstly. Then, the nonlinear effects of blade amplitude and installation parameters of 11 

virtual masses on the test system are obtained by numerical methods. Moreover, the nonlinear amplitude-12 

frequency characteristics of the test system is analyzed theoretically based on the nonlinear vibration theory. Finally, two 13 

blades over 80m are analyzed under the dynamic simulation environment. The results indicate that the resonance frequency of 14 

the test system decreases with the increase of the amplitude of the blade, presenting the nonlinear amplitude-frequency 15 

characteristics. In the case of 80m blade, the resonance frequency of the test system decreases by approximately 2%. There is 16 

also a nonlinear relation between the length of the seesaw used to install the virtual masses and the resonance frequency. The 17 

decrease of resonance frequency of the test system is more obvious with shorter seesaw, the resonance frequency decreases by 18 

up to 1.8% under certain conditions. The decrease of the resonance frequency will also reduce the area of interest for blade 19 

load verification, the blade load distribution decreases by nearly 3% in the flap-wise direction under the given operating 20 

conditions. In addition, the virtual masses will also affect the resonance characteristics and the spatial trajectory of the blade 21 

during the biaxial test. 22 

The biaxial fatigue test of wind turbine blades is helpful to shorten the test time and is more suitable for the actual operating 23 

conditions. Adding tuning masses to the blade is a common method for blade uniaxial test at present, and its purpose is to 24 

adjust the load distribution in one direction of the blade. However, the tuning masses on the blade will affect the load 25 

distribution in the direction of the blade flap-wise and edge-wise at the same time in the biaxial test, so the concept of "virtual 26 

masses" is proposed to realize the decoupling of the load distribution in the biaxial test. Due to the limitation of the size of the 27 

virtual masses mechanism and the complex motion trajectory of the blade, the actual inertial effect provided by the virtual 28 

masses is different from the ideal situation, which will affect the resonance characteristics of the test system and the load 29 

distribution of the blade. Therefore, in order to evaluate the effect of the nonlinear effect introduced by the virtual masses on 30 

the resonance characteristics of the test system and the blade load distribution, the equivalent dynamic model of the bladed 31 

virtual mass test system was established by using the Lagrange method. Then, the nonlinear effects of blade amplitude and 32 

virtual mass installation parameters on the test system are obtained by numerical method. Then, based on the nonlinear 33 

vibration theory, the approximate nonlinear amplitude-frequency characteristics of the test system are obtained, that is, the 34 

resonance frequency of the test system will decrease with the increase of the blade amplitude. Through the simulation analysis 35 

of two 80m+ blades, the applicability of the theoretical method is verified. It can be seen from the simulation results of the 36 

simulated uniaxial test that the larger the amplitude of the blade and the shorter the connection rod will reduce the resonance 37 

frequency of the test system. When the vibration amplitude at the excitation point is the same, a lower resonance frequency 38 

results in a smaller load distribution level, that is, the area which is actually fully tested will be reduced. In the biaxial simulation 39 

test, the resonance frequency of the test system will be further reduced because the virtual masses will be affected by the 40 

coupled motion in both directions at the same time. Besides, the introduction of an external mechanism of the virtual mass will 41 

also cause deformation of the envelope of the blade biaxial trajectory, which will further affect the load distribution of the 42 
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blade. This work explores the nonlinear influence of virtual mass on the actual fatigue test, provides the corresponding 43 

theoretical basis and reference for the test organization to adjust the tuning masses scheme in advance to adjust the load 44 

distribution and select the exciting equipment. 45 

1 Introduction 46 

As an important component of wind turbine, the cost of blades accounts for 20% of the overall machine, so the lifetime 47 

of blades is the premise to ensure safe and stable operation of the wind turbine (Zhang et al., 2015; Liao et al., 2016). To verify 48 

the reliability of the blade under the actual operating field, the International Electrotechnical Commission (IEC) points out that 49 

the full-scale fatigue test of rotor blades is needed to be performed (IEC, 2014),. In the actual blade fatigue test, which means 50 

two separate oscillations tests with over one million damage-equivalent loads cycles are performed at the 1st and 2nd natural 51 

frequency of the blade. 52 

The fatigue test requires that the load in the area of interest along the blade span-wise direction matches or exceeds the 53 

design value, while keeping the exceedance as small as possible in order to avoid unrealistic failures(DNV GL AS, 2015). To 54 

satisfy the above requirements, additional masses are usually attached to the blade to tune the test load distribution which needs 55 

to be optimized by determining the optimal massmasses distribution. 56 

To save testing time and to emulate the comprehensive damage along the circumference of the blade, several institutions 57 

began to study and design biaxial fatigue test (White et al., 2004; Greaves et al., 2012; Snowberg et al., 2014; Hughes et al., 58 

1999; Liao et al., 2014;), namely to excites the blade in both directions simultaneously. In the previous resonance biaxial test, 59 

a reasonable load distribution (in both directions) will be obtained by optimizing the position and tuning masses installed 60 

on the blade. However, the tuning masses installed on the blade will affect the vibration characteristics (mode shape and 61 

frequency) in both flap-wise and edge-wise directions, which brings difficulty to the biaxial load match optimization, 62 

and there may be excessive overload in a certain area of the blade when choosing a compromise. 63 

To simplify load match, the extra mechanism makes the tuning masses only act in one vibration direction (called 64 

virtual masses), and the biaxial load match is equivalent to the combination of the load match of two single axis test. 65 

The purpose of the virtual masses is to decouple the biaxial load, so that the biaxial load match is equivalent to the 66 

combination of the load match of two single axis test. Compared with the uniaxial fatigue test, the biaxial fatigue test has 67 

more complicated masses matching. Because the additional masses will affect the load distribution in both directions 68 

simultaneously, which is called as masses coupling. To solve the problem of masses coupling in the biaxial fatigue test, some 69 

test institutions introduce the concept of virtual masses.Post et al. (2016) firstly proposed the concept of virtual masses to 70 

tune both natural frequencies independently in the two directions, and to eliminate the coupling phenomenon of test 71 

bending moments during biaxial test. Melcher et al. (2020a、20212020b) used elastic elements to adjust blade stiffness, 72 

and optimized biaxial fatigue test parameters based on virtual masses and elastic elements. Zhang et al. (2020) and Lu 73 

et al. (2022) carried out research on biaxial load matching and design using virtual masses. The virtual masses used for 74 

mass decoupling is ideally regarded as translational motion and the push rod between the virtual mass and the blade is 75 

always in line with the main vibration in the above workThe above research work regards the virtual masses used for 76 

masses decoupling as translational motion, which is difficult to apply to the actual test field. Because a larger and stronger 77 

platform is needed to keep virtual mass translate in the edge-wise direction, which is difficult to achieve in a limited test 78 

space. In the biaxial test, the platform may interfere with the push rod, especially when the blade has a large amplitude 79 

in the flap-wise direction.Because it requires large equipment and is difficult to apply to the test condition of large blade 80 

vibration. Therefore, IWES conducted further research, designed a device to convert virtual masses from translation to 81 

rotation, and applied it to the biaxial fatigue test which has a frequency ratio of 1:1 (Melcher et al., 2020c). Further, the 82 

feasibility of the biaxial decoupling test of the bending moment was verified by the comparison of simulation and 83 

experiment results (Melcher et al., 2020; Castro et al., 2021; Falko et al., 2020 Falko et al., 2020; Castro et al.,2021). In 84 

fact, in the view of the motion characteristics, the inertia force generated by rotating virtual masses is different from that 85 

generated by translational virtual masses. Taking a uniaxial test as an example, the translational virtual masses move 86 

synchronously with the blade, which behave like a mass acting in just one direction from a numerical standpoint. The 87 
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translational virtual masses have the same motion characteristics as the additional tuning masses. Therefore, although 88 

the virtual mass is not on the blade, the inertia force generated by it and the inertia force generated by the additional 89 

tuning masses are in the same direction and magnitude. The rotating virtual masses are limited by the constraints of the 90 

seesaw, and its motion path is the rotating motion around the center of the seesaw. Therefore, the direction and magnitude 91 

of the inertial force generated by the rotation of the virtual mass will change, and it is not equivalent to the translational 92 

virtual masses. However, changes in the inertia force provided by the virtual masses will cause changes in the 93 

characteristics of the system, which may further cause changes in the blade load distribution, and may put forward higher 94 

requirements for vibration excitation equipment. 95 

To reveal the vibration mechanism of the blade-virtual masses test system and provide a more rigorous theoretical basis 96 

for the biaxial load matching theory of the blade. In this paper, a theoretical model of blade-virtual masses uniaxial test system 97 

is established. The specific nonlinear impact of single parameter related to virtual masses on the characteristics of the test 98 

system can be obtained intuitively through the uniaxial model. Then, two blades over 80m were simulated in ADAMS. Uniaxial 99 

simulation was used to verify the applicability of the theoretical model, including the nonlinear amplitude-frequency 100 

characteristics of the system and the effects of virtual mass installation parameters (such as seesaw length) on the load 101 

distribution of the blade. Biaxial simulation is used to analyze the nonlinear effect of virtual mass on the system under the 102 

simultaneous action of many factors. This work will be used in the future research to adopt reasonable control strategy and 103 

adjust the counterweight scheme in advance to achieve the target damage of the blade. This work establishes the dynamic 104 

model of the blade-virtual masses test system and analyses the nonlinear amplitude-frequency characteristics of the test system. 105 

The aim is to further analyze the effects of rotating virtual masses on the blade test system, and to reveal the vibration 106 

mechanism of the blade-virtual masses test system to provide a more rigorous theoretical basis for the biaxial load matching 107 

theory of the blade. Moreover, two blades over 80m were simulated to verify the nonlinear vibration characteristics of the test 108 

system and evaluate the effects of installation parameters of virtual masses on blade test load distribution, such as the length 109 

of the seesaw. 110 

2 Blade-virtual masses equivalent dynamic model 111 

The tuningadditional masses can change the modal characteristics of the testing system to adjust the test load distribution of 112 

the blade, which is essentially bending moment caused by the inertia force brought by the reciprocating motion of the self-113 

weight and additional masses. In the common fatigue test system, the additional masses are directly attached to the blade, as 114 

shown in Fig. 1 (a). When the tuningadditional masses are determined, the modal characteristics of the testing system are 115 

basically determined, as shown in Fig. 1 (a). This means that, without considering the air damping, the resonant frequency of 116 

the system remains unchanged.  117 

In the biaxial fatigue test, the tuningadditional mass decouples masses decouple the biaxial load by seesaw, and the 118 

tuningadditional masses are is called virtual masses, as shown in Fig. 1 (b). In this installation condition, Tthe inertia force 119 

generated by the virtual masses mainly only acts in the edge-wise direction in Fig. 1 (b) of an individual blade mode. The 120 

mechanism for mounting the virtual massmasses consists of a push rod and a seesaw. The push rod, blade fixture, push rod, 121 

and seesaw are connected through a universal joint, and the seesaw can rotate around the center position. Tuning massesMasses 122 

are located at both ends of the seesaw to offset each other's gravity. After the exciting force is applied to the blade, the tuning 123 

masses move with the blade and rotate around the center of the seesaw to provide the inertia force for the blade through the 124 

push rod. However, due to the motion characteristics of the virtual massmasses mechanism, the motion of the virtual 125 

massmasses cannot be perfectly synchronized with the blade motion. Therefore, the inertia force generated by the rotation of 126 

the virtual massmasses differs from the inertia force generated by the traditional tuning masses. To precisely evaluate the 127 

specific impacts of single parameter related to virtual masses on the test systemvirtual mass rotation on the blade test system, 128 

it is necessary to establish a corresponding uniaxial theoretical model for analysis from the perspective of control variable 129 
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methodcomprehensive analysis. 130 

 131 

Figure 1: Masses match of blade fatigue test: (a) traditional tuning masses setup (b) virtual masses setup. 132 

2.1 The comparison on the amplitude of inertia force 133 

The uniaxial test is taken as an example to illustrate the difference between virtual masses translation and rotation, as shown 134 

in Fig.2. The inertial force generated by rotating virtual masses of the blade at the maximum amplitude can be analyzed, as 135 

shown in Fig.3. The relationship of the motion between virtual masses and blade can be obtained: 136 

൜
𝒗௠ = 𝒗ெ + 𝒗௠ெ

𝒂௠ = 𝒂௠
௡ + 𝒂௠

ఛ = 𝒂ெ + 𝒂௠ெ
௡ + 𝒂௠ெ

ఛ        (1) 137 

Where: 𝒗௠ - velocity of virtual masses; 𝒗ெ - velocity of blade equivalent mass; 𝒗௠ெ - relative velocity; 𝒂௠ெ
௡  - relative 138 

normal acceleration; 𝒂௠  - the acceleration of the virtual masses; 𝒂௠ெ
ఛ   - relative tangential acceleration; 𝒂௠

௡   - normal 139 

acceleration; 𝒂௠
ఛ  - tangential acceleration.  140 

The blade at the maximum amplitude satisfies: 𝒗ெ = 0; 𝒗௠ெ = 0; 𝒂௠ெ
௡ = 0; 𝒂௠

௡ = 0. 141 

The angular acceleration of the virtual mass at the maximum amplitude of the blade can be obtained: 142 

|𝛼௠| =
ఠమ௒ ୡ୭ୱ(ఉబ)

ோ ୡ୭ୱ(ఏబିఉబ)
                         (2) 143 

Where: 𝜃 - Rotation angle of the seesaw at the maximum amplitude of the blade; 𝛽଴ - Angle between the push rod and the 144 

main vibration direction at the maximum amplitude of the blade; 𝛼௠  - Angular acceleration of the virtual mass at the 145 

maximum amplitude of the blade. 146 

According to Eqs. (1) and Eqs. (2), the rotating inertia force 𝐹ோ generated by the rotating virtual mass at the maximum 147 

amplitude of the blade can be obtained: 148 

𝐹ோ =
௠ఠమ௒ ୡ୭ୱ(ఉబ)

ୡ୭ୱ(ఏబିఉబ)
                       (3) 149 

The inertia force 𝐹௥௢௧ transmitted to the main vibration direction of the blade through the push rod can be obtained: 150 

𝐹௥௢௧ =
ிೃ ୡ୭ୱ(ఉబ)

ୡ୭ୱ(ఏబିఉబ)
=

௠ఠమ௒ ୡ୭ୱమ(ఉబ)

ୡ୭ୱమ(ఏబିఉబ)
                     (4) 151 

The translational virtual masses are consistent with the motion state of the blade, so the inertial force generated by the 152 

translational virtual masses can be obtained based on Eqs. (4): 153 

𝐹௧௥௔ = 𝑚𝜔ଶ𝑌                          (5) 154 

According to Eqs. (4) and Eqs. (5), there are differences in the inertial forces acting on the blades by the two setups, which 155 

are mainly caused by the difference in the movement trajectory of masses. 156 
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 157 

Figure 2: The comparison on inertia force: (a) Translational virtual masses setup (b) Rotating virtual masses setup. 158 

2.2 Model using the Lagrange method 159 

The aim of virtual masses is to decouple the test load in the biaxial fatigue test. In fact, there will be inertial force coupling in 160 

the actual biaxial testing process (virtual masses translation or rotation), which will cause multiple factors to work together 161 

and make it difficult to analyze the system characteristics. Therefore, it is desirable to choose the uniaxial test to analyze the 162 

nonlinear influence introduced by the virtual masses, which does not mean that the biaxial test can be regarded as the linear 163 

superposition of the uniaxial test. Essentially, the load distribution in the main vibration direction of the blade is adjusted by 164 

the component of the inertia force transmitted by the push rod in this direction. Because of the angle between the push rod 165 

direction and the vibration direction, blade displacement is not in line with the push rod. the motion of the virtual mass 166 

generates an inertial force that is transmitted to the blades through push rods, thereby adjusting the load distribution in the 167 

main vibration direction. To more intuitively analyze the impact of virtual mass masses on the blade test system, the mass of 168 

the push rod and the seesaw are ignored in modeling according to the control variable method, and only their geometric 169 

dimensions are considered. Take taking the example of blade edge-wise direction test, the blade model is simplified as shown 170 

in Fig. 23. Moreover, the inertial force of the virtual masses also affects the flap-wise direction of the blade. However, since 171 

the frequency of the inertial force is close to the first order modal frequency in edge-wise direction, the perturbation to the 172 

flap-wise direction is relatively small. Therefore, only the influence of virtual massmasses on the vibration characteristics in 173 

the main testing direction needs to be considered during the uniaxial test. Section 2.1 only analyzes the difference of inertial 174 

force amplitude in Fig. 2 and this section set up a uniaxial theoretical model to evaluate the effect of virtual masses rotation 175 

on the vibration characteristics of the test system. In this paper, the Lagrange method is used to analyze the uniaxial model 176 

(Liu et al., 2019). The initial state of the test system is assumed when the blade is stationary, the push rod is horizontal and the 177 

seesaw is vertical. 178 

 179 
Figure 23: Virtual masses setup for blade fatigue test.  180 



 6 / 24 

 

ௗ

ௗ௧
൬

డ்

డ௤̇ೕ
൰ −

డ்

డ௤ೕ
+

డ௏

డ௤ೕ
+

డ஽

డ௤̇ೕ
= 𝑄௝ , 𝑗 = 1,2, ⋯ , 𝑛               (16) 181 

Where: 𝑇- kinetic energy; 𝑉- potential energy; 𝐷- dissipated energy; 𝑞௝- generalized coordinate; 𝑞̇௝ - generalized 182 

velocity; 𝑄௝  - generalized force. 183 

By selecting the generalized coordinate 𝑞 = 𝑦, and based on the motion relationship in Fig. 23, the displacement and 184 

velocity relationships of the test system can be obtained: 185 

൜
𝑦 + 𝐿 cos 𝛽 − 𝑅 sin 𝜃 = 𝐿

𝐿 sin 𝛽 + 𝑅 cos 𝜃 = 𝑅
                  (27) 186 

ቊ
𝑦̇ − 𝐿𝛽̇ sin 𝛽 − 𝑅𝜃̇ cos 𝜃 = 0

𝐿𝛽̇ cos 𝛽 − 𝑅𝜃 sin 𝜃 = 0
                  (38) 187 

𝑇, 𝑉 and 𝐷 can be calculated as 188 

𝑇 =
ଵ

ଶ
𝑀𝑦̇ଶ +

ଵ

ଶ
𝑚𝑅ଶ𝜃̇ଶ =

ଵ

ଶ
𝑀𝑦̇ଶ +

ଵ

ଶ
𝑚𝑦̇ଶ ୡ୭ୱమ ఉ

ୡ୭ୱమ(ఏିఉ)
              (49) 189 

𝑉 =
ଵ

ଶ
𝑘𝑦ଶ                        (510) 190 

𝐷 =
ଵ

ଶ
𝑐𝑦̇ଶ                        (611) 191 

Where: 𝐿 - the length of the push rod; 𝑅 - the radius of the seesaw; 𝛽 - the angle between the push rod and the horizontal 192 

direction; 𝜃 - the angle between the seesaw and the vertical direction; 𝑀 - blade equivalent mass; 𝑚 – virtual masses; 𝑘 193 

- blade equivalent stiffness; 𝑐 - blade equivalent damping. 194 

According to Eqs. (27) and Eqs. (38), the relevant terms in Eqs. (16) are obtained as 195 

⎩
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ௗ
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ௗ
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ቂ
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ቃ
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=

ଵ

ଶ
𝑚𝑦̇ଶ డ
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ቂ
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ቃ

డ௏
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= 𝑘𝑦 

డఅ

డ௬̇
= 𝑐𝑦̇

𝑄(𝑡) = 𝐹(𝑡)

                (712) 196 

Then, the dynamic differential equation of test system is 197 

ቄ𝑀 + 𝑚
ୡ୭ୱమ ఉ

ୡ୭ୱమ(ఏିఉ)
ቅ 𝑦̈ + 𝑐𝑦̇ + 𝑘𝑦 +

௠௬̇మ ୡ୭ୱ ఉ

ୡ୭ୱర(ఏିఉ)
ቂ

ୡ୭ୱమ ఉ ୱ୧୬(ఏିఉ)

ோ
−

ୱ୧୬మ ఏ

௅
ቃ = 𝐹(𝑡)        (813) 198 

Where: By comparison with Eqs. (4), it can be seen that the inertial force terms of two equations are same at the maximum 199 

amplitude of the blade. 200 

sin𝜃 =
௅ା௬

ோ
−

௅ቀோඥି(௬మ ା ଶ௅௬ ି ଶ௅ோ)(௬మ ା ଶ௅௬ା ଶ௅ோ)ା௬యାଶ௅యାସ௅మ௬ାଷ௅௬మቁ

ଶோ(௅యାଶ௅మ௬ା௅ோమା௅௬మ)
  201 

cos𝜃 =
௅(௅ ା ௬)[ோඥି(௬మାଶ௅௬ିଶ௅ோ)(௬మାଶ௅௬ାଶ௅ோ)ାଶ௅యା௬యାଷ௅௬మାସ௅మ௬]

ଶோమ(௅యାଶ௅మ௬ା௅ோమା௅௬మ)
−

ଶ௅మାଶ௅௬ିଶ మା௬మ

ଶோమ   202 

sin𝛽 =
ଶ௅మାଶ௅௬ା మ

ଶ௅ோ
−

(௅ା௬)[ோඥି(௬మାଶ௅௬ିଶ௅ோ)(௬మାଶ௅௬ାଶ௅ோ)ାଶ௅యା௬యାଷ௅௬మାସ௅మ௬]

ଶோ(௅యାଶ௅మ௬ା௅ோమା௅௬మ)
  203 

cos𝛽 =
ோඥି(௬మାଶ௅௬ିଶ௅ோ)(௬మାଶ௅௬ାଶ௅ோ)ାଶ௅యା௬యାଷ௅௬మାସ௅మ௬

ଶ(௅యାଶ௅మ௬ା௅ோమା௅௬మ)
  204 
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According to Eqs. (813), it can be seen that rotation of virtual masses introduces nonlinear terms to the test system, and 205 

both the angle 𝜃 and 𝛽 are nonlinear functions of the blade response 𝑦. Due to the complexity of the dynamic equation, it 206 

is difficult to obtain the corresponding analytical expression. Therefore, the numerical analysis methods are used to solve the 207 

equation. A numerical simulation model based on the differential equation of the system motion is established in 208 

MATLAB SIMULINK, and the corresponding resonance frequency of the equivalent system can be obtained by 209 

setting different initial displacements. By modifying the value of the different parameter (m、k、R), the influence of 210 

the parameter change on the resonance frequency of the test system can be obtained. As mentioned previously, the 211 

nonlinear factors that affect the characteristics of the test system mainly come from installation parameters (pushrod length 212 

and seesaw radius) and blade response. The design length of the push rod generally typically remains unchanged due to 213 

space limitations at the test site. However, the seesaw radius offers greater design flexibility. Thus, the primary focus is on 214 

evaluating the impact of the seesaw radius 𝑅 and blade response 𝑦 on the vibration characteristics of the blade. To 215 

illustrate this, the equivalent parameters of 80m blade are brought into the differential equation and numerically analyzed, 216 

and the influence of blade amplitude on the resonance frequency of the test system is investigated, as demonstrated in Fig. 4. 217 

numerical analysis is performed on the equivalent model of an 80m blade to examine the impact of blade amplitude on the 218 

resonance frequency of the testing system. This investigation is carried out by considering different virtual masses and radius 219 

of the seesaw, as demonstrated in Fig. 3. 220 

Figure 3 4 (a) shows that the resonance frequency of the test system decreases nonlinearly with an increase in blade 221 

amplitude and virtual masses 𝑚 further determines the rate of decrease in resonance frequency. The equivalent stiffness 𝑘 222 

has the ability to alter the natural frequency of the test system. However, it can be seen Fig. 3 4 (b) that 𝑘 cannot change the 223 

rate of decrease in resonance frequency with other parameters unchanged, which indicates that the equivalent stiffness is not 224 

a nonlinear factor affecting the vibration characteristics of the testing system. Fig. 4 (c) shows that the increase of 𝑀 will 225 

delay the decline rate of the natural frequency of the system, because the proportion of the virtual masses in the inertia force 226 

term decreases. It can be seen from Fig. 4 (d) Fig. 3 (a) shows that the radius of the seesaw will also affect the nonlinear 227 

amplitude-frequency characteristics of the test system and the rate of decrease in resonance frequency. 228 

229 
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 230 

 231 

 232 

Figure 34: The relationship between resonanceresonant frequency and amplitude of the blade at different parameters: (a) 𝑴 =233 

𝟏𝟒𝟎𝟎𝟎𝒌𝒈;  𝒌 = 𝟐𝟏𝟎𝟎𝟎𝟎𝑵/𝒎;  𝑳 = 𝟒𝒎;  𝑹 = 𝟒𝒎  (b) 𝑴 = 𝟏𝟒𝟎𝟎𝟎𝒌𝒈;  𝒎 = 𝟐𝟎𝟎𝟎𝒌𝒈;  𝑳 = 𝟒𝒎;  𝑹 = 𝟒𝒎  (c) 𝒌 = 𝟐𝟏𝟎𝟎𝟎𝟎𝑵/234 

𝒎;  𝒎 = 𝟐𝟎𝟎𝟎𝒌𝒈;  𝑳 = 𝟒𝒎; 𝑹 = 𝟒𝒎 (cd) 𝑴 = 𝟏𝟒𝟎𝟎𝟎𝒌𝒈;  𝒌 = 𝟐𝟏𝟎𝟎𝟎𝟎𝑵/𝒎;  𝒎 = 𝟐𝟎𝟎𝟎𝒌𝒈;  𝑳 = 𝟒. 235 

2.2 3 Analysis of amplitude-frequency characteristics of the model 236 

As previously mentioned, both virtual mass and traditional additional masses adjust the load distribution of the measured 237 

blade by changing the modal characteristics of the blade through the inertial force originated from the blade movement. 238 

However, due to the motion of the virtual masses mechanism, a distinct inertial force from that of traditional additional masses, 239 

which contributes to the nonlinearity of the test system. The dynamic differential equations of the blade-virtual masses test 240 

system, established through the Lagrange method, are highly complex and can only be resolved numerically to derive the 241 

correlations among the relevant parameters and the resonance frequency of the test system. To quantitativelyfurther analyze 242 
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the nonlinear amplitude-frequency characteristics of the test system, it is necessary to construct create a theoretical model of 243 

the test system based on nonlinear dynamics (Liu et al., 2001). According to linear vibration theory (Liu et al., 2001), the 244 

factors that primarily influence the inherent characteristics of a linear system are the inertial force term and the elastic force 245 

term. In fact, the inherent characteristics of the blade-virtual masses test system are primarily determined by the inertial force 246 

term associated with the introduction of virtual massmasses and the response of the blade Thus, the weakly nonlinear dynamic 247 

equation of the blade-virtual massmasses test system in Eqs. (13)Fig. 2 can be approximated as: 248 

(𝑀 + 𝑚)𝑓(𝑦)𝑦̈ + 𝑐𝑦̇ + 𝑘𝑦 = 𝐹଴ cos(𝜔𝑡 + 𝜃)                 (914) 249 

Where: 𝑓(𝑦) = 1 + 𝜀ଵ𝑦 + 𝜀ଶ𝑦ଶ + 𝜀ଷ𝑦ଷ + 𝜀ସ𝑦ସ; 𝑐 = 2𝜁(𝑀 + 𝑚)𝜔௡; 𝑘 = (𝑀 + 𝑚)𝜔௡
ଶ; 𝐹଴ = 𝐵𝑘; 𝜀ଵ、𝜀ଶ、𝜀ଷ、𝜀ସ - Small 250 

parameters related to 𝑀、𝑚、L and R; 𝜁 - Damping ratio; 𝜔௡ - Natural frequency; 𝜔 - Excitation frequency;  𝜃 - Phase 251 

difference between steady-state response and excitation. 252 

Ignoring the small parameters, Eqs. (914) is transformed into the vibration equation of a linear system. This means that 253 

the linear system is derived from the original nonlinear system. To quantitatively analyze the modal characteristics of the test 254 

system, the approximate analytical method can be employed by considering the nonlinear factor as a perturbation to the linear 255 

system, yielding an approximate analytical solution for the nonlinear system. Among various approximate analytical methods, 256 

the harmonic balance method is particularly notable due to its clear conceptual foundation. It expands both the excitation term 257 

and the solution of the equation into a Fourier series. From a physical perspective, the coefficients of the harmonic terms of 258 

the same order at both ends of the dynamic equation must be equal to maintain a balance between the excitation and inertia 259 

forces. When the condition of the test system is determined, the value of the small parameter in Eqs. (914) is also determined.  260 

For the blade-virtual masses testing system, it is assumed that its steady-state response is still periodic, but the resonance 261 

frequency is different from the natural frequency of the derived system. The basic solution is expanded into the Fourier series 262 

of the excitation frequency and the fundamental component is retained. The response of the system as Eq. (1015) indicates. 263 

𝑦(𝑡) = 𝑌଴cos (𝜔𝑡)                     (1015) 264 

Where: 𝑌଴ - Amplitude of blade steady-state response.  265 

By substituting Eq. (1015) into Eq. (914) and applying the triangle transform and harmonic balance to eliminate the phase 266 

difference 𝜃 to achieve the relationship between the amplitude and frequency of the test system, as Eq. (1116) indicates. 267 

ቂ1 − 𝑠ଶ ቀ1 +
ଷ

ସ
𝜀ଶ𝑌଴

ଶ +
ଵ଴

ଵ଺
𝜀ସ𝑌଴

ସቁቃ
ଶ

+ (2𝜁𝑠)ଶ = ቀ
஻

௒బ
ቁ

ଶ

              (1116) 268 

Where: 𝑠 = 𝜔/𝜔௡. 269 

According to Eq. (1116), The amplitude-frequency and phase-frequency characteristics of the nonlinear system can be 270 

obtained, as Eq. (1217) indicates. 271 
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                  (1217) 272 

When 𝜀ଶ = 𝜀ସ = 0, Eq. (1217) describes the amplitude-frequency characteristics of a linear system, as shown in Fig. 45. 273 

When the small parameters are non-zero, the amplitude-frequency characteristic curve of the nonlinear system is depicted in 274 

Fig. 56. Similar to forced vibrations in linear systems, nonlinear systems also exhibit similar amplitude-frequency characteristic 275 

curves. However, the backbone of the support curve clusters is not straight but inclined. This backbone curve represents the 276 

variation of the free vibration frequency of the nonlinear system with respect to the amplitude when there is no external 277 

excitation (Liu et al., 2001). By setting B = 1 and ζ = 0 in Eq. (1116), the equation for this backbone curve can be obtained, as 278 

Eq. (1318) indicates. 279 
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 281 

 282 

Figure 45: Amplitude-frequency characteristic curve of a linear system 283 

Eq. (1318) shows that the resonance frequency of the blade-virtual masses test system decreases with the increase of the 284 

amplitude of the blade and there exists the nonlinear relationship between the square of the frequency ratio and the amplitude. 285 

Figure 5 6 shows that the small parameters in the inertial force term will affect the frequency of free vibration. As these 286 

parameters decrease, the amplitude-frequency characteristic curve of a nonlinear system approaches that of a linear system, 287 

and the backbone curve approaches a value close to 1. 288 

289 
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 290 

 291 

 292 

Figure 56: Amplitude-frequency characteristic and the backbone (represented by the black dashed line) of the blade-virtual masses 293 

testing system: (a) 𝑩 =  𝟎. 𝟏、
𝟑

𝟒
𝜺𝟐 = 𝟎. 𝟎𝟏、

𝟏𝟎

𝟏𝟔
𝜺𝟒 = 𝟎. 𝟎𝟎𝟐 (b) 𝑩 =  𝟎. 𝟏、

𝟑

𝟒
𝜺𝟐 = 𝟎. 𝟎𝟏、

𝟏𝟎

𝟏𝟔
𝜺𝟒 = 𝟎. 𝟎𝟎𝟏 (c) 𝑩 =  𝟎. 𝟏、

𝟑

𝟒
𝜺𝟐 = 𝟎. 𝟎𝟎𝟓、294 

𝟏𝟎

𝟏𝟔
𝜺𝟒 = 𝟎. 𝟎𝟎𝟏 (d) 𝑩 =  𝟎. 𝟏、

𝟑

𝟒
𝜺𝟐 = 𝟎. 𝟎𝟎𝟓、

𝟏𝟎

𝟏𝟔
𝜺𝟒 = 𝟎. 𝟎𝟎𝟎𝟓. 295 

Figure 6 shows the influence of different small parameters on the amplitude-frequency characteristics of the system. 296 

In fact, specific small parameter values mean specific working conditions, that is, when the virtual mass related 297 

parameters (such as 𝐿、𝑅、𝑚 ) are determined, the amplitude-frequency characteristics of the system will also be 298 

determined. Therefore, as long as the setups are determined, the dynamic characteristics of the test system will be 299 

determined, whether it is a single axis test or a biaxial test. 300 

In addition, the amplitude hopping phenomenon, also known as dynamic bifurcation, also appears in Figure 6. In 301 

fact, there is no obvious dynamic bifurcation phenomenon in the fatigue test, because the nonlinearity of the system is 302 
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weak, and the amplitude of the blade is limited by the size of the mechanism. Moreover, when the influence of blade 303 

amplitude on the resonance frequency of the system is discussed in the following paper, more attention is paid to the 304 

backbone curve in the shape of the black dotted line in Fig. 6. 305 

3 Dynamic simulation analysis 306 

To validate the nonlinear characteristics of the blade-virtual massmasses test system that has been established, it is necessary 307 

to utilize multi-body dynamics simulation software ADAMS to create a realistic blade model for analysis. Based on the 308 

sectional properties and tuning masses of the blade, ADAMS motion analysis software can be employed for modeling and 309 

analyzing the blade-virtual masses system. ADAMS The simulation software can perform modal analysis and transient sweep 310 

frequency harmonic analysis to obtain the changing characteristic of the testing system under various operating conditions. As 311 

the foundation for other dynamics analysis, modal analysis is used to determine the modal characteristics of structures. 312 

Regarding the weakness of modal analysis function in the software, which cannot consider the effects of the response on the 313 

modal characteristics of the system, it is necessary to take further transient sweep-frequency analysis to obtain the resonance 314 

characteristics of the system. 315 

3.1 Simulation ModelingModelling 316 

To verify that the simplified equivalent theoretical model can reflect the characteristics of actual test system, the simulation 317 

model is established in software. Generally, only the cross-section stiffness (flap-wise and edge-wise) and linear density are 318 

considered in the simulation model (Post et al., 2016), because the torsional natural frequency is much higher than the natural 319 

frequency in the direction of flap-wise and edge-wise, it is difficult to stimulate large torsional deformation. The root of the 320 

blade was set as a fixed constraint to simulate the cantilever beam condition similar to when the blade is mounted on the test 321 

rig. The equivalent damping ratio of the blade changes during vibration, resulting in a change in the resonance frequency of 322 

the test system (Lee., 2018; Liu et al., 2019). In order to accurately assess the influence of virtual massmasses on the 323 

characteristics of the testing system, aerodynamic damping is not considered in the simulation model. The blade model was 324 

built in the simulation software based on the parameters mentioned above, as shown in Fig. 67(a). 325 

 326 
Figure 67: Dynamics simulation model of test system: (a) The blade simulation model (b) The blade-virtual masses simulation 327 

model(flap-wise) 328 

3.2 Model validity verification 329 

To ensure the applicability and rationality of the model, modal analysis is carried out and compared with the transfer-330 

matrix method (TMM) and the test data, taking the calculation of the flap-wise direction as an example, as shown in Table 1. 331 

The transfer matrix method is an approximate theoretical method used to calculate the natural frequencies and modes of 332 

systems with chain structures. The transfer matrix method separates the structure with inertia and elasticity and obtains the 333 

relationship between the discrete elements. The natural frequencies and modes of the systems can be solved according to the 334 

boundary conditions. The transfer matrix method belongs to the physical discrete method of continuous system, which is 335 

suitable for numerical solution of blade model. The blades in Table 1 were all subjected to actual modal tests, and the obtained 336 
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frequency data are obtained from the frequency domain analysis of actual test data. The actual blade modal test was carried 337 

out by hammer method. It can be seen that the simulation model of the test system has good applicability exhibits a high level 338 

of accuracy, with an error in the modal frequency of less than 4%. 339 

Table1. Blade modal analysis in flap-wise directionComparison of natural frequencies calculated by various methods 340 

Flap-wise 84m 94m 

Method 
1st modal frequency 

 [Hz] 

Error  

[%] 

1st modal frequency  

[Hz] 

Error 

[%] 

Test 0.394 - 0.365 - 

TMM 0.397 +0.7 0.349 -4.38 

Simulation 0.404 +2.54 0.377 +3.29 

 341 

Edge-wise 84m 94m 

Method 
1st modal frequency 

 [Hz] 

Error  

[%] 

1st modal frequency  

[Hz] 

Error 

[%] 

Test 0.590 - 0.571 - 

TMM 0.604 +2.37 0.561 -1.75 

Simulation 0.610 +3.34 0.589 +3.15 

 342 

3.3 Simulation setup 343 

With the purpose of demonstrating the nonlinear effects of rotating virtual masses on the testing system, it is necessary to add 344 

virtual masses based on the blade model, as shown in Fig.67(b). The values of the additional masses are shown in Table 2 and 345 

the section properties of the blades are shown in Fig. 78. The position and values of the tuningadditional masses are 346 

provided by the blade manufacturer. Virtual massmasses elements are added at 62% and 49% of the 84m blade length in the 347 

flap-wise and edge-wise directions respectively. Similarly, virtual mass masses elements are added at 63% and 52% of the 94m 348 

blade length in the flap-wise and edge-wise directions respectively (masses marked in black italics in Table 2). The constraints 349 

for the seesaw, push rod, and virtual masses are set according to Fig. 1, where the rotation center of the seesaw is set as the 350 

revolute pair and the seesaw and push rod are set as the rigid light rod. To evaluate and verify the effects of virtual masses 351 

installation parameters and blade response on the vibration characteristics of the testing system, not only the effects of radius 352 

of the seesaw and blade response on the resonance frequency, but also the effects of radius of the seesaw on the load distribution 353 

of the blade with similar amplitude are analyzed through simulation. 354 

Table2. Blade additional masses of 84m and 94m blade 355 

84m 94m 

Location 
Flap-wise masses 

[kg] 

Edge-wise masses 

[kg] 
Location 

Flap-wise masses 

[kg] 

Edge-wise masses 

[kg] 

26%  2835 42% 3000 3000 

36%  3147 52%  4075 

49% 6120 4075 63% 1116  

62% 1117     
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 356 

Figure 78: Section properties of the blade: (a) 84m blade (b) 94m blade 357 

As the foundation for other dynamics analysis, modal analysis is used to determine the modal characteristics of structures. 358 

Regarding the weakness of modal analysis function in the software, which cannot consider the effects of the response on the 359 

modal characteristics of the system, it is necessary to take further sweep-frequency analysis to obtain the resonance 360 

characteristics of the system. The sweep-frequency analysis is to apply a series of harmonic excitation with different 361 

frequencies to the system to analyze its response spectrum. 362 

4 Results 363 

According to the backbone in the amplitude-frequency characteristic curve of the blade-virtual masses test system, when the 364 

operation condition determined, the square of the resonance frequency and the blade amplitude satisfy the relationship in Eqs. 365 

(1318). Thus, correlated simulation results are fitted using relevant functions to verify the relationship. 366 

4.1 Effects of amplitude on resonance frequency 367 

4.1.1 Effects of blade amplitude on resonance frequency 368 

Set R = 4m and L = 4m and investigate the variation of the resonance frequency of test system under different amplitudes. 369 

Sweep-frequency analysis is performed on the 84m and 94m blades in flap-wise and edge-wise directions respectively to obtain 370 

the resonance frequencies of the test system under different steady-state amplitudes while the results are fitted according to 371 

Eqs. (1318), as shown in Fig. 89. In addition, the degree of fit is expressed by goodness of fit 𝑹𝟐. The sweep frequency range 372 

is defined as a bandwidth of 0.02Hz near the first natural frequency in the flap-wise or edge-wise direction, with an 373 

action time of 1E4s and a resolution of 2e-6 Hz/sec. The frequency spectrum of the displacement of the exciting point 374 

of the blade under the sweeping excitation is analyzed, and the frequency corresponding to the peak point is the resonance 375 

frequency. The mechanism might reach the geometric limit of the push-rod parallel to the seesaw, so the limit 376 

requirements of the mechanism need to be considered.  377 

When amplitude of the blade is small, the percentage drop in resonance frequency is small. When amplitude of the blade 378 

is large, the resonance frequency presents nonlinear rapid declinefaster. When the blade amplitude in flap-wise direction 379 

reaches 2.6m, the resonance frequency of the 84m and 94m blades decreases by approximately 2.0%; When the blade 380 

amplitude in edge-wise direction reaches 2.2m, the resonance frequency of the 84m and 94m blades decreases by 381 

approximately 1.1%. Due to the limitation of resonance frequency extraction precision in sweep frequency analysis, the 382 

fitting degree of data is affected. However, it is still acceptable at the large amplitude of the blade. Combined with the 383 

actual test requirements, we should pay more attention to the conditions of large amplitude. 384 
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 388 

Figure 89: Relationship between amplitude and percentage drop in resonance frequency: (a) 84m blade in flap-wise direction ( 𝑹𝟐 =389 

𝟎. 𝟗𝟖𝟏𝟒); (b) 84m blade in edge-wise direction ( 𝑹𝟐 = 𝟎. 𝟗𝟖𝟐𝟗); (c) 94m blade in flap-wise direction ( 𝑹𝟐 = 𝟎. 𝟗𝟖𝟔𝟏); (d) 94m blade 390 

in edge-wise direction ( 𝑹𝟐 = 𝟎. 𝟗𝟖𝟑𝟏) 391 

 392 

Figure 10: The sweep spectrum of the blade under different target amplitudes  393 

Taking 94m blade as an example, the sweep spectrum of the blade under different target amplitudes is shown in Fig. 10. 394 

It can be seen from Fig.10 that different excitation frequencies cause different blade responses. The resonance frequency of 395 

the system decreases with the increase of the maximum amplitude of the blade. This also verifies the applicability of the 396 

approximate amplitude-frequency properties obtained by the theory (Fig. 6 has a backbone curve similar to Fig. 10). 397 

4.1.2 Effects of radius of the seesaw on resonance frequency and load distribution 398 

Considering the actual experimental test setup, the blade amplitude in flap-wise direction is set to be about Y=2m and the 399 

length of the push rod is L=4m; the blade amplitude in edge-wise direction is about Y=1m and the length of the push rod is 400 

L=4m. The sweep-frequency analysis of the 84m and 94m blades in flap-wise and edge-wise directions is carried out 401 

respectively to obtain the resonance frequency of the test system. According to Eqs. (1318), appropriate function (Eqs. (1419)) 402 

is selected to fit the results, as shown in Fig. 911. Eqs. (19) is a function selected according to the degree of best fit. Considering 403 

equations (1318) and (1419), the small parameters encompass the influence of radius of the seesaw, which can be approximated 404 

by an exponential function. A larger radius of the seesaw results in a smaller decrease in the resonance frequency. Conversely, 405 

when the rotation radius of the seesaw is small, the resonance frequency experiences a rapid and nonlinear decrease. With R = 406 

3m, the drop in the resonance frequency of the 84m and 94m blades is approximately 1.6% in the flap-wise direction. Likewise, 407 

with R = 2m, the drop in the resonance frequency is approximately 1.1% in the edge-wise direction. 408 
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                      (1419) 409 

Where: a、b - parameters in exponential function. 410 

411 
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 413 
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 414 

Figure 911: Relationship between radius of the seesaw and percentage drop in resonance frequency: (a) 84m blade in flap-wise 415 

direction ( 𝑹𝟐 = 𝟎. 𝟗𝟗𝟕𝟑); (b) 84m blade in edge-wise direction ( 𝑹𝟐 = 𝟎. 𝟗𝟕𝟖𝟔); (c) 94m blade in flap-wise direction ( 𝑹𝟐 =416 

𝟎. 𝟗𝟖𝟖𝟒); (d) 94m blade in edge-wise direction( 𝑹𝟐 = 𝟎. 𝟗𝟖𝟗𝟎) 417 

418 

 419 

Figure 1012: Relationship between radius of the seesaw and blade load distribution: (a) 84m blade in flap-wise direction (b) 84m 420 

blade in edge-wise direction (c) 94m blade in flap-wise direction (d) 94m blade in edge-wise direction 421 

In order to compare the influence of nonlinearity on the blade load distribution, the blade bending moment 422 

distribution can be calculated by using constant displacement of the exciting point and inertial load provided by virtual 423 

mass motion. The excitation position is the same as installation position of the virtual masses closest to the tip of the 424 
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blade, and the specific values are shown in Table 2. The excitation frequency is the resonance frequency of the respective 425 

vibration direction, which is obtained by the sweep frequency analysis. 426 

The radius of the seesaw influences the characteristics of the testing system and alters the distribution of blade loads, as 427 

shown in Fig. 1012. In the case of 𝑅 = ∞, the virtual masses shift from rotation to translation in the uniaxial test, effectively 428 

simulating additional masses that are directly fixed onto the blade. As 𝑅 decreases, the amplitude of blade loads reduces 429 

rapidly.  Consequently, there is an approximate 3% decrease in the overall load distribution in the flap-wise direction, 430 

resulting in a reduction in the area of interest the area which is actually fully tested will be reduced. Given the roughly similar 431 

amplitudes, lower resonance frequencies frequency results in reduced inertial loads on the blade. Therefore, compensatory 432 

measures such as increasing the excitation level are necessary during the actual test. However, this requires more powerful 433 

excitation equipment.  434 

4.3 2 Effects of virtual masses on biaxial test 435 

In Section 4.1, only the effect of virtual masses on the uniaxial test is considered, which can intuitively see the influence of 436 

independent parameters on the vibration characteristics of the test system and blade load distribution from the uniaxial model. 437 

However, it is not enough to consider only the uniaxial vibration, but also the effect of virtual masses on the system in the 438 

biaxial vibration. Virtual masses will affect the resonance characteristics and load distribution in both flap-wise and edge-wise 439 

directions. In the biaxial fatigue test, the blade has a complex spatial trajectory, and the test system will be affected by multiple 440 

nonlinear parameters at the same time. To find the resonance frequency of the two directions, it is necessary to use the 441 

simulation software for iterative calculation.the coupling of vibrations in both directions further exacerbates the nonlinearity 442 

of the test system.  443 

Taking 94m blade as an example, virtual masses are applied in both flap-wise and edge-wise directions. Modal analysis 444 

and frequency sweep analysis are used to obtain the frequencies at which specific excitations are applied to the test system. 445 

Combined with the actual working conditions, the flap amplitude at 63% position of the blade is about 2m, and the edge 446 

amplitude at 52% position of the blade is about 1m. The resonance frequencies under different conditions are The parameters 447 

are shown in Table 3, with R = 4m and L = 4m. In fact, the oscillations in flap-wise and edge-wise direction must not be 448 

evaluated separately as they influence each other, so the resonance frequency of the blade in each direction is obtained 449 

by sweeping frequency iteration. The spatial coupling trajectory of the blade can be obtained, as shown in Fig. 11. The results 450 

show that the resonance frequencies decrease compared to uniaxial test, especially in the flap-wise direction, due to the 451 

influence of the virtual masses in both vibration directions. This is because the flap-wise direction has a larger amplitude, and 452 

the inertial forces generated by the virtual masses in the edge-wise direction produce more significant inertial component 453 

forces to the flap-wise direction. Additionally, if do not consider the influence of the blade's structural twist. It can be seen 454 

from Fig.11 that the envelope of the blade's spatial trajectory is not a regular quadrilateral, which poses new challenges for 455 

adjusting the biaxial load distribution and damage assessment.Fig. 12 shows the spatial trajectory of the blade under the action 456 

of different virtual mass mechanisms. The results show three main characteristics: 1) Under the same exciting force, the 457 

resonance frequency of the two directions in the biaxial test is lower than that of the uniaxial test, which indicates that the 458 

virtual masses affect both vibration directions. 2) Compared with the ideal working condition, the virtual masses will deform 459 

the space trajectory of the blade (even considering the structural torsion of the blade), which is determined by the motion 460 

characteristics of mechanism. In addition, the deformation of the trajectory may bring higher requirements for the actual 461 

damage assessment of the blade. 3) Under the same exciting force, the difference between the average flap amplitude of the 462 

blade using the rotating virtual mass mechanism and the average flap amplitude under the ideal condition is 9%, and the 463 

difference between the average edge amplitude and the average edge amplitude under the ideal condition is nearly 11%, as 464 

shown in Table 4. Combined with the effect of reduced resonance frequency and amplitude, the biaxial load distribution level 465 

of the blade will be further reduced compared with the uniaxial test, which means that more energy input is required. 466 

Table3. Biaxial excitation parameters of 94m 467 

 Virtual masses and exciting point Modal analysis Sweep-frequency analysis 
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Position 

[% of Blade length] 

Force 

[N] 

Natural frequency 

[Hz] 

Amplitude at 

63% position 

[m] 

Resonance frequency  

[Hz] 

Amplitude at 

63% position 

[m] 

Flap-wise 63% 3800 0.377 1.685 0.372 1.893 

Edge-wise 52% 7000 0.589 1.292 0.586 1.402 

 468 

 469 

 470 

Figure 1113: Biaxial trajectory of blade-virtual masses test system with same exciting force (at 63% of the blade position): (a) 471 
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Natural frequency excitation (b) Resonance frequency excitation（Rotation）;（c）Resonance frequency excitation（Actual 472 

Translation）;（d）Resonance frequency excitation（Ideal Translation） 473 

Table3. Biaxial excitation parameters of 94m 474 

 
Virtual masses and 

exciting point Natural 

frequency 

[Hz] 

Sweep-frequency analysis 

Uniaxial resonance 

frequency (Rotation) 

[Hz] 

Biaxial resonance frequency 

[Hz] 

 

Position 

[%] 

Force 

[N] 

Rotation Actual translation Ideal translation 

Flap 63% 3800 0.377 0.373 0.369 0.375 0.377 

Edge 52% 7000 0.589 0.587 0.583 0.587 0.589 

Table4. Biaxial amplitude of 94m 475 

Biaxial average amplitude [m] 

 Rotation Actual translation Ideal translation 

Flap 1.923 2.113 2.154 

Edge 1.447 1.511 1.630 

 476 

5 Conclusion 477 

The nonlinear effect of virtual mass device on blade test system is discussed in this paper. In actual working conditions, the 478 

test system is limited by the size of the virtual mass mechanism and the amplitude of the blade, and its resonance characteristics 479 

will be changed. This paper firstly analyzed the nonlinearity of the system resonance characteristics from the mechanism of 480 

the change of the inertia force of the virtual mass, and established a blade uniaxial theoretical model to explore the influence 481 

of the amplitude of the blade and the size of the seesaw on the resonance frequency. Based on the above content, the 482 

approximate nonlinear amplitude-frequency characteristic curve of the test system is obtained. Then the software is used to 483 

simulate the two blades by the transient sweep method, and the applicability of the theoretical model is verified. 484 

For the uniaxial theoretical model, the increase of blade amplitude、the shortening of seesaw size and the increase of 485 

counterweight mass will reduce the resonance frequency in the main vibration direction. However, the uniaxial simulation 486 

results of two blades show that the amplitude of the blade or the size of the seesaw have limited influence on the resonance 487 

frequency. For example, when the size of the mechanism is unchanged (𝐿 = 𝑅 = 4𝑚), only the influence of blade amplitude 488 

on the system is considered. When the amplitude of the flapping direction increases to 2.6m, the resonance frequency in this 489 

direction decreases by nearly 2% compared with the natural frequency; Combined with the actual working conditions, when 490 

the amplitude of the flap-wise direction is maintained about 2m, the length of the seesaw is shortened to 3m, and the resonance 491 

frequency is reduced by nearly 2%. The target amplitude of the edge-wise is usually small compared with the flap-wise 492 

direction, so shortening the length of the seesaw only reduces the resonance frequency by 1.1%. In the case of the same 493 

amplitude, the shortening of seesaw length will reduce the blade load distribution level, and the flap-wise load level will 494 

decrease by up to 3% at most. Due to the small amplitude of the edge-wise, the load level in this direction does not drop 495 
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significantly. 496 

Although the nonlinear factors have less influence on the uniaxial test, they have more influence on the biaxial test. Under 497 

the same excitation force and approximate target amplitude (Y≈2m), the rotating virtual masses induces lower resonance 498 

frequency in biaxial vibration than in uniaxial test (Flap-wise direction: 1.06% decrease in uniaxial vibration, 2.12% decrease 499 

in biaxial vibration; Edge-wise direction: 0.34% decrease in uniaxial, 1.02% decrease in biaxial). In addition, under the same 500 

exciting force, the difference between the average flap amplitude of the blade using the rotating virtual mass mechanism and 501 

the average flap amplitude under the ideal condition is 9%, and the difference between the average edge amplitude and the 502 

average edge amplitude under the ideal condition is nearly 11%. Furthermore, the virtual masses mechanism can also cause 503 

the deformation of the space trajectory envelope of the blade. Under the combined action of many factors, the nonlinear effect 504 

will be further strengthened. 505 

In conclusion, the virtual masses mechanism will bring nonlinear effect to the test system due to its own motion 506 

characteristics, and the nonlinear factors mainly include the amplitude of the blade, the size of the mechanism and the mass of 507 

the counterweight. In the case of small amplitude, the nonlinear effect is not obvious and has not great influence on the blade 508 

load level. In the biaxial large amplitude test, the nonlinear effect is enhanced and the blade trajectory is deformed. The 509 

resonance frequency of the system will be further reduced. Under the same excitation, the actual blade amplitude is less than 510 

the target amplitude. These characteristics mean that biaxial test requires larger excitation equipment and higher requirements 511 

for blade damage calculation and load formulation. 512 

This paper explores the effects of virtual masses device applied to blade biaxial fatigue test on the response characteristics of 513 

the test system. Different from the additional masses directly installed on the blade, the nonlinearity of the test system originates 514 

from kinematics of the virtual masses. Based on the analysis above, the main conclusions are shown as follows: 515 

1. The blade-virtual masses test system shows nonlinear amplitude-frequency characteristics. The square of the resonance 516 

frequency is inversely proportional to the polynomial steady-state response of the system. In the case of 80m blade, the 517 

resonance frequency of the test system decreases by approximately 2% when amplitude is 2.6m during flap-wise vibration. 518 

2. The radius of the seesaw will also affect the vibration characteristics of the test system. The shorter the radius of the 519 

seesaw, the stronger the nonlinear effects on the test system. When the blade flap amplitude is 2m and the radius is 3m, the 520 

resonance frequency decreases by up to 1.8%. Due to the limited amplitude in the edge-wise direction, the radius of the seesaw 521 

has minimal impact on the resonance frequency. 522 

3. The rotation radius of the seesaw will also affect the load distribution of the blade. Shortening the radius will reduce 523 

the amplitude of blade load and the verification area of interest. The blade load distribution decreases by nearly 3% in the flap-524 

wise direction under the given operating conditions. 525 

4. When subjected to both large amplitude and short radius of the seesaw, the resonance frequency will decrease more526 

 significantly. It is important and necessary to consider the size and strength of the push rod and seesaw during practical 527 

application. In addition to the influence on the resonance frequency and load distribution, the size and strength of the push rod 528 

and seesaw also limit the maximum amplitude of the blade and the service life of the mechanism. 529 
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