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The biaxial fatigue test of wind turbine blades is helpful to shorten the test time and is more suitable for the actual operating

conditions. Adding tuning masses to the blade is a common method for blade uniaxial test at present, and its purpose is to

adjust the load distribution in one direction of the blade. However, the tuning masses on the blade will affect the load
distribution in the direction of the blade flap-wise and edge-wise at the same time in the biaxial test, so the concept of "virtual

masses' is proposed to realize the decoupling of the load distribution in the biaxial test. Due to the limitation of the size of the

virtual masses mechanism and the complex motion trajectory of the blade, the actual inertial effect provided by the virtual
masses is different from the ideal situation, which will affect the resonance characteristics of the test system and the load

distribution of the blade. Therefore, in order to evaluate the effect of the nonlinear effect introduced by the virtual masses on

the resonance characteristics of the test system and the blade load distribution, the equivalent dynamic model of the bladed
virtual mass test system was established by using the Lagrange method. Then, the nonlinear effects of blade amplitude and

virtual mass installation parameters on the test system are obtained by numerical method. Then, based on the nonlinear

vibration theory, the approximate nonlinear amplitude-frequency characteristics of the test system are obtained, that is, the

resonance frequency of the test system will decrease with the increase of the blade amplitude. Through the simulation analysis

of two 80m+ blades, the applicability of the theoretical method is verified. It can be seen from the simulation results of the

simulated uniaxial test that the larger the amplitude of the blade and the shorter the connection rod will reduce the resonance

frequency of the test system. When the vibration amplitude at the excitation point is the same, a lower resonance frequency

results in a smaller load distribution level, that is, the area which is actually fully tested will be reduced. In the biaxial simulation
test, the resonance frequency of the test system will be further reduced because the virtual masses will be affected by the

coupled motion in both directions at the same time. Besides, the introduction of an external mechanism of the virtual mass will
also cause deformation of the envelope of the blade biaxial trajectory, which will further affect the load distribution of the
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blade. This work explores the nonlinear influence of virtual mass on the actual fatigue test, provides the corresponding

theoretical basis and reference for the test organization to adjust the tuning masses scheme in advance to adjust the load

distribution and select the exciting equipment.

1 Introduction

As an important component of wind turbine, the cost of blades accounts for 20% of the overall machine, so the lifetime
of blades is the premise to ensure safe and stable operation of the wind turbine (Zhang et al., 2015; Liao et al., 2016). To verify
the reliability of the blade under the actual operating field, the International Electrotechnical Commission (IEC) points out that
the full-scale fatigue test of rotor blades is needed to be performed (IEC, 2014);. In the actual blade fatigue test, which-means
two separate oscillations tests with over one million damage-equivalent loads cycles are performed-atthetst-and 2nd-natural
Lt nth s Bl

The fatigue test requires that the load in the area of interest along the blade span-wise direction matches or exceeds the

design value, while keeping the exceedance as small as possible in order to avoid unrealistic failures(DNV GL AS, 2015). To
satisfy the above requirements, additional masses are usually attached to the blade to tune the test load distribution which needs

to be optimized by determining the optimal sassmasses distribution.

To save testing time and to emulate the comprehensive damage along the circumference of the blade, several institutions
began to study and design biaxial fatigue test (White et al., 2004; Greaves et al., 2012; Snowberg et al., 2014; Hughes et al.,

1999; Liao et al., 2014;), namely to excites the blade in both directions simultaneously. In the previous resonance biaxial test,

a reasonable load distribution (in both directions) will be obtained by optimizing the position and tuning masses installed

on the blade. However, the tuning masses installed on the blade will affect the vibration characteristics (mode shape and

frequency) in both flap-wise and edge-wise directions, which brings difficulty to the biaxial load match optimization,

and there may be excessive overload in a certain area of the blade when choosing a compromise.

To simplify load match, the extra mechanism makes the tuning masses only act in one vibration direction (called

virtual masses), and the biaxial load match is equivalent to the combination of the load match of two single axis test.

The purpose of the virtual masses is to decouple the biaxial load, so that the biaxial load match is equivalent to the

combination of the load match of two single axis test. Gempared—wr&h—ﬂq%wﬂa*lal—ﬁaﬂgu%test—m%bm—fangt%teskhas

test—msﬂmﬂeﬂsm&edueeﬂ%e%eepmf—w%mal—m&sse&Post et al. (2016) ﬁrstly proposed the concept of Vlrtual masses to
tune both natural frequencies independently in the two directions, and to eliminate the coupling phenomenon of test
bending moments during biaxial test. Melcher et al. (2020a. 262+2020b) used elastic elements to adjust blade stiffness,

and optimized biaxial fatigue test parameters based on virtual masses and elastic elements. Zhang et al. (2020) and Lu
et al. (2022) carried out research on biaxial load matching and design using virtual masses. The virtual masses used for

mass decoupling is ideally regarded as translational motion and the push rod between the virtual mass and the blade is

always in line with the main vibration in the above workFhe-abeveresearch-workregards-the—~Artual massesused-for
masses-decouplingastranslationalmetion, which is difficult to apply to the actual test field. Because a larger and stronger

platform is needed to keep virtual mass translate in the edge-wise direction, which is difficult to achieve in a limited test

space. In the biaxial test, the platform may interfere with the push rod, espec1ally when the blade has a large amplitude
in the flap-wise direction. i i i i it

vibratien: Therefore, IWES conducted further research, designed a device to convert virtual masses from translation to
rotation, and applied it to the biaxial fatigue test which has a frequency ratio of 1:1 (Melcher et al., 2020c). Further, the

feasibility of the biaxial decoupling test of the bending moment was verified by the comparison of simulation and
experiment results (Melcher et al., 2020;_Castro et al., 2021; Falko et al., 2020-Fatke-et-al52020:Castro-etal52021). In

fact, in the view of the motion characteristics, the inertia force generated by rotating virtual masses is different from that

generated by translational virtual masses. Taking a uniaxial test as an example, the translational virtual masses move

synchronously with the blade, which behave like a mass acting in just one direction from a numerical standpoint. The
2/ 24
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translational virtual masses have the same motion characteristics as the additional tuning masses. Therefore, although
the virtual mass is not on the blade, the inertia force generated by it and the inertia force generated by the additional

tuning masses are in the same direction and magnitude. The rotating virtual masses are limited by the constraints of the
seesaw, and its motion path is the rotating motion around the center of the seesaw. Therefore, the direction and magnitude

of the inertial force generated by the rotation of the virtual mass will change. and it is not equivalent to the translational

virtual masses. However, changes in the inertia force provided by the virtual masses will cause changes in the

characteristics of the system, which may further cause changes in the blade load distribution, and may put forward higher
requirements for vibration excitation equipment.

To reveal the vibration mechanism of the blade-virtual masses test system and provide a more rigorous theoretical basis

for the biaxial load matching theory of the blade. In this paper, a theoretical model of blade-virtual masses uniaxial test system

is established. The specific nonlinear impact of single parameter related to virtual masses on the characteristics of the test

system can be obtained intuitively through the uniaxial model. Then, two blades over 80m were simulated in ADAMS. Uniaxial

simulation was used to verify the applicability of the theoretical model, including the nonlinear amplitude-frequency

characteristics of the system and the effects of virtual mass installation parameters (such as seesaw length) on the load

distribution of the blade. Biaxial simulation is used to analyze the nonlinear effect of virtual mass on the system under the

simultaneous action of many factors. This work will be used in the future research to adopt reasonable control strategy and

adjust the counterweight scheme in advance to achieve the target damage of the blade. Fhis—werk-establishes-the-dynamie

2 Blade-virtual masses equivalent dynamic model

The tuningadditienal masses can change the modal characteristics of the testing system to adjust the test load distribution of
the blade, which is essentially bending moment caused by the inertia force brought by the reciprocating motion of the self-

weight and additional masses. In the common fatigue test system, the additional masses are directly attached to the blade, as

shown in Fig. 1 (a). When the tuningadditienal masses are determined, the modal characteristics of the testing system are
basically determined;-as-shown-inFig—t(a). This means that, without considering the air damping, the resonant frequency of
the system remains unchanged.

In the biaxial fatigue test, the tuningadditional mass—deeceuples—masses decouple the biaxial load by seesaw, and the
tuningadditional masses are is-called virtual masses, as shown in Fig. 1 (b). In-this-installation-cendition;-Tthe inertia force
generated by the virtual masses mainly enty acts in the_edge-wise direction_in Fig. 1 (b)-efan-individual-blade-mede. The

mechanism for mounting the virtual sassmasses consists of a push rod and a seesaw. The push+ed;-blade fixture, push rod,

and seesaw are connected through a universal joint, and the seesaw can rotate around the center position. Tuning massesMasses

are located at both ends of the seesaw to offset each other's gravity. After the exciting force is applied to the blade, the tuning

masses move with the blade and rotate around the center of the seesaw to provide the inertia force for the blade through the

push rod. However, due to the motion characteristics of the virtual massmasses mechanism, the motion of the virtual
massmasses cannot be perfectly synchronized with the blade motion. Therefore, the inertia force generated by the rotation of
the virtual massmasses differs from the inertia force generated by the traditional tuning masses. To preeiselyevaluate the

specific impacts of single parameter related to virtual masses on the test systemwvirtaal-massrotation-on-the bladetestsystem,

it is necessary to establish a corresponding uniaxial theoretical model for analysis from the perspective of control variable
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Figure 1: Masses match of blade fatigue test: (a) traditional tuning masses setup (b) virtual masses setup.

2.1 The comparison on the amplitude of inertia force

The uniaxial test is taken as an example to illustrate the difference between virtual masses translation and rotation, as shown

in Fig.2. The inertial force generated by rotating virtual masses of the blade at the maximum amplitude can be analyzed, as

shown in Fig.3. The relationship of the motion between virtual masses and blade can be obtained:

{vm=vM+va
a,=ah+ay, =ay+an,+a,y

0]

Where: v,,,_- velocity of virtual masses; v,,_- velocity of blade equivalent mass; v,,,_- relative velocity; a}},,,_- relative

normal acceleration; a,,_ - the acceleration of the virtual masses; aj,,_- relative tangential acceleration; al}, - normal

acceleration; aj, - tangential acceleration.

The blade at the maximum amplitude satisfies: vy, = 0; v, = 0;_alky, = 0;_a}, = 0.

The angular acceleration of the virtual mass at the maximum amplitude of the blade can be obtained:

w?Y cos(By)
R cos(6p—Po)

(2)

|am| =

Where: 6_- Rotation angle of the seesaw at the maximum amplitude of the blade; [, - Angle between the push rod and the

main vibration direction at the maximum amplitude of the blade; «,, - Angular acceleration of the virtual mass at the

maximum amplitude of the blade.

According to Egs. (1) and Egs. (2), the rotating inertia force Fj_ generated by the rotating virtual mass at the maximum
amplitude of the blade can be obtained:

_ mw?Y cos(By)

Fr = cos(80—Bo) (3)
The inertia force F,,; transmitted to the main vibration direction of the blade through the push rod can be obtained:
2 2
Fmt _ Frcos(By) _ mw?Y cos?(By) (4)

cos(6p—Bo)  cos2(6—Bo)

The translational virtual masses are consistent with the motion state of the blade, so the inertial force generated by the

translational virtual masses can be obtained based on Egs. (4):
Firg = mw?Y (6)
According to Egs. (4) and Egs. (5). there are differences in the inertial forces acting on the blades by the two setups, which

are mainly caused by the difference in the movement trajectory of masses.
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Figure 2: The comparison on inertia force: (a) Translational virtual masses setup (b) Rotating virtual masses setup.

2.2 Model using the Lagrange method

—In fact, there will be inertial force coupling in

the actual biaxial testing process_(virtual masses translation or rotation), which will cause multiple factors to work together

and make it difficult to analyze the system characteristics. Therefore, it is desirable to choose the uniaxial test to analyze the

nonlinear influence introduced by the virtual masses, which does not mean that the biaxial test can be regarded as the linear

superposition of the uniaxial test. Essentially, the load distribution in the main vibration direction of the blade is adjusted by

the component of the inertia force transmitted by the push rod in this direction. Because of the angle between the push rod
direction and the vibration direction, blade displacement is not in line with the push rod. the-motion-of the virtual-mass

main-vibration-direetion. To more intuitively analyze the impact of virtual mass-masses on the blade test system, the mass of
the push rod and the seesaw are ignored in modeling according to the control variable method, and only their geometric

dimensions are considered. Take taking the example of blade edge-wise direction test, the blade model is simplified as shown

in Fig. 23. Moreover, the inertial force of the virtual masses also affects the flap-wise direction of the blade. However, since
the frequency of the inertial force is close to the first order modal frequency in edge-wise direction, the perturbation to the
flap-wise direction is relatively small. Therefore, only the influence of virtual massmasses on the vibration characteristics in

the main testing direction needs to be considered during the uniaxial test._Section 2.1 only analyzes the difference of inertial

force amplitude in Fig. 2 and this section set up a uniaxial theoretical model to evaluate the effect of virtual masses rotation

on the vibration characteristics of the test system. In this paper, the Lagrange method is used to analyze the uniaxial model

(Liu et al., 2019). The initial state of the test system is assumed when the blade is stationary, the push rod is horizontal and the

seesaw is vertical.

Figure 23: Virtual masses setup for blade fatigue test.
57/ 24
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Where: T- kinetic energy; V- potential energy; D- dissipated energy; q;- generalized coordinate; ¢; - generalized
velocity; Q; - generalized force.

By selecting the generalized coordinate g = y, and based on the motion relationship in Fig. 23, the displacement and

velocity relationships of the test system can be obtained:

y+Lcosf —Rsinf =1L
{ Lsinf+Rcos8 =R &)
y—LBsinB —ROcosh =0 38)
LB cosB —ROsind =0 -
T, V and D can be calculated as
_l .2 l 2‘2_3 . 2 l . 2 COSZﬁ
T =ZMy? + mR*0% = S My* + -my* —=o (49)
v =3ky’ (10
D =~cy? — (611

Where: L - the length of the push rod; R - the radius of the seesaw; S - the angle between the push rod and the horizontal
direction; 6 - the angle between the seesaw and the vertical direction; M - blade equivalent mass; m — virtual masses; k
- blade equivalent stiffness; ¢ - blade equivalent damping.

According to Egs. (27) and Eqs. (38), the relevant terms in Eqs. (+6) are obtained as

d (0T _ /. .. cos’p . d [ cos®B
dt (63‘1) =My +my cosZ(0-) tmy dt [6052(8—6)
T _ 1 .5 8 [ cos’B

ay 2 m dy Lcos2(6-p)

1% = _ (#12)
ay - ky
oY .
- =Ccy

ay
QM) =F@®
Then, the dynamic differential equation of test system is

my? cos B [cos? Bsin(6—B)  sin? 6

cos*(0-p) R L ] = F(t) (8Q)

cos?f ) .. .
{M+mm}y+cy+ky+

Where: By comparison with Egs. (4), it can be seen that the inertial force terms of two equations are same at the maximum

amplitude of the blade.

ino L+y L(R\/—(yz + 2Ly — 2LR)(y2 + 2Ly+ 2LR)+y3+2L3+4L2y+3Ly2)
sinf = — —
R

2R(L3+2L2y+LR%+Ly?)

L(L + ¥)[Ry—(y2+2Ly—2LR)(y2+2Ly+2LR)+2L3+y3+3Ly?+41%y]  2L%+2Ly—-2 2+y?

cosf =
2R2(L3+2L2y+LR%+Ly?) 2R?
2 2 —(v2 — 2 3 3 2 2
sin,B __2L°+2Ly+ (L+Y)[RY -2 +2Ly—2LR)(y2+2Ly+2LR)+2L3+y3 +3Ly% +4L2%y]
- 2LR 2R(L3+2L2y+LR2+Ly2)
cosp = Ry —(¥2+2Ly—2LR)(y2+2Ly+2LR)+2L3+y3+3Ly? +4L%y

2(L342L2y+LR2+Ly?2)
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According to Egs. (813), it can be seen that rotation of virtual masses introduces nonlinear terms to the test system, and
both the angle 6 and S are nonlinear functions of the blade response y. Due to the complexity of the dynamic equation, it
is difficult to obtain the corresponding analytical expression. Therefore, the numerical analysis methods are used to solve the

equation. A numerical simulation model based on the differential equation of the system motion is established in

MATLAB SIMULINK, and the corresponding resonance frequency of the equivalent system can be obtained by
setting different initial displacements. By modifying the value of the different parameter (m. k. R), the influence of

the parameter change on the resonance frequency of the test system can be obtained. As mentioned previously, the
nonlinear factors that affect the characteristics of the test system mainly come from installation parameters (pushrod length
and seesaw radius) and blade response. The design length of the push rod generally typieatly remains unchanged due to
space limitations at the test site. However, the seesaw radius offers greater design flexibility. Thus, the primary focus is on
evaluating the impact of the seesaw radius R and blade response y on the vibration characteristics of the blade. To

illustrate this, the equivalent parameters of 80m blade are brought into the differential equation and numerically analyzed,

and the influence of blade amplitude on the resonance frequency of the test system is investigated, as demonstrated in Fig. 4.-

Figure 3-4 (a) shows that the resonance frequency of the test system decreases nonlinearly with an increase in blade

amplitude and virtual masses m further determines the rate of decrease in resonance frequency. The equivalent stiffness k
has the ability to alter the natural frequency of the test system. However, it can be seen Fig. 3-4 (b) that k cannot change the
rate of decrease in resonance frequency with other parameters unchanged, which indicates that the equivalent stiffness is not

a nonlinear factor affecting the vibration characteristics of the testing system. Fig. 4 (c) shows that the increase of M_will

delay the decline rate of the natural frequency of the system, because the proportion of the virtual masses in the inertia force
term decreases. It can be seen from Fig. 4 (d) Fig-—3-(a)-shews that the radius of the seesaw will also affect the nonlinear

amplitude-frequency characteristics of the test system and the rate of decrease in resonance frequency.

(@ o r y (b) o . . Y r
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sl —o—m=2000 | —6—k=210000
- —a—m=3000 00 —a—k=310000) |
RS X
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S 2 \ ,g'-l.:
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5 3
& I
25
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0 0.3 1 15 2 25 3 0 0.5 1 15 2 25 3
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Figure 34: The relationship between resonanceresenant frequency and amplitude of the blade at different parameters: (a) M =
14000kg; k = 210000N/m; L=4m; R=4m (b) M =14000kg; m =2000kg; L=4m; R=4m (c) k=210000N/
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2.2-3 Analysis of amplitude-frequency characteristics of the model

i : i ! —The dynamic differential equations of the blade-virtual masses test
system, established through the Lagrange method, are highly complex and can only be resolved numerically to derive the

correlations among the relevant parameters and the resonance frequency of the test system. To guantitativelyfurther analyze
8/ 24
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the nonlinear amplitude-frequency characteristics of the test system, it is necessary to eenstraet-create a theoretical model of

the test system based on nonlinear dynamics_(Liu et al., 2001). According to linear vibration theory_(Liu et al., 2001), the

factors that primarily influence the inherent characteristics of a linear system are the inertial force term and the elastic force
term. In fact, the inherent characteristics of the blade-virtual masses test system are primarily determined by the inertial force

term associated with the introduction of virtual massmasses and the response of the blade Thus, the weakly nonlinear dynamic

equation of the blade-virtual massmasses test system in Egs. (13)Fig—2 can be approximated as:

M+m)f(y)y +cy+ ky = F,cos(wt + 0) _ (919
Where: f(y) =1+ v+ &Y% + &Y% + e, ¢ =2{(M + Mwy; k= (M +m)w?; Fy = Bk; g+ &+ &3+ & -Small
parameters related to M. m. L and R; { - Damping ratio; w, - Natural frequency; w - Excitation frequency; 6 - Phase
difference between steady-state response and excitation.

Ignoring the small parameters, Eqs. (914) is transformed into the vibration equation of a linear system. This means that
the linear system is derived from the original nonlinear system. To quantitatively analyze the modal characteristics of the test
system, the approximate analytical method can be employed by considering the nonlinear factor as a perturbation to the linear
system, yielding an approximate analytical solution for the nonlinear system. Among various approximate analytical methods,
the harmonic balance method is particularly notable due to its clear conceptual foundation. It expands both the excitation term
and the solution of the equation into a Fourier series. From a physical perspective, the coefficients of the harmonic terms of
the same order at both ends of the dynamic equation must be equal to maintain a balance between the excitation and inertia

forces. When the condition of the test system is determined, the value of the small parameter in Egs. (914) is also determined.

For the blade-virtual masses testing system, it is assumed that its steady-state response is still periodic, but the resonance
frequency is different from the natural frequency of the derived system. The basic solution is expanded into the Fourier series
of the excitation frequency and the fundamental component is retained. The response of the system as Eq. (1015) indicates.
y(£) = Yycos (wt) __(¥615)
Where: Y, - Amplitude of blade steady-state response.

By substituting Eq. (3015) into Eq. (914) and applying the triangle transform and harmonic balance to eliminate the phase

difference 6 to achieve the relationship between the amplitude and frequency of the test system, as Eq. (++16) indicates.
_ 2 3 2 4 10 4\1? 2 _ (B 2
[1 s (1 + 4€2Y0 +t &Yy )] + (2(s)* = (Yo) _ (H16)

Where: s = w/w,.
According to Eq. (H16), The amplitude-frequency and phase-frequency characteristics of the nonlinear system can be
obtained, as Eq. (+217) indicates.

Yo _ 1

B \/[1—52(1+%gz Y02+%s4yo4)]2+(2{s)2

—(217)

2{s

3 10 p)
—s2(143 2,10 )
s (1+ £2Y0 " +7z€4Y0

6 = arctan [1

When ¢, = ¢, = 0, Eq. (4217) describes the amplitude-frequency characteristics of a linear system, as shown in Fig. 45.
When the small parameters are non-zero, the amplitude-frequency characteristic curve of the nonlinear system is depicted in
Fig. 56. Similar to forced vibrations in linear systems, nonlinear systems also exhibit similar amplitude-frequency characteristic
curves. However, the backbone of the support curve clusters is not straight but inclined. This backbone curve represents the
variation of the free vibration frequency of the nonlinear system with respect to the amplitude when there is no external
excitation_(Liu et al., 2001). By setting B=1 and { = 0 in Eq. (++16), the equation for this backbone curve can be obtained, as
Eq. (4318) indicates.

w? = ] 1318
_(B13)

PR L)
(1+482Y0 +16€4Y0
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Eq. (4318) shows that the resonance frequency of the blade-virtual masses test system decreases with the increase of the
amplitude of the blade and there exists the nonlinear relationship between the square of the frequency ratio and the amplitude.
Figure 5-6 shows that the small parameters in the inertial force term will affect the frequency of free vibration. As these
parameters decrease, the amplitude-frequency characteristic curve of a nonlinear system approaches that of a linear system,

and the backbone curve approaches a value close to 1.
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P96 Figure 6 shows the influence of different small parameters on the amplitude-frequency characteristics of the system.
PO7 In fact, specific small parameter values mean specific working conditions, that is, when the virtual mass related
P98  parameters (such as L. R. m) are determined, the amplitude-frequency characteristics of the system will also be
P99 determined. Therefore, as long as the setups are determined, the dynamic characteristics of the test system will be
30O determined, whether it is a single axis test or a biaxial test.
301 In addition, the amplitude hopping phenomenon, also known as dynamic bifurcation, also appears in Figure 6. In
302 fact, there is no obvious dynamic bifurcation phenomenon in the fatigue test, because the nonlinearity of the system is
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weak, and the amplitude of the blade is limited by the size of the mechanism. Moreover, when the influence of blade

amplitude on the resonance frequency of the system is discussed in the following paper, more attention is paid to the

backbone curve in the shape of the black dotted line in Fig. 6.

3 Dynamic simulation analysis

To validate the nonlinear characteristics of the blade-virtual sassmasses test system that has been established, it is necessary
to utilize multi-body dynamics simulation software ADAMS to create a realistic blade model for analysis. Based on the
sectional properties and tuning masses of the blade, ADAMS metion—-analysisseftware can be employed for modeling and
analyzing the blade-virtual masses system. ADAMS Fhe-sinulationsoftware can perform modal analysis and transient sweep
frequency harmenie analysis to obtain the changing characteristic of the testing system under various operating conditions. As

the foundation for other dynamics analysis, modal analysis is used to determine the modal characteristics of structures.

Regarding the weakness of modal analysis function in the software, which cannot consider the effects of the response on the

modal characteristics of the system, it is necessary to take further transient sweep-frequency analysis to obtain the resonance

characteristics of the system.

3.1 Simulation MedelingModelling

To verify that the simplified equivalent theoretical model can reflect the characteristics of actual test system, the simulation

model is established in software. Generally, only the cross-section stiffness (flap-wise and edge-wise) and linear density are

considered in the simulation model (Post et al., 2016), because the torsional natural frequency is much higher than the natural

frequency in the direction of flap-wise and edge-wise, it is difficult to stimulate large torsional deformation. The root of the

blade was set as a fixed constraint to simulate the cantilever beam condition similar to when the blade is mounted on the test
rig. The equivalent damping ratio of the blade changes during vibration, resulting in a change in the resonance frequency of

the test system_(Lee.. 2018; Liu et al., 2019). In order to accurately assess the influence of virtual massmasses on the

characteristics of the testing system, aerodynamic damping is not considered in the simulation model. The blade model was

built in the simulation software based on the parameters mentioned above, as shown in Fig. 67(a).

i/ (b/
Figure 67: Dynamics simulation model of test system: (a) The blade simulation model (b) The blade-virtual masses simulation
model(flap-wise)

3.2 Model validity verification

To ensure the applicability_and rationality of the model, modal analysis is carried out and compared with the transfer-
matrix method (TMM) and the test data, taking-the-calenlation-of the-flap-wise-direction-as-an-example;as shown in Table 1.

The transfer matrix method is an approximate theoretical method used to calculate the natural frequencies and modes of

systems with chain structures. The transfer matrix method separates the structure with inertia and elasticity and obtains the

relationship between the discrete elements. The natural frequencies and modes of the systems can be solved according to the

boundary conditions. The transfer matrix method belongs to the physical discrete method of continuous system, which is

suitable for numerical solution of blade model. The blades in Table 1 were all subjected to actual modal tests, and the obtained
12 / 24
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frequency data are obtained from the frequency domain analysis of actual test data. The actual blade modal test was carried

out by hammer method. It can be seen that the simulation model of the test system has good applicability exhibits-a-hishlevel

ofaceuraey, with an error in the modal frequency of less than 4%.
Tablel. Blade-meodal-analysis-in-flap-wise-directionComparison of natural frequencies calculated by various methods

3.3 Simulation setup

Flap-wise 84m 94m
1st modal frequency Error 1st modal frequency Error
Method
[Hz] [%] [Hz] [%]
Test 0.394 - 0.365 -
TMM 0.397 +0.7 0.349 -4.38
Simulation 0.404 +2.54 0.377 +3.29
Edge-wise 84m 94m
1st modal frequency Error 1st modal frequency Error
Method
Hz % Hz %
Test 0.590 - 0.571 -
TMM 0.604 +2.37 0.561 -1.75
Simulation 0.610 +3.34 0.589 +3.15

With the purpose of demonstrating the nonlinear effects of rotating virtual masses on the testing system, it is necessary to add

virtual masses based on the blade model, as shown in Fig.67(b). The values of the additional masses are shown in Table 2 and

the section properties of the blades are shown in Fig. 78. The position and values of the tuningadditienal masses are

provided by the blade manufacturer. Virtual srassmasses elements are added at 62% and 49% of the 84m blade length in the

flap-wise and edge-wise directions respectively. Similarly, virtual srass-masses elements are added at 63% and 52% of the 94m

blade length in the flap-wise and edge-wise directions respectively (masses marked in black italics in Table 2). The constraints

for the seesaw, push rod, and virtual masses are set according to Fig. 1, where the rotation center of the seesaw is set as the

revolute pair and the seesaw and push rod are set as the rigid light rod. To evaluate and verify the effects of virtual masses

installation parameters and blade response on the vibration characteristics of the testing system, not only the effects of radius

of the seesaw and blade response on the resonance frequency, but also the effects of radius of the seesaw on the load distribution

of the blade with similar amplitude are analyzed through simulation.
Table2. Blade additional masses of 84m and 94m blade

94m

Flap-wise masses

Edge-wise masses

Flap-wise masses Edge-wise masses

Location Location
[kg] [kg] [kg] [kg]
26% 2835 42% 3000 3000
36% 3147 52% 4075
49% 6120 4075 63% 1116
62% 1117

13/ 24
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Figure 78: Section properties of the blade: (a) 84m blade (b) 94m blade

4 Results

According to the backbone in the amplitude-frequency characteristic curve of the blade-virtual masses test system, when the
operation condition determined, the square of the resonance frequency and the blade amplitude satisfy the relationship in Eqgs.

(4318). Thus, correlated simulation results are fitted using relevant functions to verify the relationship.

4.1 Effects of amplitude on resonance frequency

4.1.1 Effects of blade amplitude on resonance frequency

Set R = 4m and L = 4m and investigate the variation of the resonance frequency of test system under different amplitudes.
Sweep-frequency analysis is performed on the 84m and 94m blades in flap-wise and edge-wise directions respectively to obtain
the resonance frequencies of the test system under different steady-state amplitudes while the results are fitted according to

Egs. (4318), as shown in Fig. 89. In addition, the degree of fit is expressed by goodness of fit R?. The sweep frequency range

is defined as a bandwidth of 0.02Hz near the first natural frequency in the flap-wise or edge-wise direction, with an

action time of 1E4s and a resolution of 2e-6 Hz/sec. The frequency spectrum of the displacement of the exciting point

of the blade under the sweeping excitation is analyzed, and the frequency corresponding to the peak point is the resonance

frequency. The mechanism might reach the geometric limit of the push-rod parallel to the seesaw, so the limit

requirements of the mechanism need to be considered.

When amplitude of the blade is small, the percentage drop in resonance frequency is small. When amplitude of the blade
is large, the resonance frequency presents nonlinear rapid-deelinefaster. When the blade amplitude in flap-wise direction
reaches 2.6m, the resonance frequency of the 84m and 94m blades decreases by approximately 2.0%; When the blade
amplitude in edge-wise direction reaches 2.2m, the resonance frequency of the 84m and 94m blades decreases by

approximately 1.1%. Due to the limitation of resonance frequency extraction precision in sweep frequency analysis, the

fitting degree of data is affected. However, it is still acceptable at the large amplitude of the blade. Combined with the

actual test requirements, we should pay more attention to the conditions of large amplitude.
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Figure 10: The sweep spectrum of the blade under different target amplitudes

Taking 94m blade as an example, the sweep spectrum of the blade under different target amplitudes is shown in Fig. 10.

It can be seen from Fig.10 that different excitation frequencies cause different blade responses. The resonance frequency of

the system decreases with the increase of the maximum amplitude of the blade. This also verifies the applicability of the

approximate amplitude-frequency properties obtained by the theory (Fig. 6 has a backbone curve similar to Fig. 10).

4.1.2 Effects of radius of the seesaw on resonance frequency and load distribution

Considering the_actual experimental-test setup, the blade amplitude in flap-wise direction is set to be about Y=2m and the
length of the push rod is L=4m; the blade amplitude in edge-wise direction is about Y=1m and the length of the push rod is
L=4m. The sweep-frequency analysis of the 84m and 94m blades in flap-wise and edge-wise directions is carried out
respectively to obtain the resonance frequency of the test system. According to Egs. (1318), appropriate function (Eqs. (1419))

is selected to fit the results, as shown in Fig. 911. Egs. (19) is a function selected according to the degree of best fit. Considering

equations (+318) and (+419), the small parameters encompass the influence of radius of the seesaw, which can be approximated
by an exponential function. A larger radius of the seesaw results in a smaller decrease in the resonance frequency. Conversely,
when the rotation radius of the seesaw is small, the resonance frequency experiences a rapid-and-nonlinear decrease. With R =
3m, the drop in the resonance frequency of the 84m and 94m blades is approximately 1.6% in the flap-wise direction. Likewise,

with R = 2m, the drop in the resonance frequency is approximately 1.1% in the edge-wise direction.
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In order to compare the influence of nonlinearity on the blade load distribution, the blade bending moment

distribution can be calculated by using constant displacement of the exciting point and inertial load provided by virtual

mass motion. The excitation position is the same as installation position of the virtual masses closest to the tip of the
18 / 24
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blade, and the specific values are shown in Table 2. The excitation frequency is the resonance frequency of the respective

vibration direction, which is obtained by the sweep frequency analysis.

The radius of the seesaw influences the characteristics of the testing system and alters the distribution of blade loads, as

shown in Fig. 4812. In the case of R = oo, the virtual masses shift from rotation to translation_in the uniaxial test, effectively

simulating additional masses that are directly fixed onto the blade.-As—R—deecreases;—the-amplitade—of blade loadsredueces

rapidhy=—_Consequently, there is an approximate 3% decrease in the overall load distribution in the flap-wise direction,

resultinginareductioninthe-area-ofinterest the area which is actually fully tested will be reduced. Given the roughly similar
amplitudes, lower resonance frequenetes—frequency results in reduced inertial loads on the blade. Therefore, compensatory

measures such as increasing the excitation level are necessary during the actual test. However, this requires more powerful

excitation equipment.
4.3-2 Effects of virtual masses on biaxial test

In Section 4.1, only the effect of virtual masses on the uniaxial test is considered, which can intuitively see the influence of

independent parameters on the vibration characteristics of the test system and blade load distribution from the uniaxial model.

However, it is not enough to consider only the uniaxial vibration, but also the effect of virtual masses on the system in the
biaxial vibration. V4 i
direetions—In the biaxial fatigue-test, the blade has a complex spatial trajectory, and the test system will be affected by multiple

nonlinear parameters at the same time. To find the resonance frequency of the two directions, it is necessary to use the
simulation software for iterative calculation.the i i
e

Taking 94m blade as an example, virtual masses are applied in both flap-wise and edge-wise directions. Modal analysis

and frequency sweep analysis are used to obtain the frequencies at which specific excitations are applied to the test system.
Combined with the actual working conditions, the flap amplitude at 63% position of the blade is about 2m. and the edge
amplitude at 52% position of the blade is about 1m. The resonance frequencies under different conditions are The-parameters

are-shown in Table 3, with R = 4m and L = 4m. In fact, the oscillations in flap-wise and edge-wise direction must not be

evaluated separately as they influence each other, so the resonance frequency of the blade in each direction is obtained
by sweeping frequency iteration. i i i

of different virtual mass mechanisms. The results show three main characteristics: 1) Under the same exciting force, the

resonance frequency of the two directions in the biaxial test is lower than that of the uniaxial test, which indicates that the

virtual masses affect both vibration directions. 2) Compared with the ideal working condition, the virtual masses will deform

the space trajectory of the blade (even considering the structural torsion of the blade), which is determined by the motion

characteristics of mechanism. In addition, the deformation of the trajectory may bring higher requirements for the actual

damage assessment of the blade. 3) Under the same exciting force, the difference between the average flap amplitude of the

blade using the rotating virtual mass mechanism and the average flap amplitude under the ideal condition is 9%, and the

difference between the average edge amplitude and the average edge amplitude under the ideal condition is nearly 11%, as

shown in Table 4. Combined with the effect of reduced resonance frequency and amplitude, the biaxial load distribution level

of the blade will be further reduced compared with the uniaxial test, which means that more energy input is required.

Table3_Biaxial excitati £04

irtual oo . Modal analvs : : e
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Table3. Biaxial excitation parameters of 94m

Sweep-frequency analysis
Virtual masses and 1 o
Biaxial resonance frequency
exciting point Natural
Uniaxial resonance
frequency [Hz]
frequency (Rotation)
H
Position Force [He] .
[kiz] Rotation Actual translation Ideal translation
% [N]
Flap 63% 3800 0.377 0.373 0.369 0.375 0.377
Edge 52% 7000 0.589 0.587 0.583 0.587 0.589
Table4. Biaxial amplitude of 94m
Biaxial average amplitude [m
Rotation Actual translation Ideal translation
Flap 1.923 2.113 2.154
Edge 1.447 1.511 1.630

5 Conclusion

The nonlinear effect of virtual mass device on blade test system is discussed in this paper. In actual working conditions, the

test system is limited by the size of the virtual mass mechanism and the amplitude of the blade, and its resonance characteristics

will be changed. This paper firstly analyzed the nonlinearity of the system resonance characteristics from the mechanism of

the change of the inertia force of the virtual mass, and established a blade uniaxial theoretical model to explore the influence

of the amplitude of the blade and the size of the seesaw on the resonance frequency. Based on the above content, the

approximate nonlinear amplitude-frequency characteristic curve of the test system is obtained. Then the software is used to

simulate the two blades by the transient sweep method, and the applicability of the theoretical model is verified.

For the uniaxial theoretical model, the increase of blade amplitude. the shortening of seesaw size and the increase of

counterweight mass will reduce the resonance frequency in the main vibration direction. However, the uniaxial simulation

results of two blades show that the amplitude of the blade or the size of the seesaw have limited influence on the resonance

frequency. For example, when the size of the mechanism is unchanged (L = R = 4m), only the influence of blade amplitude

on the system is considered. When the amplitude of the flapping direction increases to 2.6m, the resonance frequency in this

direction decreases by nearly 2% compared with the natural frequency; Combined with the actual working conditions, when

the amplitude of the flap-wise direction is maintained about 2m, the length of the seesaw is shortened to 3m, and the resonance

frequency is reduced by nearly 2%. The target amplitude of the edge-wise is usually small compared with the flap-wise

direction, so shortening the length of the seesaw only reduces the resonance frequency by 1.1%. In the case of the same

amplitude, the shortening of seesaw length will reduce the blade load distribution level, and the flap-wise load level will

decrease by up to 3% at most. Due to the small amplitude of the edge-wise, the load level in this direction does not drop
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significantly.
Although the nonlinear factors have less influence on the uniaxial test, they have more influence on the biaxial test. Under

the same excitation force and approximate target amplitude (Y~2m), the rotating virtual masses induces lower resonance

frequency in biaxial vibration than in uniaxial test (Flap-wise direction: 1.06% decrease in uniaxial vibration, 2.12% decrease

in biaxial vibration; Edge-wise direction: 0.34% decrease in uniaxial, 1.02% decrease in biaxial). In addition, under the same

exciting force, the difference between the average flap amplitude of the blade using the rotating virtual mass mechanism and

the average flap amplitude under the ideal condition is 9%, and the difference between the average edge amplitude and the

average edge amplitude under the ideal condition is nearly 11%. Furthermore, the virtual masses mechanism can also cause

the deformation of the space trajectory envelope of the blade. Under the combined action of many factors, the nonlinear effect

will be further strengthened.

In conclusion, the virtual masses mechanism will bring nonlinear effect to the test system due to its own motion

characteristics, and the nonlinear factors mainly include the amplitude of the blade, the size of the mechanism and the mass of

the counterweight. In the case of small amplitude, the nonlinear effect is not obvious and has not great influence on the blade

load level. In the biaxial large amplitude test, the nonlinear effect is enhanced and the blade trajectory is deformed. The

resonance frequency of the system will be further reduced. Under the same excitation, the actual blade amplitude is less than

the target amplitude. These characteristics mean that biaxial test requires larger excitation equipment and higher requirements

for blade damage calculation and load formulation.
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