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Abstract. The biaxial fatigue test of wind turbine blades is helpful to shorten the test time and is more suitable for the actual 7 
operating conditions. Adding tuning masses to the blade is a common method for blade uniaxial test at present, and its purpose 8 
is to adjust the load distribution in one direction of the blade. However, the tuning masses on the blade will affect the load 9 
distribution in the direction of the blade flap-wise and edge-wise at the same time in the biaxial test, so the concept of "virtual 10 
masses" is proposed to realize the decoupling of the load distribution in the biaxial test. Due to the limitation of the size of the 11 
virtual masses mechanism and the complex motion trajectory of the blade, the actual inertial effect provided by the virtual 12 
masses is different from the ideal situation, which will affect the resonance characteristics of the test system and the load 13 
distribution of the blade. Therefore, in order to evaluate the effect of the nonlinear effect introduced by the virtual masses on 14 
the resonance characteristics of the test system and the blade load distribution, the equivalent dynamic model of the bladed 15 
virtual mass test system was established by using the Lagrange method. Then, the nonlinear effects of blade amplitude and 16 
virtual mass installation parameters on the test system are obtained by numerical method. Then, based on the nonlinear 17 
vibration theory, the approximate nonlinear amplitude-frequency characteristics of the test system are obtained, that is, the 18 
resonance frequency of the test system will decrease with the increase of the blade amplitude. Through the simulation analysis 19 
of two 80m+ blades, the applicability of the theoretical method is verified. It can be seen from the simulation results of the 20 
simulated uniaxial test that the larger the amplitude of the blade and the shorter the connection rod will reduce the resonance 21 
frequency of the test system. When the vibration amplitude at the excitation point is the same, a lower resonance frequency 22 
results in a smaller load distribution level, that is, the area which is actually fully tested will be reduced. In the biaxial simulation 23 
test, the resonance frequency of the test system will be further reduced because the virtual masses will be affected by the 24 
coupled motion in both directions at the same time. Besides, the introduction of an external mechanism of the virtual mass will 25 
also cause deformation of the envelope of the blade biaxial trajectory, which will further affect the load distribution of the 26 
blade. This work explores the nonlinear influence of virtual masses on the actual fatigue test, provides the corresponding 27 
theoretical basis and reference for the test organization to adjust the tuning masses scheme in advance to adjust the load 28 
distribution and select the excitation equipment. 29 

1 Introduction 30 

As an important component of wind turbine, the cost of blades accounts for 20% of the overall machine, so the lifetime of 31 
blades is the premise to ensure safe and stable operation of the wind turbine (Zhang et al., 2015; Liao et al., 2016). To verify 32 
the reliability of the blade under the actual operating field, the International Electrotechnical Commission (IEC) points out that 33 
the full-scale fatigue test of rotor blades is needed to be performed (IEC, 2014). In the actual blade fatigue test, two separate 34 
oscillation tests with over one million damage-equivalent loads cycles are usually performed. 35 

The fatigue test requires that the load in the area of interest along the blade span-wise direction matches or exceeds the 36 
design value, while keeping the exceedance as small as possible in order to avoid unrealistic failures (DNV GL AS, 2015). To 37 
satisfy the above requirements, additional masses are usually attached to the blade to tune the test load distribution which needs 38 
to be optimized by determining the optimal masses distribution. 39 

To save testing time and to emulate the comprehensive damage along the circumference of the blade, several institutions 40 



began to study and design biaxial fatigue test (White et al., 2004; Greaves et al., 2012; Snowberg et al., 2014; Hughes et al., 41 
1999; Liao et al., 2014;), namely to excites the blade in both directions simultaneously. In the previous biaxial resonance test, 42 
a reasonable load distribution (in both directions) will be obtained by optimizing the position and tuning masses installed on 43 
the blade. However, the tuning masses installed on the blade will affect the vibration characteristics (mode shape and frequency) 44 
in both flap-wise and edge-wise directions, which brings difficulty to the biaxial load match optimization, and there may be 45 
excessive overload in a certain area of the blade when choosing a compromise. 46 

To simplify load match, the extra mechanism makes the tuning masses only act in one vibration direction (called virtual 47 

masses). The purpose of the virtual masses is to decouple the biaxial load, so that the biaxial load match is equivalent to the 48 

combination of the load match of two single axis test. Post et al. (2016) firstly proposed the concept of virtual masses to tune 49 

both natural frequencies independently in the two directions, and to eliminate the coupling phenomenon of test bending 50 

moments during biaxial test. Melcher et al. (2020a、2020b) used elastic elements to adjust blade stiffness, and optimized 51 

biaxial fatigue test parameters based on virtual masses and elastic elements. Zhang et al. (2020) and Lu et al. (2022) carried 52 

out research on biaxial load matching and design using virtual masses. The virtual masses used for mass decoupling is ideally 53 

regarded as translational motion and the push rod between the virtual mass and the blade is always in line with the main 54 

vibration in the above work, which is difficult to apply to the actual test field. Because a larger and stronger platform is needed 55 

to keep virtual mass translate in the edge-wise direction, which is difficult to achieve in a limited test space. In the biaxial test, 56 

the platform may interfere with the push rod, especially when the blade has a large amplitude in the flap-wise direction. 57 

Therefore, IWES conducted further research, designed a device to convert virtual masses from translation to rotation, and 58 

applied it to the biaxial fatigue test which has a frequency ratio of 1:1 (Melcher et al., 2020c). Further, the feasibility of the 59 

biaxial decoupling test of the bending moment was verified by the comparison of simulation and experiment results (Melcher 60 

et al., 2020c; Castro et al.,2021; Falko et al., 2020). In fact, in the view of the motion characteristics, the inertia force generated 61 

by rotating virtual masses is different from that generated by translational virtual masses. Taking a uniaxial test as an example, 62 

the translational virtual masses move synchronously with the blade, which behaves like a mass acting in just one direction 63 

from a numerical standpoint. The translational virtual masses have the same motion characteristics as the additional tuning 64 

masses. Therefore, although the virtual mass is not on the blade, the inertia force generated by it and the inertia force generated 65 

by the additional tuning masses are in the same direction and magnitude. The rotating virtual masses are limited by the 66 

constraints of the seesaw, and its motion path is the rotating motion around the center of the seesaw. Therefore, the direction 67 

and magnitude of the inertial force generated by the rotation of the virtual mass will change, and it is not equivalent to the 68 

translational virtual masses. However, changes in the inertia force provided by the virtual masses will cause changes in the 69 

characteristics of the system, which may further cause changes in the blade load distribution, and may put forward higher 70 

requirements for vibration excitation equipment.  71 

To reveal the vibration mechanism of the blade-virtual masses test system and provide a more rigorous theoretical basis 72 

for the biaxial load matching theory of the blade. In this paper, a theoretical model of blade-virtual masses uniaxial test system 73 

is established. The specific nonlinear impact of single parameter related to virtual masses on the characteristics of the test 74 

system can be obtained intuitively through the uniaxial model. Then, two blades over 80m were simulated in ADAMS. Uniaxial 75 

simulation was used to verify the applicability of the theoretical model, including the nonlinear amplitude-frequency 76 

characteristics of the system and the effects of virtual mass installation parameters (such as seesaw length) on the load 77 

distribution of the blade. Biaxial simulation is used to analyze the nonlinear effect of virtual mass on the system under the 78 

simultaneous action of many factors. This work will be used in the future research to adopt reasonable control strategy and 79 

adjust the counterweight scheme in advance to achieve the target damage of the blade.  80 



2 Blade-virtual masses equivalent dynamic model 81 

The tuning masses can change the modal characteristics of the testing system to adjust the test load distribution of the blade, 82 
which is essentially bending moment caused by the inertia force brought by the reciprocating motion of the self-weight and 83 
tuning masses. In the common uniaxial fatigue test system, the tuning masses are directly attached to the blade, as shown in 84 
Fig. 1 (a). When the tuning masses are determined, the modal characteristics of the testing system are basically determined. 85 
This means that, without considering the air damping, the resonance frequency of the system remains unchanged.  86 

In the biaxial fatigue test, the tuning masses decouple the biaxial load by seesaw, and the tuning masses are called virtual 87 
masses, as shown in Fig. 1 (b). The inertia force generated by the virtual masses mainly acts in the edge-wise direction in Fig. 88 
1 (b). The mechanism for mounting the virtual masses consists of a push rod and a seesaw. The blade fixture, push rod, and 89 
seesaw are connected through a universal joint, and the seesaw can rotate around the center position. Tuning masses are located 90 
at both ends of the seesaw to offset each other's gravity. After the exciting force is applied to the blade, the tuning masses move 91 
with the blade and rotate around the center of the seesaw to provide the inertia force for the blade through the push rod. 92 
However, due to the motion characteristics of the virtual masses mechanism, the motion of the virtual masses cannot be 93 
perfectly synchronized with the blade motion. Therefore, the inertia force generated by the rotation of the virtual masses differs 94 
from the inertia force generated by the traditional tuning masses. To evaluate the specific impact of single parameter related to 95 
virtual masses on the test system, it is necessary to establish the corresponding uniaxial theoretical model for analysis from the 96 
perspective of control variable method. 97 

 98 

Figure 1: Masses match of blade fatigue test: (a) traditional tuning masses setup (b) virtual masses setup. 99 

2.1 The comparison on the amplitude of inertia force 100 

The uniaxial test is taken as an example to illustrate the difference between virtual masses translation and rotation, as shown 101 
in Fig.2. The inertial force generated by rotating virtual masses of the blade at the maximum amplitude can be analyzed, as 102 
shown in Fig.3. The relationship of the motion between virtual masses and blade can be obtained: 103 

�
𝒗𝒗𝑚𝑚 = 𝒗𝒗𝑀𝑀 + 𝒗𝒗𝑚𝑚𝑀𝑀
𝒂𝒂𝑚𝑚 = 𝒂𝒂𝑚𝑚𝑛𝑛 + 𝒂𝒂𝑚𝑚𝜏𝜏 = 𝒂𝒂𝑀𝑀 + 𝒂𝒂𝑚𝑚𝑀𝑀𝑛𝑛 + 𝒂𝒂𝑚𝑚𝑀𝑀𝜏𝜏

      (1) 104 

Where: 𝒗𝒗𝑚𝑚 - velocity of virtual masses; 𝒗𝒗𝑀𝑀 - velocity of blade equivalent mass; 𝒗𝒗𝑚𝑚𝑀𝑀 - relative velocity; 𝒂𝒂𝑚𝑚𝑀𝑀𝑛𝑛  - relative 105 
normal acceleration; 𝒂𝒂𝑚𝑚  - the acceleration of the virtual masses; 𝒂𝒂𝑚𝑚𝑀𝑀𝜏𝜏   - relative tangential acceleration; 𝒂𝒂𝑚𝑚𝑛𝑛   - normal 106 
acceleration; 𝒂𝒂𝑚𝑚𝜏𝜏  - tangential acceleration.  107 

The blade at the maximum amplitude satisfies: 𝒗𝒗𝑀𝑀 = 0; 𝒗𝒗𝑚𝑚𝑀𝑀 = 0; 𝒂𝒂𝑚𝑚𝑀𝑀𝑛𝑛 = 0; 𝒂𝒂𝑚𝑚𝑛𝑛 = 0. 108 
The angular acceleration of the virtual mass at the maximum amplitude of the blade can be obtained: 109 

|𝛼𝛼𝑚𝑚| = 𝜔𝜔2𝑌𝑌 cos(𝛽𝛽0)
𝑅𝑅 cos(𝜃𝜃0−𝛽𝛽0)

                         (2) 110 

Where: 𝜃𝜃 - Rotation angle of the seesaw at the maximum amplitude of the blade; 𝛽𝛽0 - Angle between the push rod and the 111 
main vibration direction at the maximum amplitude of the blade; 𝛼𝛼𝑚𝑚  - Angular acceleration of the virtual mass at the 112 
maximum amplitude of the blade. 113 



According to Eqs. (1) and Eqs. (2), the rotating inertia force 𝐹𝐹𝑅𝑅 generated by the rotating virtual mass at the maximum 114 
amplitude of the blade can be obtained: 115 

𝐹𝐹𝑅𝑅 = 𝑚𝑚𝜔𝜔2𝑌𝑌 cos(𝛽𝛽0)
cos(𝜃𝜃0−𝛽𝛽0)

                       (3) 116 

The inertia force 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 transmitted to the main vibration direction of the blade through the push rod can be obtained: 117 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐹𝐹𝑅𝑅 cos(𝛽𝛽0)
cos(𝜃𝜃0−𝛽𝛽0)

= 𝑚𝑚𝜔𝜔2𝑌𝑌 cos2(𝛽𝛽0)
cos2(𝜃𝜃0−𝛽𝛽0)

                      (4) 118 

The translational virtual masses are consistent with the motion state of the blade, so the inertial force generated by the 119 
translational virtual masses can be obtained based on Eqs. (4): 120 
𝐹𝐹𝑟𝑟𝑟𝑟𝑡𝑡 = 𝑚𝑚𝜔𝜔2𝑌𝑌                          (5) 121 

According to Eqs. (4) and Eqs. (5), there are differences in the inertial forces acting on the blades by the two setups, which 122 
are mainly caused by the difference in the movement trajectory of masses. 123 

 124 
Figure 2: The comparison on inertia force: (a) Translational virtual masses setup (b) Rotating virtual masses setup. 125 

2.2 Model using the Lagrange method 126 

In fact, there will be inertial force coupling in the actual biaxial testing process (virtual masses translation or rotation), which 127 
will cause multiple factors to work together and make it difficult to analyze the system characteristics quantitatively by 128 
theoretical method. Therefore, it is desirable to choose the uniaxial test to analyze the nonlinear influence introduced by the 129 
virtual masses, which does not mean that the biaxial test can be regarded as the linear superposition of the uniaxial test. 130 
Essentially, the load distribution in the main vibration direction of the blade is adjusted by the component of the inertia force 131 
transmitted by the push rod in this direction. Because of the angle between the push rod direction and the vibration direction, 132 
blade displacement is not in line with the push rod. To more intuitively analyze the impact of virtual masses on the blade test 133 
system, the mass of the push rod and the seesaw are ignored in modeling according to the control variable method, and 134 
only their geometric dimensions are considered. Take the example of blade edge-wise direction test, the blade model is 135 
simplified as shown in Fig. 3. Moreover, the inertial force of the virtual masses also affects the flap-wise direction of the blade. 136 
However, since the frequency of the inertial force is close to the first order modal frequency in edge-wise direction, the 137 
perturbation to the flap-wise direction is relatively small. Therefore, only the influence of virtual masses on the vibration 138 
characteristics in the main testing direction needs to be considered during the uniaxial test. Section 2.1 only analyzes the 139 
difference of inertial force amplitude in Fig. 2 and this section set up a uniaxial theoretical model to evaluate the effect of 140 
virtual masses rotation on the vibration characteristics of the test system. In this paper, the Lagrange method is used to analyze 141 
the uniaxial model (Liu et al., 2019). The initial state of the test system is assumed when the blade is stationary, the push rod 142 
is horizontal and the seesaw is vertical. 143 



 144 
Figure 3: Virtual masses setup for blade fatigue test.  145 
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Where: 𝑇𝑇 - kinetic energy; 𝑉𝑉 - potential energy; 𝐷𝐷 - dissipated energy; 𝑞𝑞𝑗𝑗 - generalized coordinate; �̇�𝑞𝑗𝑗  - generalized 147 
velocity; 𝑄𝑄𝑗𝑗  - generalized force. 148 

By selecting the generalized coordinate 𝑞𝑞 = 𝑦𝑦 , and based on the motion relationship in Fig. 3, the displacement and 149 
velocity relationships of the test system can be obtained: 150 

�𝑦𝑦 + 𝐿𝐿 cos𝛽𝛽 − 𝑅𝑅 sin𝜃𝜃 = 𝐿𝐿
𝐿𝐿 sin𝛽𝛽 + 𝑅𝑅 cos 𝜃𝜃 = 𝑅𝑅                         (7) 151 

��̇�𝑦 − 𝐿𝐿�̇�𝛽 sin𝛽𝛽 − 𝑅𝑅�̇�𝜃 cos 𝜃𝜃 = 0
𝐿𝐿�̇�𝛽 cos𝛽𝛽 − 𝑅𝑅𝜃𝜃 sin 𝜃𝜃 = 0        

                  (8) 152 

𝑇𝑇, 𝑉𝑉 and 𝐷𝐷 can be calculated as 153 

𝑇𝑇 = 1
2
𝑀𝑀�̇�𝑦2 + 1

2
𝑚𝑚𝑅𝑅2�̇�𝜃2 = 1

2
𝑀𝑀�̇�𝑦2 + 1

2
𝑚𝑚�̇�𝑦2 cos2 𝛽𝛽

cos2(𝜃𝜃−𝛽𝛽)
              (9) 154 

𝑉𝑉 = 1
2
𝑘𝑘𝑦𝑦2                      (10) 155 

𝐷𝐷 = 1
2
𝑐𝑐�̇�𝑦2                      (11) 156 

Where: 𝐿𝐿 - the length of the push rod; 𝑅𝑅 - the radius of the seesaw; 𝛽𝛽 - the angle between the push rod and the horizontal 157 
direction; 𝜃𝜃 - the angle between the seesaw and the vertical direction; 𝑀𝑀 - blade equivalent mass; 𝑚𝑚 – virtual masses; 𝑘𝑘 - 158 
blade equivalent stiffness; 𝑐𝑐 - blade equivalent damping. 159 

According to Eqs. (7) and Eqs. (8), the relevant terms in Eqs. (6) are obtained as 160 
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              (12) 161 

Then, the dynamic differential equation of test system is obtained as 162 



�𝑀𝑀 + 𝑚𝑚 cos2 𝛽𝛽
cos2(𝜃𝜃−𝛽𝛽)

� �̈�𝑦 + 𝑐𝑐�̇�𝑦 + 𝑘𝑘𝑦𝑦 + 𝑚𝑚�̇�𝑦2 cos 𝛽𝛽
cos4(𝜃𝜃−𝛽𝛽)

�cos
2 𝛽𝛽 sin(𝜃𝜃−𝛽𝛽)

𝑅𝑅
− sin2 𝜃𝜃

𝐿𝐿
� = 𝐹𝐹(𝑡𝑡)         (13) 163 

By comparison with Eqs. (4), it can be seen that the inertial force terms of two equations are same at the maximum 164 
amplitude of the blade. 165 
Where: 166 

sin𝜃𝜃 = 𝐿𝐿+𝑦𝑦
𝑅𝑅
−

𝐿𝐿�𝑅𝑅�−(𝑦𝑦2 + 2𝐿𝐿𝑦𝑦 − 2𝐿𝐿𝑅𝑅)(𝑦𝑦2 + 2𝐿𝐿𝑦𝑦+ 2𝐿𝐿𝑅𝑅)+𝑦𝑦3+2𝐿𝐿3+4𝐿𝐿2𝑦𝑦+3𝐿𝐿𝑦𝑦2�

2𝑅𝑅(𝐿𝐿3+2𝐿𝐿2𝑦𝑦+𝐿𝐿𝑅𝑅2+𝐿𝐿𝑦𝑦2)
  167 

cos𝜃𝜃 = 𝐿𝐿(𝐿𝐿 + 𝑦𝑦)[𝑅𝑅�−(𝑦𝑦2+2𝐿𝐿𝑦𝑦−2𝐿𝐿𝑅𝑅)(𝑦𝑦2+2𝐿𝐿𝑦𝑦+2𝐿𝐿𝑅𝑅)+2𝐿𝐿3+𝑦𝑦3+3𝐿𝐿𝑦𝑦2+4𝐿𝐿2𝑦𝑦]
2𝑅𝑅2(𝐿𝐿3+2𝐿𝐿2𝑦𝑦+𝐿𝐿𝑅𝑅2+𝐿𝐿𝑦𝑦2)

− 2𝐿𝐿2+2𝐿𝐿𝑦𝑦−2𝑅𝑅2+𝑦𝑦2

2𝑅𝑅2
  168 

sin𝛽𝛽 = 2𝐿𝐿2+2𝐿𝐿𝑦𝑦+𝑦𝑦2

2𝐿𝐿𝑅𝑅
− (𝐿𝐿+𝑦𝑦)[𝑅𝑅�−(𝑦𝑦2+2𝐿𝐿𝑦𝑦−2𝐿𝐿𝑅𝑅)(𝑦𝑦2+2𝐿𝐿𝑦𝑦+2𝐿𝐿𝑅𝑅)+2𝐿𝐿3+𝑦𝑦3+3𝐿𝐿𝑦𝑦2+4𝐿𝐿2𝑦𝑦]

2𝑅𝑅(𝐿𝐿3+2𝐿𝐿2𝑦𝑦+𝐿𝐿𝑅𝑅2+𝐿𝐿𝑦𝑦2)
  169 

cos𝛽𝛽 = 𝑅𝑅�−(𝑦𝑦2+2𝐿𝐿𝑦𝑦−2𝐿𝐿𝑅𝑅)(𝑦𝑦2+2𝐿𝐿𝑦𝑦+2𝐿𝐿𝑅𝑅)+2𝐿𝐿3+𝑦𝑦3+3𝐿𝐿𝑦𝑦2+4𝐿𝐿2𝑦𝑦
2(𝐿𝐿3+2𝐿𝐿2𝑦𝑦+𝐿𝐿𝑅𝑅2+𝐿𝐿𝑦𝑦2)

  170 

According to Eqs. (13), it can be seen that rotation of virtual masses introduces nonlinear terms to the test system, and both 171 
the angle 𝜃𝜃 and 𝛽𝛽 are nonlinear functions of the blade response 𝑦𝑦. Due to the complexity of the dynamic equation, it is 172 
difficult to obtain the corresponding analytical expression. Therefore, the numerical analysis methods are used to solve the 173 
equation. A numerical simulation model based on the differential equation of the system motion is established in MATLAB 174 
SIMULINK, and the corresponding resonance frequency of the equivalent system can be obtained by setting different initial 175 
displacements. By modifying the value of the different parameter, the influence of the parameter change on the resonance 176 
frequency of the test system can be obtained. As mentioned previously, the nonlinear factors that affect the characteristics of 177 
the test system mainly come from installation parameters (pushrod length and seesaw radius) and blade response. The design 178 
length of the push rod generally remains unchanged due to space limitations at the test site. However, the seesaw radius offers 179 
greater design flexibility. Thus, the primary focus is on evaluating the impact of the seesaw radius 𝑅𝑅 and blade response 𝑦𝑦 180 
on the vibration characteristics of the blade. To illustrate this, the equivalent parameters of 80m blade are brought into the 181 
differential equation and numerically analyzed, and the influence of blade amplitude on the resonance frequency of the test 182 
system is investigated, as demonstrated in Fig. 4. 183 

Figure 4 (a) shows that the resonance frequency of the test system decreases nonlinearly with an increase in blade 184 
amplitude and virtual masses 𝑚𝑚 further determines the rate of decrease in resonance frequency. The equivalent stiffness 𝑘𝑘 185 
has the ability to alter the natural frequency of the test system. However, it can be seen from Fig. 4 (b) that 𝑘𝑘 cannot change 186 
the rate of decrease in resonance frequency with other parameters unchanged, which indicates that the equivalent stiffness is 187 
not a nonlinear factor affecting the vibration characteristics of the testing system. Fig. 4 (c) shows that the increase of 𝑀𝑀 will 188 
delay the decline rate of the natural frequency of the system, because the proportion of the virtual masses in the inertia force 189 
term decreases. It can be seen from Fig. 4 (d) that the radius of the seesaw will also affect the nonlinear amplitude-frequency 190 
characteristics of the test system and the rate of decrease in resonance frequency. 191 

192 



 193 
Figure 4: The relationship between resonance frequency and amplitude of the blade at different parameters: (a) 𝑴𝑴 =194 
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏;  𝟏𝟏 = 𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟐𝟐/𝒎𝒎;  𝑳𝑳 = 𝟏𝟏𝒎𝒎;  𝑹𝑹 = 𝟏𝟏𝒎𝒎  (b) 𝑴𝑴 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏;  𝒎𝒎 = 𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏;  𝑳𝑳 = 𝟏𝟏𝒎𝒎;  𝑹𝑹 = 𝟏𝟏𝒎𝒎  (c) 𝟏𝟏 = 𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟐𝟐/195 
𝒎𝒎;  𝒎𝒎 = 𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏;  𝑳𝑳 = 𝟏𝟏𝒎𝒎;𝑹𝑹 = 𝟏𝟏𝒎𝒎 (d) 𝑴𝑴 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏;  𝟏𝟏 = 𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟐𝟐/𝒎𝒎;  𝒎𝒎 = 𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏;  𝑳𝑳 = 𝟏𝟏𝒎𝒎. 196 

2.3 Analysis of amplitude-frequency characteristics of the model 197 

The dynamic differential equations of the blade-virtual masses test system, established through the Lagrange method, are 198 
highly complex and can only be resolved numerically to derive the correlations among the relevant parameters and the 199 
resonance frequency of the test system. To further analyze the nonlinear amplitude-frequency characteristics of the test system, 200 
it is necessary to create a theoretical model of the test system based on nonlinear dynamics (Liu et al., 2001). According to 201 
linear vibration theory (Liu et al., 2019), the factors that primarily influence the inherent characteristics of a linear system are 202 
the inertial force term and the elastic force term. In fact, the inherent characteristics of the blade-virtual masses test system are 203 
primarily determined by the inertial force term associated with the introduction of virtual masses and the response of the blade 204 
Thus, the weakly nonlinear dynamic equation of the blade-virtual masses test system in Eqs. (13) can be approximated as: 205 
(𝑀𝑀 + 𝑚𝑚)𝑓𝑓(𝑦𝑦)�̈�𝑦 + 𝑐𝑐�̇�𝑦 + 𝑘𝑘𝑦𝑦 = 𝐹𝐹0 cos(𝜔𝜔𝑡𝑡 + 𝜃𝜃)               (14) 206 
Where: 𝑓𝑓(𝑦𝑦) = 1 + 𝜀𝜀1𝑦𝑦 + 𝜀𝜀2𝑦𝑦2 + 𝜀𝜀3𝑦𝑦3 + 𝜀𝜀4𝑦𝑦4; 𝑐𝑐 = 2𝜁𝜁(𝑀𝑀 + 𝑚𝑚)𝜔𝜔𝑛𝑛; 𝑘𝑘 = (𝑀𝑀 + 𝑚𝑚)𝜔𝜔𝑛𝑛2; 𝐹𝐹0 = 𝐵𝐵𝑘𝑘; 𝜀𝜀1、𝜀𝜀2、𝜀𝜀3、𝜀𝜀4 - Small 207 
parameters related to 𝑀𝑀、𝑚𝑚、L and R; 𝜁𝜁 - Damping ratio; 𝜔𝜔𝑛𝑛 - Natural frequency; 𝜔𝜔 - Excitation frequency;  𝜃𝜃 - Phase 208 
difference between steady-state response and excitation. 209 

Ignoring the small parameters, Eqs. (14) is transformed into the vibration equation of a linear system. This means that the 210 
linear system is derived from the original nonlinear system. To quantitatively analyze the modal characteristics of the test 211 
system, the approximate analytical method can be employed by considering the nonlinear factor as a perturbation to the linear 212 
system, yielding an approximate analytical solution for the nonlinear system. Among various approximate analytical methods, 213 
the harmonic balance method is particularly notable due to its clear conceptual foundation. It expands both the excitation term 214 
and the solution of the equation into a Fourier series. From a physical perspective, the coefficients of the harmonic terms of 215 
the same order at both ends of the dynamic equation must be equal to maintain a balance between the excitation and inertia 216 
forces. When the condition of the test system is determined, the value of the small parameter in Eqs. (14) is also determined.  217 

For the blade-virtual masses test system, it is assumed that its steady-state response is still periodic, but the resonance 218 
frequency is different from the natural frequency of the derived system. The basic solution is expanded into the Fourier series 219 
of the excitation frequency and the fundamental component is retained. The response of the system as Eq. (15) indicates. 220 
𝑦𝑦(𝑡𝑡) = 𝑌𝑌0cos (𝜔𝜔𝑡𝑡)                    (15) 221 
Where: 𝑌𝑌0 - Amplitude of blade steady-state response.  222 

By substituting Eq. (15) into Eq. (14) and applying the triangle transform and harmonic balance to eliminate the phase 223 
difference 𝜃𝜃 to achieve the relationship between the amplitude and frequency of the test system, as Eq. (16) indicates. 224 
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Where: 𝑠𝑠 = 𝜔𝜔/𝜔𝜔𝑛𝑛. 226 
According to Eq. (16), The amplitude-frequency and phase-frequency characteristics of the nonlinear system can be 227 

obtained, as Eq. (17) indicates. 228 
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When 𝜀𝜀2 = 𝜀𝜀4 = 0, Eq. (17) describes the amplitude-frequency characteristics of a linear system, as shown in Fig. 5. 230 
When the small parameters are non-zero, the amplitude-frequency characteristic curve of the nonlinear system is depicted in 231 
Fig. 6. Similar to forced vibrations in linear systems, nonlinear systems also exhibit similar amplitude-frequency characteristic 232 
curves. However, the backbone of the support curve clusters is not straight but inclined. This backbone curve represents the 233 
variation of the free vibration frequency of the nonlinear system with respect to the amplitude when there is no external 234 
excitation (Liu et al., 2001). By setting B = 0.1 and ζ = 0 in Eq. (16), the equation for this backbone curve can be obtained, as 235 
Eq. (18) indicates. 236 

𝜔𝜔2 = 𝜔𝜔𝑛𝑛2
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 238 
Figure 5: Amplitude-frequency characteristic curve of a linear system 239 

Eq. (18) shows that the resonance frequency of the blade-virtual masses test system decreases with the increase of the 240 
amplitude of the blade and there exists the nonlinear relationship between the square of the frequency ratio and the amplitude. 241 
Figure 6 shows that the small parameters in the inertial force term will affect the frequency of free vibration. As these small 242 
parameters decrease, the amplitude-frequency characteristic curve of a nonlinear system approaches that of a linear system, 243 
and the backbone curve approaches a value close to 1. 244 

245 



 246 
Figure 6: Amplitude-frequency characteristic and the backbone (represented by the black dashed line) of the blade-virtual masses 247 
testing system: (a) 𝑩𝑩 =  𝟏𝟏.𝟏𝟏、𝟑𝟑

𝟏𝟏
𝜺𝜺𝟐𝟐 = 𝟏𝟏.𝟏𝟏𝟏𝟏、𝟏𝟏𝟏𝟏

𝟏𝟏𝟏𝟏
𝜺𝜺𝟏𝟏 = 𝟏𝟏.𝟏𝟏𝟏𝟏𝟐𝟐; (b) 𝑩𝑩 =  𝟏𝟏.𝟏𝟏、𝟑𝟑

𝟏𝟏
𝜺𝜺𝟐𝟐 = 𝟏𝟏.𝟏𝟏𝟏𝟏、𝟏𝟏𝟏𝟏

𝟏𝟏𝟏𝟏
𝜺𝜺𝟏𝟏 = 𝟏𝟏.𝟏𝟏𝟏𝟏𝟏𝟏; (c) 𝑩𝑩 =  𝟏𝟏.𝟏𝟏、𝟑𝟑

𝟏𝟏
𝜺𝜺𝟐𝟐 = 𝟏𝟏.𝟏𝟏𝟏𝟏𝟎𝟎、248 

𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏
𝜺𝜺𝟏𝟏 = 𝟏𝟏.𝟏𝟏𝟏𝟏𝟏𝟏; (d) 𝑩𝑩 =  𝟏𝟏.𝟏𝟏、𝟑𝟑

𝟏𝟏
𝜺𝜺𝟐𝟐 = 𝟏𝟏.𝟏𝟏𝟏𝟏𝟎𝟎、𝟏𝟏𝟏𝟏

𝟏𝟏𝟏𝟏
𝜺𝜺𝟏𝟏 = 𝟏𝟏.𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎. 249 

Figure 6 shows the influence of different small parameters on the amplitude-frequency characteristics of the system. 250 
In fact, specific small parameter values mean specific working conditions, that is, when the virtual mass related 251 
parameters (such as 𝐿𝐿、𝑅𝑅、𝑚𝑚 ) are determined, the amplitude-frequency characteristics of the system will also be 252 
determined. Therefore, as long as the setups are determined, the dynamic characteristics of the test system will be 253 
determined, whether it is a uniaxial axis test or a biaxial test. 254 

In addition, the amplitude hopping phenomenon, also known as dynamic bifurcation, also appears in Figure 6. In 255 
fact, there is no obvious dynamic bifurcation phenomenon in the fatigue test, because the nonlinearity of the system is 256 
weak, and the amplitude of the blade is limited by the size of the mechanism. Moreover, when the influence of blade 257 
amplitude on the resonance frequency of the system is discussed in the following paper, more attention is paid to the 258 
backbone curve in the shape of the black dotted line in Fig. 6. 259 

3 Dynamic simulation analysis 260 

To validate the nonlinear characteristics of the blade-virtual masses test system that has been established, it is necessary to 261 
utilize multi-body dynamics simulation software ADAMS to create a realistic blade model for analysis. Based on the sectional 262 
properties and tuning masses of the blade, ADAMS can be employed for modeling and analyzing the blade-virtual masses 263 
system. ADAMS can perform modal analysis and transient sweep frequency analysis to obtain the changing characteristic of 264 
the test system under various operating conditions. As the foundation for other dynamics analysis, modal analysis is used to 265 
determine the modal characteristics of structures. Regarding the weakness of modal analysis function in the software, which 266 
cannot consider the effects of the response on the modal characteristics of the system, it is necessary to take further transient 267 
sweep-frequency analysis to obtain the resonance characteristics of the system.  268 

3.1 Simulation Modelling 269 

To verify that the simplified equivalent theoretical model can reflect the characteristics of actual test system, the simulation 270 
model is established in software. Generally, only the cross-section stiffness (flap-wise and edge-wise) and linear density are 271 
considered in the simulation model (Post et al., 2016), because the torsional natural frequency is much higher than the natural 272 
frequency in the direction of flap-wise and edge-wise, it is difficult to stimulate large torsional deformation. The root of the 273 
blade was set as a fixed constraint to simulate the cantilever beam condition similar to when the blade is mounted on the test 274 
rig. The equivalent damping ratio of the blade changes during vibration, resulting in a change in the resonance frequency of 275 
the test system (Lee., 2018; Liu et al., 2019). In order to accurately assess the influence of virtual masses on the characteristics 276 
of the testing system, aerodynamic damping is not considered in the simulation model. The blade model was built in the 277 



simulation software based on the parameters mentioned above, as shown in Fig. 7(a). 278 

 279 
Figure 7: Dynamics simulation model of test system: (a) The blade simulation model (b) The blade-virtual masses simulation 280 
model(flap-wise) 281 

3.2 Model validity verification 282 

To ensure the applicability and rationality of the model, modal analysis is carried out and compared with the transfer-283 
matrix method (TMM) and the test data, as shown in Table 1. The transfer matrix method is an approximate theoretical method 284 
used to calculate the natural frequencies and modes of systems with chain structures. The transfer matrix method separates the 285 
structure with inertia and elasticity and obtains the relationship between the discrete elements. The natural frequencies and 286 
modes of the systems can be solved according to the boundary conditions. The transfer matrix method belongs to the physical 287 
discrete method of continuous system, which is suitable for numerical solution of blade model. The blades in Table 1 were all 288 
subjected to actual modal tests, and the obtained frequency data are obtained from the frequency domain analysis of actual test 289 
data. The actual blade modal test was carried out by hammer method. It can be seen that the simulation model of the test system 290 
has good applicability, with an error in the modal frequency of less than 4%. 291 
Table 1. Comparison of natural frequencies calculated by various methods 292 

Flap-wise 84m 94m 

Method 
1st modal frequency 

 [Hz] 

Error  

[%] 

1st modal frequency  

[Hz] 

Error 

[%] 

Test 0.394 - 0.365 - 

TMM 0.397 +0.7 0.349 -4.38 

Simulation 0.404 +2.54 0.377 +3.29 

Edge-wise 84m 94m 

Method 
1st modal frequency 

 [Hz] 

Error  

[%] 

1st modal frequency  

[Hz] 

Error 

[%] 

Test 0.590 - 0.571 - 

TMM 0.604 +2.37 0.561 -1.75 

Simulation 0.610 +3.34 0.589 +3.15 

3.3 Simulation setup 293 

With the purpose of demonstrating the nonlinear effects of rotating virtual masses on the testing system, it is necessary to add 294 
virtual masses based on the blade model, as shown in Fig.7 (b). The values of the tuning masses are shown in Table 2 and the 295 
section properties of the blades are shown in Fig. 8. The position and values of the tuning masses are provided by the blade 296 
manufacturer. Virtual masses elements and exciting force are added at 62% and 49% of the 84m blade length in the flap-wise 297 
and edge-wise directions respectively. Similarly, virtual masses elements and exciting force are added at 63% and 52% of the 298 
94m blade length in the flap-wise and edge-wise directions respectively (masses marked in black italics in Table 2). The 299 
constraints for the seesaw, push rod, and virtual masses are set according to Fig. 1, where the rotation center of the seesaw is 300 



set as the revolute pair and the seesaw and push rod are set as the rigid light rod. To evaluate and verify the effects of virtual 301 
masses installation parameters and blade response on the vibration characteristics of the test system, not only the effects of 302 
radius of the seesaw and blade response on the resonance frequency, but also the effects of radius of the seesaw on the load 303 
distribution of the blade with similar amplitude are analyzed through simulation. 304 
Table2. Blade additional masses of 84m and 94m blade 305 

84m 94m 

Location 
Flap-wise masses 

[kg] 

Edge-wise masses 

[kg] 
Location 

Flap-wise masses 

[kg] 

Edge-wise masses 

[kg] 

26%  2835 42% 3000 3000 

36%  3147 52%  4075 

49% 6120 4075 63% 1116  

62% 1117     

 306 
Figure 8: Section properties of the blade: (a) 84m blade (b) 94m blade 307 

4 Results 308 

According to the backbone in the amplitude-frequency characteristic curve of the blade-virtual masses test system, when the 309 
operation condition determined, the square of the resonance frequency and the blade amplitude satisfy the relationship in Eqs. 310 
(18). Thus, correlated simulation results are fitted using relevant functions to verify the relationship. 311 

4.1 Effects of virtual masses on uniaxial test 312 

4.1.1 Effects of blade amplitude on resonance frequency 313 

Set R = 4m and L = 4m and investigate the variation of the resonance frequency of test system under different amplitudes. 314 
Sweep-frequency analysis is performed on the 84m and 94m blades in flap-wise and edge-wise directions respectively to obtain 315 
the resonance frequencies of the test system under different steady-state amplitudes while the results are fitted according to 316 
Eqs. (18), as shown in Fig. 9. In addition, the degree of fit is expressed by goodness of fit 𝑹𝑹𝟐𝟐. The sweep frequency range is 317 
defined as a bandwidth of 0.02Hz near the first natural frequency in the flap-wise or edge-wise direction, with an action 318 
time of 1E4s and a resolution of 2e-6 Hz/sec. The frequency spectrum of the displacement of the exciting point of the 319 
blade under the sweeping excitation is analyzed, and the frequency corresponding to the peak point is the resonance 320 
frequency. The mechanism might reach the geometric limit of the push-rod parallel to the seesaw, so the limit 321 
requirements of the mechanism need to be considered.  322 

When amplitude of the blade is small, the percentage drop in resonance frequency is small. When amplitude of the blade 323 
is large, the resonance frequency decreases nonlinear faster. When the blade amplitude in flap-wise direction reaches 2.6m, 324 



the resonance frequency of the 84m and 94m blades decreases by approximately 2.0%; When the blade amplitude in edge-325 
wise direction reaches 2.2m, the resonance frequency of the 84m and 94m blades decreases by only approximately 1.1%. Due 326 
to the limitation of resonance frequency extraction precision in sweep frequency analysis, the fitting degree of data is 327 
affected. However, it is still acceptable at the large amplitude of the blade. Combined with the actual test requirements, 328 
we should pay more attention to the conditions of large amplitude. 329 

330 

 331 
Figure 9: Relationship between amplitude and percentage drop in resonance frequency: (a) 84m blade in flap-wise direction ( 𝑹𝑹𝟐𝟐 =332 
𝟏𝟏.𝟗𝟗𝟗𝟗𝟏𝟏𝟏𝟏); (b) 84m blade in edge-wise direction ( 𝑹𝑹𝟐𝟐 = 𝟏𝟏.𝟗𝟗𝟗𝟗𝟐𝟐𝟗𝟗); (c) 94m blade in flap-wise direction ( 𝑹𝑹𝟐𝟐 = 𝟏𝟏.𝟗𝟗𝟗𝟗𝟏𝟏𝟏𝟏); (d) 94m blade 333 
in edge-wise direction ( 𝑹𝑹𝟐𝟐 = 𝟏𝟏.𝟗𝟗𝟗𝟗𝟑𝟑𝟏𝟏) 334 

 335 

Figure 10: The sweep spectrum of the blade under different target amplitudes  336 



Taking 94m blade as an example, the sweep spectrum of the blade under different target amplitudes is shown in Fig. 10. 337 
It can be seen from Fig.10 that different excitation frequencies cause different blade responses. The resonance frequency of 338 
the system decreases with the increase of the maximum amplitude of the blade. This also verifies the applicability of the 339 
approximate amplitude-frequency properties obtained by the theory (Fig. 6 has a backbone curve similar to Fig. 10). 340 

4.1.2 Effects of radius of the seesaw on resonance frequency and load distribution 341 

Considering the actual test setup, the blade amplitude in flap-wise direction is set to be about Y=2m and the length of the push 342 
rod is L=4m; the blade amplitude in edge-wise direction is about Y=1m and the length of the push rod is L=4m. The sweep-343 
frequency analysis of the 84m and 94m blades in flap-wise and edge-wise directions is carried out respectively to obtain the 344 
resonance frequency of the test system. According to Eqs. (18), appropriate function (Eqs. (19)) is selected to fit the results, as 345 
shown in Fig. 11. Eqs. (19) is a function selected according to the degree of best fit. Considering equations (18) and (19), the 346 
small parameters encompass the influence of radius of the seesaw, which can be approximated by an exponential function. A 347 
larger radius of the seesaw results in a smaller decrease in the resonance frequency. Conversely, when the rotation radius of 348 
the seesaw is small, the resonance frequency experiences a nonlinear decrease. With R = 3m, the drop in the resonance 349 
frequency of the 84m and 94m blades is approximately 1.6% in the flap-wise direction. Likewise, with R = 2m, the drop in the 350 
resonance frequency is only approximately 1.1% in the edge-wise direction. 351 

𝜔𝜔2 = 𝜔𝜔𝑛𝑛2

�1+𝑡𝑡𝑒𝑒−𝑏𝑏𝑅𝑅�
                     (19) 352 

Where: a、b - parameters in exponential function. 353 

354 

 355 
Figure 11: Relationship between radius of the seesaw and percentage drop in resonance frequency: (a) 84m blade in flap-wise 356 
direction ( 𝑹𝑹𝟐𝟐 = 𝟏𝟏.𝟗𝟗𝟗𝟗𝟗𝟗𝟑𝟑); (b) 84m blade in edge-wise direction ( 𝑹𝑹𝟐𝟐 = 𝟏𝟏.𝟗𝟗𝟗𝟗𝟗𝟗𝟏𝟏); (c) 94m blade in flap-wise direction  ( 𝑹𝑹𝟐𝟐 =357 
𝟏𝟏.𝟗𝟗𝟗𝟗𝟗𝟗𝟏𝟏); (d) 94m blade in edge-wise direction ( 𝑹𝑹𝟐𝟐 = 𝟏𝟏.𝟗𝟗𝟗𝟗𝟗𝟗𝟏𝟏) 358 



359 

 360 

Figure 12: Relationship between radius of the seesaw and blade load distribution: (a) 84m blade in flap-wise direction (b) 84m blade 361 
in edge-wise direction (c) 94m blade in flap-wise direction (d) 94m blade in edge-wise direction 362 

In order to compare the influence of nonlinearity on the blade load distribution, the blade bending moment 363 
distribution can be calculated by using constant displacement of the exciting point and inertial load provided by virtual 364 
mass motion. The excitation position is the same as installation position of the virtual masses closest to the tip of the 365 
blade, and the specific values are shown in Table 2. The excitation frequency is the resonance frequency of the respective 366 
vibration direction, which is obtained by the sweep frequency analysis. 367 

The radius of the seesaw influences the characteristics of the testing system and alters the distribution of blade loads, as 368 
shown in Fig. 12. In the case of 𝑅𝑅 = ∞, the virtual masses shift from rotation to translation in the uniaxial test, effectively 369 
simulating additional masses that are directly fixed onto the blade. Consequently, there is an approximate 3% decrease in the 370 
overall load distribution in the flap-wise direction, the area which is actually fully tested will be reduced. Given the roughly 371 
similar amplitudes, lower resonance frequency results in reduced inertial loads on the blade. Therefore, compensatory measures 372 
such as increasing the excitation level are necessary during the actual test. However, this requires more powerful excitation 373 
equipment.  374 

4.2 Effects of virtual masses on biaxial test 375 

In Section 4.1, only the effect of virtual masses on the uniaxial test is considered, which can intuitively see the influence of 376 
independent parameters on the vibration characteristics of the test system and blade load distribution from the uniaxial model. 377 
However, it is not enough to consider only the uniaxial vibration, but also the effect of virtual masses on the system in the 378 
biaxial vibration. In the biaxial test, the blade has a complex spatial trajectory, and the test system will be affected by multiple 379 



nonlinear parameters at the same time. To find the resonance frequency of the two directions, it is necessary to use the 380 
simulation software for iterative calculation.  381 

Taking 94m blade as an example, virtual masses are applied in both flap-wise and edge-wise directions. Modal analysis 382 
and frequency sweep analysis are used to obtain the frequencies at which specific excitations are applied to the test system. 383 
Combined with the actual working conditions, the flap amplitude at 63% position of the blade is about 2m, and the edge 384 
amplitude at 52% position of the blade is about 1m. The resonance frequencies under different conditions are shown in Table 385 
3, with R = 4m and L = 4m. In fact, the oscillations in flap-wise and edge-wise direction must not be evaluated separately 386 
as they influence each other, so the resonance frequency of the blade in each direction is obtained by sweeping frequency 387 
iteration. Fig. 12 shows the spatial trajectory of the blade under the action of different virtual mass mechanisms. The 388 
results show three main characteristics: 1) Under the same exciting force, the resonance frequency of the two directions 389 
in the biaxial test is lower than that of the uniaxial test, which indicates that the virtual masses affect both vibration 390 
directions. 2) Compared with the ideal working condition, the virtual masses will deform the space trajectory of the blade 391 
(even considering the structural torsion of the blade), which is determined by the motion characteristics of mechanism. 392 
In addition, the deformation of the trajectory may bring higher requirements for the actual damage assessment of the 393 
blade. 3) Under the same exciting force, the difference between the average flap amplitude of the blade using the rotating 394 
virtual mass mechanism and the average flap amplitude under the ideal condition is 9%, and the difference between the 395 
average edge amplitude and the average edge amplitude under the ideal condition is nearly 11%, as shown in Table 4. 396 
Combined with the effect of reduced resonance frequency and amplitude, the biaxial load distribution level of the blade 397 
will be further reduced compared with the uniaxial test, which means that more energy input is required. 398 

399 

 400 
Figure 13: Biaxial trajectory of blade-virtual masses test system with same exciting force (at 63% of the blade position): (a) 401 
Natural frequency excitation; (b) Resonance frequency excitation（Rotation）;（c）Resonance frequency excitation（Actual 402 



Translation）;（d）Resonance frequency excitation（Ideal Translation） 403 

Table3. Biaxial excitation parameters of 94m 404 

 
Virtual masses and 

exciting point Natural 

frequency 

[Hz] 

Sweep-frequency analysis 

Uniaxial resonance 

frequency (Rotation) 

[Hz] 

Biaxial resonance frequency 

[Hz] 

 
Position 

[%] 

Force 

[N] 
Rotation Actual translation Ideal translation 

Flap 63% 3800 0.377 0.373 0.369 0.375 0.377 

Edge 52% 7000 0.589 0.587 0.583 0.587 0.589 

Table4. Biaxial amplitude of 94m 405 

Biaxial average amplitude [m] 

 Rotation Actual translation Ideal translation 

Flap 1.923 2.113 2.154 

Edge 1.447 1.511 1.630 

5 Conclusion 406 

The nonlinear effect of virtual mass device on blade test system is discussed in this paper. In actual working conditions, the 407 
test system is limited by the size of the virtual mass mechanism and the amplitude of the blade, and its resonance characteristics 408 
will be changed. This paper firstly analyzed the nonlinearity of the system resonance characteristics from the mechanism of 409 
the change of the inertia force of the virtual mass, and established a blade uniaxial theoretical model to explore the influence 410 
of the amplitude of the blade and the size of the seesaw on the resonance frequency. Based on the above content, the 411 
approximate nonlinear amplitude-frequency characteristic curve of the test system is obtained. Then the software is used to 412 
simulate the two blades by the transient sweep method, and the applicability of the theoretical model is verified. 413 

For the uniaxial theoretical model, the increase of blade amplitude、the shortening of seesaw size and the increase of 414 
counterweight mass will reduce the resonance frequency in the main vibration direction. However, the uniaxial simulation 415 
results of two blades show that the amplitude of the blade or the size of the seesaw have limited influence on the resonance 416 
frequency. For example, when the size of the mechanism is unchanged (𝐿𝐿 = 𝑅𝑅 = 4𝑚𝑚), only the influence of blade amplitude 417 
on the system is considered. When the amplitude of the flapping direction increases to 2.6m, the resonance frequency in this 418 
direction decreases by nearly 2% compared with the natural frequency; Combined with the actual working conditions, when 419 
the amplitude of the flap-wise direction is maintained about 2m, the length of the seesaw is shortened to 3m, and the resonance 420 
frequency is reduced by nearly 2%. The target amplitude of the edge-wise is usually small compared with the flap-wise 421 
direction, so shortening the length of the seesaw only reduces the resonance frequency by 1.1%. In the case of the same 422 
amplitude, the shortening of seesaw length will reduce the blade load distribution level, and the flap-wise load level will 423 
decrease by up to 3% at most. Due to the small amplitude of the edge-wise, the load level in this direction does not drop 424 
significantly. 425 

Although the nonlinear factors have less influence on the uniaxial test, they have more influence on the biaxial test. Under 426 
the same excitation force and approximate target amplitude (Y≈2m), the rotating virtual masses induces lower resonance 427 
frequency in biaxial vibration than in uniaxial test (Flap-wise direction: 1.06% decrease in uniaxial vibration, 2.12% decrease 428 
in biaxial vibration; Edge-wise direction: 0.34% decrease in uniaxial, 1.02% decrease in biaxial). In addition, under the same 429 
exciting force, the difference between the average flap amplitude of the blade using the rotating virtual mass mechanism 430 
and the average flap amplitude under the ideal condition is 9%, and the difference between the average edge amplitude 431 
and the average edge amplitude under the ideal condition is nearly 11%. Furthermore, the virtual masses mechanism can 432 



also cause the deformation of the space trajectory envelope of the blade. Under the combined action of many factors, the 433 
nonlinear effect will be further strengthened. 434 

In conclusion, the virtual masses mechanism will bring nonlinear effect to the test system due to its own motion 435 
characteristics, and the nonlinear factors mainly include the amplitude of the blade, the size of the mechanism and the mass of 436 
the counterweight. In the case of small amplitude, the nonlinear effect is not obvious and has not great influence on the blade 437 
load level. In the biaxial large amplitude test, the nonlinear effect is enhanced and the blade trajectory is deformed. The 438 
resonance frequency of the system will be further reduced. Under the same excitation, the actual blade amplitude is less than 439 
the target amplitude. These characteristics mean that biaxial test requires larger excitation equipment and higher requirements 440 
for blade damage calculation and load formulation. 441 
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