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Abstract. Wind direction variability significantly affects the performance and life-time of wind turbines and wind farms. Ac-

curately modelling wind direction variability and understanding the effects of yaw misalignment are critical towards designing

better wind turbine yaw and wind farm flow controllers. This review focuses on control-oriented modelling of wind direction

variability, which is an approach that aims to capture the dynamics of wind direction variability for improving controller per-

formance over a complete set of farm flow scenarios, performing iterative controller development, and/or achieving real-time5

closed-loop model-based feedback control. The review covers various modelling techniques, including large eddy simulations

(LES), data-driven empirical models, and machine learning models, as well as different approaches to data collection and

pre-processing. The review also discusses the different challenges in modelling wind direction variability, such as data quality

and availability, model uncertainty, and the trade-off between accuracy and computational cost. The review concludes with a

discussion of the critical challenges which need to be overcome in control-oriented modelling of wind direction variability,10

including the use of both high and low-fidelity models.

1 Introduction

Present day large scale wind farms contain arrays of ever increasing numbers of multi-megawatt turbines, with total capacities

in the order of gigawatts. The largest wind farm project in the world, under construction in Gansu Provence China, will contain

around 7,000 turbines and is planned to have a capacity of 20 GW over an approximate area of 500 km squared. The continued15

increase in the size of wind farms as well as in the size of wind turbines themselves, has resulted in greater interactions

between turbines and their surrounding flow fields. These interactions are driven by both large scale atmospheric effects, such

as topographically generated weather systems, and more local effects, such as those due to terrain and the wakes of other

turbines (Meyers et al., 2022). These complex interactions within the wind farm result in high levels of wind farm performance

uncertainty that can lead to under-performance, threatening the viability of wind power to meet the expectations of future20

renewable energy targets (Haupt et al., 2017).

Active yaw control (yawing the turbine rotor to face against the incoming wind) and wind farm flow control (using control

systems to reduce wake effects on downstream turbines) has motivated research into wind direction variability by the wind
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energy community. General wind field variability is present in Gaussian wind fields simulated via the turbulence models

recommended by IEC 61400-1, the Mann and Kaimal models (Yassin et al., 2021). Direction variation in these models is seen25

through the argument of the resultant velocity vector of the lateral and longitudinal components. Although useful for fatigue

load calculations, research has tended to focus solely on the high frequency wind field content approximated by these models

at turbine locations (Dong et al., 2021). Therefore, there is limited understanding of the physical and statistical nature of wind

direction variation on length and time scales important for yaw and wind farm flow control (in the order of metres to kilometres

and seconds to minutes). Furthermore, the behaviour of wind turbines and wind farms under realistic wind direction variation30

remains understudied (Shapiro et al., 2022).

This review presents the current understanding of wind direction variability in the context of control-oriented modelling

of wind turbines and wind farms in a manner suitable to a wide audience. In doing so, essential gaps in the literature are

highlighted and areas in need of further research are made clear. The review is motivated partly by the fact that persistent

significant unintentional yaw misalignment (yaw error) of horizontal axis wind turbines (HAWT) with respect to the inflow35

direction, of more than 10◦, is common in many wind farms (Annoni et al., 2019a). The adoption of wind farm flow control

also entails a similar degree of intentional yaw misalignment (Simley et al., 2020b). Whether intentional or not, this degree

of persistent misalignment results in a conservative decrease in annual energy production (AEP) of more than ≈ 3% of the

individual turbine (Pedersen et al., 2008), with a corresponding knock on effect to the levelised cost of energy (LCOE) of

wind power. AEP aside, there are also the implications of asymmetric loading through turbine components, which could cause40

increased operation and maintenance costs, further increasing the LCOE (Bartl et al., 2018). Research is ongoing as to the

full extent of yaw misalignment on turbine performance and a lack of consensus prevails in the literature, however there are

obvious performance implications.

The review begins in Section 2, where the physical drivers of wind field variability at different length and time scales are

presented and discussed. Section 3 then outlines the various physical and statistical models used to understand wind direction45

variability across wind farms over the length and time scales relevant for yaw and wind farm flow control. Next, Section 4

gives an overview of the performance implications of yaw misalignment, both in terms of power and loads. The review then

moves on to the topic of control, starting with Section 5 which details conventional yaw controllers and their associated errors

and uncertainties. This is followed by Section 6, where methods that augment the control system to improve sensor quality

and reliability including methods which utilise machine learning are described. Section 7 then explores two wind farm control50

methods affected by wind direction variability, namely wake steering control and collective yaw control. Finally, in Section

8, the critical challenges of control-oriented modelling of wind direction variability are summarised and, in Section 9, the

conclusions are drawn.

2 Physics of Direction Variability

Early research towards understanding dynamic wind direction behaviour began in the field of atmospheric science. Researchers55

were focused on understanding and predicting the dispersion of pollutants in the atmosphere (Davies and Thomson, 1999). It
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was found that wind direction variability came in either the form of gradual meandering of the wind vector (Kristensen et al.,

1981; Hanna, 1983; Etling, 1990) or frequent sudden changes in direction (Mahrt, 2008). The behaviour was also found to be

very closely related to concurrent meteorological and physical conditions, such as the ambient wind speed, the atmospheric

stability, local topography, pressure and turbulent motion (Kau et al., 1982). In the wind energy community, wind direction is60

often treated as a categorical variable (Simley et al., 2020a), or as a conditional variable for direction-dependent coefficient

estimation (Feijóo and Villanueva, 2017). In reality, wind direction is a continuous variable with a strong auto-correlation

structure (Vincent, 2010), where slight changes can have significant affects on wind farm performance (Porté-Agel et al.,

2013). Understanding how wind direction varies over the relevant length and time scales for yaw and wind farm flow control

is therefore essential to quantifying performance and achieving control objectives.65

Firstly, Section 2.1 gives an overview of the physical processes which cause general inflow variability at wind farms, as well

as providing a brief introduction to important terminology from atmospheric science. Next, in Section 2.2, some of the relevant

processes in the study of wind direction variability are highlighted and the modelling of these processes is further explored.

2.1 Physical Processes

Wind farms experience an array of weather phenomena, resulting in fluctuations in the wind field at different spatial and70

temporal scales. A subset of meteorological processes and where they fall on the length and time scale is shown in Figure 1.

The largest scale, the synoptic scale, covers atmospheric changes at horizontal length scales in the order of 1,000 km and

above, and time scales of approximately one month. The dominant influence on the development of phenomena at the synoptic

scale arises from the Coriolis acceleration affecting the movement of air masses (Coleman and Law, 2015). Synoptic-scale

processes are mostly relevant for long-term wind energy resource assessment studies (Spera, 1994).75

The next largest scale is the mesoscale. Mesoscale meteorology is the study of atmospheric phenomena characterised by

horizontal scales in the order of 1 km to 1000 km. Time scales at this level cover less than a day to several weeks. The

phenomena often of most interest encompass thunderstorms, fronts, and topography/terrain driven weather systems such as

mountain waves (Coleman and Law, 2015). Mesoscale processes influence the location choice and long term operation of

wind farms as well as driving smaller scale processes which can affect wind farm performance directly (Spera, 1994).80

Lastly, the microscale encapsulates atmospheric phenomena on the smallest scales. These phenomena generally occur over

time scales of seconds to minutes and length scales in the order of 1 km or less. This scale focuses on individual thunderstorms,

clouds, and local turbulence arising from structures like buildings and obstacles such as individual hills (Coleman and Law,

2015). Microscale processes affect the everyday operating environment of wind farms. They produce inflow variability on time

scales similar to the controller response time, which can have a significant impact on performance if not properly accounted85

for by the yaw or wind farm flow control system (Haupt et al., 2015).

Many of the microscale processes that occur are so transient in nature that the deterministic description and forecasting of

each individual deviation from the general flow of the fluid (eddy) is almost impossible. As a result, there are three primary

areas of research regarding the characterisation of eddies (Stull, 1988), which are
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Figure 1. Scales of atmospheric motion and example phenomena.

– Stochastic methods which deal with the empirical average statistical properties of the eddies, these are often studied90

through simulations using Reynolds-averaged Navier–Stokes (RANS) equations (Section 3).

– Similarity theory which describes the apparent common-behaviour of many empirically-observed phenomena, when

transformed to the relevant scale. Similarity theory has been applied to wind farm flow data to determine inputs to

RANS equations (Breedt et al., 2018).

– Phenomenological classifications which inform a partially deterministic approach towards the larger sized eddy struc-95

tures, these are often studied through large eddy simulation (LES) (Section 3).

2.2 Wind Direction Variability

The variability of the wind direction depends highly on the inverse of the wind speed and the stability conditions of the

atmospheric boundary layer (ABL). The ABL is the lowest part of the Earth’s atmosphere, which directly interacts with the
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Earth’s surface. The height of the ABL depends on various factors such as weather conditions and the time of day. The100

behaviour of the ABL is often described through it’s stability condition, which is categorised by three main cases: highly

turbulent (unstable), nearly laminar and intermittent (stable), or a combination of the two (neutral) (Meyers et al., 2022).

On both the microscale and mesoscale, different sets of dynamics can dominate depending on the ABL conditions, which

can have significant effects on wind direction variability and wind farm performance (Meyers et al., 2022). In an unstable

atmosphere, microscale convective processes are of most importance in determining the variability of the wind direction (Vin-105

cent et al., 2010). This variability is well understood through ABL similarity theory of turbulence (Hans and Jhon, 1984). On

the contrary, in a stable atmosphere, larger mesoscale processes are able to exist, such as inertial oscillations, low-level jets,

gravity waves and Kelvin-Helmholtz instability, which tend to dominate the variability (Stull, 1988).

Application of traditional similarity theory under stable conditions predicts a reduction in direction variations as stability

increases. However, as a consequence of low frequency meanders (Hanna, 1983), this was shown to fail for averaging times110

of more than 10 minutes (Davies and Thomson, 1999). Low frequency meandering has been attributed to boundary-layer

motion and larger mesoscale effects (Hanna, 1983). Low-frequency meanders have been found to exist over all types of terrain

including the open ocean. Various formulas for estimating such effects have been proposed (Hanna, 1983, 1990; Joffre and

Laurila, 1988).

In addition to slow meandering motion, the wind is known to abruptly change direction as well. The underlying mechanics of115

sudden local wind direction changes remain poorly understood, but potential factors include steepening gravity waves, density

currents, pulses of drainage flow, and numerous other more complex phenomena that are difficult to model and predict (Mahrt,

2011).

Another crucial aspect is the correlation between wind direction variability and the inverse of wind speed (Joffre and Laurila,

1988; Davies and Thomson, 1999). On average, wind direction variability tends to be higher for unstable conditions at a120

given wind speed. However, very low wind speeds occur more commonly in stable conditions. As a result, the wind direction

variability is generally much larger at night because of the relatively shallow and stable nocturnal boundary layer (Mahrt,

2011). During the late night is also when wind veer (the rotation of wind direction with height) is especially pronounced as a

result of Coriolis forces on the nocturnal boundary layer (Porté-Agel et al., 2020).

The inverse relationship between wind direction variability and wind speed has been successfully modelled and generalised125

(Joffre and Laurila, 1988; Hanna, 1990). The models help account for wind direction variability with increasing height and

between different atmospheric stability classes (Mahrt, 2011). These generalised models have limited application in wind farm

flow modelling, since they tend to focus on regimes with very low wind speeds (and therefore high wind direction variability)

when most turbines would not be operating.

Finally, terrain effects are also know to impact wind direction variability. In mesoscale simulations, direction variability130

was found to be greater in complex terrain compared to smoother terrain over small averaging times (in the order of minutes)

and showed high sensitivity to the grid points selected to represent the on-ground conditions (Jiménez and Dudhia, 2013).

Nevertheless, this distinction becomes indiscernible for averaging periods of more than 10 minutes. Therefore, local complex

terrain predominantly induces wind direction variability in the order of minutes or less. Although not sustained, these variations
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could still have a significant effect on turbine performance if their magnitude is large enough and they last long enough to trigger135

a control response (see Section 5 for more details on the yaw control system) (Mahrt, 2011).

2.3 Discussion of Physics of Direction Variability

The overall drivers of wind direction variability at wind farms is a combination of large scale effects at the synoptic or mesoscale

as well as local effects at the microscale (Vincent, 2010). Over longer time periods of several hours (in both stable and unstable

conditions) synoptic and mesoscale eddies are the main contributors to wind direction variability (Davies and Thomson, 1999).140

Certain variation occurs regularly and follows predictable patterns, such as that arising from diurnal and seasonal cycles. Other

variations are more sporadic, driven by large-scale weather systems that can induce abrupt changes in wind speed and direction

(Haupt et al., 2019). On the other hand, at the microscale, aspects such as atmospheric stability, terrain effects and wake effects

are the main drivers of variability.

Each of the drivers of wind direction variability exist on different length and time scales meaning that the statistical properties145

of wind direction measurements constantly change. Even on very long time scales, climate change ensures that there is no

time scale on which the measurements can definitely be considered stationary, meaning that the associated data has means,

variances, and co-variances that constantly change over time (Vincent, 2010). Non-stationarity makes it difficult to use physical

phenomena as indicators to inform and adjust the parameters of the control system, however, atmospheric stability dependent

readjustment time of yaw control parameters has been tested (Cortina et al., 2017).150

Fundamentally, there may not be one single direction associated with the wind flowing into large wind farms, especially

for those surrounded by complex terrain (Quick et al., 2020). The challenge therefore is to understand how wind direction

measurements need to be first filtered and conditioned, before optimisation for control objectives can occur (Hau, 2013). The

degree of filtering and conditioning needed will in general depend on other factors such as the concurrent wind speed and

atmospheric stability, alongside other site-specific factors like topography, terrain and the specifications of the yaw system155

itself.

3 Wind Farm Flow Models

Wind farm flow models are mathematical, statistical and/or computational models used to simulate and analyse the behaviour

of wind flow within wind farms. Many different flow models exist that take into account various different global and/or local

effects, however, they have traditionally been developed by various research communities in isolation (Sanz Rodrigo et al.,160

2017). Recently, attempts have been made to bridge the gaps, especially between the fields of atmospheric physics, statistics

and fluid dynamics, where collaboration is motivated by the need for realistic inflow conditions in high fidelity wind farm flow

studies (Chatterjee et al., 2018).

One question is whether or not a sufficient picture of the relevant physics can be captured by wind farm flow models, such

that they can be used for controller testing and validation in a reliable, accurate and cost-effective manner. Recent developments165

in LES models with concurrent mesoscale precursor simulations would allow for such tests to be performed, although still at
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considerable computational expense. Thus, the amount of computational resource required to achieve useful results using these

LES models is out of reach to the majority of the researcher community.

Section 3.1 discusses physical models that have incorporated realistic dynamic wind direction changes as input and briefly

describes how they work. Section 3.2 then follows with discussion of the statistical tools and models that have been applied to170

the study of wind direction variability over the relevant length and time scales.

3.1 Physical Models

Physical models used in wind farm flow simulations fall into one of three broad categories; high fidelity large eddy simulations

(LES), medium fidelity dynamic models or reduced order (engineering) models.

– High fidelity LES models are the most accurate but still computationally feasible microscale farm flow simulation175

tools available. Instead of prohibitively expensive direct numerical simulation of the Navier-Stokes equations of fluid

dynamics, LES works by filtering out the smallest length-scales of the Navier-Stokes equations (the smallest eddies).

Generally, LES is used to simulate statistically stationary behaviour of wind farms, however, realistic dynamic wind

direction variation can be included by coupling LES with mesoscale forcings that prescribe the wind farm inflow through

precursor simulation methods (Section 3.1.2) (Munters et al., 2016).180

– Medium fidelity dynamical models can be employed to predict the available power and/or flow fields in a wind farm

(Boersma, 2019). These equations often use Reynold’s averaged Navier-Stokes (RANS) equations based models, which,

unlike LES, represent only the mean fluid flow. RANS models mostly consider steady-state behaviour, but models can

be adapted to analyse preset changes in wind farm conditions over space and time, such as continuous sweeps across

inflow directions (Kheirabadi and Nagamune, 2021).185

– Reduced-order or engineering models can provide information on important wind farm dynamics with limited compu-

tational complexity (Boersma, 2019) which give typical run-times in the order of seconds to minutes, useful for iterative

controller design. However, these models are valid for only specific atmospheric conditions, don’t contain any true tur-

bulent eddy structure and have limited accuracy (Schreiber et al., 2020).

LES models are the highest fidelity models available and have been used successfully for testing new wind farm flow190

controllers (Storey et al., 2016; Gebraad et al., 2016). The quality of these models are constantly being improved by validation

against and assimilation of field test data, as well as recent attempts to couple them with mesoscale precursor models (Munters

et al., 2016; Chatterjee et al., 2018; Stieren et al., 2021). However, the grid points needed to resolve a developed stratified

wake with LES is in the order of 1× 1011, according to conservative estimates (Li et al., 2022). Hence, the computational

cost is prohibitively expensive for most controller design purposes, not to mention the cost associated with the wind turbine195

aero-elastic models required to gain a complete picture (Larsen et al., 2017). Therefore, LES is not suitable for most control-

oriented modelling applications. Instead, LES often serves as a proof-of-concept tool for new control methods or as validation

models for lower-order surrogate models (Meyers et al., 2022).
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The best available models for understanding the effects of wind direction variability are coupled mesoscale-microscale

LES models. Although, again these models are unsuitable for most control-oriented modelling applications, they are able to200

simulate farm wide realistic dynamic changes in inflow direction and have provided valuable insights. Therefore, Sections

3.1.1 and 3.1.2 describe in more detail mesoscale, microscale and coupled models and introduce examples from the literature.

3.1.1 Mesoscale and Microscale Models

Mesoscale models of wind farms include physical parameterisations to model the outer flow phenomena by including energy

transform models, surface layer models, land use models, physical parameterisation, boundary layer parameterisations, and205

more. By incorporating suitable initial and boundary conditions derived from global models, these models effectively capture

the dynamic processes of the ABL (Haupt et al., 2019). These important dynamics are often excluded from or only roughly

approximated in more local LES (microscale) models. Furthermore, mesoscale models are non-hydrostatic and model water-

related processes in the atmosphere, both rare features of microscale models. Although realistic wind direction variability can

be captured using mesoscale models (Draxl et al., 2021), the maximum spatial and temporal resolution of these models is210

too large to allow them to accurately investigate intra-wind farm effects caused by dynamic wind direction changes (Carvalho

et al., 2012; Jiménez and Dudhia, 2013), however, they are useful in studying general wind farm flow effects such as inter-wind

farm wakes and the development of wind farm boundary layers.

In contrast to mesoscale models, microscale LES models, have the ability to capture the flow around objects at much higher

resolution, allowing modelling of terrain details and flow around turbine blades (Haupt et al., 2020). These models are also215

able to resolve fine-scale turbulence and explicitly resolve aeroelastic interactions with the wind turbines. Microscale LES

models, therefore, are essential towards developing new optimal yaw and wind farm flow control strategies (Fleming et al.,

2014a, 2015). However, up to now the emphasis has been on small-scale turbulence modelling and scenarios where the farm

flow is constrained towards steady-state conditions (Calaf et al., 2010; Wu and Porté-Agel, 2011; Goit et al., 2016). While

these simulations have offered valuable insights into the interaction of wind farms and the ABL under steady-state conditions,220

the influence of large-scale effects on wind farm performance, especially dynamic wind direction changes, has mostly been

ignored (Stieren et al., 2021).

3.1.2 Coupled Models

There have been efforts to accurately couple mesoscale models to microscale LES (Muñoz-Esparza et al., 2014; Muñoz-Esparza

and Kosović, 2018; Haupt et al., 2020), which is particularly important to accurately represent non-stationary meteorological225

conditions or changes of atmospheric stability at wind farms, especially those driven by the diurnal cycle (Haupt et al., 2020).

For coupled simulations, Coriolis effects are included which means large changes in wind direction with height in the ABL

can be simulated (Haupt et al., 2017). Therefore, in order to represent a wider range of important meteorological phenomena

that affect wind farm performance, mesoscale information needs to be embedded in microscale models (Draxl et al., 2021).

Realistic inflow conditions from mesoscale forcing can be included in microscale LES by nesting the LES within a mesoscale230

numerical weather prediction (NWP) simulation domain. The output of the NWP acts as a precursor to the LES simulation,

8



providing both the initial and boundary conditions. Examples include coupling LES to mesoscale models like the Weather

Research and Forecasting (WRF) model (Talbot et al., 2012; Mirocha et al., 2014; Schalkwijk et al., 2015). Biases in wind

speed and direction in nested mesoscale simulations have been shown to be passed on to the LES simulations, which in general

are unable to fully correct for these biases (Talbot et al., 2012). However, the wind field is reasonably well simulated by the235

WRF model, especially in wind regimes where there is a very dominant sector (Carvalho et al., 2012), and can be improved

with appropriate data assimilation techniques (Haupt et al., 2017).

The goal of accounting for realistic dynamic wind direction or even sweeps over a range of predetermined wind directions

in LES is challenging and demands significant computational resource. To this end, a concurrent precursor method in which

the horizontally periodic mesoscale precursor domain was rotated was first proposed by Munters et al. (2016). Following up on240

this work, Chatterjee et al. (2018) proposed a modified version of the concurrent method that only rotated the inflow velocity

vector instead of the entire precursor domain. Data from cup and vane anemometer was used to generate realistic neutral ABL

inflow data to the modified model to compare the predicted wake effects with on-site light detection and ranging (LiDAR)

measurements of the wakes (Chatterjee et al., 2018). The approach has since been developed further by Stieren et al. (2021)

to make use of a dynamically changing non-inertial rotating reference frame, which was able to accurately reproduce realistic245

pseudo-random wind direction and power spectrum at each turbine using low-pass filtered wind farm field measurements as

inputs.

The coupled LES models provide greater understanding of how dynamic wind direction changes can significantly impact

wind farm performance. As an example, simulations of a regularly spaced wind farm array demonstrated a considerably steeper

decline in power output at the minimum farm power inflow angle, θmin (the wind direction at which lowest wind farm power250

output occurs), during a dynamic wind direction sweep compared to what was predicted through a series of static simulations

at various but constant inflow directions (Munters et al., 2016; Stieren et al., 2021). The drop in power was explained by the

high-velocity wind speed channels which exist between turbines. The flow in these channels was much stronger during static

simulations at θmin compared to simulations which considered a sweep over directions, where channel flow is disrupted by

the inflow angle, especially between turbines further downstream (Stieren et al., 2021). The effect was less pronounced for low255

wind direction rotation rates, since the channel flow had enough time to speed up and allow the entrainment of energy from the

channels into the waked region (Munters et al., 2016). This effect also produced a spike in wind farm power at wind farm flow

angles far away from θmin. It also was shown to cause a site specific hysteresis effect, detected as a positive or negative shift

in the value of θmin of the wind farm (Munters et al., 2016; Stieren et al., 2021).

3.2 Statistical Models260

Statistical models are useful as inputs to wind farm simulations in order to account for and accurately reflect uncertainty in

the inflow conditions. Since wind direction is fundamentally non-stationary, this necessitates simplifying assumptions and

approximations about the statistical nature of wind direction time series so they can be more easily modelled. In general,

there is a relative lack of research focusing on the statistics of wind direction as opposed to wind speed (Jiménez and Dudhia,

2013), especially in the context of wind farm flow, which seems to be a product of the challenges associated with the statistical265
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treatment of circular variables like wind direction (Mardia et al., 2000). Often in studies, the longitudinal and latitudinal

components of the wind vector are shown instead of the wind direction, which avoids the difficulties associated with summary

statistics of circular data (Haupt et al., 2017).

Therefore, one critical question is how to treat the circular wind direction variable. In contrast to linear statistics, there are

often different ways to calculate summary statistics of circular data, such as the sample mean for instance, which in most270

cases give different results. Therefore, careful consideration of the appropriate circular statistics is needed, before making any

calculations (Farrugia and Micallef, 2017).

3.2.1 Circular Statistics

Circular statistics deal with data that has a circular or directional nature, where the values need to be measured in terms

of a circular scale. In contrast to traditional linear statistics, where values can be measured with respect to the real number275

line, circular statistics takes into account the wrapping of the variable, where any value beyond the maximum or minimum

are wrapped back on the scale, creating distributions that exist on the circle rather than the real number line. Wind direction

provides a good example of a circular variable. It is 2π periodic and can be mapped to a circular scale where an arbitrary

zero-direction and manner of rotation are defined (Jammalamadaka and SenGupta, 2001). Conventionally, the zero-direction

is set as north and then angles are measured clockwise from north.280

The periodicity of circular variables, the arbitrariness of the zero position and manner of rotation, and the absence of absolute

magnitude, altogether means directional analysis of circular data is substantially different from standard linear statistical anal-

ysis. Circular statistical methods need to be invariant with respect to the choice of the zero-direction and sense of rotation, as

a consequence, many typical linear techniques and measures are not applicable. Therefore commonly used summary statistics,

such as the mean and variance, as well as simple mathematical operations like subtraction and addition, need to be redefined285

so they make sense in the context of circular statistics (Jammalamadaka and SenGupta, 2001).

The circular mean θ̄ and circular variance vR of a sample of N circular variables {θi}Ni=1 can be obtained in a variety of

ways. The easiest to visualise is the vectorial method which begins by representing the circular data as a set of unit vectors in

the complex plane {zi}Ni=1, where zi = eiθi . The circular mean is then calculated as the argument of the resultant vector zR

after summation of the unit vectors,290

θ̄ = arg

(
1

N

N∑
i=1

zi

)
= arg(zR) . (1)

Figure 2 illustrates calculation of the circular mean of two different sets of circular variables. Note that for wind data, calculation

of the circular mean can also be weighted by the corresponding wind speed Vi in order to capture more information about the

wind field. Once the resultant vector zR is obtained, the circular variance vR can then be calculated according to,

vR = 1− R̄, (2)295

where R̄= |zR| and 0≤ R̄≤ 1. Since the length of the resultant vector R̄ decreases as the spread of the data around the circle,

1− R̄ increases with the spread and therefore provides a robust measure of the variance (Fisher, 1995). One limitation of this

10



Figure 2. Examples of circular variables represented as unit vectors in the complex plane {zi}3i=1 and resultant vectors zR indicated by

dashed lines. The circular mean is the argument of the resultant vector in each case. Illustration adapted from Cremers and Klugkist (2018).

measure is that it is bounded between 0 and 1, which makes it difficult to interpret in the same way as the equivalent value in

linear statistics.

If the data is known to lie within a narrow range of values (which is almost guaranteed for wind direction time series in the300

order of tens of minutes), the use of linear statistics to calculate the variance as well as other summary statistics becomes valid
1 (Rott et al., 2018). Before linear summary statistics can be calculated, the minimum angular distance ∆(θ1,θ2) needs to be

defined. This quantity gives the signed value of the least angular distance between two angles (represented here by θ1,θ2 ∈
[0,2π)), once the zero-direction and sense of rotation have been defined. There exists different examples in the literature of

how to calculate this quantity, the first ∆Farr(θ1,θ2) comes from Farrugia et al. (2009) where the authors start by defining the305

absolute minimum angular distance as

|∆Farr(θ1,θ2)| := min((|θ2 − θ1|) mod 2π,2π− (|θ2 − θ1| mod 2π)) . (3)

The minimum angular distance is then determined by considering a series of cases concerning the relative position of each

angle on the circle and assigning a sign to the absolute value accordingly. However, this approach does not account for all cases

and therefore is incomplete. A complete and succinct definition is given in Rott et al. (2018), where the minimum angular310

distance ∆Rott(θ1,θ2) ∈ [−π,π) is simply given by,

∆Rott(θ1,θ2) := ((θ2 − θ1 +π) mod 2π)−π, (4)

1Otherwise, if the dataset contains values more than π radians away from the circular mean, calculating variance in the linear sense isn’t well defined since

it is unclear what the difference between those extreme values and the mean should be.
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from which the absolute value can easily be determined if necessary.

The minimum angular distance is used to compute the expected values of linear summary statistics such as the standard

deviation and the variance (Yamartino, 1984; Farrugia et al., 2009). The variance σ2
θ can be computed according to,315

σ2
θ =

1

N

∑
i

∆(θ̄, θi)
2 (5)

where ∆(θ̄, θi) is the distance from the mean according to the chosen measure of the minimum angular distance. The standard

deviation of wind direction σθ is of particular interest to researchers since it is related to the lateral turbulence intensity iv

through the equation tan(σθ) = iv in stable atmospheric conditions (Hanna, 1983).

3.2.2 Short Term Statistical Models320

In order to quantify variability for robust wake steering control, where upstream turbines operate with an intentional yaw

misalignment to deflect their wakes away from those downstream (Simley et al., 2021), statistics of 5 minute wind direction

time series have been studied from one second wind vane met mast data (Rott et al., 2018). The measurement data was

split into 5 minute time series, mapped to a linear scale, and compared with a fitted normal distribution both visually, using

histograms and quantile-quantile plots, and numerically, using a Kolmogorov–Smirnov test. The comparison was done to verify325

the hypothesis that the measurement data can be approximated statistically by a normal distribution within 5 minute segments.

It was found that 70.58% of the measurements passed the test for a significance level of 5%. Based on these findings, it was

concluded that in the majority of cases, the variability of 5 minute wind direction time series can be adequately approximated

by a normal distribution. It was also verified that wind direction variability is strongly correlated with atmospheric stability

classes, as discussed in Section 2, which included stable, neutral and unstable conditions (Rott et al., 2018).330

Similarly, it has also been shown that a normal distribution provided a good fit to the measured wind direction variations

over a longer 10 minute time period at Horns Rev (Gaumond et al., 2014). The wind direction measurements were recorded

using a sonic anemometer mounted on a met mast with a sampling rate of 12 Hz at a height of 50 meters (Peña and Hahmann,

2012). The assumption that the wind direction time series was normally distributed over the considered sampling times meant

that the yaw errors at each turbine could be assumed to be normally distributed as well, which allowed power performance to335

be more accurately calculated. Hence, the accuracy of three separate wake models was evaluated against data from the Horns

Rev wind farm while taking into account uncertainty in the wind direction measurements.

Alternative data driven methods for modelling and generating realistic short term wind field time series samples have also

been described (Bossanyi, 2018; Simley et al., 2020a; Van Der Hoek et al., 2021). Bossanyi (2018) started from single-point

measured data, which were 10-minute averages of wind speed, direction and standard deviation from a met mast. To preserve340

the correct 10-minute statistics, smooth time-series were fitted to the points and synthetic turbulence was then added. While

the wind field included all three components of turbulence, the lateral component was zero-mean, therefore dynamic changes

in inflow wind direction were subsequently added from the smoothed met mast data.

Alternatively, both Simley et al. (2020a) and Van Der Hoek et al. (2021) modelled the wind direction by generating different

stochastic time series which represented either the slowly varying mean wind direction across the wind farm or the purely345
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turbulent high frequency component with zero mean. The time series were produced by simulating a random time series with a

normal distribution, derived from the power spectra of both low-frequency and turbulent wind direction components extracted

from met mast measurements and LES. This method resulted in time series where the low frequency wind direction components

were completely correlated at each turbine whereas the high frequency components were completed uncorrelated.

Strong assumptions are made by these data driven models, especially in how wind direction changes propagate through the350

farm, however, data-driven methods are designed to minimise computation requirements and act only as a starting point to be

iterated and refined upon. Other, more general wind field generation techniques are also available and widely used, such as

the Mann spectral model (Mann, 1998) or the Veers method (Veers, 1988), however, these methods focus mostly on modelling

stationary processes and the high frequency content of the wind field.

3.3 Discussion of Wind Farm Flow Models355

Meso-microscale coupled LES models have the potential to validate a controllers effectiveness under realistic wind direction

variability before more detailed field tests are carried out (Section 3.1.2). However, the computing power required by cur-

rent models makes them prohibitively expensive and time consuming to deploy, especially for complex control optimisation

(Munters et al., 2016; Stieren et al., 2021).

Ideally, software would allow many multiple 5 to 10 minute wind farm flow simulations to test controller effectiveness360

under dynamic wind changes, enough to achieve statistical significance. Although current data-driven methods make strong

assumptions about wind direction, especially in terms of normality of time series and their spatial and temporal coherence, the

short-term statistical treatment of the wind direction variable presented in Section 3.2 provides a starting point for a data-driven,

computationally less expensive approach to the problem.

4 Performance under Yaw Misalignment365

Yaw misalignment, denoted γE , refers to any misalignment between the nacelle position θnacelle and the hub height wind

direction θwind. Figure 3 shows the top down view of a turbine with positive yaw misalignment. The misalignment is calculated

according to

γE =∆Rott(θnacelle,θwind) (6)

where θnacelle and θwind may each be either time-averaged or instantaneous, depending on the application.370

There are two classes of yaw misalignment; intentional, because of the actions of a wake steering controller (or simply

because of the necessarily slow actuation of the yaw system), or unintentional, because of systematic measurement bias or

other errors in the wind turbine measurement equipment.

This section starts by providing motivation for the topic through the physical laws that govern horizontal axis wind turbines.

Section 4.1 covers the first-order relationship between power and yaw misalignment of the wind turbine. Then, Section 4.2375

gives a brief overview of the current understanding of the effects of yaw misalignment on turbine loads.
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Figure 3. Positive yaw misalignment on a horizontal axis wind turbine which is defined as a counter clockwise rotation of the nacelle away

from the hub height wind direction viewed from above. Illustration adapted from Fleming et al. (2016).

4.1 Power

From the continuity equation of fluid mechanics, the flow of an air mass
dm

dt
is a function of air density ρ, surface area (in this

case the rotor swept area) Ar, and free stream flow velocity U∞. Ignoring the effects of wind sheer and veer, it is estimated

that the velocity is independent of location on the rotor swept area, meaning that
dm

dt
through the rotor can be defined as,380

dm

dt
= ρArU∞. (7)

The instantaneous kinetic power of the wind available at the rotor, Pw, is

Pw =
1

2

dm

dt
U2
wind =

1

2
ρArU

3
∞. (8)

A wind turbine exerts a thrust force F on the wind flowing through the rotor that corresponds to the amount of energy extracted

from the flow each second,385

F =
1

2
CT (β,λ,γ)ρArU

2
wind, (9)

where Uwind is the free-stream wind velocity after taking into account induction effects and CT (β,λ,γ) is the dimensionless

thrust force coefficient, which is a function of the blade pitch β, tip-speed ratio λ, and yaw angle γ. The tip-speed ratio is

defined as the ratio of the tangential speed at the blade tip to free-stream wind velocity,

λ=
ωR

U∞
, (10)390

where R is the radius and ω is the rotational speed. The tip-speed ratio is proportional to the rotor speed, which is typically

controlled via the generator torque or by pitching the turbine blades to alter the lift forces on them (Boersma et al., 2017). The

14



power in the wind across a circular cross section was given in eq. 8 but not all of this power can be extracted by a wind turbine.

The wind power that can be extracted by a turbine is given by,

P =
1

2
Cp(β,λ,γ)ρArU

3
wind, (11)395

where CP (β,λ,γ) is the dimensionless power coefficient (Boersma et al., 2017).

The theoretically maximum available power at any given wind speed occurs when the rotor axis is aligned to the inflow wind

direction. If the rotor axis of a turbine is not aligned with the inflow, the wind speed perpendicular to the rotor plane is reduced

to

UγE
= Uwind cos(γE), (12)400

where γE is the yaw misalignment of the turbine. Hence, neglecting changes in aerodynamic behaviour from misaligned rotors,

the maximum amount of power that can be extracted by a turbine operating with a yaw error γE is

Pmax =
1

2
ρArU

3
wind cos

3(γE)Cp. (13)

Thus, the extractable power is theoretically reduced by a factor of cos3(γE). In reality, experimental results have shown that

power extraction under yaw error behaves according to the more general empirical equation,405

Pmax =
1

2
ρArU

3
wind cos

α(γE)Cp, (14)

where the term cosα(γE) is referred to as the power reduction factor (PRF). The α term has been estimated both experimentally

and theoretically in several different studies, which are discussed in Section 4.1.1.

4.1.1 Power Reduction Factor

Experiments carried out using a rotating wind turbine model in a wind tunnel with turbulent inflow generated by a static grid410

found that the empirical value of the power reduction factor mostly agreed with the expected value, i.e. α≈ 3 (Krogstad and

Adaramola, 2012). A similar set up with low and high turbulence uniform inflow and sheared inflow condition also found that

α≈ 3 (Bartl et al., 2018). However, other experimental results have often shown that the cube law overestimates the power

loss (Kragh and Hansen, 2015). An overview of past research and their findings is shown in Table 1.

In addition to the empirical observations outlined in Table 1, Howland et al. (2020) developed a model from first principles,415

using blade element momentum (BEM) theory to show how there exists a non-linear relationship between power output and

yaw misalignment, affected by both the atmospheric conditions and the wind turbine control system. The data collected to

test their model showed α= 2 for different OEM turbines at a specific site. It was concluded that the ability of the first

principles model to accurately predict performance was much greater than the simple cosine cubed power law, since the

expected power will in all cases be model- and site-specific. Additionally, Heck et al. (2023) used a similar first principles420

approach to understand how not only the power, but the induction, thrust and near wake velocity deficit changed in relation to

yaw misalignment. This approach showed that induction decreases as a function of yaw misalignment, which explains the less

than expected value of α observed in various studies (Table 1).
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Turbine Model α Value Paper

Scale model ≈ 3 (Krogstad and Adaramola, 2012; Bartl et al., 2018)

Scale model ≈ 2 (Medici, 2005)

NREL 5MW LES model 1.88 (Gebraad et al., 2014)

Scale Model ≈ 1.7870 (Schreiber et al., 2017)

Scale model, LES model ≈ 1.43, ≈ 1.43 (Draper et al., 2018)

Envision 4MW turbine, LES model ≈ 1.86, ≈ 1.73 (Fleming et al., 2017)

Various OEM models ≈ 2 (Howland et al., 2020)
Table 1. Selected details of past research and findings for the power reduction factor cosα(γE).

4.2 Loads

Fatigue loading occurs when a load is repeatedly applied and removed from a material, i.e. when the loading is cyclic. For wind425

turbines, cyclic loads usually occur as the blade rotates through a wind field, leading to what is called once-per-revolution (1P)

loads on the blade and 3P loads on the tower and drivetrain (Kragh and Fleming, 2012). The effects of yaw misalignment on

turbine component and structural fatigue loads as well as lifespan changes is somewhat of an open question (Bartl et al., 2018).

A misaligned inflow produces periodic loads because the aerodynamics of the blade change with its azimuthal position θ.

The advancing and retreating action of the blade with respect to the crosswind flow creates a change in the angle of attack,430

leading to changes in the lift, drag and thrust forces (Heck et al., 2023). The changes in thrust force combine to create a moment

on the rotor in the tilt direction. Figure 4 shows a free body diagram of a blade element before and after applying a positive

yaw misalignment. As the blade passes through θ = 0 and θ = π, the effect of the misalignment is at a minimum since it is

cancelled by the blade position, whereas the effect is maximal at θ = π/2 and θ = 3π/2. Additional periodic loading occurs

because of a slow down in the turbine’s wake on one side compared to the other, which results in increased forces on the blade435

during that portion of the rotation (Zalkind and Pao, 2016).

Damage equivalent load (DEL) is the single equivalent load at some fixed frequency that produces the same amount of

damage as the actual loading history. The distribution of DELs and extreme loads under yaw misalignment for various degrees

of yaw misalignment have been found to be rather complex but correlated with the rotor and blade design as well as the

ambient wind conditions (Damiani et al., 2018). These load distributions were measured for a fully instrumented wind turbine440

and compared to predictions from an aeroelastic model, where it was found that the model predicted the distributions well

(Damiani et al., 2018). Modelling deficiencies in other aeroelastic models and complex unsteady-flow phenomena during

yaw were also revealed by comparison of load characteristics on a misaligned model turbine rotor to various computational

approaches (Schepers et al., 2014).

More recently, it was shown that the DELs are not distributed symmetrically around the zero misalignment angle on the445

turbine’s main bearings (Cardaun et al., 2019). In fact, it was found that top down rotation of the rotor clockwise with respect

to the inflow lead to smaller loads in general. This effect has since been attributed to the rotor tilt, which, at γE = 0, results in a
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Figure 4. Blade element dynamics under normal and yawed conditions, γ̂E = γE sin(θ) and Uyawed = Uwind cos(γ̂E). Illustration adapted

from Howland et al. (2020).

minor increase in the effective wind speed on one side of the rotor while reducing it slightly on the other side (Hart et al., 2022).

Similarly, the yaw moments on misaligned rotors were observed to increase approximately linearly with increasing degrees of

yaw misalignment but again the moments were not completely symmetrically distributed around the zero misalignment angle450

(Bartl et al., 2018).

It has been argued that the effects of yaw misalignment can be balanced by wind shear, such that there exists a turbulence-

intensity dependent optimal non-zero yaw misalignment angle which minimises blade loads (Kragh and Hansen, 2014; Damiani

et al., 2018). However, the reduction in blade loads at this angle were shown to be accompanied by an increase in load

fluctuations for other components, such as the drivetrain and tower (Kragh and Hansen, 2014; Zalkind and Pao, 2016).455

4.3 Discussion of Performance under Yaw misalignment

The performance effects due to misalignment between the rotor and the inflow wind direction are complex and dependent on a

number of factors including the turbine model and the ambient wind conditions.

Levels of yaw misalignment greater than 10 degrees are not an uncommon occurrence according to the literature (Pedersen

et al., 2008, 2011; Kragh and Fleming, 2012; Annoni et al., 2019a). Figure 5 highlights typical mean and maximal misalignment460

angles as well as power losses expected at different values of power reduction factor. From Figure 5, it can be seen that

commonly found levels of yaw misalignment in the literature can cause anywhere from an ≈ 1.5% to ≈ 4.5% decrease in AEP.

Yaw misalignment also causes asymmetric loading through the blades and rotor, leading to increased wear and tear on

the components of the turbine, reducing their lifespan and increasing maintenance costs, with knock on effects on LCOE

(Section 4.2). Although the blade loads under yaw misalignment have been well described and verified in multiple studies,465

more understanding of the aerodynamics of yaw misalignment is still required, including differences between positive and
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Figure 5. Power loss against misalignment for different power reduction factors with typical mean and maximal yaw misalignment values

indicated from data presented by Annoni et al. (2019a).

negative misalignment angles, as well as how the rotor is affected by both vertical and horizontal variations in direction

(Howland et al., 2020).

The first order approximation of yaw misaligned rotor dynamics (Figure 4) provide a good starting point in understanding

site and atmosphere specific effects of yaw misalignment on power and loads (Howland et al., 2020). Then, if these dynamics470

are integrated into aero-elastic turbine simulations, control-oriented models could be developed with these dynamics in place,

resulting in better understanding of the efficacy of control actions to minimise the deleterious effects of yaw misalignment.

5 Conventional Yaw Control

The rotational movement of the wind turbine rotor around the axis of the turbine tower is the yaw of the turbine (Kragh et al.,

2013b). Yaw controllers are designed to align the wind turbine rotor axis with the hub height wind direction as best as possible,475

while balancing the constraints of the system (Meyers et al., 2022). As discussed in Section 4, the wind turbine’s yaw system

can have significant effects on overall wind turbine performance in terms of both power and loads.

It is important to note that the control architecture of commercial wind turbines is often proprietary and dependent on the

manufacturer, and so information on the operation of conventional wind turbine yaw systems is only available to a limited
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extent in the literature. The discussions in this section, therefore, may not be true for all wind turbines but they do serve as480

motivation for further discussions on alternatives to conventional yaw systems.

This section begins by describing the architecture of conventional yaw control systems in Section 5.1. Then, the common

errors and uncertainties associated with conventional wind direction measurement instruments are discussed in Sections 5.2

and 5.3 respectively.

5.1 Architecture485

The majority of modern utility-scale horizontal axis wind turbines use an active yaw drive mechanism to face the turbine into

the wind. An estimate of current wind direction is the first step in most yaw systems. Traditionally, a wind vane on top of

the nacelle measures the wind direction at a point behind the rotor plane. The wind direction signal is usually measured at

high frequency by the wind vane (Bossanyi, 2019). The wind direction signal is then passed through a heavy low-pass filter,

which smooths out the short-term variations, makes the resulting signal more representative of rotor-averaged variations and490

ensures the yaw system depends only on the relatively low-frequency changes in the wind direction. As an example, a first-

order low-pass filter with a -3 dB cut-off frequency of 2 mHz was applied to the input wind direction in CFD simulations of

yaw control (Gebraad et al., 2016). The filtered signal is then compared with the nacelle orientation to obtain a measure of yaw

misalignment. An example of typical conventional yaw control architecture is shown in figure 6 (Chen et al., 2020).

Figure 6. Schematic of a typical conventional yaw system. The yaw duty sensor measures cable rotation θcable to ensure the rotation remains

within safe limits. Illustration adapted from Chen et al. (2020).

In addition to low-pass filtering, a hysteresis dead-band, effectively a buffer zone where no control action is taken, is in-495

troduced to prevent frequent yaw manoeuvres and avoid dangerous gyroscopic forces. This avoids what is known as ‘yaw

hunting’, where the yaw controller tries to follow the time-varying wind direction too closely without allowing for an amount

of variability and uncertainty in the signal. If the turbine were to yaw at such a high rate, this would have negative consequences

on the lifetime of the yaw system as well as the loads on other components. Most large turbines yaw at rates of less than 1

deg/s (Pao and Johnson, 2009) and the controller is typically only activated when the yaw error measured by the wind vane500

exceeds some threshold (Spencer et al., 2013). An example from the literature comes from the baseline controller from the

pre-design phase of the DOWEC 6MW turbine (Kooijman et al., 2003). This controller used a 30 second moving average of
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the wind direction to monitor yaw misalignment. The controller activated yaw actuators when the yaw error reached 5 degrees

with a yaw rate of 0.3 degrees per second until the 2 second moving average of yaw error was less than 0.5 degrees (Storey

et al., 2016).505

Due to the constraints described, the yaw system is in standstill most of the time (Kim and Dalhoff, 2014). It is typical for the

yaw angle to remain constant for about 5 to 10 minutes before the yaw control corrects for the changes in wind direction and

reduces the yaw misalignment (Rott et al., 2018). The contrast between the slowly reacting yaw systems of modern utility-scale

wind turbines and the variability of the wind direction signal is a product of the trade off between minimising yaw duty and

yaw hunting while at the same instance maximising turbine performance.510

5.2 Measurement Errors

Wind vanes or sonic anemometers positioned atop the nacelle within the disturbed flow region behind the rotor are often

used to measure the apparent hub height wind direction (Kragh et al., 2013a). On-site met masts are sometimes also available

to provide measurements, however it is more convenient in general to use measurements from instruments on the turbines

themselves. Each turbine control system can provide a hub height wind direction estimate by comparing the measured nacelle515

position against the input low-pass filtered yaw misalignment signal, which all relies heavily on correct calibration of the

instrumentation (Bossanyi and Ruisi, 2021).

Measurements taken by sensors positioned behind the rotor on the nacelle, within the disturbed flow, have been shown to

be significantly affected by flow distortions caused by the rotor (Kragh and Fleming, 2012). Computational fluid dynamics

(CFD) simulations of the flow distortions around the nacelle revealed a strong sensitivity of the wind direction measurement520

to the position of the sensor on the nacelle (Zahle and Sørensen, 2011). It was revealed that the nacelle flow angles exhibited

substantial variations with height above the nacelle surface. The CFD simulations showed that the flow was primarily governed

by unsteady vortex shedding from the cylindrical part of the blades connected with the rotor hub interacting with the root

vortices from each of the blades, resulting in the creation of significant velocity gradients. The effect of flow distortion has

also been shown in field studies. Nacelle mounted sensors showed significant dependence of flow distortion on both yaw and525

tilt angles with yaw error of up to 10 degrees when operating in a tilted inflow (Zahle and Sørensen, 2011). Additionally,

analysis of operational data from a V80 2 MW onshore turbine revealed below-rated mean yaw errors of 10◦ (Pedersen et al.,

2008, 2011), whereas separate analysis of the CART3 600 kW research turbine showed rotor speed–dependent mean yaw

errors of 5◦ to 15◦ (Kragh et al., 2013a).

Further inaccuracies can be introduced purely from the way the yaw control system is set up and operated. Firstly, for the530

Horns Rev I wind farm, analysis of operational data showed the yaw signals to be mostly wrong when turbines were not

operating (Draxl, 2012). Upon restart, with the turbine yawed at a random angle, it took time for the sensor to be oriented

correctly again, resulting in a period of inaccurate data (Draxl, 2012). Secondly, complications common to many wind turbines

were introduced by the turbines’ own cables, which had to be disentangled after too much rotation around the yaw axis,

meaning the turbine had to be rotated back and then re-adjusted against the other sensors again (Draxl, 2012). Lastly, an EU535
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project (UpWind) found that the wind vane signals of both onshore and offshore turbines were often not correctly calibrated,

with neighbouring turbines measuring substantial differences in yaw alignment (Eecen et al., 2011).

Biases in turbine wind direction signal can be corrected once they have been identified. For example, a speed-dependent

linear regression correction scheme, based on empirical data, was applied to a yaw controller input signal (Kragh et al., 2013a).

With the correction applied, the new yaw control architecture was able to reduce yaw errors compared to the baseline controller.540

However, the relatively short amount of data available meant the findings could not be properly substantiated, and precluded

any additional conclusions about load reductions.

5.3 Measurement Uncertainty

An important issue highlighted, especially in wake steering research, is the wind direction uncertainty present in data sets

(Gaumond et al., 2014; Rott et al., 2018; Simley et al., 2020a; Campagnolo et al., 2020). This uncertainty is guaranteed due to545

the stochastic behaviour of the wind. The uncertainty can also be exaggerated through standard methods of time averaging as

well as from spatial interpolation, as a result of the natural variability of the wind direction and the distance from the reference

location to where the measurement is taken.

Operational data sets are often binned by wind direction sectors in order to simplify the calculation of other important

variables, mainly power production. However, the accuracy of wind farm flow models was found to heavily depend on the550

width of the wind direction sectors used for binning the simulation results (Gaumond et al., 2012). Hence, over narrow wind

direction sectors, differences between the power outputs predicted by wind farm flow simulations and real wind farm power

output data sets are potentially caused by the large wind direction uncertainty in the data sets, and not because of modelling

deficiencies (Gaumond et al., 2012). As a result, there is now a recognition of the need to incorporate uncertainty into wind

farm flow models to produce better and more robust controllers.555

In order to quantify uncertainty in wake models and to design better wake steering controllers, the distribution of high-

frequency wind direction measurements within 5-minute (Rott et al., 2018) or 10-minute (Gaumond et al., 2014) windows was

approximated using a Gaussian probability density function. By quantifying uncertainty, deficiencies in wake modelling were

identified and inflow specific adaptations to wake steering controllers were explored.

Similar approaches inspired by the Gaussian distribution approximation of the wind direction have also been developed.560

For example, the yaw position uncertainty was included in wake steering set-point calculations alongside the wind direction

uncertainty as a joint Gaussian distribution where the sums of the variance of each equalled the variance of the yaw error

(Simley et al., 2020a). Another approach used polynomial chaos expansion to account for uncertainties while optimising for

wake steering set-points which included a Laplace distribution for the yaw misalignment and a Gaussian distribution for the

wind direction measurement (Quick et al., 2020). The polynomial expansion approach revealed that uncertainty in the wind565

direction measurement had one of the largest impacts on the set-point optimisation results, highlighting the importance of

understanding wind direction variability for both yaw and wake steering control.
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5.4 Discussion of Conventional Yaw control

Control based on conventional sensing methods mainly suffers from two factors. The first is the significant noise, uncertainty

and outliers in the inputted wind direction measurement. These problems have been found to be due to a mixture of the570

placement of the sensing equipment, the inadequacies of standard measurement instruments and the intrinsic complexity of

the wind direction variable (Kragh and Fleming, 2012; Kragh et al., 2013a). Secondly, the slow actuation of the yaw system,

although necessary to avoid negative gyroscopic forces, results in turbines operating misaligned most of the time (Mikkelsen

et al., 2010). The misalignment can be significant, especially when a wind direction change happens rapidly and abruptly

before the yaw system has time to respond.575

Control parameters of conventional systems are often determined through a trial and error approach (Bossanyi, 2019), which

in many cases is sub-optimal and prone to the proliferation of bias (Mikkelsen et al., 2010) (Section 5.2). In most cases, biases

can be identified and corrected using simple detection and correction algorithms (Kragh et al., 2013a). The uncertainties,

however, are less easily handled, especially those arising from natural variation in the wind direction. One proposed solution

is to use an optimisation under uncertainty methodology for robust control, which entails the incorporation of the uncertainties580

into the calculation of control parameters and set points (Section 5.3).

6 Alternative Yaw Control

Research to improve yaw control has focused on alternative sensing or data-processing methods that provide more accurate

inputs to the control system and/or provide a preview of wind direction changes before they occur at the turbine. Alternatives

can be broadly categorised by how their input signal is obtained; measurement-free, inferred, forecasted, based on improved585

measurement equipment, or estimated. It is important to note that some of these methods can be complimentary to each

other. For instance, estimation techniques can be used to further enhance control based on remote sensing. The categories are

described as follows,

– Measurement-free yaw control originates from early wind turbine design, which was limited by the technology of the

time. It has since been investigated as a means to avoid the reliance on potentially erroneous measurements of the wind590

direction (Farret et al., 2001; Xin et al., 2012; Karakasis et al., 2016). The suggested mechanism of this set of controllers

is to directly search for the maximum power point without a wind direction input signal. For example, Karakasis et al.

(2016) used the difference between optimal rotor speed and actual rotor speed to track the real-time performance of

turbines and adjusted the yaw set-point accordingly.

– Inferred signal based yaw control is where measurements of other closely related variables are used to infer the wind595

direction and yaw misalignment angle. For example, an estimation of the yaw misalignment in the below rated domain

can be calculated from an inverted function of wind power and wind speed (Tsioumas et al., 2017), or from the rotor

angular speed (Karami et al., 2021), and then incorporated into the control system with the appropriate architecture.

Nacelle-mounted anemometer wind speed measurements are less affected than the wind vane by flow distortions caused
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by the rotor and are easier to correct for than wind direction measurements at the same location (Smith et al., 2002).600

Therefore, the measurement errors and uncertainties associated with wind vane measurements discussed in Section 5

can mostly be avoided without the need for additional sensing equipment.

– Forecasting for yaw control is where very short term predictions (in the order of minutes) of wind direction are calcu-

lated to allow the yaw system to pre-emptively react to a forecasted change in wind direction (Section 6.1).

– Yaw control with additional or alternative sensing which could replace or augment nacelle mounted wind vanes. The605

most popular alternatives are remote sensors based on LiDAR and hypersonic (SoDAR) technologies (Barthelmie et al.,

2016) (Section 6.2).

– Enhanced signal estimation for yaw control which involves families of both parametric and non-parametric methods

of communication based spatial filtering, bias correction and/or error detection. Some of these methods work by updating

the parameters of physics-based models to obtain farm-wide direction estimates, whereas others are purely stats based610

(Section 6.3).

Since the latter three methods directly address the handling of the wind direction signal (forecasting, improved measurement,

and estimation), they are discussed in more detail. Firstly, wind direction forecasting for both yaw control and also for more

general purposes is discussed in Section 6.1. Next, in Section 6.2, improved measurement methods are discussed that reduce

uncertainty in the wind direction signal. Finally, in Section 6.3, an outline of wind direction estimation techniques that can615

improve the quality of wind direction signals without any additional or improved sensing equipment is given.

6.1 Wind Direction Forecasting

Since the statistical properties of the wind field evolve with time (Section 2), the forecasting of wind direction is an especially

complex task (Hirata et al., 2008). Non-stationarity necessitates the use of non-parametric methods and adaptive spectral

analysis to produce accurate forecasts minutes-ahead. The use of very short term wind direction forecasts for control purposes620

is motivated by the preview effect, where information about incoming changes to the flow field can be used to preemptively

carry out a desired control action. Theoretically, accurate short term forecasts could improve turbine yaw performance by

reducing the time delay between changes in direction and activation of the yaw system. This is especially attractive in a yaw

control setting where response time is limited greatly by the slowness of the yaw actuators.

There are four general categories of methods for forecasting wind direction,625

– Persistence methods assume that the wind direction at time t is the same as at time t+∆t. Unsurprisingly, the perfor-

mance of this method is comparable to physical and parametric methods only for extremely short term forecasts (Hirata

et al., 2008; El-Fouly et al., 2008). This approach is the most naive and is only used as a baseline comparison.

– Machine learning (ML) and statistical methods have been used several times to forecast the wind direction variable

for wind energy applications. The simplest are regression models (linear or piecewise-linear) (Howland et al., 2022a),630
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Kalman filters (Song et al., 2018) and time series models which include various auto-regressive predictors (Erdem and

Shi, 2011; Song et al., 2017). The complex nature of wind direction time-series presents challenges when applying these

techniques. Parametric-based forecasters, in particular, tend to be susceptible to bias (Kim, 2003), and although they are

easy to implement, most of these methods are linear while wind direction time-series are non-linear in nature (Chitsazan

et al., 2019).635

– Numerical weather prediction (NWP) refers to any physics based approach in meteorological forecasting. NWP mod-

els tend to be general-purpose models that can be used for a wide variety of applications including wind direction fore-

casting. In general, the resolution of NWP models is too coarse to be useful for most wind energy applications, however,

one study has demonstrated the performance of an extremely high resolution numerical weather prediction model (Chan

and Hon, 2016). A maximum resolution of 200 meters was achieved, but required numerous meteorological instruments640

and large amounts of processing power, making it poorly suited for yaw or wake steering control-oriented applications.

– Hybrid methods make use of mixed models from either statistics or NWP alongside artificial intelligence based methods

to improve forecasting. For example, gradient boosting trees ML algorithms were combined with feature engineering

techniques to extract the maximum forecasting information from a NWP grid (Andrade and Bessa, 2017). Another

example used a circular regression based approach, which was developed alongside a Bayesian averaging method for645

bias correction of the forecasts obtained by NWP models (Bao et al., 2010).

Methods from machine learning and statistics are the most useful for control purposes since they can be implemented at a local

level and in real-time, allowing for adaptive adjustments over extremely short time intervals. Therefore, they are discussed

further in Section 6.1.1.

6.1.1 Forecasting with Machine Learning and Statistics650

Several wind direction forecasting methods based on machine learning for yaw or wake steering control have been investigated,

including an auto-regressive integrated moving average (ARIMA) model approach paired with a Kalman filter (KF) (Song et al.,

2017). ARIMA models are well-suited for capturing short-term correlations and have been used extensively in a diverse mix

of forecasting applications (Fisher and Lee, 1994; Bivona et al., 2011). In general, however, the ARIMA model by itself is

unable to adjust its parameters effectively as new time-series information becomes available. To solve the adjustment problem,655

the ARIMA model was combined with a Kalman filter (KF), which assimilates new data and updates the model’s parameters

systematically (Su et al., 2014; Song et al., 2018). The ARIMA-KF model was able to predict the one step ahead 10 second

mean wind direction with a mean absolute error (MAE) of 0.92◦ over a 4 hour validation window after assimilating 20 hours

of training data. When incorporated into yaw control, the new system was able to recover 1-2% of lost power due to yaw

misalignment compared to a baseline conventional controller.660

A simple linear regression-based method was also used to forecast the wind direction during periods of mean wind direction

transitions to produce inputs to various wake steering controllers (Howland et al., 2022a). The linear regression approach

resulted in an MAE of 1.3◦ after a time horizon of 30 minutes during transition periods compared to an MAE of 1.9◦ when the
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low-pass filtered wind direction signal was used. More complex forecasting methods from machine learning have also been

explored, including four different data mining algorithm prediction approaches (Ouyang et al., 2017). Support vector machines,665

neural networks, random forests and gradient boosted regression trees were each trained and tested on a years worth of wind

direction data at 10 minute intervals, transformed into cosine and sine components. Although it was found that the methods

based on random forests and neural networks performed best at predicting the 10 minute ahead sine and cosine components of

the wind direction, performance improvements by integration of forecasts into the yaw system were not demonstrated.

6.2 Improved Sensing Equipment670

Various different solutions have been suggested which use advanced sensing equipment to improve the wind direction input

signal to the yaw control system. One way is to augment or replace the wind vane with a LiDAR system mounted on the

nacelle, on the ground or on the rotating spinner of the turbine to detect the undisturbed wind in front of the turbine over

the entire rotor (Mikkelsen et al., 2013; Simley et al., 2014; Fleming et al., 2014b; Scholbrock et al., 2016). By installing a

spinner anemometer in front of the rotor, the measurements are likely to be less influenced by rotor-induced flow distortions,675

offering advantages over measurements obtained from a sensor placed behind the rotor (Kragh et al., 2013a). Simulations

demonstrated that a spinner mounted continuous wave LiDAR can estimate yaw misalignment with a median precision below

4◦ (Kragh et al., 2011). In field tests, good correlation was found between estimates of yaw error determined using a spinner

mounted LiDAR and those estimated based on met mast data (Kragh et al., 2013b). Further field tests also demonstrated how

a nacelle mounted LiDAR can correct measurements from a nacelle mounted wind vane, resulting in increased yaw alignment680

and significantly improved power capture compared to the uncorrected baseline case (Fleming et al., 2014b).

Similar to forecasting techniques, LiDAR and other remote sensing methods can allow for further performance gains by

providing wind field preview information to the yaw control system. A LiDAR capable of providing preview wind direction

information for the next 60 seconds, harnessed using conventional model predictive control (MPC) in the yaw system, could

yield an 8% increase in power production and potentially lead to reductions in fatigue loads during instances of extreme wind685

direction changes (Spencer et al., 2013). Likewise, the performance of a yaw control system with access to preview information

from forward facing LiDAR coupled with a long-short term memory neural network was tested against a conventional yaw

control system in simulations (Chen et al., 2020). It was found that incorporating preview information could increase power

capture by up to 3.5%, reduce yaw travel by up to 5.3%, and reduce yaw events by up to 3.9%.

Other advanced measurement technologies similar to LiDAR have also been tested, namely RaDAR and SoDAR. For exam-690

ple, a spinner anemometer consisting of three SoDAR sensors performed well in field tests (Pedersen et al., 2008), although it

is unclear if such devices are commercially available yet. Other improvement techniques involve the use of additional conven-

tional measurement equipment placed strategically around the wind farm in order to better characterise the inflow (Chen et al.,

2022).
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6.3 Wind Direction Estimation695

As discussed in Section 2, the wind direction can vary greatly spatially and temporally due to variable meteorological condi-

tions, local topography and wake effects. Therefore, on top of the possible misalignment biases on local direction measurements

discussed in Section 5.2, the direction is often different at different locations in the wind farm. Hence, in a lot of cases, even in

the presence of enough sensors and/or advanced sensors, it is still difficult, if not impossible, to get an accurate global picture

of wind direction. Under these conditions, distributed wind direction estimation techniques can be considered.700

The earliest example explicitly for control purposes was presented by Doekemeijer et al. (2018). A non-linear Kalman filter

was used to assimilate data and update the parameters of a medium-fidelity physical wind farm flow model with the objective of

achieving real time closed-loop wake steering control. However, only high frequency changes in wind direction were accounted

for by the model, such that a constant mean value was assumed over the entire simulation time interval. In order to address

lower frequency changes in wind direction, Sinner et al. (2020) used a simpler polynomial based Kalman filter and updated the705

parameters of the model through the assimilation of SCADA data. The major benefit of this approach is the ability to provide

smooth wind direction estimates, even in the case of faulty individual turbine sensors, while only using measurements already

collected at the wind turbines.

Non-parametric methods have also been developed to estimate the wind direction. In the work by Annoni et al. (2019a),

comparisons were made between different non-parametric approaches for estimating the wind direction at turbine locations.710

The most accurate of these methods in terms of MAE was a distributed consensus-based optimisation approach. This approach

was shown in simulations to reliably estimate the wind direction across a wind farm even when faults and/or biases were

introduced in the wind vane signals. The MAE of the consensus-based approach was 2.99◦ compared to 3.78◦ for the best

averaging based approach, weighted averaging, and 8.41◦ when using the sensors alone. Additionally, Bossanyi (2019) also

investigated weighted averaging methods for improving wind direction estimates. Short 30 minute wind farm simulations715

showed that these methods improved yaw control performance and by extension wind farm power production compared to

using only the turbine’s wind vane signal (Bossanyi, 2019).

More recently, Van Der Hoek et al. (2021) applied Gaussian process (GP) regression to the problem of wind direction

estimation. GP regression is a non-parametric Bayesian approach to regression (Rasmussen, 2003), which can be used not

only to estimate the wind direction at any point within the wind farm, but also for bias detection and correction. Thus, the GP720

approach provided a balance between the qualities of the parametric and non-parametric methods previously described. Van

Der Hoek et al. (2021) found that a simple GP model with a squared exponential kernel was able to filter the high-frequency

component of artificially generated wind direction data and reproduce the known low-frequency wind direction variation at

turbine locations better than standard low-pass filtering. However, there was no discussion around the choice of kernel to

calculate the covariance or interpretation of model hyper-parameters, both of which needed further exploration to improve the725

model’s accuracy.

It is important to point out that in order to test these estimation techniques, in most cases it was necessary to generate an

artificial ‘true’ wind direction signal as input to the simulations (Section 3.2). This entailed making strong assumptions about
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the ‘true’ wind direction, which limits how applicable the results of this section are to real world conditions. Nonetheless,

these methods provide an indication of how to best generate realistic and dynamic wind direction changes which could serve730

as inputs to control-oriented models.

6.4 Discussion of Alternative Yaw Control

Errors in measurement of the wind direction at each turbine can be reduced through a variety of alternative and novel methods.

The reduction in errors results in overall performance improvements, often without any adaptation or augmentations to the

turbines themselves and with minimal alteration to the control architecture.735

Forecasting methods, for example, have harnessed the preview effect to preemptively yaw; reducing misalignment errors and

improving wake steering controllers (Howland et al., 2022a) (Section 6.1). Similarly, remote sensing equipment such as LiDAR

systems have been shown to improve performance through the same effect by measuring the incoming wind some distance in

front of the turbine, while also improving wind direction sensing in general (Section 6.2). However, remote sensing technology

comes with the added costs of the equipment itself, the expertise needed to operate them effectively and uncertainties in how740

much turbine performance can be improved by their use (Spencer et al., 2013). Therefore, the relative size and cost of the wind

farm needs to be taken into account before making any decisions, since any improvements in performance and reduction in

loads may not be substantial enough to justify the extra costs.

Estimation methods such as spatial filtering have been shown in limited simulation scenarios to reduce signal uncertainty and

boost overall yaw controller performance without any changes to the actuators or sensing equipment (Bossanyi, 2019; Annoni745

et al., 2019a; Van Der Hoek et al., 2021) (Section 6.3). Spatial filtering can also make use of the preview effect in downstream

turbines by passing information from turbines further upstream (Bossanyi, 2019).

Although these results are all promising, it is fundamentally difficult to rigorously characterise the effectiveness of wind

direction forecasters, sensors and estimators, particularly due to the difficulties in generating ‘true’ wind direction signals to

compare them against. Indirect indicators like power production can be used instead, however these will in general be much750

more sensitive to the wind speed rather than the wind direction, hence caution needs to be taken when setting benchmarks.

7 Wind Farm Flow Control

Wind farm control (WFC) considers the entire wind farm as a control system, with individual turbines acting as agents in a

network, helping to achieve farm-level objectives (Sinner et al., 2021). Wind farm flow control (WFFC) is a subfield of WFC

where the control objective is achieved through manipulation of the intra-wind farm flow. Two promising developments in the755

area of WFFC are wake steering control, and communication-based spatial filtering, which aims to enhance the accuracy and

reliability of information used by turbine- and farm-level controllers by combining together wind field measurements gathered

from individual turbines (Sinner et al., 2021).
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This section briefly introduces examples of both wake steering control, in Section 7.1, and communication-based spatial

filtering for yaw control (designated as collective yaw control), in Section 7.2. The examples represent a small subset of760

available control methods but are chosen as they are designed to handle wind direction input variability directly.

7.1 Wake Steering Control

Wake steering control provides an example of WFFC sensitive to wind direction changes. Although it can be achieved through

various methods, this section focuses on the the most popular method found in the literature, the use of static yaw misalignment

of upstream turbines. Similar to the objectives of yaw control, in wake steering control, the goal is to balance yawing frequently765

enough to maintain power maximisation while avoiding overuse of the yawing components (Houck, 2022). Contrary to the

objectives of yaw control, however, upstream turbines are operated with an intentional yaw misalignment to redirect their wakes

away from downstream turbines, therefore mitigating potentially substantial power losses caused by wake effects (Howland

et al., 2019). Wake steering controllers have been shown to result in farm-wide power performance gains in both simulations

and field experiments (Howland et al., 2022b). Results from one field experiment revealed power production gains of up to770

14% for a downstream turbine over a 10◦ wind direction sector (Fleming et al., 2019), however, the total farm wide power

gains (or in some cases losses) from wake steering control are sensitive to atmospheric conditions, local terrain and the specific

turbine model (Annoni et al., 2018b; Fleming et al., 2019).

Commercial wake steering controllers are available, an example is the WakeAdapt™ software offered by Siemens Gamesa

(Energy, 2022), but the details of their operation is mostly proprietary. Because of this privacy, there is limited information775

available on how the software works in general. In the literature, wake steering controllers solve a dynamic optimisation

problem at the wind farm level in order to identify optimal yaw set-points that manipulate the wind field in such a way

that power losses are minimised (Kheirabadi and Nagamune, 2019). These set-points are then tracked by wind turbine level

controllers.

Most wake steering controllers in the literature are designed such that the yaw set-points are optimised under stationary780

or steady inflow conditions. This has changed recently by the incorporation of wind field variability into already established

model-based yaw set-point optimisation methods. For example, a steady-state wake model was enhanced by including yaw

system deviations from set-point values in the corresponding wake steering yaw set-point calculations (Quick et al., 2017). This

optimisation approach has since been taken a step further such that the set-point calculations were formulated as optimisation

under dynamic wind direction uncertainty, as opposed to static and deterministic inflow (Rott et al., 2018). Furthermore,785

methods for set-point optimisation under uncertainty, with special consideration of wake model parameter uncertainty, resulted

in demonstrable improvements for open-loop and closed-loop wake steering control (Howland, 2021).

7.1.1 Graph and Cluster View

A simplification of wind farm flow, particularly in regard to control of the turbines whose wakes interact, is the graph or cluster

view of the wind farm. The graph view is an abstraction of the wind farm as a collection of cells, nodes (turbines) and edge790

weights between nodes which change depending on the incoming wind direction and wake effects. The cluster view similarly
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groups turbines which are coupled through their wakes. Clusters are defined such that the performance of the turbines in each

cluster is only significantly affected by the operation of the other turbines in the same cluster.

Examples of graph-based and cluster-based approaches are those developed by Starke et al. (2021) and by Bernardoni et al.

(2022) respectively. The graph-based model proposed by Starke et al. (2021) employed edge weights based on inter-turbine795

wake interaction intensity and time delays to simulate how the effects of wind direction changes propagate through the wind

farm. The graph-based approach employed a Gaussian wake model to calculate velocity deficits and the wake profile (Shapiro

et al., 2019). In contrast, the cluster-based approach of Bernardoni et al. (2022) was model-free and used only power data to

identify wind direction changes and turbines coupled through wake interactions.

Both types of approaches can lead to efficiency improvements in a distributed control setting and reduce some of the com-800

putational challenges associated with real-time control applications, as only the relationships between selected turbines are

considered rather than the whole farm or velocity field (Bay et al., 2018; Annoni et al., 2018a, 2019b; Bernardoni et al., 2020).

An advantage of the graph-based approach over standard wind farm flow modelling approaches is that it can be integrated

with a dynamic wind farm flow model which accounts for changes to wind direction through a time-dependent change in the

graph structure. This overcomes the difficulty and computational expense of implementing a dynamic wind change in models805

that have a fixed domain often with a fixed mean wind direction, such as LES, RANS, or data-driven models trained for a

single-inlet condition (Shapiro et al., 2022).

Both the graph and cluster-based approaches provide simplifications for identifying and responding to changes in power

output due to changes in wind direction. However, these simplifications are significant and have not been thoroughly validated

yet. For example, calculating the correct weightings in the graph-based approach relies on knowing the real wind dynamics,810

which in turn would ideally need LES or similar to validate. Likewise, the model free cluster-based approach relies solely

on power data correlated over time windows in the order of tens of minutes, which introduces limitations on how accurately

interacting turbines can be identified and how quickly changes in wind direction are detected. To a greater or lesser extent,

both approaches are only able to capture mean wind field effects across the wind farm, which limits their ability to quantify

uncertainty in their results as well as for use in a robust control framework.815

7.2 Collective Yaw Control

Collective yaw control can be achieved through the use of appropriate consensus algorithms for estimating wind conditions

at different wind farm locations (Section 6.3). The sharing of data among turbines not only reduces signal noise via spatial

filtering (Sinner et al., 2021), it can also help to identify and correct any faults or bias in individual turbine measurements

(Annoni et al., 2019a; Van Der Hoek et al., 2021), which not only confers greater control robustness but also extra redundancy820

against equipment failures. The reduction in noise and error terms through consensus methods means they can be used to

improve yaw and wake steering controller performance through collective yaw control. Table 2 outlines past research and

selected findings.

The ability of collective yaw control to improve performance was first demonstrated by Bossanyi (2019) and then by Sinner

et al. (2021). The most simple wind direction estimation technique, based on averages weighted by distance from nearby825
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Software Used Control Method Consensus Method Power Gain Yaw Duty Reduction Identifies Yaw Bias Paper

LongSim CYC Weighted average ≈ 0.2% ≈ 24% No Bossanyi (2019)

FLORIS Version 2.1.1 CYC, CYC + WSC Weighted average 0.5%, 4.7% 46.1%, 17.0% No Sinner et al. (2021)

Custom in-house CYC Gaussian processes NA ≈ 20% Yes Van Der Hoek et al. (2021)

Custom in-house CYC Distributed optimisation NA NA Yes Annoni et al. (2019a)

Table 2. Selected details of past research. CYC = Collective Yaw Control, WSC = Wake Steering Control.

turbines, was investigated in both studies. It was found that power production can be improved over short simulation periods

compared to the use of conventional control methods by up to 0.5% in the case of yaw control alone and 4.7% when combined

with wake steering control.

It was also highlighted by Bossanyi (2019) how some turbines in the wind farm can benefit from preview information from

the turbines situated further upstream. During 30 minute simulations, the slowly reacting yaw system was able to preemptively830

activate in anticipation of a change in direction. This effect was found to increase power production, while also reducing both

the total yaw travel and the total number of yaw events significantly (yaw duty, Table 2).

An alternative method based on a simple GP regression method introduced in Section 6.3 was investigated by Van Der Hoek

et al. (2021). It was found that unnecessary wind turbine yaw activity was reduced by ≈ 20% through the use of an online

version of the GP regression method incorporated into a collective yaw control system where the GP model was updated every835

10-minutes with new measurements. However, the online model created less accurate predictions over time, indicating more

sensitivity to the input data than the offline model and a need for greater refinement of the methodology.

7.3 Discussion of Wind Farm Flow Control

The performance of wind turbines clustered together in a farm is inextricably coupled with the farm flow conditions, especially

the inflow wind direction. Therefore, wind farm flow control solutions that aim to regulate wind farm performance need to840

consider wind direction variability to be effective (Starke et al., 2021).

First of all, the use of robust control solutions that account for the uncertainties in input wind direction signals in their

calculations have been shown to alleviate some of the problems associated with wind direction variability and bring about

improvements in wake steering control (Rott et al., 2018; Quick et al., 2020) (Section 7.1). More understanding of the uncer-

tainty bounds on control system inputs are needed in order to better evaluate the benefits and limitations of any given control845

approach (Shapiro et al., 2022).

Secondly, accurate wind direction measurement and estimation are critical for the implementation of successful wind farm

and turbine controllers. Collective yaw control has been shown to offer slight improvements in power productions alongside

substantial reductions in yaw activation (Bossanyi, 2019; Van Der Hoek et al., 2021) (Section 7.2). However, benefits were

only seen in simple simulated scenarios over short time intervals, therefore more investigation is necessary.850
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8 Discussion

Wind farms are routinely subjected to changing wind directions, yet the effect on wind farms under realistic wind direction

changes remains understudied (Shapiro et al., 2022). Accounting for the dynamic effect of these changes in high fidelity wind

farm flow models has been shown to improve power output estimates (Munters et al., 2016) and result in more effective yaw

and wake steering controllers compared to approaches that assume a static wind direction (Rott et al., 2018; Simley et al.,855

2020a).

Testing and validation of new control systems in simulations is essential before deployment in real world wind farms and

relies on the use of wind farm flow models. These models need to make simplifying assumptions about the full flow field, and

neglect most or at least some of the variability present in real-world conditions. These necessary assumptions have led to wind

direction variability being mostly overlooked when it comes to assesing overall wind farm performance.860

As discussed, most of the control-oriented modelling of wind direction up to the present has only been analysed over

short time periods, in limited atmospheric conditions and with a focus purely on the objective of power gain and not overall

performance improvements. Ultimately, research needs to assess the true impact of wind direction on wind farm performance,

specifically the impact on LCOE. Hence, Section 8.1 introduces the critical challenges to be solved for this objective to be

achieved.865

8.1 Critical Challenges

From the literature, three critical technical challenges in control-oriented wind direction research can be identified. The three

challenges are,

1. Improved measurement of wind direction - Reliable and comprehensive wind direction data needs to be obtained

for model testing and validation along with agreement on standards of how wind direction should be measured and870

conditioned before use, particularly in relation to flow distortions, atmospheric stability and height above the surface.

Measurement campaigns to produce large data sets for this specific purpose are imperative.

2. Modelling realistic wind direction spatial and temporal variability with reasonable accuracy and computational

cost - Creation of validated and tested statistical and/or physical models that cover the full envelope of operational con-

ditions are necessary to perform less computationally intensive data-driven wind farm flow simulations. Complementary875

to this, there is a parallel need for continued development of high fidelity meso-scale coupled LES models to analyse

the important physical drivers of variability in more detail, as well as to better understand the interactions between wind

direction variability and wind turbine wakes.

3. Development of a detailed scientific understanding of performance effects of wind direction variability and yaw

misalignment on wind turbines and wind farms - Extensive measurement campaigns are required to record turbine880

loads and power production data coupled with wind direction and yaw misalignment data. First and foremost, these

measurements would allow for a proper scientific understanding of cause and effect. Only then can better control-oriented
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models be designed and evaluated for prediction of power production and loads under yaw misalignment, which in turn

can inform controller synthesis.

Addressing these challenges requires interdisciplinary research efforts that combine expertise from meteorology, control en-885

gineering, data science, and wind energy systems. Whilst the three critical challenges outlined above must be accomplished,

there is a further critical dissemination challenge of embedding wind direction models within turbine and farm flow control

research, with respect to both design and testing. The first steps in this process are,

– Knowledge exchange and guidance for researchers in adjacent research areas as to the importance of wind direction

modelling.890

– Making wind direction models freely available and usable by researchers within other areas.

Tackling these challenges will have an important positive impact on wind turbine and farm modelling, design, and operational

analysis. It will contribute to improving performance and reliability, and ultimately help to reduce the LCOE of wind energy.

9 Conclusions

Wind direction variability plays a critical role in the operation and performance of wind farms. It is inherently non-linear and895

non-stationary due to complex atmospheric processes and the turbulent nature of wind flows. Additionally, wind direction

varies both spatially and temporally, making it challenging to develop models that capture all of these effects at once. Site

specific conditions, such as wake and terrain effects, can also play a substantial role in wind farm performance.

The direction of the inflow relative to the rotor plane affects the aerodynamics of wind turbines in complex and unclear ways,

which has implication for overall performance in terms of both power and loading. Incorporating such effects into wind farm900

flow models is important for controller design and testing. Wind farms are routinely subjected to changing wind directions,

sometimes extreme changes, that need to be taken into account in wind farm flow control solutions that aim to regulate wind

farm performance (Starke et al., 2021). However, the uncertainty in wind direction measurements makes the assessment and

implementation of control solutions more challenging, since accurate representations of cause and effect relationships for

control purposes is difficult. The challenge is compounded by the fact that the behaviour of wind turbines and wind farm flow905

under realistic wind direction changes remains understudied (Shapiro et al., 2022).

The design of the yaw control system needs to incorporate important aspects of both physical analysis and statistical analysis,

such that it can optimise the turbine’s operation while minimising the LCOE. The critical challenges associated with achiev-

ing this optimisation can be separated into three broad categories. These are; improved measurements of wind direction,

realistic dynamic wind direction modelling and farm and turbine performance effects of wind direction variability yaw910

misalignment.

As wind energy plays an increasingly important role in global energy production, the development of accurate and versatile

control-oriented models will ensure the continued performance, reliability, efficiency and competitiveness of wind energy in

the years to come.
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