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Abstract. Feedforward blade pitch control is one of the most promising lidar-assisted control strategies due to its significant

improvement in rotor speed regulation and fatigue load reduction. A high-quality preview of the rotor-effective wind speed is

a key element to control benefits. In this work, a single-beam lidar is simulated in the spinner of a bottom-fixed IEA 15 MW

wind turbine. Both continuous-wave and pulsed lidar systems are considered. The single-beam lidar can rotate with the wind

turbine rotor and scan the inflow with a circular pattern, which mimics a multiple-beam nacelle lidar at a lower cost. Also,5

the spinner-based lidar has an unimpeded view of the inflow without intermittent blockage from the rotating blade. The focus

distance and the cone angle of the spinner-based single-beam lidar are optimized for the best wind preview quality based on a

rotor-effective wind speed coherence model. Then, the control benefits of using the optimized spinner-based lidar are evaluated

for an above-rated wind speed in OpenFAST with an embedded lidar simulator and virtual four-dimensional Mann turbulence

fields considering the wind evolution. Results are compared against those using a single-beam nacelle-based lidar. We found10

that the optimum scanning configurations of both CW and pulsed spinner-based single-beam lidars lead to a lidar scan radius

of 0.6 of the rotor radius. Also, results show that a single-beam lidar mounted in the spinner brings much more control benefits

(i.e., better rotor speed regulations and higher reductions of the damage equivalent loads on the tower base and blade roots)

than the one based on the nacelle. The spinner-based single-beam lidar brings similar performance as a 4-beam nacelle lidar

when used for feedforward control.15

1 Introduction

In the past decade, lidar-assisted wind turbine control (LAC) has received growing interest in the wind energy community.

Among different control strategies, blade pitch feedforward control is one of the most promising LAC techniques, due to the

significant improvement in the regulation of the rotor speed and the reduction of the fatigue loads compared to using conven-

tional feedback controllers alone (Canet et al., 2021). Whereas the feedback controller reacts to the wind disturbance after the20

effect of turbulent wind on the structure has occurred, the feedforward controller is able to utilize the preview information of

the approaching wind provided by, e.g., lidars, which helps the turbine to react in advance. The collective pitch control strategy,

in which the blades are controlled all together, uses the rotor-effective wind speed (REWS) as a key input to the feedforward

controller.

1



In 2022, the installed prototype of the world’s biggest wind turbine had a rated power of 15 MW. It has reached over25

200 m in height and the rotor-swept area is equivalent to four soccer fields (Venditti, 2022). The inflow to wind turbines of

such size cannot be measured by anemometers installed on a meteorological mast. The nacelle-mounted anemometers operate

in the wake of the rotor and do not measure the free-stream wind speed. As remote sensing devices, forward-looking lidars

mounted on the nacelle or the spinner of the wind turbines have a better sight of the wind approaching the rotor, and they can

provide a high-quality wind preview. They are aligned with the wind turbine rotor and always track the incoming wind. Also,30

nacelle lidars can measure the inflow remotely at different locations over the rotor-swept area. The REWS estimated from a

lidar system by combining the radial measurements over a full scan might more closely resemble the true REWS, which is the

spatial average of the longitudinal wind velocities across the rotor disk (Schlipf et al., 2015a), than a point-wise anemometer.

Therefore, they have the potential to deliver inflow characteristics that are better correlated with turbine signals (rotor speed,

fatigue loads, etc.) than those derived from point-wise anemometers, e.g., cup and sonic anemometers.35

Two types of nacelle lidar systems have been tested for wind turbine control, namely the continuous-wave (CW) and pulsed

systems. The CW lidars usually measure at one focus distance at a time at a high sampling rate. Pulsed lidars are able to

collect backscattered signals from several measurement ranges according to the response time, but they require typically long

sampling periods. Both lidars have been reported useful for LAC (Mikkelsen et al., 2013; Kumar et al., 2015). Schlipf et al.

(2014) found a decrease in the rotor speed variation during the above-rated operation of the CART2 using feedforward pitch40

control and a circularly-scanning pulsed lidar. Scholbrock et al. (2013) showed the mitigation on tower fore-aft loads using

measurements from a three-beam pulsed lidar for the feedforward controller on the CART3. Scholbrock et al. (2015) achieved

a reduction in yaw error using the circularly-scanning CW lidar replacing the turbine-based wind vane, etc. Although many

other relevant studies are based on aero-elastic simulations (Harris et al., 2006a; Bossanyi et al., 2012; Simley et al., 2014), the

results from the above experiments demonstrate improvements in wind turbine performance when using LAC (Simley et al.,45

2018).

The benefit of LAC needs to be balanced with the investment in using nacelle lidars. The simplest basic option is a single-

beam staring lidar system. As the first field test of a nacelle-mounted lidar, Harris et al. (2006b) demonstrated that a single-beam

CW lidar measuring at hub height is able to detect the fluctuations of the longitudinal velocity at 200 m upstream of a Nordex

N90 wind turbine. Nevertheless, the measurement at a single location is not representative of the REWS.50

Compared to the staring lidar mounted on the wind turbine nacelle, the single-beam lidar in the spinner can rotate with

the rotor during turbine operation, scan a good portion of the inflow coming to the rotor disk, and reduce the cost of nacelle

lidars relying on complex scanning patterns. Another advantage of using a spinner-based lidar, over a nacelle-mounted system,

is the unimpeded view of the inflow without intermittent signal blockage by the blades, which increases data availability. A

proof-of-concept field experiment was conducted by Mikkelsen et al. (2013), in which a ZephIR single-beam lidar system was55

deployed in the spinner of a NM80 2.3 MW wind turbine. They showed that the system is capable of measuring the upcoming

wind and turbulence structure in real time. Based on a simulation study of the spinner-based CW lidar on the NREL 5 MW

wind turbine, Simley et al. (2014) examined the accuracy of different measurement scenarios and found the best along-wind
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component estimation at a lidar scan radius of 75% blade span, while the lidar provides the best blade-effective wind speed

estimation at 69% blade span.60

This work aims at demonstrating the usefulness of a single-beam lidar for wind turbine feedforward control if the lidar is

mounted in the spinner compared to a nacelle-based system. Our reference wind turbine is the bottom-fixed variable-speed

collective-pitch-controlled IEA 15-MW turbine (design class 1B) with a rotor diameter of 240 m and a hub height of 150 m

(National Renewable Energy Laboratory, 2020). We consider both continuous-wave and pulsed Doppler lidars. Based on

the four-dimensional (4D) Mann turbulence model that considers wind evolution (Guo et al., 2022a), we optimize the focus65

distance and the cone angle of the spinner-mounted single-beam lidar to achieve the highest coherence between the rotor- and

the lidar-estimated REWS. Then, through time-domain simulations using the 4D Mann turbulence fields with typical turbulence

parameters of near-neutral atmospheric stability conditions, the performance of the feedforward control using the optimized

lidar is evaluated. The ROSCO controller (Abbas et al., 2022) is used as the reference feedback controller. The simulations are

conducted in the open-source aero-elastic tool OpenFAST (National Renewable Energy Laboratory, 2022), and the results are70

compared against those using a single-beam nacelle-based lidar.

This paper is organized as follows. Section 2 describes the background for this work including the turbulence spectral model,

the modeling of the wind evolution, the spinner-based lidar, and the wind preview quality. Section 3 introduces the set-up of

time-domain simulations. Section 4 shows the results of the lidar configuration optimization, which is followed by Section 5,

where we evaluate the performance of the feedforward control. Discussion of results is given in Section 6. Section 7 concludes75

the work and provides the outlook.

2 Background

2.1 Mann turbulence spectral model

The three-dimensional wind field can be described by a vector field u(x, t0) = (u,v,w) = (u1,u2,u3) at a given time t0,

where u,v,w are the horizontal along-wind, the horizontal lateral and the vertical wind components, respectively. The vector80

x= (x,y,z) is the position vector defined in the right-handed Cartesian coordinate system. Using Reynolds decomposition, the

wind field can be decomposed into the mean wind speed U = ⟨u(x,0,0)⟩= (U,0,0), where ⟨·⟩ denotes ensemble averaging,

and the fluctuating components (u′,v′,w′). Assuming Taylor’s frozen hypothesis (Taylor, 1938), the velocity fluctuations do

not change with time but propagate in the along-wind direction with a velocity equal to the mean wind speed. Therefore, the

wind field after a given time ∆t can be derived as85

u(x,y,z, t0 +∆t) = u(x−U∆t,y,z, t0). (1)

The wind field can also be expressed in the wavenumber domain using the three-dimensional Fourier transform:

u(k, t0) =
1

(2π)3

∫
u(x, t0)exp(−ik ·x)dx, (2)
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where k = (k1,k2,k3) and
∫
(·)dx≡

∫∞
−∞

∫∞
−∞

∫∞
−∞(·)dxdydz. Denoting complex conjugate by * and the three velocity com-

ponents by indices i, j = 1,2,3, the ensemble average of the Fourier coefficients is the spectral velocity tensor:90

⟨u∗
i (k, t0)uj(k

′, t0)⟩=Φij(k)δ(k−k′). (3)

With the Dirac delta function δ(·), Eq. (3) implies the homogeneity of the stochastic wind field, i.e., ⟨u∗
i (k)uj(k

′)⟩ is zero

for k ̸= k′. Here, we assume that the spectral tensor Φij(k) can be described by the Mann model (Mann, 1994), in which,

besides the wave number k, three adjustable parameters are used: αε2/3, where α is the spectral Kolmogorov constant and ε

the turbulent energy dissipation rate, L, which is a length scale describing the size of the most energy-containing eddies, and95

Γ, which represents the turbulence anisotropy and distortion of the eddies from the vertical velocity shear in the atmospheric

surface layer. The characteristics of the Mann model permit the modeling of three-dimensional spectra and coherence. The

model is recommended by the IEC 61400-1 standard IEC (2019) for the calculation of wind turbine loads.

2.2 Temporal evolution of turbulence

Turbulence structures evolve when they approach the rotor. To consider the temporal evolution of turbulence, we assume that100

the stochastic field travels with the mean wind speed U in the along-wind direction. However, we assume the turbulent eddies

decay exponentially with time. The spectral velocity tensor Φij then becomes space-time tensor Θij (Guo et al., 2022a):

Θij(k,∆t) = exp
(

−∆t

τe(k)

)
Φij(k), (4)

with

⟨u∗
i (k, t0)uj(k

′, t0 +∆t)⟩=Θij(k,∆t)δ(k−k′), (5)105

where τe is a new eddy lifetime that considers the temporal evolution. We also assume this eddy lifetime as in (Guo et al.,

2022a):

τe(k) = γ
[
a(|k|L)−1

(
(|k|L)10 +1

)− 2
15

]
, (6)

where γ is a coefficient that determines the strength of turbulence evolution. Guo et al. (2022a) and Guo et al. (2023) considered

γ ≈ 400 for near-neutral atmospheric stability conditions, and γ ≈ 200 for stable atmospheric conditions.110

The one-dimensional cross-spectra of all velocity fluctuations with separations ∆y and ∆z that consider evolution is then:

Fij(k1,∆t,∆y,∆z) =

∫
Θij(k,∆t)exp(i(k2∆y+ k3∆z))dk⊥, (7)

where
∫

dk⊥ ≡
∫∞
−∞

∫∞
−∞ dk2dk3. The one-point cross-spectra and auto-spectra of the velocity components can be obtained

when the separations ∆y and ∆z are zero, and i= j in Eq. (7). The magnitude squared coherence of all velocity components

is115

coh2
ij(k1,∆t,∆y,∆z) =

|Fij(k1,∆t,∆y,∆z)|2

Fii(k1,∆t= 0)Fjj(k1,∆t= 0)
, (8)
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where

Fii(k1,∆t= 0) =

∫
Φii(k)dk⊥. (9)

2.3 Spinner-mounted single-beam lidar

In this work, we simulate a single-beam lidar system mounted in the wind turbine spinner. With an angle between the beam120

and the turbine’s horizontal axis, the spinner-based lidar is able to scan the inflow in a circular pattern without signal blockage

from the turbine blades or the nacelle, which is otherwise an issue in nacelle-mounted lidars. Figure 1 shows the scanning

trajectory of the single-beam lidar in the spinner of the 15-MW turbine, where x-, y- and z-axis describe the coordinates of the

three-dimensional wind field, as introduced in Section 2.1. The mean wind direction is along the x-axis. The beam orientation

n can be expressed as125

n(ϕ,θ) = (n1,n2,n3) = (−cosϕ,cosθ sinϕ,sinθ sinϕ), (10)

where ϕ is the half-cone opening angle, θ is the angle between the y-axis and the beam direction projected on the y-z plane.

The beam unit vector can also be expressed with the beam azimuth α and elevation angle β, which is used in the OpenFAST

lidar simulator (Guo et al., 2022b):

n(α,β) = (−cosαcosβ,sinαcosβ,sinβ). (11)130

The rotor shaft of the reference wind turbine has a tilt angle of 6◦. Therefore, the lidar beam unit vector is rotated around the

y-axis. The red circles in Figure 1 indicate the scanning locations of the single-beam lidar before the rotation around the y-axis.

Figure 1. Scanning trajectory of the single-beam lidar in the IEA 15-MW wind turbine spinner. The used lidar angles are marked.

5



Since the typical feedforward collective pitch controller is only active at above-rated wind speeds, the rotational speed of

the wind turbine has reached its rated value. For the reference wind turbine, the rated wind speed is vR = 10.59 ms−1 and the

rated rotor speed is ΩR = 7.56 rpm. The turbine is controlled to maintain its rotor speed close to the rated value. Therefore, the135

single-beam lidar needs around 8 s (2π/7.56 rpm) to complete a full scan. Assuming that the rotor speed is almost constant

and the beam scanning locations are fixed with a sampling frequency fs = 4 Hz, the spinner-based lidar can measure 32 radial

velocities in one circular scan. Therefore, θ can be modelled as

θ =
2π

60
ΩRi/fs, (12)

where i= 1,2, ...,32 is the beam index.140

Assuming that the dominant radial velocity vr in the Doppler spectrum of radial velocities within the probe volume can be

determined by the centroid method (Held and Mann, 2018; Fu et al., 2022), vr is the convolution of the lidar weighting function

due to its probe volume φ(s) and the wind components along the beam

vr(ϕ,θ,fd) =

∞∫
−∞

φ(s)n(ϕ,θ) ·u[n(ϕ,θ)(fd + s)]ds. (13)

The weighting function of a CW lidar system is approximated by a Lorentzian function (Sonnenschein and Horrigan, 1971)145

φ(s) =
1

π

zR

z2R + s2
, (14)

where s is the distance to the beam focus and zR is the Rayleigh length determined by the focus distance fd, the laser wavelength

λ, and the transmitted beam radius at the exit of the optical lens rb

zR =
λf2

d

πr2b
. (15)

The Fourier transformation of Eq. (14) is150

φ̂(k,n) = exp(−|k ·n|zR). (16)

For pulsed systems, we assume the weighting function has a Gaussian-shape parameterized by a standard deviation σL (Cariou,

2013)

φ(s) =
1

σL
√
2π

exp
(
− s2

2σ2
L

)
, (17)

with155

σL =
WL

2
√
2ln2

, (18)

where WL is the Full-Width at Half Maximum (FWHM). The Fourier transform of Eq. (17) is

φ̂(k,n) = |k ·n|exp
(
−|k ·n|2σ

2
L

2

)
. (19)
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It can be seen from Eq. (15) and Eq. (18) that the probe volume of CW lidars increases with the square of the focus distance,

whereas it is constant at any range for pulsed systems. In our study, we assume λ= 1.565 µm,rb = 28 mm and WL = 30 m160

(Peña et al., 2016).

The weighting functions need to be truncated and discretized to simulate lidar measurements in turbulence boxes of finite

length. We discretize Eq. (14) with a resolution of ∆s= 0.1zR considering smax = 6zR and smin =−6zR. Similarly, for Eq. (17),

we use smax = 1.5WL and smin =−1.5WL with a resolution of ∆s= 2.5 m (around 0.08WL). The discretized weights are

normalized to have the sum equal to one. Since WL = 2zR, the pulsed lidar probe volume is more compact and centralized than165

that of the CW. Figure 2 compares the truncated theoretical weighting functions of the two lidar systems measuring at different

ranges. To illustrate the two types of weighting functions, the weights in Figure 2 are normalized by the maximum values. In

our case, the pulsed lidar has a similar FWHM with the CW lidar focusing at 155 m.

Figure 2. Weighting functions of the CW lidar measuring at 80 m, 155 m, 230 m, 300 m and the one of the pulsed lidar measuring at 155 m,

300 m. The weights are normalized by the maximum values for illustration purposes. The blue and red markers indicate the discretization of

the functions.

The amount of truncation needs to be balanced between a realistic probe volume and the limited size of the virtual wind

fields. The truncation and discretization influence the amount of turbulence attenuation by the probe volume. However, the170

small turbulent eddies do not greatly impact the coherence of the REWS, since the spatial averaging by the rotor disk has a

similar filtering effect on the true REWS.
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2.4 Lidar wind preview quality

2.4.1 Rotor-effective wind speed from the wind turbine

If the yaw misalignment is neglected, the true REWS is the spatial average of the longitudinal velocities u across the rotor-swept175

area defined by the rotor radius R (Schlipf et al., 2015a):

uRR(x) =
1

πR2

∫∫
rotor

u(x)dydz. (20)

Held and Mann (2019) demonstrated that this REWS can be rewritten as

uRR(x) =

∫
u(k)eik1x1

2J1(κR)

κR
dk, (21)

where κ=
√
k22 + k23 and J1 is the Bessel function of the first kind. Held and Mann (2019) also showed that the auto-spectrum180

of uRR is

SRR(k1) =

∞∫
−∞

Φ11(k)
4J2

1 (κR)

κ2R2
dk⊥. (22)

2.4.2 Rotor-effective wind speed estimated by the lidar

Assuming that the turbine yaw misalignment is negligible, the center line of the lidar scanning trajectory is on the turbine

rotation axis, and v and w are considered to be zero, the u component can be estimated directly from the lidar measurements.185

The lidar-estimated REWS is the mean of the along-wind component retrieved from the radial velocities along the beam:

uLL(t) =

Nb∑
i=1

1

Nbni1
vr,i(t), (23)

where Nb is the number of measurements over a full scan and ni1 is the first element in the unit vector of the ith measurement.

Because the longitudinal wind evolution is the most important factor for control, and the considered lidars in this work only

measure at a single plane, the wind evolution between each measurement in a full scan is not considered, which should have190

only a marginal effect on our optimization. The auto-spectrum of the lidar-estimated REWS is (Guo et al., 2022a)

SLL(k1) =

Nb∑
i,j=1

3∑
l,m=1

1

N2
b ni1nj1

∫
nilnjmΦlmexp(ik · (xi −xj))φ̂(k ·ni)φ̂(k ·nj)dk⊥, (24)

where xi denotes the position vector of the lidar measurement, nil stands for the lth element in the unit vector n of the ith

measurement.

For control purposes, the lidar scanning strategy is considered optimal, if it provides REWS estimates that correlate the best195

with the true REWS sensed by the rotor disk. Considering the turbulence evolution from lidar measurement planes to the rotor

plane, the cross-spectrum between uRR and uLL can be expressed as (Guo et al., 2022a)

SRL(k1) =

Nb∑
i=1

3∑
l=1

1

Nbni1

∫
nilΘl1(k,∆ti)φ̂(k ·ni)exp(i(k2xi2 + k3xi3))

2J1(κR)

κR
dk⊥, (25)
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where ∆ti denotes the time needed for the turbulence field to travel from a lidar plane to the rotor plane, given a good estimation

by their longitudinal separation divided by the mean along-wind speed, i.e., ∆ti = |∆xiR|/U .200

2.4.3 Rotor-effective wind speed coherence

The wind preview quality can be evaluated by the magnitude squared lidar-rotor REWS coherence (Schlipf, 2016; Simley et al.,

2018)

γ2
RL(k1) =

|SRL(k1)|2

SRR(k1)SLL(k1)
, (26)

which has a value between 0 and 1. The measurement coherence bandwidth (MCB) is defined as the wave number k0.5 where205

γ2
RL drops below 0.5. The corresponding frequency can be calculated by f0.5 = k0.5U/(2π). The larger the MCB, the better

the wind preview quality. Therefore, maximizing the MCB is the goal of lidar trajectory optimization.

To evaluate the lidar wind preview quality, the so-called ‘smallest detectable eddy size’ deddy,min is used by control engineers,

which is the size of the eddies that can still be detectable by the lidar with the 50% coherence assuming turbulence isotropy

(Schlipf et al., 2018)210

deddy,min =
2π

k0.5
. (27)

The smallest detectable eddy size is inversely proportional to the MCB. To have a measure that is independent of the rotor size,

the deddy,min can be normalized by the rotor diameter of the reference wind turbine. A normalized deddy,min close to 1D indicates

a very good lidar configuration for the purpose of fatigue load reduction, while a value between 1.5D and 2D is satisfying.

The wind preview quality of the considered lidar configurations is directly calculated for the reference wind turbine in215

the frequency domain using Eqs. (22), (24) and (25) instead of using time-domain simulations, which greatly reduces the

computational effort and provides a more accurate MCB value compared to that estimated from simulated spectra of coherence

in the time domain. Then, the controller performance using the optimal lidar configurations is evaluated using time domain

aero-elastic simulations with Mann turbulent wind fields.

3 Time-domain simulation set-up220

3.1 Simulation environment

The time-domain aero-elastic simulations are performed for the IEA 15-MW wind turbine using the open-source tool Open-

FAST (National Renewable Energy Laboratory, 2022), in which a lidar simulator is embedded. Using the latest version of

the OpenFAST lidar simulator (see Guo et al., 2022b, for more details), the probe volume, the turbine nacelle motion, and

the turbulence evolution are included. The weighting function of the probe volume is given in discrete points as explained in225

Section 2.3.

The four-dimensional stochastic turbulence fields are generated by the 4D Mann turbulence generator developed by Guo

et al. (2022a). The turbulence fields have model parameters αε2/3 = 0.2882 m4/3 s−2, L= 49 m and Γ = 3.1, which are
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typical of near-neutral atmospheric conditions and corresponding to the IEC class 1B with a turbulence intensity of ≈ 15% at

the mean wind speed of 18 ms−1. The mean wind field U = (Uref,0,0) at the turbine hub height and a power law shear profile230

with a shear exponent of 0.14, i.e., U(z) = Uref

(
z

zHH

)0.14

, is added upon the turbulence boxes, where zHH is the turbine hub

height. The turbulence box has dimensions of 4096×64×64 grid points in the x, y, and z directions, respectively. The grid size

in y and z directions are both 4.5 m to cover the whole rotor disk and the tower in the vertical direction, while the resolution

in the x direction is ∆x= 0.5Uref. All simulations are performed for a single wind speed of Uref = 18 ms−1. The blade, tower

and generator degree of freedoms (DOFs) are enabled.235

Figure 3. Structure of the communication interface between the OpenFAST and the controller dynamic-link library chain.

As illustrated in Figure 3, the turbulent wind disturbs the turbine. The turbine-lidar unit delivers lidar radial velocities and

simultaneous turbine signals (generator speed and pitch angle) to the control unit, which then sends control signals (generator

torque and demanded pitch angle) back to the turbine to demand control actions. Therefore, without the feedforward controller

that relies on the wind preview, the feedback controller calculates control demands based on the past turbine signals and reacts

to the disturbance only after the aerodynamic impact on the turbine structure has occurred. The feedforward controller utilizes240

the lidar-estimated preview information and assists the feedback controller to react in advance. Since OpenFAST can only

refer to a single dynamic-link library (DLL) as the control unit, a wrapper DLL is configured to encapsulate and call the lidar

data processing, feedforward pitch controller, and feedback controller (ROSCO (Abbas et al., 2022)) sequentially in order to

exchange signals with OpenFAST (Guo et al., 2023). The three subunits are introduced in the following subsections.

3.2 Lidar data processing245

The simulated spinner-based lidar completes a full scan in approximately 8 s with a sampling frequency of 4 Hz. Therefore, the

latest 32 measurements are collected to reconstruct the REWS using Eq. (23), and the reconstructed REWS is updated every

0.25 s. In frequency-domain optimization, the beam scanning locations in the circular pattern are assumed to be fixed, while in

time-domain simulation, the beam scanning locations depend on the rotor azimuth positions and nacelle motions in real time.

In practice, the REWS estimated from the lidar measurements is not perfectly correlated with the real one sensed by the250

rotor. Therefore, a filter needs to be applied to the lidar-estimated REWS before using it for the feedforward controller to avoid
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unnecessary and harmful reactions from the pitch actuator. Here, a first-order Butterworth low-pass filter is applied

Gfilter(s) =
ωcutoff

s+ωcutoff
, (28)

with a cutoff angular frequency ωcutoff = 2πfcutoff = kcutoffUref, which is calculated from the cut-off wavenumber kcutoff where

the theoretical REWS measurement transfer function drops at −3 dB (Schlipf, 2016; Guo et al., 2023) and s is the complex255

frequency. The theoretical REWS transfer function is calculated from Eqs. (25) and (24)

GRL =
|SRL(f)|
SLL(f)

. (29)

The low pass filtering usually delays a signal due to the frequency-depending phase shift. For the first-order filter, the time

delay Tfilter is approximated by

Tfilter =
arctan(

fdelay

fcutoff
)

2πfdelay
, (30)260

where fdelay is the interested frequency in which the simulated rotor speed spectrum by the feedback-only control has its

highest energy. Here, we use fdelay = 0.025 Hz for the IEA 15-MW monopile offshore wind turbine as in Schlipf et al. (2023).

Therefore, the higher the cutoff frequency, the more useful information is available in the lidar-estimated REWS signals, and

less time is needed for filtering the signal.

3.3 Feedforward controller265

The feedforward controller is designed to stabilize the rotational speed in the changing inflow wind speed by demanding an

additional pitch angle θFF before the disturbance hits the rotor. In this way, the rotor speed acceleration Ω̇ caused by the wind

speed fluctuations can be compensated by the additional pitch angle.

The design of the feedforward controller follows the methodology given in Schlipf (2016) and Guo et al. (2023). Considering

a reduced-order model of the direct-drive IEA 15-MW wind turbine (National Renewable Energy Laboratory, 2020) with a270

single rotor rotation DOF:

JΩ̇ =Ma(uRR,Ω,θp)−MG, (31)

with

Ma =
1

2
ρπR2

cP(λ,θp)

Ω
u3

RR and λ=
ΩR

uRR
, (32)

where J is the rotor inertia, θp is the blade pitch angle, cP is the turbine power coefficient, λ is the tip speed ratio, Ma is the275

aerodynamic torque and MG is the generator torque. The aerodynamic effect on the rotational speed change can be canceled

out if Ma(uRR,Ω,θp) =MG. Therefore, by changing the pitch angle, the aerodynamic torque is adjusted to be close to the rated

value of the generator torque. The feedforward pitch angle θFF should follow the static pitch curve θFF = θp,ss(uRR), which can

be obtained by steady-state simulations with a feedback controller and the uniform and constant wind of all speeds between
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cut-in and cut-off, as shown in Figure 4. At the cut-in wind speed, the blades have an initial pitch angle. The pitch angle first280

decreases to make the best use of the incoming wind, and increases after reaching the rated wind speed of 10.59 ms−1. Here,

we only use the static pitch curve above the rated wind. The feedforward pitch angle is obtained by interpolating the static pitch

curve in every simulation time step. As described in Schlipf (2016) (see Chapter 6.1.1 for more details), using a feedforward

pitch rate θ̇FF instead of the feedforward pitch angle has advantages for the implementation of the feedback-feedforward

combined controller. Therefore, we use a simple time derivative of the feedforward pitch angle to obtain the feedforward pitch285

rate and then add the pitch rate to the integrator input of the feedback controller.

Figure 4. Static pitch curve of the bottom-fixed IEA 15-MW wind turbine performed with ROSCO in OpenFAST.

3.4 Feedback controller

The modular Reference Open-Source COntroller (ROSCO) developed by Abbas et al. (2022) for fixed and floating wind

turbines is used as the feedback controller in this work. The feedback controller contains two parts: a torque controller, which

mainly regulates the generator torque MG to maximize the energy yield in below-rated wind speeds and keeps the power steady290

in above-rated wind speeds, and a collective blade pitch controller, which maintains the rated generator speed in the fluctuating

wind by changing the blade pitch angle.

The baseline collective blade pitch controller is achieved by a proportional-integral (PI) controller described in Jonkman

et al. (2009). Therefore, the calculated pitch angle is

θFB = kp∆Ω+ ki

t∫
0

∆Ω dτ, (33)295

where kp is the proportional gain, ki the integral gain, ∆Ω=ΩG −ΩG,rated the difference between the contemporary generator

speed and its rated value, and s the complex frequency. The default values of the feedback controller gains are used in this

study.
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The integral block of the feedback controller uses the feedforward pitch rate θ̇ passed by the feedforward controller. This

gives the total demanded pitch angle θc as300

θc = θFB +

t∫
0

θ̇FF dτ. (34)

Then, the pitch actuator moves the blades according to the demanded pitch angle. The pitch actuator is modelled as a second-

order damper system with the cut-off frequency of 1.5708 rad s−1 and the damping ratio of 0.707, which are based on the

values of the ROSCO designed for the IEA 15-MW wind turbine (Abbas et al., 2022). Therefore, the pitch actuation takes

Tpitch ≈ 0.9 s for frequencies lower than 0.04 Hz for the reference wind turbine.305

3.5 Buffer time of REWS signal

To synchronize the pitch actuation with the REWS interacting with the turbine, the preview signal is usually buffered with a

suitable time Tbuffer. Tbuffer is calculated from the advection time of the wind field from the lidar measurement plane to the rotor

plane Tlead =∆x/Uref, the averaging time of the lidar raw measurement (half of a full scan time Tscan), the time consumed by

the low-pass filter Tfilter, and the pitch actuator delay Tpitch (Schlipf, 2016):310

Tbuffer = Tlead −
1

2
Tscan −Tfilter −Tpitch. (35)

To ensure the feedback-feedforward combined controller has enough time to react to the wind disturbance before the wind hits

the rotor, Tbuffer has to be larger than zero. Since Tlead and Tfilter are influenced by the lidar scanning trajectory, Tbuffer > 0 s is a

constraint to select the optimal configuration.

4 Optimization of lidar configuration for wind preview quality315

We optimize the scanning locations of the spinner-based single-beam lidar to achieve the best wind preview quality. The

optimization problem can be formulated as

maximize
x,ϕ

MCB

subject to Tbuffer ≥ 0,

(36)

which uses the measurement range x and the lidar half-cone opening angle ϕ as the optimization variables, MCB as the cost

function, and a positive buffer time as the constraint. The optimization problem is solved by brutal-force optimization.320

Based on the coherence model given in Section 2.4, we calculate the analytical MCB (also written as k0.5) in the frequency

domain for different combinations of the lidar measurement range along the x-direction and the half-cone opening angle ϕ.

The focus distance can be calculated from the measurement range by fd = x/cosϕ. For simplicity, only a single measure-

ment range is considered for both CW and pulsed lidars in this work, although measurements from multiple ranges can be

obtained simultaneously using pulsed lidars. The lidar configuration is considered to be optimal when the highest MCB is325
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achieved. Meanwhile, the selected lidar configuration needs to give a positive buffer time, as described in Section 3.5, so that

the controllers have enough time to react to the changing wind.

Figure 5. Left: optimization of the range x and half-cone opening angle ϕ of the spinner-based lidar based on coherence model. The selected

optimum configurations at a mean wind speed of 18 ms−1 are marked in a red circle. Right: The scanning pattern of the selected optimum

configurations.

The optimization is done assuming a mean wind speed of 18 ms−1. The optimization results are shown in Figure 5(a)

and (c) for CW and pulsed spinner-based lidars, respectively. Although measuring at 160 m and ϕ= 24◦ with a CW lidar

provides the highest MCB in our optimization, it is not usable due to a negative buffer time. Therefore, the optimum scanning330

configuration of the single-beam lidar in a CW system is selected at x= 190 m and ϕ= 21◦, and the one for the pulsed system
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is at x= 220 m and ϕ= 18◦. We see that the CW lidar gives a better wind preview when it measures closer to the rotor with

a wider angle compared to the pulsed lidar. This is expected since the further the CW lidar measures, the larger the lidar probe

volume, whereas the probe volume of the pulse lidar does not change with its measurement range. The probe volume filtering

effect (along with other effects, such as wind evolution) contributes to the decrease of MCB with increasing measurement335

distance.

The best range-opening angle combinations of both CW and pulsed lidars result in a scan radius at approximately 72 m

(0.6R) (see Figure 5(b) and (d)). Due to the rotor shaft tilt angle, the lidar scanning area is at the middle-top part of the rotor

plane. With the optimum configuration, both types of spinner-mounted single-beam lidars can achieve a maximum k0.5 of

more than 0.014 m−1 corresponding to a deddy,min smaller than 1.87D, while the nacelle-based single-beam lidar achieves only340

approximately 0.005 m−1 (the single-point measurements provide k0.5 that are almost constant but slightly reduce with further

measurement ranges).

With the same turbulence characteristics, the mean wind speed does not have a large impact on the modeling of REWS

coherence but is important for the selection of the optimum lidar configurations due to its impact on the buffer time. In our

case, the selected configuration of CW lidar gives a very short buffer time (0.7 s) indicating the measurement distance will be345

too close for controllers to react if the wind speed is higher than 19 ms−1. Measuring at 220 m and ϕ= 18◦ with a pulsed

lidar gives a buffer time of 1.62 s, and the controller would have enough time to react for a mean wind speed below 20 ms−1.

A larger measurement range should be selected for both types of lidars if the full wind speed range (up to the wind turbine

cut-off wind speed of 25 ms−1) is considered. When the measurement range increases from the optimum point, the MCB

could decrease. Consequently, the low-pass filter will have a lower cut-off frequency and will need a longer time to process the350

lidar measurement. Therefore, it is essential to estimate the REWS coherence for the selected scanning pattern and design the

control unit accordingly.

Time domain simulations were executed in OpenFAST with the embedded lidar simulator, the optimal configurations of both

lidars given in Figure 5(b)(d), the feedback-feedforward controller and 4D Mann turbulence fields with a mean wind speed of

18 ms−1. To ensure statistical convergence of 10-min simulations, 21 realizations (seeds) of the same turbulence fields are used355

(Liew and Larsen, 2022). The time series of the filtered REWS uLL is collected from the outputs of the feedforward controller,

and the real REWS uRR is calculated from the virtual turbulence fields by averaging the along-wind time series among the

rotor swept area. Simulations with similar set-ups are performed using the nacelle-based lidar. The nacelle-based CW lidar is

simulated considering a measurement range of 200m so that the controller has enough time to react to the turbulent wind with a

mean wind speed of 18 ms−1 (it takes longer to filter the REWS signal estimated from the nacelle-based than the spinner-based360

lidar due to the low MCB). Figure 6 compares the REWS coherence from time-domain simulations and those calculated in the

frequency domain using the method presented in Section 2.4. Results of the CW and pulsed types of lidar are shown in the

upper and lower panels, respectively.

Comparing the left plots (spinner-based) with the right plots (nacelle-based) in Figure 6, we see that the coherence in terms

of the k0.5 has been improved a lot by using the optimized lidar in the spinner. Overall, the simulated REWS coherence fits with365

15



Figure 6. Coherence of the REWS using the optimal single-beam lidar (a)(c) in the spinner and (b)(d) on the nacelle. Upper panel for CW

lidars, lower panel for pulsed lidars. Simulation results are averaged from 21 wind field realizations.
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the analytical models, which indicates that the scanning configurations optimized in the frequency domain are also providing

the best wind preview in the time domain. Some noise appears at high frequencies due to the spectra estimation process.

5 Feedforward control benefits

The benefits of using the feedforward pitch controller are evaluated in this section. Time-domain simulations are performed

using the optimized lidar in the spinner and on the nacelle, respectively, first with the feedback controller only, and then370

with the feedback-feedforward combined controller. Simulations in each scenario are executed using turbulence fields with

the same turbulence characteristics for 21 different seeds (Liew and Larsen, 2022). Therefore, for lidar in CW and pulsed

systems, respectively, 2× 2× 21 simulations are carried out. All DOFs of the 15-MW reference wind turbine are enabled and

no wave impacts are simulated. The simulation time is 640 s in total, in which the first 40 s is the transient and excluded from

the analysis. Then, the spectra of the rotor speed, the tower base bending moment and the blade root bending moment are375

calculated from the simulated time series. Here, only results of CW lidars are shown, since similar results are found for pulsed

lidars.

The analytical spectrum of the rotor speed using feedforward control is modelled as

SΩΩ = |GΩuLL |2SRR(1− γ2
RL), (37)

where GΩuLL is the closed-loop transfer function from the REWS to the rotor speed, which is obtained from the linearized380

1-DOF wind turbine model with the feedback controller (PI), the low-pass filter and the pitch actuator (Schlipf et al., 2015b).

Results are shown in Figure 7, in which the left panels are from spinner-based lidar and the right panels are from the nacelle-

based lidar. The benefits of using feedback-feedforward control (FBFF) compared to the feedback-only (FB-only) case are

well visible mainly at low frequencies. This is expected since the low-frequency range is where the lidar wind preview signal

correlates well with the real REWS. In Figure 7(a) and (b), the simulated rotor speed spectra fit well with the analytical one385

for the frequency range below 0.2 Hz (below the 1P of the turbine). Significant reductions of the rotor speed variations are

achieved using the spinner-based configuration compared to the nacelle-based one. Furthermore, within the low-frequency

range, higher load reductions on the tower-base fore-aft (below 0.07 Hz) and blade-root flap-wise directions (below 0.1 Hz)

can be seen using the spinner-based lidar.

The standard deviation of the rotor speed and the fatigue loads, i.e., damage equivalent loads (DELs) of the tower-base390

and blade-root bending moments are calculated from the time series. To estimate the DELs, the rainflow counting method

introduced by Matsuichi and Endo (1968) is applied. The DELs are based on a reference number of cycles of 2× 106 and

a turbine lifetime of 20 years. Wöhler exponents of 4 and 10 are used for the tower-base fore-aft and blade-root flap-wise

bending moments respectively, as described in (Schlipf, 2016). Statistically, by using FBFF with the single-beam CW lidar

in the spinner instead of on the nacelle, the reduction of the mean rotor speed standard deviation is improved from 13.8% to395

47.4%, and the reduction of the tower-base fore-aft bending moment DEL increases from 1.0% to 4.3%. The strategy also

brings 3.1% reduction to the blade-root flap-wise moment DEL. Since the default feedback controller parameters are adopted,

the DEL reductions can be further improved by optimizing the controller gains (Schlipf et al., 2018).
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Figure 7. Spectra of the rotor speed (RotSpeed), tower-base fore-aft (TwBsMyt) and blade-root flap-wise bending moments (RootMyc1)

with feedback-only (FB) and the feedback-feedforward combined (FBFF) controller using the optimal single-beam CW lidar (a)(c)(e) in the

spinner and (b)(d)(f) on the nacelle at a mean wind speed of 18 ms−1. Simulation results are the average using 21 wind field realizations.

Some relevant structural frequencies are marked.
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Similar results and trends are seen from the simulations using the pulsed lidar, which are summarized in Table 1. We have

also optimized the scanning pattern of a 4-beam CW nacelle lidar, which provides a MCB around 0.011 m−1 measuring at400

220 m with ϕ= 15◦. The optimized 4-beam nacelle lidar is applied and simulated with 21 realizations of the same turbulence

fields. Results in Table 1 show that the control benefits gained using the spinner-based single-beam lidar are larger than those

we can achieve using the same lidar on the nacelle and that the benefits using a spinner-beam single-lidar are of a similar level

to those using a 4-beam system.

reductions spinner (CW) nacelle (CW) spinner (pulsed) nacelle (pulsed) 4-beam nacelle (CW)

rotor speed standard deviation -47.4% -13.8% -44.0% -14.1% -44.6%

tower-base fore-aft DEL -4.3% -1.0% -4.1% -1.1% -4.3%

blade-root flap-wise DEL -3.1% 0.4% -2.7% 0.2% -2.9%
Table 1. Control benefits of feedforward-feedback combined controllers relative to using feedback-only controllers for: a single-beam lidar

in the spinner and on the nacelle both using a CW and a pulsed system, and a 4-beam CW lidar on the nacelle at a mean wind speed of

18 ms−1.

6 Discussions405

The goal of this study is to demonstrate that a single-beam lidar mounted in the spinner increases the performance of feedfor-

ward control compared to the same lidar mounted on the nacelle. The study optimizes the lidar scanning configurations for the

best wind preview quality considering the longitudinal wind evolution in the wind field. The optimum configurations for both

CW and pulsed lidars are selected for a mean wind speed of 18 ms−1.

The strength of wind evolution is one of the factors that affect the optimal lidar scanning configuration. Other factors include410

the number and the location of measurements, the turbulence spectra, and the severity of contamination by the transverse

velocity components, which is affected by the lidar beam directions (Guo et al., 2022a). The smaller the beam opening angle,

the smaller the contribution of the transverse velocity components to the radial velocity. To reveal the impact of turbulence

evolution, Figure 8 shows the optimization results of the CW and pulsed lidars when the evolution is neglected and Taylor’s

frozen turbulence hypothesis is applied. Compared to those shown in Figure 5, the maximum achievable MCBs of both lidars415

are overestimated. For the CW lidar, assuming frozen turbulence does not change the shape of the MCB curve. This is expected

because the probe volume of a CW lidar increases quadratically with the focus distance, which plays a more important role

in determining the MCBs than the turbulence evolution. As for the pulsed lidar whose probe volume does not change with

the measurement range, the highest MCB is reached at a further measurement distance at x= 270 m and a smaller opening

angle ϕ= 15◦ compared to the optimum in Figure 5. The resulting lidar scan radius remains at ≈ 0.6R. Owing to the rotor420

shaft tilt angle, measuring too far away from the rotor causes the lidar scanning area to be easily out of the rotor swept area.

Therefore, the MCB decreases from the optimum point when the lidar measures at x= 270 m with a wider opening angle or

with ϕ= 15◦ at a further measurement distance. In summary, the neglection of wind evolution can result in an overestimation
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of MCB, wrong selection of the optimum lidar configuration, and eventually the underperformance of the feedforward control,

especially in unstable atmospheric conditions.425

Figure 8. Optimization of the range x and half-cone opening angle ϕ of the spinner-based lidar when wind evolution is neglected.

As mentioned in Section 4, for higher wind speeds, larger measurement ranges are needed for both CW and pulsed lidars so

that the controllers have enough time to react to the wind disturbance. Further work needs to be done with the full wind speed

range to decide the best scanning configuration of the single-beam lidar in the spinner. Also, the controller performances can

be influenced by turbulence conditions. Only neutral atmospheric stability is considered in this work. Guo et al. (2023) showed

that the control benefit is at its highest in unstable, middle in neutral, and lowest in stable atmospheric conditions.430

7 Conclusion and Outlook

A single-beam Doppler lidar is flexible and low in cost. Using the single-beam lidar in the spinner, the lidar can rotate with the

rotor at an almost steady rotational speed when the turbine operates at above-rated wind speeds and scans a good portion of the

inflow to the rotor disk. Also, the spinner-based lidar can have a view of the inflow without periodic blockage by the running

blades, which improves the lidar data availability.435

Based on a coherence model of the lidar-rotor REWS using 4D Mann turbulence model, this work optimizes the scanning

configurations (i.e., measurement range and the half-cone opening angle) of the spinner-mounted single-beam lidar in a CW

and a pulsed system, respectively, at a single wind speed of 18 ms−1 for the bottom-fixed IEA 15-MW wind turbine. The

optimum configurations of the two types of lidars are different due to the spatial averaging effect of their probe volumes, but

they both result in a scan radius of approximately 0.6 of the turbine radius. The optimum configurations of both types of lidars440

give a MCB of around 0.014 m−1, which corresponds to the smallest detectable eddy size of 1.87D. Large lidar measurement
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ranges are needed to ensure the turbine controllers have enough time to react to the wind disturbance over the full wind speed

range, which slightly reduces the MCB.

Using time-domain simulations and 4D Mann turbulence wind fields in the neutral condition, the benefits of regulating rotor

speed variation and reducing fatigue loads on the tower and blades using the feedforward controller and the spinner-based445

single-beam lidar are evaluated for the reference turbine at a single wind speed of 18 ms−1. Results are compared against a

single-beam and a 4-beam nacelle-based lidar. The control benefits using the optimized spinner-based configurations of both

CW and pulsed lidars are much higher than the single-beam nacelle lidar, and they are on a similar level to the 4-beam nacelle

lidar.

For future work, full wind speed ranges up to the wind turbine cut-off wind speed should be considered to select the optimum450

scanning trajectory of the spinner-based single-beam lidar for the IEA 15-MW wind turbine. The pulsed lidar could potentially

deliver a better wind preview signal than the one shown in this work when measurements at multiple measurement ranges

are combined. In addition, more reductions in fatigue loads could be achieved by optimizing the parameters of the feedback

controller. In the future, more than one single-beam lidar can be used in the spinner to add redundancy to the system, meanwhile,

having the possibility to achieve a shorter full scan time or multi-plane measurements simultaneously even with CW lidar455

systems.
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