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Response to review 
 
The reviewer’s comments are given below in black font and our responses are in green font. A full 
tracked changes version of the manuscript is at the end of this document. Note also in responding to the 
reviewers comments (details below) we have also added 7 references. 
 
Reviewer #1: 
 
Review of “Onshore and Offshore Wind Resources and Operating Conditions in the Eastern U.S.” by 
Rebecca Foody, Jacob Coburn, Jeanie A. Aird, Rebecca J. Barthelmie and Sara C. Pryor  
This study describes the statistical analysis of a comprehensive lidar data set with focus on onshore and 
offshore wind speeds and power production in the U.S.  
The data set described in this manuscript is interesting and of high relevance for wind energy research. 
The thematic itself is within the scope of the journal. However, a clear structure is missing, I could not 
identify clear objectives and/or hypotheses to be addressed and there is a lack of clear interpretations, 
discussions, and conclusions. The reader often needs either to accept statements without a clear proof 
or need to interpret the results by its own. Therefore, I recommend a major revision of the manuscript.  
Response: We regret that the reviewer did not find our structure clear. We felt that by wriVng in the 
paragraph starVng on line 51 ‘We evaluate four aspects of the wind power generaVon potenVal on- and 
offshore:’ and then lisVng them that we were se[ng out the objecVves clearly. But in light of your 
concerns, we have completely restructured the introducVon.  
We have also changed the title to help the reader immediately know the purpose of the manuscript the 
new title is Quantitative Comparison of Power Production and Power Quality Onshore and Offshore: A 
Case Study from the Eastern U.S.  
 
Specific comments  
Introduction:  
Entire Introduction: To my opinion, the big picture is missing here. What do you expect to find from the 
analyses. What do you want to explain or proof, what is your scientific question, the overall goal of your 
study?  
We have re-written the introduction to read (quoting from the revised manuscript): 
‘Here we focus on the first of these reasons, and specifically seek to quanVfy the potenVal benefit of 
offshore wind turbine deployments using analyses of uniquely detailed wind profiles from an onshore 
LiDAR (Light DetecVon And Ranging) network and an offshore LiDAR network. We use these data sets to 
quanVfy and compare three aspects of the wind power generaVon potenVal on- and offshore: 

1 Wind resource and power production. We present Weibull probability distribution parameters 
and derive energy density from the wind speed time series and compare and contrast the inferred 
wind resource at the onshore and offshore sites. We further compute and compare the Annual 
Energy Production (AEP) from the time series of wind speeds at each LiDAR site using a common 
wind turbine power curve. 

2 Power quality. Intermittency is frequently cited as a barrier to increased wind power integration 
into the electrical grid (Bistline and Blanford, 2021). We quantify and compare the frequency of 
zero power production and intensity and probability of so-called ramp events (i.e., rapid changes 
in wind speed and power production) (DeMarco and Basu, 2018;Pichault et al., 2021) from each 
onshore and offshore site where LiDARs have been deployed.  

3 Predictability and persistence of wind speeds and power production (Haghi et al., 2013;Haslett 
and Raftery, 1989). Within liberalized electricity markets, wind farm owner/operators bid in 
advance (e.g. 24 hours in advance) and are charged penalties for any imbalance between the bid 
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and actual production (Pinson et al., 2007). Hence, accurate forecasts of wind generation are 
important to reduce penalties and maximize revenue (Barthelmie et al., 2008). Persistence 
models where the power production at some future time is modeled as a function of power 
production in the recent past is often used as a benchmark forecast against which more 
sophisticated short-term power production models are compared (Kariniotakis et al., 2004). Also 
many statistical short-term forecast models are predicated in part on persistence (Zeng and Qiao, 
2011) and thus are most skillful when the power production time series exhibits high temporal 
autocorrelation. We quantify the temporal autocorrelation of power production from each 
onshore and offshore site and compare the degree to which electrical power production from the 
onshore and offshore locations differ with respect to persistence and short-term predictability. 

We further use these LiDAR measurements to quanVfy and compare a key driver of wind turbine 
loading at the on- and off-shore locaVons: 
4 Extreme or anonymous wind shear across the rotor plane. Low-Level Jets (LLJ) are confined wind 

speed maxima within the lower atmospheric boundary layer (Stensrud, 1996) and are associated 
with enhanced vertical wind speed (and sometimes directional) shear relative to typical near-
logarithmic profiles. LLJ  within the wind turbine rotor plane are associated with higher 
aerodynamic and structural loading (Gutierrez et al., 2019;Gadde et al., 2021). Analyses of 
simulations with the Weather Research and Forecasting (WRF) model suggest that offshore 
coastal regions of the U.S. mid-Atlantic (including the locations of the buoys from which data are 
presented) generally exhibit a weakly sheared profile across the rotor plane and a relatively low 
frequency of LLJ (Aird et al., 2022). That analysis found LLJ in the lowest 500 m of the atmosphere 
are most frequent south of Massachusetts and during the summer (8% of all hours). They 
frequently occur at heights that intersect the wind turbine rotor plane, and at wind speeds within 
typical wind turbine operating ranges. Further, LLJ diagnosed from the WRF output were most 
intense and have lowest elevation under strong horizontal temperature gradients and lower 
planetary boundary layer heights. For comparative purposes, data from the NYSM LiDARs are 
used here to evaluate wind shear across the rotor plane and the occurrence, intensity, and height 
of LLJ at the onshore locations.  

We also analyze the LiDAR data to quanVfy two other properVes of relevance to wind energy integraVon 
into the electricity generaVon supply: 

5 Co-variation of wind speeds and power production with varying distance separation (Pryor et al., 
2014;Solbrekke et al., 2020). The electric power transmission network in the contiguous U.S. 
comprises three main interconnections (eastern, western, and Electric Reliability Council of Texas 
(ERCOT)) and 66 ‘balancing authorities’ that oversee regional operation of the electric grid and 
are referred to as Regional Transmission Operators (RTOs) or Independent System Operators 
(ISOs). New York (NY) state currently operates as a single state ISO. NY is both a net importer of 
electricity and the third most efficient state in terms of energy use per U.S. dollar of economic 
activity (https://www.eia.gov/state/analysis.php?sid=NY). Careful planning of wind farm 
locations on and offshore could  ensure stable supply of wind-generated electricity into the grid 
and thus aid the transition from electricity imports and a current dependence on nuclear and 
natural gas (Eryilmaz et al., 2020). Here we quantify the spatial autocorrelation of power 
production from each onshore and offshore site where the LiDARs have been deployed to 
evaluate the decorrelation distance and hence provide guidance regarding optimal spatial scale 
of wind farm separation (on- and off-shore) for stability of wind power supply. 

6 Seasonality and diurnal variability of wind power production (WPP) on- and off-shore for demand 
matching. Electricity demand varies with the level of economic activity and seasonal 
heating/cooling requirements which are a function of the regional climate (Castillo et al., 
2022;Staffell and Pfenninger, 2018). Generally, electricity demand in the U.S. is minimized 
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between approximately 0400 and 0600 local time (LT), is high between 0800 and 1600 LT, and 
peaks between 1800 and 2100 LT (Burleyson et al., 2021). Diurnal variability of wind power 
generation is a function of location and land use but, for example, in ERCOT is highest at night 
(Kiviluoma et al., 2016), consistent with the expectation based on day-time variations in 
atmospheric stability caused by changes in net radiation and the surface energy balance. Because 
the oceans have higher specific heat capacity than land, this scale of variability is typically not 
present in the far offshore (> 20 km from the coast) (Barthelmie et al., 1996). At the seasonal 
scale, wind resources and power production in the midlatitudes and specifically the contiguous 
U.S. tend to peak in between October and April and are lowest in July or August due to 
pronounced shifts in the storm track and the frequency and intensity of mid-latitude cyclones 
(Pryor et al., 2020b). Recent research suggests WPP is highest in southeastern Canada and the 
northeastern U.S. during January and February (Coburn and Pryor, 2023). Thus, finally, we 
quantify whether electrical power from wind turbines deployed offshore exhibit higher or lower 
temporal matching with electricity demand in New York state at both the diurnal and seasonal 
scales.’ 

We feel this is a very clear statement of objectives, justification of the objectives and hope the reviewer 
concurs. 
Page 2, line 51: The authors mention that there are few previous studies without giving any references. I 
would also recommend to shortly summarize what has been done and found in those few studies.  
We actually couldn’t find any comparable studies but did not want to preclude the possibility that such 
studies exist, but since we could not find a comparable studies we have dropped this statement. 
Page 2, Point 1: I would expect a discussion/statement/explanation in the results part about the 
differences in the regions and what we can learn from it (e.g., an evaluation as to whether a region is 
more suitable as the others, beyond onshore-offshore differences)   
We think the reviewer is referring to ‘First, wind speeds tend to be higher and more consistent offshore 
due to both the lower surface roughness and lack of obstacles and topographic features that extract 
momentum and reduce both the wind speed and wind resource (Pryor and Barthelmie, 2002). 
Accordingly, Capacity Factors (CF), which are the raVo of actual power generaVon divided by the 
theoreVcal maximum power generaVon, are typically higher offshore. Data from operaVng wind farms in 
Denmark indicate CF from four offshore wind farms with installed capacity (IC) of 160 to 400 MW of 41-
53% while CF from smaller onshore wind farms (IC: 16-70 MW) have CF of 28-41% (Enevoldsen and 
Jacobson, 2021). Within the U.S., the mean CF for onshore wind farms built between 2014 and 2019 is 
approximately 41% (Wiser et al., 2021). SimulaVons using numerical models for offshore wind energy 
lease areas along the U.S. east coast indicate CF above 46% largely as a result of the higher wind speeds 
offshore (Pryor et al., 2021;Barthelmie et al., 2023). ‘  
It certainly is true that some regions of the world exhibit higher wind resources but our focus here is 
lisVng the factors that are responsible for ‘Enhanced deployment of wind turbines offshore offers great 
promise in terms of enhanced renewable energy penetraVon into the electricity generaVon porsolio for 
three primary reasons’… So, respecsully, we are unconvinced that adding a discussion of the relaVve 
wind resource in different regions of the world would be useful here. 
Page 2, line 79: I could not find a guidance regarding optimal special scale. I don’t feel guided with only a 
short statement that correlation is lower than 0.4 for distances >350 km. I recommend using either 
another formulation or provide a more detailed and profound discussion in the results part.   
Our apologies – the concept of the spatial decay of correlation and the e-folding distance may, indeed, 
not be widely understood. We have elaborated on this matter a little in the Methods. We have modified 
this sentence to read; ‘Temporal autocorrelation coefficients of the power production time series are 
used to derive e-folding time scales (i.e. the time delay at which the correlation coefficient drops to e-1, 
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i.e. to 0.37) which is used to represent the time scale at which the system ‘loses’ the memory of the 
initial state (Wilks, 2011).’ 
(i.e. to add 0.37) 
And then have added this sentence: 
‘The e-folding concept can also be applied in this context, to quantify the distance at the power 
production from two sites is no longer significantly correlated.’ 
So the bottom line is the separation distance at which the correlation coefficient for the power 
production time series from two sites two drops below about 0.37 (rounding to 0.4) is the distance at 
which the sites are no longer significantly correlated – or if you prefer if I wish to achieve a more stable 
electricity production through time I should place wind farms at sufficient separation that their 
individual generation is not significantly correlated. For this wind climate that distance is about 350 km. 
We hope our changes to the text help to clarify that point. 
Page 3, paragraph 1: There is quite a harsh transition from the previous paragraph and topics to this 
one. The topic is completely new, and I miss a kind of introduction to why this is important in your study 
and what you want to show/discuss with results to this. What is your goal, what do you want to 
compare and what are possible consequences for your major hypothesis? In this paragraph, you 
mention something from structural loading and wakes but what does it mean for whatever you want to 
show and where is the discussion about it in the results/conclusion part?  
We regret you found this to be a harsh transition. Hopefully with the re-structure introduction you find 
the flow is smoother. 
Page 3, paragraph 2: Wouldn’t it be better to paste a goal at the beginning of a paragraph? Otherwise, 
there is again a harsh transition from one topic to another from which the reader initially has no idea 
what the reason is, where to focus on.   
Again, we regret you found this to be a harsh transition. Hopefully with the re-structure introduction the 
flow is smoother. We do have an objective at the start of each bullet point. 
Data Sources:  
Page 4: The best year has a specific time frame for all positions, how about the analyses which are not 
based on the best years? Is the time span for all positions from January 2019 to December 2022 or are 
there some variabilities? If yes, how large are these and how would you expect them to influence your 
results?     
There is always a compromise to be made – use all the data that you have in order to increase the 
sample size for statistical testing versus use the data period that best represents the seasonal cycle. This 
is indeed a challenge. So, for statistical testing where sample size aids confidence we use all records (e.g. 
spatial autocorrelation) but we also present to the reader information regarding how estimated AEP 
varies as a function of the data sample. 
Methods:  
Page 7, chapter 3.3: Which question shall be answered by an analysis of the wind profile and why are 
you using shear and LLJ? In what sense are LLJ of relevance to wind energy applications? 
As we wrote: 
‘The International Electrotechnical Commission (IEC) 61400-1 standard states the expected value of α 
over land is 0.2 and is typically in the range of 0.05 to 0.25 and uses a value of 0.2 in the normal wind 
profile model (IEC, 2019). The occurrence of α beyond this range implies shear across the rotor plane 
differs from this design expectation and hence may indicate higher mechanical loading. 
Thus on the most fundamental level we are seeking to report how frequently the shear is outside this 
expectation. The LLJ analysis is really to examine if one source of anomalous wind shear profiles (i.e. the 
frequency of LLJ) is higher/lower on and offshore.’ We hope the modified introduction and the addition 
of an additional reference.  
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We have also added some text to the results section.: ‘The implication is that large wind turbines 
deployed in these locations may experience a relatively high frequency of large unbalanced rotor loads 
and reduced component lifetimes unless such loads can be appropriately compensated (Hur et al., 
2017).’  
Page 7, lines 223-225: Is this a commonly used method? Do you have references for this method which 
show that this can be done for wind energy or similar purposes? I wonder how suitable this method is 
considering the lower spatial and temporal resolution of ERA-5 compared to measurements, the 
difference in time spans (comparing results from 44 years (ERA-5) to max 4 years (data) and the fact that 
ERA-5 has uncertainties on its own and additional uncertainties by the conversion from 10&100 m to 
150 m. I would also suggest providing a kind of uncertainty or at least a discussion about this issue.  
We believe the reviewer is referring to; ‘Hourly values from the 40-year U150ERA5 and P150ERA5 record are 
randomly resampled 1000 times with replacement using the number of hours from each month that the 
LiDAR data are available (Figure 3). For each of these 1000 bootstrapped samples the annual mean wind 
speed and AEP is calculated to provide an estimate of uncertainty due to the short time series from the 
LiDARs.’ Yes, bootstrap resampling is very frequently used to quantify confidence intervals around a 
metric (see for example the textbook by Dan Wilks or this text by Mudelsee; Climate Time Series 
Analysis: Classical Statistical and Bootstrap Methods (Atmospheric and Oceanographic Sciences Library, 
51)).  We have added a citation of the Wilks reference to the methods. 
Perhaps the reviewer is speaking to our specific application. The mean power law coefficient 0.21 which 
for a height interval of 100 to 150 is equal to a correction of 0.06 (or if you prefer a multiplier of 1.09 on 
the 100-m wind speed) so it’s a small correction. We have now clarified this in the text. In terms of 
bootstrap resampling to derive uncertainties on wind speeds per se, it is a generalizable statistical 
method that can be applied to any geophysical property (see the book by Mudelsee) 
We have clarified what the purpose of this analysis is by adding this statement; ‘This analysis explicitly 
acknowledges the presence of low-frequency variability (seasonal to mulV-decadal) in mid-laVtude wind 
speeds and wind resources (Pryor et al., 2020a) and is designed to quanVfy the uncertainty on mean 
wind speeds and power producVon computed from the relaVvely short LiDAR data Vme series. ‘ 
Results:  
Page 8, lines 258-259: What does this mean? Why are low summer values a hint for a negative bias? 
Summer values are often lower, winter values often higher, so there are seasonal deviations from 
annual (and also long-term) mean values.   
We regret this statement wasn’t clearer. We have rewritten it to read: 
‘Bootstrapping of ERA5 data indicates the mean annual wind speed computed from the LiDAR time 
series at the NYSM sites is likely underestimated by ~ 1.5-4.5% while AEP is underestimated by ~3-10% 
due to the high data availability in summer.’ 
We hope this clarifies. 
Page 8, lines 258-259: Definitely missing here is a detailed description and justification (preferably with 
reference) of how a long-term time series with relatively coarse resolution can lead to a meaningful 
error estimate of a point measurement, even more so when different time periods are used for this 
purpose. Why isn’t it more likely here, that differences come from the interannual variability? What 
makes you believe that the data availability is responsible for these differences, in particular when you 
consider annual averages, and if so, wouldn’t another way of calculating annual averages be the solution 
to avoid or at least minimize the influence? How do you calculate them that they have such a strong 
influence?  
We regret any confusion – precisely we are examining inter-annual variability!. We hope we have 
removed any confusion by adding this statement in methods: ‘Although the LiDAR data sets that we 
analyze here are – to our knowledge – unique in terms of the duraVon and number of sites considered, 
we also contextualize the results and inferences drawn from these mulV-year, but relaVvely short 
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duraVon, observaVons using the  > 40 year duraVon ERA5 reanalysis product (Hersbach et al., 2020). This 
analysis explicitly acknowledges the presence of low-frequency variability (seasonal to mulV-decadal) in 
mid-laVtude wind speeds and wind resources (Pryor et al., 2020a) and is designed to quanVfy the 
uncertainty on mean wind speeds and power producVon computed from the relaVvely short LiDAR data 
Vme series. ‘ 
A minor note: If the cause is inter-annual variability due to differences in cyclone frequency/intensity 
that will be manifest in approximately equal magnitude in ‘point’ and spatially averaged values (unless 
the site is in complex terrain where directional channeling may be a factor). 
Page 11: Concerning the differences in Weibull scale parameters and AEP between best year and all 
data: What is the conclusion of this finding? Interannual variability? Data under-/overrepresentation? 
Any proofs for the one or the other?   
We did this analysis because it is important to acknowledge sources of uncertainty including incomplete 
time series. We note that in doing these analyses we also demonstrate that the on-shore off-shore 
differences are robust to data sampling issues. Accordingly, to avoid any confusion we have added the 
statement; ‘It is important to note that the differences in energy density computed from the on-shore 
and off-shore LiDAR data sets are robust to these sampling issues.’ 
Page 12, lines 290-293: A description/interpretation of figure 5 would be great. In general, the reader is 
a bit left alone with the interpretation of the figures. Either one understands it immediately on its own 
or not. Some help would be nice for all who didn’t create the figures.   
We regret any confusion regarding interpretation of this figure. The definitions of ramps are given in 
equation (3) and accompanying text in Methods. We have expanded that description this a little to read: 
‘The probability of wind speed and power producVon ramp events are computed from the NYSERDA and 
NYSM LiDARs and in the case of wind speeds are normalized as follows: 

𝛿𝑢(𝑡)
𝜎!"

=
𝑢(𝑡 + 𝜏) − 𝑢(𝑡)

𝜎!"
 

(3) 

where u(t) is the wind speed at Vme t, δu(t) is the wind speed increment from the prior Vme step, τ is 
the chosen Vme increment, and σδu is the standard deviaVon of the wind speed increments (DeMarco 
and Basu, 2018). !"($)

&!"
= 2 indicates an increase in wind speed between two consecuVve measurements 

(here τ = 10 minutes) of a magnitude that is equal to two standard deviaVons of wind speed changes 
computed from the enVre Vme series, and thus lies in highest 2.5% of values. Conversely,  !"($)

&!"
= -2, has 

a similarly low probability but is associated with a large magnitude decline in wind speed between two 
consecuVve measurements.’ 
We have also expanded the paragraph that links to Figure 5 to read: 
‘The second component of power quality is the intermiyency in terms of the probability and magnitude 
of ramp events – that is rapid changes in wind speed and/or power producVon. Wind speed Vme series 
at 150 m height from the NYSM and NYSERDA LiDARs indicate clear similariVes in terms of ramp event 
magnitude and frequency to those derived using data from the FINO1 plasorm in the North Sea, Cabauw 
onshore in western porVon of the Netherlands, Høvsøre in coastal Jutland, Denmark, and NWTC in the 
foothills of the Colorado Rocky Mountains (DeMarco and Basu, 2018) (Figure 5). Data from the NYSERDA 
buoys indicate a low probability of wind speed ramps of all magnitudes relaVve to the NYSM LiDARs 
(Figure 5), and all LiDAR Vme series indicate a substanVally higher probability of a ramp-up (increase) 
than a ramp-down (decrease) of a given magnitude in wind speeds. Wind speed ramps in hourly ERA5 
data exhibit a narrower distribuVon owing to spaVal and temporal averaging, illustraVng the need for in-
situ data for capturing high resoluVon wind variability (Figure 5). Consistent with the lower probability of 
large-magnitude rapid changes in wind speed offshore, data from the NYSERDA buoys (Hudson North 
E05 and Hudson South E06) indicate probabiliVes of a wind power ramp with > ±20% change in power 
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are considerably lower than those from any of the onshore locaVons (Figure 5). Thus, the chance of 
experiencing an increase or decrease in electrical power producVon of 20% from one 10-minute period 
to the next is substanVally lower for wind turbines deployed offshore.  This indicates that wind turbines 
deployed offshore are likely to exhibit less intermiyency in terms of electrical power producVon which is 
criVcal to efficient grid integraVon (Ayodele et al., 2012).’ 
We have also slightly modified the capVon to Figure 5 to read: 
‘Figure 5. Left: probabilities of wind speed ramp events computed from the 10-minute data from the 
NYSERDA LiDAR buoys and the NYSM sites computed using Equation (3), and reported for four locations 
at or near operating wind turbines: FINO 1 is (offshore) in the North Sea, Cabauw is in the western 
portion of the Netherlands, Høvsøre is in Jutland, Denmark, and NWTC is in the foothills of the Colorado 
Rocky Mountains (data digitized from: (DeMarco and Basu, 2018)). Wind ramps computed from the 
hourly ERA5 output are shown by the gray polygon. Right: probabilities of wind power production ramp 
events at the locations of the NYSERDA buoys and the NYSM sites computed by applying the power 
curve for the IEA 15 MW reference wind turbine to the LiDAR wind speeds. The probabilities of no-
change (i.e., power ± 0%) are not shown to aid visibility.’ 

Page 13, lines 304-305: Could you explain this a bit more, please. There is an image, you could lead the 
reader through the image, just a bit, and let someone not being such deep into statistics see the same 
like you. Furthermore, do you have an explanation/expectation why the e-folding times at sea are larger 
than on land and why there is a slight difference in the onshore stations? E.g., any physical reasons for 
that?  
The reviewer is referring to the following: ‘The third aspect of power quality is predictability. The 
autocorrelation in power production at different time lags for the NYSM LiDARs exhibit clear diurnal 
oscillations and shorter e-folding time scales.’ 
We hope that adding text in Introduction 
‘Predictability and persistence of wind speeds and power producVon (Haghi et al., 2013;Hasley and 
Ra}ery, 1989). Within liberalized electricity markets, wind farm owner/operators bid in advance (e.g. 24 
hours in advance) and are charged penalVes for any imbalance between the bid and actual producVon 
(Pinson et al., 2007). Hence, accurate forecasts of wind generaVon are important to reduce penalVes and 
maximizing revenue (Barthelmie et al., 2008). Persistence models where the power producVon at some 
future Vme is model as a funcVon of power producVon in the recent past is o}en used as a benchmark 
forecast against which more sophisVcated short-term power producVon models are compared 
(Kariniotakis et al., 2004). Many staVsVcal short-term forecast models are predicated in part on 
persistence (Zeng and Qiao, 2011) and thus are most skillful when the power producVon Vme series 
exhibits high temporal autocorrelaVon. We quanVfy the temporal autocorrelaVon of power producVon 
from each onshore and offshore site and compare the degree to which electrical power producVon from 
the onshore and offshore locaVons differ with respect to persistence and short-term predictability.’ 
And in the Methods to this sentence: 
‘Temporal autocorrelation coefficients of the power production time series are used to derive e-folding 
time scales (i.e. the time delay at which the correlation coefficient drops to e-1, i.e. to 0.37) which is used 
to represent the time scale at which the system ‘loses’ the memory of the initial state (Wilks, 2011).’ 
And this where we discuss Figure 5: 
‘These relatively large e-folding times for the buoy locations indicate a longer atmospheric ‘memory’ at 
these sites, indicating the potential for more accurate short-term power prediction forecasts because 
each time step is strongly dependent on previous time step(s).’ 
Clarifies this matter. 
Page 13, lines 308-309: Why does a large e-folding indicate the potential for more accurate power 
prediction? Are there any proofs? Did someone find this (citation?), or did you do any calculations?   
Please see the answer directly above.  
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Page 15: What is the conclusion from the analysis of shear conditions and LLJ?  
We have added these two sentences that we believe makes the inference more concrete: 
‘The implication is that large wind turbines deployed in these locations may experience a relatively high 
frequency of large unbalanced rotor loads and reduced component lifetimes unless such loads can be 
appropriately compensated (Hur et al., 2017).’ 
And  
‘It is important to acknowledge that comparisons of LLJ climates derived from LiDAR measurements and 
WRF modelling should be done cautiously and that LLJ detection from the LiDAR wind speed profiles is 
critically dependent on unbiased data availability. Nevertheless, this analysis suggests LLJ within the 
rotor plane, as a source of large unbalanced rotor loads and reduced blade lifetimes, are less frequent at 
these onshore locations. ’ 
Page 15/16, chapter demand matching: How did you calculate the normalized demand and site WPP and 
how do you relate it to the demand? What does it exactly mean, which conclusions can you draw from 
the findings? I guess, the couple of positions equipped with one turbine per position will not be able to 
cover the energy demand, but from the image it looks a bit like this. Means: further explanations are 
needed here to guide the reader into the right direction. And what does the comparison with ERA-5 
reveal?   
We calculate the demand as follows (see Methods): 
‘Electrical demand (in MWh) for New York state are also presented and mean values are computed for 
each hour of the day and each month of the year based on hourly values for 2016-2022 as reported by 
the U.S. Energy InformaVon AdministraVon (EIA) hourly electric-grid monitor 
(hyps://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48)’.  
And we normalize it as noted in the caption to Figure 9: ‘The data are normalized to a mean value of 1 
and so that values of 0.9 or 1.1 in a given hour or month indicates WPP or demand that is 10% below or 
above the mean, respectively.’ 
We have expanded the paragraph that relates to Figure 9 to read as follows: 
‘Electricity demand in New York state tends to peak in the a}ernoon (~ 1700 eastern standard Vme, EST) 
and in summer (highest values in July), though a secondary maximum occurs in January (Figure 9). Wind 
power producVon calculated from the NYSM/NYSERDA LiDARs and ERA5 grid-cell data (P150ERA5) show 
highest values at night (0100 to 0500 EST) and during winter to spring (December-April), with the lowest 
producVon during the day (1300 to 1600 EST) and during the summer (Figure 9). Wind power producVon 
esVmated based on LiDAR data from the NYSERDA buoy locaVons exhibits markedly lower diurnal and 
seasonal variability than is esVmated at the NYSM sites, varying by ± 10% around the mean versus ± 25% 
at NYSM. This results in a reducVon in mean absolute error (MAE) between Vme series of normalized 
WPP from the offshore LiDAR and electricity demand on both diurnal and seasonal Vmescales. The MAE 
computed from the mean hourly offshore WPP and demand is 0.19 when computed over the 24 hours of 
the day (Figure 9a) and 0.13 when computed from the Vme series of monthly mean values (Figure 9b). 
Both are smaller than MAE computed from WPP from the onshore LiDARs and demand on these Vme 
scales which are 0.25 and 0.20, respecVvely. This implies there will be beyer matching to electricity 
demand for power producVon from wind turbines deployed offshore. ‘ 
We hope this clarifies. 
Concluding remarks:  
At best, I see a summary here but no conclusion and no answer to a concrete scientific question or proof 
of a hypothesis. The reader is more or less left alone with the interpretation of this statistical analyses. 
We regret the reviewer found this section challenging to interpret.  We have supplemented materials in 
the conclusions to help the reader. The conclusions now read: 
‘ComparaVve analyses of wind resources and projected power producVon quanVty and quality at 
onshore and offshore locaVons have been hampered by the lack of high-quality hub-height wind speed 
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observaVons. Here we use uniquely detailed LiDAR measurements from an onshore profiler network and 
offshore campaign to compare projecVons of potenVal power generaVon quanVty and quality from 
offshore and onshore locaVons in New York State (Figure 1). Returning to the study objecVves arVculated 
in secVon 1, the study results indicate there are significant benefits to offshore deployments of wind 
turbines: 

• Wind resources at locations in the New York Bight (coastal offshore areas southeast of New York 
state, Figure 1) greatly exceed those of all onshore locations within New York state. The mean 
wind speeds at 150 m (𝑈,)	offshore are above 10 ms-1, while 𝑈, is below 8 ms-1 at all onshore sites. 
Weibull distribution fits to the 10-minute wind speed time series indicate scale parameters that 
are higher by 2 ms-1 than all onshore locations (Figure 4) except EHAM which is on Long Island and 
is within 1 km of the coastline (Figure 1). Accordingly, energy densities are 40% higher offshore 
and power production estimated offshore using the power curve of the IEA 15 MW wind turbine 
(Figure 2) yield over twice the AEP estimated for all onshore sites except EHAM (Table 2). Power 
generation estimated from wind speed time series offshore also exhibits lower variability on 
diurnal and seasonal time scales (Figure 6) and improved matching to current electricity demand 
in New York State (Figure 9).  This implies that not only is the offshore resource considerably larger 
offshore, but the ability to meet electricity demand is better for wind turbines deployed offshore. 

• Analyses presented herein also suggest that power generation intermittency is lower for the 
offshore sites. The probability of wind speeds below cut-in or above cut-out for the IEA reference 
wind turbine is lower offshore, as is the probability of large magnitude wind speed and power 
ramps (Figure 5). For example, the probabilities of wind power ramps with >  ±20% change in 
power over a 10-minute period are less than half as probable offshore as onshore. The higher 
temporal autocorrelation of wind power production offshore (Figure 6 and Table 2) may also aid 
the accuracy of short-term wind power forecasting for wind turbines deployed offshore, yielding 
economic benefits to wind farm owner/operators and enabling grid integration. 

Conversely, the frequency of anomalous wind speed shear and LLJ close to, or within, the rotor plane 
computed from the NYSM LiDAR wind speed profiles are slightly higher than those previously reported 
for the offshore areas from numerical simulaVons (Aird et al., 2022) but LLJ also exhibit higher elevaVons 
of the jet cores (Figure 8) and thus may be of less concern to wind turbine loading.  
An analysis of the distance dependence of the co-variability of power producVon derived from measured 
10-minute mean wind speed Vme series at the onshore and offshore sites indicates that the non-
parametric Spearman correlaVon coefficient drops below 0.4 at distances of about 350 km (Figure 7). 
This indicates that in order to ensure consistency of electrical power producVon from wind farms in New 
York state, major developments should be separated by more than 350 km.  This informaVon could be 
used to guide judicious selecVon of wind farm locaVons to minimize the probability of concurrent low 
generaVon from onshore and offshore sites. 
Thus, in accord with a priori expectaVons, analyses presented herein indicate there are advantages to 
the emerging trend towards offshore wind energy deployments in terms of the wind resource and the 
expected power quality and predictability (reduced ramp events, higher probability of rated power, etc.). 
Despite higher project AEP for the offshore locaVons, the addiVonal costs involved in installing and 
operaVng offshore wind farms results in higher LCoE esVmates for the offshore sites (Table 2). LCoE 
esVmates derived using AEP at the NYSM sites are 26 to 49 $/MWh while esVmates for the NYSERDA 
buoy locaVons are 62-64 $/MWh. Nevertheless, projected LCoE from wind energy for all of the sites 
invesVgated here in NY are compeVVve with all other electricity generaVon sources, with the possible 
excepVon of uVlity-scale PV, and much less expensive than tradiVonal sources such as coal and nuclear 
that, according to a recent analysis, have an unsubsidized LCoE of 65-152 $/MWh and 131-204 $/MWh, 
respecVvely (Lazard, 2023).’ 
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Page 16, lines 386-387: You compare the data to find out what? For what is it helpful, what does it aim 
for? 
We hope the rewrite of the introduction and conclusion helps – we are seeking to quantify the relative 
benefits of deploying wind turbines offshore.  
Page 17: 402-403: This is only a guess, I didn’t see neither a proof nor a clear or understandable 
assessment of this (as has been stated in the introduction).  
No its not a guess the statement “higher temporal autocorrelation of wind power production offshore 
(Figure 6 and Table 2) may also aid the accuracy of short-term wind power forecasting” can be readily 
made because virtually all statistical short-term forecasting methods employ directly or indirectly 
methods that are predicated on red noise characteristics of the atmosphere. See additional text that 
explains that matter. 
Page 17, line 410-411: To what extent does this follow from the Spearman correlation coefficients drop?  
Exponential decay of atmospheric properties in time and space is well documented. We hope that 
explanatory text we have added about this matter helps. 
Page 17, line 414-420: The LCoE and its calculation was not mentioned in the results.  
We have moved some discussion of LCoE into section 4.1 
Figures:  
Figure 3: For the comparison between onshore and offshore wind speeds I would suggest to create the 
same ranges for the y-axes. Also, the onshore figure is a bit crowded, maybe it would be a bit clearer to 
put the data availability into an own subfigure.  
We do not concur with the reviewer. We think there is importance to having the reader readily be able 
to note the data availability with the monthly mean wind speeds. 
Figure 5: The figure is quite crowded, very small and differences are hard to interpret. I would also love 
to see a much better description in the text.   
We have elaborated the text as requested. 
Figure 6: The lag time is in 10 Minute intervals, which needs an ad hoc recalculation to hours while 
reading the text, which in turn states the e-folding times in hours. I would recommend adapting either 
the text or, even better, the figures x-axis in a way that both becomes consistent.   
Text changes enacted as requested. 
Figure 8: Again very crowded, again, the image is not intuitively understandable without a more detailed 
description in the text. 
We regret the reviewer struggled to understand this figure. We have added this text to the caption: 
‘A LLJ frequency of 5% calculated from the LiDAR deployed at QUEE for the calendar month of May 
indicates that LLJ were indicated in 5% of all 10-minute periods during this month. Data in panels (a) 
and (b) indicate that at that site in the month of May the associated LLJ mean core wind speed is 11 ms-

1 and the mean core height above ground is 330 m.’ 

 
Reviewer #2: 
 
General comments: 
 
The paper presents data from a set of onshore and offshore lidars. The paper mostly presents statistics 
based on these data and the results of the analysis are as expected, as the wind blows more and more 
steady offshore compared to onshore. There is no new methods, concepts or ideas introduced in the 
manuscript, so I have rated the scientific significance as low. Nonetheless, the paper could be useful for 
somebody that is looking specifically for information about the wind climate in this region.  
We regret the reviewer did not find the scientific significance to be higher. The lack of measurements at 



 11 

wind turbine hub-heights and above has long been a source of concern for the wind energy community 
so we believe that the availability of network based LIDAR data will be of general interest. Further, we 
have found no previous research that used these types of data sets to quantitatively compare; the 
resource, power quality, demand matching etc on – and offshore in the same climate zone. And yet 
these properties are of critical importance in charting the future of wind energy deployments. 
My main comment on the analysis itself is about the low data recovery percentage of the lidar data. It is 
not demonstrated that there is no correlation of when data recovery is low and what the wind climate 
is. For example, one would expect that the lidars return 'not available' when a measurement cannot be 
obtained. Most of these data will be during low wind speed conditions when there is not enough 
aerosols to measure the wind. You have your long-term measurement time series from ERA5, so you 
could correct for this. Also in general I miss some discussion of the type of lidars you are using, because 
they are not the same offshore (zephyr) and onshore (windcube). What kind of filtering was done 
(precipitation? CNR?). 
It is indeed regrettable that the NYSM network does not have higher data recovery. We asked this 
question of the operators of the NYSM but they are not able to provide further information beyond 
what is available via the readme documentation (available at: 
http://www.nysmesonet.org/networks/profiler#stid=prof_alba) which simply states: ‘Sensor and/or 
system failures are not uncommon as the Profiler equipment are sensitive to a variety of environmental 
factors.  Data gaps may be due to sensor failures; calibration errors; power failures; and/or 
communication failures. … Only manufacturer-developed QA/QC procedures are applied to the data and 
there might still be some undetected errors.’ 
More information is available regarding the NYSERDA buoy deployments – e.g. via technical reports 
available for download from: 
https://oswbuoysny.resourcepanorama.dnv.com/download/f67d14ad-07ab-4652-16d2-08d71f257da1 
We have added a note to that effect to the Data availability statement: ‘Reports documenting LiDAR 
performance verification are also available for download from: 
https://oswbuoysny.resourcepanorama.dnv.com/download/f67d14ad-07ab-4652-16d2-08d71f257da1.’ 
Regarding the comment ‘It is not demonstrated that there is no correlation of when data recovery is low 
and what the wind climate is.’ We think there are two concepts of importance here: 

1) We do document at the monthly scale data availability versus wind speed. 
2) There is no documented evidence from NYSM that the LiDAR scans failed to report wind speeds 

due to low aerosol concentrations but given they state ‘manufacturers QA/QC procedures were 
employed it is highly likely a CNR screen was employed’. That having been said air quality 
measurements in New York state DO NOT imply a high frequency of sufficiently low aerosol 
concentrations to render these LiDARs likely to be unable to operate (see for example; 
Squizzato, S., Masiol, M., Rich, D. Q., & Hopke, P. K. (2018). A long-term source apportionment 
of PM2. 5 in New York State during 2005–2016. Atmospheric Environment, 192, 35-47.)  

We have added this text to section 4.1; ‘Documentation associated with the data set notes the causes 
as; ‘calibration errors; power failures; and/or communication failures.’ And further notes ‘Only 
manufacturer-developed QA/QC procedures are applied to the data and there might still be some 
undetected errors.’  (readme  accessible from 
http://www.nysmesonet.org/networks/profiler#stid=prof_alba).’ 
Technical comments: 
l13: factor -> parameter 
Done. 
l166: conventional usage would be capital gamma 
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changed as requested. 
l211-215: since the lidar signal depends on aerosol concentration this method will likely miss many low-
level jets as the lidar will simply not return a signal above the jet. Would be good to discuss this. 
We have added this cautionary text: 
‘It is important to acknowledge that comparisons of LLJ climates derived from LiDAR measurements and 
WRF modelling should be done cautiously and that LLJ detection from the LiDAR wind speed profiles is 
critically dependent on unbiased data availability. Nevertheless, this analysis suggests LLJ within the 
rotor plane, as a source of large unbalanced rotor loads and reduced blade lifetimes, are less frequent at 
these onshore locations.’ 
In addition: I am not quite sure how to interpret the comment about the comparibility with the 500 m 
height: did you use data up to 500 m? It would be good to show what the recovery percentage is at this 
height, related to the remark above. 
We have calculated the data recovery rates at each LiDAR locaVon at each height < 500 m and now 
report them, see text that’s reads; ‘Analyses of wind speed data from the NYSM LiDARs at all 
measurement heights from 100 to 500 m indicates that averaged across all staVons the data availability 
as a funcVon of height varies only by +/-2.5%.’ 
l232: move bracket from before Barthelmie to before 2023. 
Done. 
 


