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Abstract. A major issue in quantifying potential power generation from prospective wind energy sites is the lack of 

observations from heights relevant to modern wind turbines, particularly for offshore where blade tip heights are projected to 

increase beyond 250 m. We present analyses of uniquely detailed datasets from LiDAR (Light Detection And Ranging) 10 

deployments in New York state and on two buoys in the adjacent New York bight to examine the relative power generation 

potential and power quality at these on- and off- shore locations. Given the relatively close proximity of these LiDAR 

deployments, they share a common synoptic scale meteorology and seasonal variability with lowest wind speeds in July and 

August. Time series of power production from the on- and off- shore location are highly spatially correlated with the Spearman 

rank correlation coefficient dropping below 0.4 for separation distances of approximately 350 km. Hence careful planning of 15 

on- and off- shore wind farms (i.e. separation of major plants by > 350 km) can be used reduce the system-wide probability of 

low wind energy power production. Energy density at 150 m height at the offshore buoys is more than 40% higher and the 

Weibull scale parameter is 2 ms-1 higher than at all but one of the land sites. Time series of 10-minute wind power production 

are computed from these wind speeds using the power curve from the International Energy Agency 15 MW reference wind 

turbine. Analyses of the resulting power production time series indicate Annual Energy production is almost double for the 20 

two offshore locations. Further, electrical power production quality is higher from the offshore sites that exhibit a lower 

amplitude of diurnal variability, plus a lower probability of wind speeds below the cut-in and of ramp events of any magnitude. 

Despite this and the higher resource, the estimated Levelized Cost of Energy (LCoE) is higher from the offshore sites mainly 

due to the higher infrastructure costs. Nonetheless, the projected LCoE is highly competitive from all sites considered.  

1 Introduction 25 

The United States government has set a goal of reaching carbon net neutral emissions from the power generation sector by 

2035 and a carbon net neutral economy by 2050 (U.S. White House, 2023). As part of this plan, the U.S. Department of Interior 

is committed to deploying 30 GW of offshore wind power by 2030 (U.S. Department of the Interior, 2021). However, in 2021, 

93% of electrical power produced by global wind turbines was derived from those deployed in onshore rather than offshore 

wind farms, partly due to the higher investment required for offshore wind power installation (IEA, 2022). Within the U.S., as 30 

of the end of 2022, there was over 145 GW of wind energy installed capacity onshore and only 42 MW offshore (American 

Clean Power, 2023).  

Enhanced deployment of wind turbines offshore offers great promise in terms of enhanced renewable energy penetration into 

the electricity generation portfolio for three primary reasons:  

• First, wind speeds tend to be higher and more consistent offshore due to both the lower surface roughness and lack 35 

of obstacles and topographic features that extract momentum and reduce both the wind speed and wind resource 

(Pryor and Barthelmie, 2002). Accordingly, Capacity Factors (CF), which are the ratio of actual annual power 

generation divided by the theoretical maximum power generation, are typically higher offshore. For example, data 
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from operating wind farms in Denmark indicate CF from four offshore wind farms with installed capacity (IC) of 160 

to 400 MW of 41-53% while CF from smaller onshore wind farms (IC: 16-70 MW) have CF of 28-41% (Enevoldsen 40 

and Jacobson, 2021). Within the U.S., the mean CF for onshore wind farms built between 2014 and 2019 is 

approximately 41% (Wiser et al., 2021). Simulations using numerical models for offshore wind energy lease areas 

along the U.S. east coast indicate CF above 46% largely as a result of the higher wind speeds offshore (Pryor et al., 

2021;Barthelmie et al., 2023).  

• Second, there are fewer social barriers than exist on land (e.g., competition for land, noise concerns, visual blight, 45 

etc.) (Diógenes et al., 2020) and onshore resource in available areas may not be sufficient to meet projected needs 

(Esteban et al., 2011). In this context it is worth noting that the U.S. technical offshore wind capacity exceeds 2000 

GW with the potential to produce over 7200 TWh per year, nearly twice current U.S. electricity use (4240 TWh) 

(Musial et al., 2016). 

• Third, many major metropolitan areas are located near coastlines, making offshore wind a convenient energy source 50 

(Pryor et al., 2021). The cost of transmission and electricity loss during transmission across high-voltage lines both 

increase with transportation distance (Bamigbola et al., 2014).  

Here we focus on the first of these reasons, and specifically seek to quantify the potential benefit of offshore wind turbine 

deployments using analyses of uniquely detailed wind profiles from an onshore LiDAR (Light Detection And Ranging) 

network and an offshore LiDAR network. We use these data sets to quantify and compare three aspects of the wind power 55 

generation potential on- and offshore: 

1 Wind resource and power production. We present Weibull probability distribution parameters and derive energy 

density from the wind speed time series and compare and contrast the inferred wind resource at the onshore and 

offshore sites. We further compute and compare the Annual Energy Production (AEP) from the time series of wind 

speeds at each LiDAR site using a common wind turbine power curve. 60 

2 Power quality. Intermittency is frequently cited as a barrier to increased wind power integration into the electrical 

grid (Bistline and Blanford, 2021). We quantify and compare the frequency of zero power production and intensity 

and probability of so-called ramp events (i.e., rapid changes in wind speed and power production) (DeMarco and 

Basu, 2018;Pichault et al., 2021) from each onshore and offshore site where LiDARs have been deployed.  

3 Predictability and persistence of wind speeds and power production (Haghi et al., 2013;Haslett and Raftery, 1989). 65 

Within liberalized electricity markets, wind farm owner/operators bid in advance (e.g. 24 hours in advance) and are 

charged penalties for any imbalance between the bid and actual production (Pinson et al., 2007). Hence, accurate 

forecasts of wind generation are important to reduce penalties and maximize revenue (Barthelmie et al., 2008). 

Persistence models where the power production at some future time is modeled as a function of power production in 

the recent past is often used as a benchmark forecast against which more sophisticated short-term power production 70 

models are compared (Kariniotakis et al., 2004). Also many statistical short-term forecast models are predicated in 

part on persistence (Zeng and Qiao, 2011) and thus are most skillful when the power production time series exhibits 

high temporal autocorrelation. We quantify the temporal autocorrelation of power production from each onshore and 

offshore site and compare the degree to which electrical power production from the onshore and offshore locations 

differ with respect to persistence and short-term predictability. 75 

We further use these LiDAR measurements to quantify and compare a key driver of wind turbine loading at the on- and 

off-shore locations: 

4 Extreme or anomalous wind shear across the rotor plane. Low-Level Jets (LLJ) are confined wind speed maxima 

within the lower atmospheric boundary layer (Stensrud, 1996) and are associated with enhanced vertical wind speed 

(and sometimes directional) shear relative to typical near-logarithmic profiles. LLJ  within the wind turbine rotor 80 

plane are associated with higher aerodynamic and structural loading (Gutierrez et al., 2019;Gadde et al., 2021). 
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Analyses of simulations with the Weather Research and Forecasting (WRF) model suggest that offshore coastal 

regions of the U.S. mid-Atlantic (including the locations of the buoys from which data are presented) generally exhibit 

a weakly sheared profile across the rotor plane and a relatively low frequency of LLJ (Aird et al., 2022). That analysis 

found LLJ in the lowest 500 m of the atmosphere are most frequent south of Massachusetts and during the summer 85 

(8% of all hours). They frequently occur at heights that intersect the wind turbine rotor plane, and at wind speeds 

within typical wind turbine operating ranges. Further, LLJ diagnosed from the WRF output were most intense and 

have lowest elevation under strong horizontal temperature gradients and lower planetary boundary layer heights. For 

comparative purposes, data from the NYSM LiDARs are used here to evaluate wind shear across the rotor plane and 

the occurrence, intensity, and height of LLJ at the onshore locations.  90 

We also analyze the LiDAR data to quantify two other properties of relevance to wind energy integration into the electricity 

generation supply: 

5 Co-variation of wind speeds and power production with varying distance separation (Pryor et al., 2014;Solbrekke et 

al., 2020). The electric power transmission network in the contiguous U.S. comprises three main interconnections 

(eastern, western, and Electric Reliability Council of Texas (ERCOT)) and 66 ‘balancing authorities’ that oversee 95 

regional operation of the electric grid and are referred to as Regional Transmission Operators (RTOs) or Independent 

System Operators (ISOs). New York (NY) state currently operates as a single state ISO. NY is both a net importer of 

electricity and the third most efficient state in terms of energy use per U.S. dollar of economic activity 

(https://www.eia.gov/state/analysis.php?sid=NY). Careful planning of wind farm locations on and offshore could  

ensure stable supply of wind-generated electricity into the grid and thus aid the transition from electricity imports and 100 

a current dependence on nuclear and natural gas (Eryilmaz et al., 2020). Here we quantify the spatial autocorrelation 

of power production from each onshore and offshore site where the LiDARs have been deployed to evaluate the 

decorrelation distance and hence provide guidance regarding optimal spatial scale of wind farm separation (on- and 

off-shore) for stability of wind power supply. 

6 Seasonality and diurnal variability of wind power production (WPP) on- and off-shore for demand matching. 105 

Electricity demand varies with the level of economic activity and seasonal heating/cooling requirements which are a 

function of the regional climate (Castillo et al., 2022;Staffell and Pfenninger, 2018). Generally, electricity demand in 

the U.S. is minimized between approximately 0400 and 0600 local time (LT), is high between 0800 and 1600 LT, 

and peaks between 1800 and 2100 LT (Burleyson et al., 2021). Diurnal variability of wind power generation is a 

function of location and land use but, for example, in ERCOT is highest at night (Kiviluoma et al., 2016), consistent 110 

with the expectation based on day-time variations in atmospheric stability caused by changes in net radiation and the 

surface energy balance. Because the oceans have higher specific heat capacity than land, this scale of variability is 

typically not present in the far offshore (> 20 km from the coast) (Barthelmie et al., 1996). At the seasonal scale, wind 

resources and power production in the midlatitudes and specifically the contiguous U.S. tend to peak in between 

October and April and are lowest in July or August due to pronounced shifts in the storm track and the frequency and 115 

intensity of mid-latitude cyclones (Pryor et al., 2020b). Recent research suggests WPP is highest in southeastern 

Canada and the northeastern U.S. during January and February (Coburn and Pryor, 2023). Thus, finally, we quantify 

whether electrical power from wind turbines deployed offshore exhibit higher or lower temporal matching with 

electricity demand in New York state at both the diurnal and seasonal scales. 

2 Data sources 120 

Here we analyze long term (multi-year) measurements from two major LiDAR (Light Detection And Ranging) field 

deployments: the New York State Mesonet (NYSM) onshore LiDAR network and the New York State Energy Research and 
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Development Authority (NYSERDA) floating LiDAR campaign. All of the locations considered here lie within a separation 

distance of a few hundred kilometers and hence are within the so-called ‘macro-beta’ scale that is influenced by synoptic scale 

transitory mid-latitude cyclones (i.e., 400-4,000 km) (Stull, 2017). Thus, the expectation is that all sites will experience a 125 

relatively similar synoptic scale meteorological regime and that differences in wind resources, power quality and so forth can 

be largely attributed to differences in the surface; land versus ocean. 

2.1 NYSERDA LiDAR buoys 

To support development of offshore wind energy, NYSERDA undertook a campaign to deploy LiDAR on buoys near 

prospective offshore wind lease areas (Optis et al., 2021). Here we present data from two of those locations (Figure 1): the 130 

Hudson North E05 buoy is located within the Ocean Winds East (OCS-A 0537) lease area, and the Hudson South E06 buoy 

is located along the Bight Wind Holdings (OCS-A 0539) lease area (BOEM, 2023). The LiDARs deployed on these buoys are 

ZephIR ZX300M units. They report mean wind speeds, wind direction, and other properties in 10-minute intervals every 20 

m up to a maximum height of 200 m. The performance of different series of these robust LiDARs have been extensively 

evaluated (Barthelmie et al., 2016;Kelberlau and Mann, 2022;Smith et al., 2006) and best practice has been developed for 135 

deployment of LiDARs on floating platforms (Bischoff et al., 2017). The LiDAR from the Hudson North E05 buoy has data 

available from August 2019 through February 2022. The LiDAR on the Hudson South E06 buoy operated from September 

2019 through February 2022 but there is lower data availability during August through November (which is partly due to a 

temporary break in data collection for repairs to the buoy). The LiDARs have an overall data recovery rate of wind speeds at 

approximately 140 m above sea level of about 77% for the Hudson North E05 buoy and 67% for the Hudson South E06 buoy.  140 

2.2 New York State Mesonet 

New York state has also invested in a Mesonet (NYSM) to aid hazard mitigation and disaster preparedness. The NYSM 

includes a network of 17 profiler stations (Shrestha et al., 2022;Brotzge et al., 2020). The LiDARs deployed as part of the 

NYSM are the Leosphere WindCube WLS-100 series Doppler LiDAR (Bingöl et al., 2010;Kumer et al., 2016). These pulsed 

LiDARs have a vertical range of many kilometers and are also configured to report wind speed and direction measurements 145 

every 25 m in 10-minute intervals. The period for which data are available varies by location but is generally from January 

2019 to December 2022. The sites listed in alphabetical order with their respective abbreviation and in terms of data availability 

for wind speeds at 150 m are: Albany (ALBA, 36.7%), Belleville (BELL, 29.8%), Bronx (BRON, 64%), Buffalo (BUFF, 

44.0%), Chazy (CHAZ, 53.3%), Clymer (CLYM, 48.4%), East Hampton (EHAM, 68%), Jordan (JORD, 51.6%), Owego 

(OWEG, 56%), Queens (QUEE, 73%), Red Hook (REDH, 54.8%), Staten Island (STAT, 57%), Stonybrook (STON, 59%), 150 

Suffern (SUFF, 36.2%), Tupper Lake (TUPP, 53.6%), Wantagh (WANT, 62%), and Webster (WEBS, 49.3%). For much of 

the following analyses, only the seven sites with data recovery rates (i.e., wind speeds available at 150 m height) > 55% are 

included.  

As indicated by the above, all LiDAR data time series are incomplete and the NYSM data sets are particularly biased toward 

data availability in the summer months. Thus, in the following additional analyses are performed for the ‘best available year’, 155 

defined as the 365-day period that has highest data availability computed across both NYSERDA buoys and the seven NYSM 

sites. This ‘best year’ extends from September 19, 2019, at 22:50:00 EST to September 18, 2020, at 22:50:00 EST. Data 

availability in each of the nine sites for this period is: BRON (67.0%), EHAM (72.9%), OWEG (69.4%), QUEE (78.7%), 

STAT (60.0%), STON (70.1%), WANT (79.3%), Hudson North E05 (92.1%), and Hudson South E06 (86.6%). 

 160 
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Figure 1. Map of the locations of the two NYSERDA LiDAR buoys and the 17 NYSM stations. Red points indicate the buoys and 
seven NYSM sites with the highest data recovery; blue points indicate the remaining NYSM sites. 

2.3 ERA5 reanalysis 

Wind data from the European Centre for Medium-range Weather Forecasting ERA5 reanalysis is used to provide a 165 

climatological context for analyses of the LiDAR data. Although the LiDAR data sets that we analyze here are – to our 

knowledge – unique in terms of the duration and number of sites considered, we also contextualize the results and inferences 

drawn from these multi-year, but relatively short duration, observations using the  > 40 year duration ERA5 reanalysis product 

(Hersbach et al., 2020). This analysis explicitly acknowledges the presence of low-frequency variability (seasonal to multi-

decadal) in mid-latitude wind speeds and wind resources (Pryor et al., 2020a) and is designed to quantify the uncertainty on 170 

mean wind speeds and power production computed from the relatively short LiDAR data time series.  

The ERA5 reanalysis system assimilates a broad range of observing station, buoy, radiosonde, and satellite data and many 

atmospheric variables including wind components are available at an hourly time step with a spatial resolution of 0.28°	× 

0.28° (Hersbach et al., 2020). Here we use output of the u- and v- wind components at 100 m reported at an hourly disjunct 

frequency and that represent approximately 15- to 20-minute average values for the period of record with highest quality data 175 

assimilated into the reanalysis system: 1979-2022. This interval also includes the observational period of the LiDARs. ERA5 

estimates of wind and wave conditions has been extensively independently evaluated and shown to exhibit relatively high 

fidelity (Pryor et al., 2020b;Gramcianinov et al., 2020;Sharmar and Markina, 2020;Hallgren et al., 2020). 

2.4 Electricity demand  

Electrical demand (in MWh) for New York state are also presented and mean values are computed for each hour of the day 180 

and each month of the year based on hourly values for 2016-2022 as reported by the U.S. Energy Information Administration 

(EIA) hourly electric-grid monitor (https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48).  
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3 Methods 

3.1 Wind resource and potential power production 

Two-parameter Weibull distributions (A = scale and k = shape) are fitted using maximum likelihood estimation (Pryor et al., 185 

2004) and used to describe the probability distributions of wind speeds (U) at/close to 150 m height from each LiDAR: 

𝑓(𝑈) =
𝑘
𝐴 ⋅ (

𝑈
𝐴)
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The power in the wind that can be harnessed by wind turbines is often described using the energy density which can be derived 

from the time series of wind speed measurements or the Weibull distribution parameters: 
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where E is in Wm-2, ⍴ is the air density, and n is the number of time stamps from which wind speeds are available and G is the 

gamma function (Troen and Lundtang Petersen, 1989).  190 

The electrical power that would be generated by a wind turbine located at each LiDAR site is determined using the power 

curve from the International Energy Agency (IEA) 15 MW reference wind turbine which has a hub-height of 150 m and a 

rotor diameter of 240 m (Figure 2). We acknowledge that the physical dimensions and rated capacity of wind turbines deployed 

offshore are much larger than those that have traditionally been deployed onshore, but use of a single wind turbine allows 

direct comparison across sites. The time series of 10-minute power production and Annual Energy Production (AEP, in 195 

MWh/yr), i.e., the sum of the electrical power production in a year from a single 15 MW wind turbine at each LiDAR location, 

are used herein for the estimation of electrical power production and power quality.  

 

Figure 2. Power curve for the IEA 15 MW reference wind turbine (Gaertner et al., 2020). 

3.2 Power quality 200 

The probability of wind speed and power production ramp events are computed from the NYSERDA and NYSM LiDARs and 

in the case of wind speeds are normalized as follows: 

𝛿𝑢(𝑡)
𝜎&'

=
𝑢(𝑡 + 𝜏) − 𝑢(𝑡)

𝜎&'
 

(3) 

where u(t) is the wind speed at time t, δu(t) is the wind speed increment from the prior time step, τ is the chosen time increment, 

and σδu is the standard deviation of the wind speed increments (DeMarco and Basu, 2018). 	
&'())
+!"

= 2 indicates an increase in wind speed between two consecutive measurements (here τ = 10 minutes) of a magnitude 205 

that is equal to two standard deviations of wind speed changes computed from the entire time series, and thus lies in highest 
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2.5% of values. Conversely,  &'())
+!"

= -2, has a similarly low probability but is associated with a large magnitude decline in 

wind speed between two consecutive measurements.  

Spatial and temporal correlation coefficients are also presented herein. In all cases, non-parametric Spearman rank correlation 

coefficients are used because wind speeds and power production are not Gaussian distributed variables (Wilks, 2011).  210 

Temporal autocorrelation coefficients of the power production time series are used to derive e-folding time scales (i.e. the time 

delay at which the correlation coefficient drops to e-1, i.e. ~ 0.37) which is used to represent the time scale at which the system 

‘loses’ the memory of the initial state (Wilks, 2011). To assess the statistical significance of the correlation coefficients, a 

student’s t-test is used (Wilks, 2011). In this process, a t-statistic is computed from the correlation coefficient (r) and the 

sample size (n): 215 

𝑡 = 𝑟 ⋅ >(
𝑛 − 2
1 − 𝑟,) 

 

(4) 

Due to the high correlation in time, n is corrected to the effective sample size (n’) using: 

𝑛′ ≈ 𝑛 ⋅
1 − 𝑟#
1 + 𝑟#

 
 

(5) 

where r1 is the lag 1 autocorrelation and n is the total number of samples. The resulting t-score is compared with critical values 

(tcrit) for n’. If t > tcrit, the correlation coefficient is statistically different from zero for a confidence level of 99% and the wind 

speed time series or electrical power production time series from two sites are significantly correlated. 

Spatial correlation coefficients are also computed for power production time series from the onshore and offshore sites to 220 

examine the association as a function of separation distance and thus the degree to which power production across sites will 

be synchronized in time. The e-folding concept can also be applied in this context, to quantify the distance at which the power 

production from two sites is no longer significantly correlated. Past research has generally found that the correlation between 

wind speeds and wind power production from wind farms exhibits an exponential decay with increasing separation distance 

(St. Martin et al., 2015). Herein we fit both single exponential and double exponential fits with the forms: 225 

𝑦 = 𝑎 ⋅ exp(𝑏 ⋅ 𝑥) (6a) 

𝑦 = 𝑎 ⋅ exp(𝑏 ⋅ 𝑥) + 𝑐 ⋅ exp(𝑑 ⋅ 𝑥) (6b) 

where y is the Spearman correlation coefficients for the time series of 10-minute power production estimated at the NYSERDA 

and NYSM sites, and x is the spherical separation distance between those locations. Fit coefficients; a, b, c and d are derived 

using maximum likelihood estimation (Wilks, 2011). 

3.3 Wind profiles 

To quantify the wind shear across the rotor plane we invoke the power law: 230 
𝑈#
𝑈,

= I
𝑧#
𝑧,
K
-

 (7) 

where Ux is the wind speed at height (zx) and α is the shear coefficient ƒ(stability, surface roughness length) (Irwin, 1979). The 

International Electrotechnical Commission (IEC) 61400-1 standard states the expected value of α over land is 0.2 and is 

typically in the range of 0.05 to 0.25 and uses a value of 0.2 in the normal wind profile model (IEC, 2019). The occurrence of 

α beyond this range implies shear across the rotor plane differs from this design expectation and hence may indicate higher 

mechanical loading. Profiles of wind speeds from the NYSM LiDARs are used with equation (7) to quantify the frequency of 235 

occurrence of anomalous shear in two classes; negative shear exponents and α > 0.3 conditionally sampled to include only 

periods when the 150 m wind speed is above 3 ms-1, the cut-in for the IEA 15 MW reference wind turbine. Due to the very 
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low frequency of reported wind speeds at 50 m from the NYSM LiDARs, this analysis is performed using wind speeds from 

100 m and 250 m, which is sufficient to conform to the IEC standard recommendation that the shear be computed over a height 

differential of at least one-third of the rotor plane. 240 

To capture LLJ that are of possible relevance to wind energy applications, LLJ are identified here as any wind speed profile 

that exhibits a vertically confined wind speed maximum in the lowest 500 m of the atmosphere with wind speeds above and 

below that level that are at least 2 ms-1 slower than in the maximum (Aird et al., 2021;Aird et al., 2022). This is to ensure the 

results are comparable to those reported previously for offshore regions of the U.S. east coast that used an analysis vertical 

window of 20 to 530 m (Aird et al., 2022).  245 

3.4 Climatological context 

Hourly zonal (u) and meridional (v) wind components at 10 and 100 m height are obtained for all ERA5 grid-cells in that 

contain NYSM and NYSERDA sites, and are converted to wind speed at 150 m height (U150ERA5) using α derived from wind 

speeds at 10 and 100 m computed using equation (7). The mean shear exponent computed from wind speeds at 10 and 100 m 

height is 0.21, with variability over monthly and interannual timescales of less than 3 %, yielding a multiplier on the 100-m 250 

wind speed of 1.09 which is applied to obtain U150ERA5. Hourly U150ERA5 estimates are used to calculate hourly wind 

production (P150ERA5) using the IEA 15 MW reference wind turbine. The long-term records of U150ERA5 and P150ERA5 are 

used to assess the uncertainty in annual mean wind speeds and AEP resulting from the limited duration data records at the 

NYSM and NYSERDA LiDARs using a bootstrapping approach (Wilks, 2011). Hourly values from the 40-year U150ERA5 and 

P150ERA5 record are randomly resampled 1000 times with replacement using the number of hours from each month that the 255 

LiDAR data are available (Figure 3). For each of these 1000 bootstrapped samples the annual mean wind speed and AEP is 

calculated to provide an estimate of uncertainty that arises due to the short time series from the LiDARs. Additionally, 

Spearman correlation coefficients between the time series of P150ERA5 at all NYSM and NYSERDA grid-cells are calculated 

for the full 44-year record and used to contextualize the spatial correlation derived using the LiDAR measurements. 

3.5 LCoE 260 

As indicated above there are many possible advantages in deploying wind turbines offshore as a component of the electricity 

generation system. One potential disadvantage is that offshore wind energy generation costs are expected to be higher than 

those from onshore wind, although still less than those from nuclear (Barthelmie et al., 2023). The simple Levelized Cost of 

Energy (LCoE) model applied here is similar to that developed in Barthelmie et al. (2023): 

𝐿𝐶𝑜𝐸 =
𝐶𝐴𝑃𝐸𝑋 ∙ 𝐶𝑅𝐹 + 𝑂𝑃𝐸𝑋

𝐴𝐸𝑃  (8) 

where: CAPEX is the capital costs, CRF is the cost recovery factor, and OPEX is the annual operations and maintenance. Fixed 265 

costs are used here (Table 1), and AEP is the Annual Electricity Production from analyses described herein. Project lifetimes 

are assumed to be 30 years and no adjustment is made for turbine availability or other losses such as wakes or electrical losses. 

For the offshore locations, CAPEX is calculated from the values in Table 1 with no adjustments for distance to the coast, water 

depth, etc., and the water depth is appropriate for bottom-mounted wind turbines. Thus, the estimated LCoE from this 

simplified model are best case values. 270 
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Table 1. Key parameters for the LCoE model. Values taken from: (Stehly and Duffy, 2022). 

 Onshore  Offshore 
Capital expenditures (CAPEX) (million$/MW) 1.501 3.871 

• Turbine (million$/MW) 1.03 1.3 
• Fixed charge rate (%) 5.88 5.82 
• Project costs (million$/MW) 0.120 0.67 
• Foundation (million$/MW) 0.075 0.496 
• Electric infrastructure including sub-stations (million$/MW) 0.132 0.693 
• Finance ($/MW) (plus other costs for offshore includes e.g., decommissioning) 0.113 0.704 

Operational expenditures (OPEX) ($/MW/yr) 0.04 0.111 

4 Results  

4.1 Wind resource, potential power production, and LCoE 

Wind speed time series from all the LiDARs (Table 2) indicate similar seasonality, consistent with their relative proximity. 275 

Highest monthly mean wind speeds at ~150 m occur during the cold season (November to March) and lowest values are 

observed during summer (July and August) (Figure 3). This is consistent with the climatology of the U.S. northeast with the 

cold season months exhibiting a high frequency of mid-latitude cyclone passages and with data from operating wind farms 

that exhibit highest CF during late winter and early spring (Pryor et al., 2023). The data also indicate considerably higher wind 

speeds at 150 m based on data from the LiDARs deployed offshore (Figure 3). The mean wind speeds at this height from the 280 

two NYSERDA buoy-mounted LiDARs are 10.1 ms-1, while the mean wind speed from the Owego NYSM site (located < 400 

km away) is 7.72 ms-1 (Table 2). In August, the mean monthly wind speed at the Hudson North buoy is 7.76 ms-1 and at Owego 

is 6.08 ms-1; in December, the mean monthly wind speed at these two sites is 11.24 ms-1 and 9.16 ms-1, respectively. Data from 

the LiDAR buoys also show a consistently higher frequency of U = 15-25 ms-1 when the IEA 15 MW reference wind turbine 

would operate at rated capacity (Figure 2). Figure 3 further indicates the presence of seasonality in data availability. The excess 285 

representation of August in the Hudson North E05 data will tend to lead to a negative bias in the overall wind resource and 

estimated power production because wind speeds in that month are typically lower than other months (Figure 3). The mean 

monthly wind speed from August-November in data from the Hudson South E06 LiDAR is 9.75 ms-1, which is below the 

overall mean, so the relatively low data availability in these months at E06 may also lead to a small negative bias in the derived 

mean energy density and power production (Figure 3). The seasonality in data availability is particularly consistent and 290 

amplified at the NYSM sites. As shown in Figure 3, at WANT (the site with the highest seasonal bias in data availability) over 

12% of the total observations were recorded in July while in a data set free of availability bias this value would be 8.5%. 

Bootstrapping of ERA5 data indicates the mean annual wind speed computed from the LiDAR time series at the NYSM sites 

is likely underestimated by ~ 1.5-4.5% while AEP is underestimated by ~3-10% due to the high data availability in summer. 

Analyses of wind speed data from the NYSM LiDARs at all measurement heights from 100 to 500 m indicates that, averaged 295 

across all stations, the data availability as a function of height varies only by ±2.5%. 

Enquiries with the NYSM network operator did not resolve any common root cause for the low data availability from these 

LiDARs. Documentation associated with the data set notes the causes as; ‘calibration errors; power failures; and/or 

communication failures.’ And further notes ‘Only manufacturer-developed QA/QC procedures are applied to the data and 

there might still be some undetected errors.’  (readme accessible from 300 

http://www.nysmesonet.org/networks/profiler#stid=prof_alba). It is important to note that the differences in energy density 

computed from the on-shore and off-shore LiDAR data sets are robust to these sampling issues.
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Table 2. Weibull distribution parameters from the 150 m wind speed time series (and 95% confidence intervals, CI) and energy density derived from those parameters. AEP computed using the 
IEA 15 MW wind turbine power curve, along with the frequency of zero power and power production at rated. The data shown in italics are computed using the most complete continuous 12-305 
month period. The column headed e-folding time shows the time for the Spearman correlation coefficient to fall below e-1. The ninth and tenth columns show the frequency of extreme shear for all 
periods when U at 150 m > 3 ms-1. The following column shows estimated Levelized Cost of Energy (LCoE) values derived using the assumptions described in section 3.5 based on AEP estimates 
shown in the fifth column and derived using the LiDAR observations. 

 

Site 
Weibull Scale 
Parameter (A) 

(m/s) [CI] 

Weibull Shape 
Parameter (k) 

[CI] 

Energy 
Density (E) 

(W/m2) 

AEP 
(GWh/yr) 

Frequency of no 
power production: U 
< 3 / U > 25 ms-1 (%) 

Frequency of 
maximum (rated) 
power production 

(%) 

e-folding 
time (hr) 

Frequency 
of a < 0 

Freq 
of a > 

0.3 

LCoE 
($/MWh) 

BRON 6.915  
[6.896, 6.935] 

2.013  
[2.005, 2.021] 267 35.6 15.3/0.06 5.16 8.0 15.0 23.4 49.0 

 7.146 2.031 293 38.7 14.8/0.07 5.67 8.0    

EHAM 10.16  
[10.13, 10.18] 

2.153  
[2.144, 2.161] 794 71.7 6.38/0.31 21.2 9.3 15.4 17.0 26.0 

 10.32 2.202 816 73.0 5.63/0.40 23.1 9.3    

OWEG 8.703  
[8.678, 8.727] 

2.172  
[2.163, 2.181] 496 58.3 9.02/0.18 11.4 9.7 10.9 13.9 33.9 

 8.514 2.168 465 56.0 8.96/0.19 12.5 9.0    

QUEE 7.607  
[7.587, 7.627] 

2.000  
[1.993, 2.008] 358 43.3 12.2/0.14 8.66 8.8 19.0 17.3 45.3 

 7.484 2.009 340 41.9 13.0/0.12 7.75 7.8    

STAT 7.602  
[7.580, 7.625] 

2.014  
[2.006, 2.022] 355 43.6 12.4/0.14 6.49 7.2 15.9 20.2 43.7 

 7.550 2.029 345 43.4 13.0/0.12 6.17 7.3    

STON 9.423  
[9.396, 9.450] 

2.039  
[2.030, 2.048] 668 64.1 9.29/0.11 15.6 9.7 16.7 15.2 29.4 

 9.447 2.037 674 64.4 9.29/0.13 17.5 9.8    



11 
 

WANT 9.282  
[9.254, 9.309] 

1.970  
[1.962, 1.977] 662 60.0 7.64/0.47 13.8 8.3 25.3 10.4 31.6 

 9.185 2.011 627 60.1 8.01/0.45 17.1 7.8    

Hudson 
North 
E05 

11.40  
[11.36, 11.43] 

2.127  
[2.117, 2.137] 1134 79.7 5.30/0.48 30.6 11.3   61.9 

 11.42 2.147 1130 80.5 5.48/0.53 36.3 11.7    

Hudson 
South 
E06 

11.38  
[11.34, 11.42] 

2.123  
[2.111, 2.134] 1131 80.0 5.94/0.46 27.2 10.0   64.4 

 11.04 2.073 1056 77.4 6.84/0.31 21.4 10.7    
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Figure 3. Monthly mean wind speed at ~150 m (ms-1, solid lines) and fraction of data availability (dashed lines) for the 
seven NYSM sites with highest data availability (top left) and both NYSERDA buoy sites (bottom left), as well as wind roses 
for the OWEG (top right) and Hudson North E05 (bottom right) sites. A value of 0.08 for the fraction of data availability 
for a given month indicates 8% of the total sample is comprised of values recorded in that month. 

The Weibull distribution fits to 150 m wind speeds from the buoy-mounted LiDARs have very similar 

shape and scale parameters (Figure 4 and Table 2). Consistent with expectations, the Weibull scale 

parameters from the NYSERDA buoys are also substantially higher than those from the seven NYSM sites 

and exceed values from the NYSM by 2 ms-1 for all sites except EHAM which is on Long Island and within 

1 km of the coastline (Figure 1). The Weibull distribution parameters translate to higher energy densities at 

the locations of the buoys (Table 2). This is also true for calculations based on the ‘best year’ of data (Table 

2). When wind speeds from the ‘best year’ are used to compute the Weibull fits and AEP, differences of 

0.1-3% in the Weibull scale parameters and 1-8% in AEP are found relative to estimates from the longest 

available records (Table 2). Even compared to the NYSM location with the highest Weibull scale parameter 

and highest mean wind speeds (EHAM), both buoys have over 40% higher energy density. Application of 

the power curve from the IEA 15 MW reference turbine to the wind speed time series yields AEP values 

for the buoy-mounted LiDARs that are a factor of almost three higher than some of the NYSM sites (e.g., 

QUEE and STAT) and nearly twice as much as many NYSM stations except EHAM (Table 2). Thus, 

consistent with expectations, the wind speed time series from the LiDARs operated on the NYSERDA 

buoys indicate a substantially better wind resource and higher projected electrical power output (AEP) than 

is estimated based on data from the NYSM LiDARs. 
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 310 

 

 

Figure 4. Probability distributions from the Weibull fits to 10-minute wind speeds at 150 m height from the NYSERDA LiDAR 
buoys and the NYSM stations for all available data (left) and year with common highest data availability (‘best year’ of September 
2018-2019) (right). Note: probability distributions from Hudson North E05 and Hudson South E06 virtually overlay each other in 
the left panel. 

Despite higher projected AEP for the offshore locations, the additional costs involved in installing and operating offshore wind 315 

farms results in higher LCoE estimates for the offshore sites (Table 2). LCoE estimates derived using AEP at the NYSM sites 

and assumptions stated in section 3.5 (Table 1) are 26 to 49 $/MWh while estimates for the NYSERDA buoy locations are 62-

64 $/MWh. 

4.2 Power quality 

Three aspects of power quality are evaluated using the wind speed at ~150 m (U) and power production time series. The first 320 

is the probability of wind speeds at which no power is produced; U < 3 ms-1 or U > 25 ms-1. The probabilities of wind speeds 

below the cut-in speed of the IEA 15 MW wind turbine (U < 3 ms-1) are substantially higher for the NYSM sites than the 

offshore locations (Table 2 and Figure 4). Indeed, for three of the seven NYSM sites the probability of wind speeds below cut-

in is well over twice that for the offshore sites, and even the locations of Long Island that are very close to the coast (EHAM 

and WANT) exhibit considerably higher frequency of U < 3 ms-1 than is derived using data from NYSERDA LiDARs (7.6 325 

and 6.4% versus 5.3 and 5.9%, see Table 2). The frequency of U above cut-out (U > 25 ms-1) is higher based on data from the 

LiDARs on the buoys, but the overall frequency is low at all locations (< 0.5%). Thus, wind turbines deployed offshore at the 

NYSERDA buoy locations will produce some power on a considerably larger fraction of the time than any of the onshore 

locations. This inference is true whether the entire time series or the “best year” of data are considered.  

The second component of power quality is the intermittency in terms of the probability and magnitude of ramp events – that 330 

is rapid changes in wind speed and/or power production. Wind speed time series at 150 m height from the NYSM and 

NYSERDA LiDARs indicate clear similarities in terms of ramp event magnitude and frequency to those derived using data 

from the FINO1 platform in the North Sea, Cabauw onshore in western portion of the Netherlands, Høvsøre in coastal Jutland, 

Denmark, and NWTC in the foothills of the Colorado Rocky Mountains (DeMarco and Basu, 2018) (Figure 5). Data from the 

NYSERDA buoys indicate a low probability of wind speed ramps of all magnitudes relative to the NYSM LiDARs (Figure 335 

5), and all LiDAR time series indicate a substantially higher probability of a ramp-up (increase) than a ramp-down (decrease) 
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of a given magnitude in wind speeds. Wind speed ramps in hourly ERA5 data exhibit a narrower distribution owing to spatial 

and temporal averaging, illustrating the need for in-situ data for capturing high resolution wind variability (Figure 5). 

Consistent with the lower probability of large-magnitude rapid changes in wind speed offshore, data from the NYSERDA 

buoys (Hudson North E05 and Hudson South E06) indicate probabilities of a wind power ramp with > ±20% change in power 340 

are considerably lower than those from any of the onshore locations (Figure 5). Thus, the chance of experiencing an increase 

or decrease in electrical power production of 20% from one 10-minute period to the next is substantially lower for wind 

turbines deployed offshore.  This indicates that wind turbines deployed offshore are likely to exhibit less intermittency in terms 

of electrical power production which is critical to efficient grid integration (Ayodele et al., 2012). 

 

 

 
Figure 5. Left: probabilities of wind speed ramp events computed from the 10-minute data from the NYSERDA LiDAR buoys and 345 
the NYSM sites computed using Equation (3), and reported for four locations at or near operating wind turbines: FINO 1 is 
(offshore) in the North Sea, Cabauw is in the western portion of the Netherlands, Høvsøre is in Jutland, Denmark, and NWTC is in 
the foothills of the Colorado Rocky Mountains (data digitized from: (DeMarco and Basu, 2018)). Wind ramps computed from the 
hourly ERA5 output are shown by the gray polygon. Right: probabilities of wind power production ramp events at the locations of 
the NYSERDA buoys and the NYSM sites computed by applying the power curve for the IEA 15 MW reference wind turbine to the 350 
LiDAR wind speeds. The probabilities of no-change (i.e., power ± 0%) are not shown to aid visibility. 

The third aspect of power quality is predictability. The autocorrelation in power production at different time lags for the NYSM 

LiDARs exhibit clear diurnal oscillations and shorter e-folding time scales. Power production estimates using wind speeds 

from the Hudson North E05 buoy show the largest e-folding time of ~68, 10-minute periods (11.3 hours), and ~70, 10-minute 

periods (11.7 hours) in the ‘best year’ of data. Comparable estimates for data from the Hudson South E06 buoy are ~ 60 and 355 

64, 10-minute periods (10.0 and 10.7 hours) (Table 2 and Figure 6). These relatively large e-folding times for the buoy locations 

indicate a longer atmospheric ‘memory’ at these sites, indicating the potential for more accurate short-term power prediction 

forecasts because each time step is strongly dependent on the value in previous time step(s).  
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Figure 6. Temporal autocorrelation (computed using Spearman correlation coefficients) of the wind power production at different 360 
lag times based on data from the NYSERDA buoys and the NYSM stations. The horizontal line denotes a correlation of e-1 which is 
used here as a first order estimate of the e-folding time. 

4.3 Spatial correlation  

While power production from wind farms is inherently intermittent at the local scale, aggregation over large spatial scales 

reduces power fluctuations (Potisomporn and Vogel, 2022;Pryor et al., 2014;Simão et al., 2017;Pryor et al., 2020b;St. Martin 365 

et al., 2015). However, the optimal spatial scale of integration is likely to be a strong function of the prevailing meteorology. 

Thus, an analysis of power production computed based on LiDAR data at each of the NYSM profiler stations and NYSERDA 

buoys is undertaken to quantify the spatial decorrelation scale. Consistent with the a priori expectation based on past research, 

the correlation of time-series of estimated power production at the different locations decays exponentially with increasing 

separation distance (Figure 7). The highest correlation coefficient is between power production time series from the two 370 

NYSERDA buoys (0.834, see SM Table 1 and Figure 7). NYSM sites EHAM and STON have an almost identical separation 

distance as the buoys (Figure 1), but these time series of estimated power production have a slightly lower correlation 

coefficient (0.764) due to variability caused by the presence of land use land cover and terrain features onshore. For the sample 

sizes of data from the LiDARs and a lag-1 autocorrelation of > 0.9, application of equations (4) and (5) imply the power 

production time series would be considered fully de-correlated at Spearman correlation coefficients < 0.2. As shown in Figure 375 

7 this level is not reached for the sites at which the LiDAR are deployed. Nevertheless, exponential fits to correlation 

coefficients as a function of separation distance imply that on average the correlation coefficients drop below about 0.4 for 

separation distances of ~ 350 km. This suggests that careful siting of wind farms on- and off- shore could be used to decrease 

coherent variations in electrical power production within the NY ISO. Output from ERA5 when converted to electrical power 

production exhibits higher correlation coefficients at similar separation distances to the LiDARs consistent with the higher 380 

spatial smoothing inherent in reanalysis products (Figure 7). 
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Figure 7. Spearman spatial correlation coefficient (r) of power production for the LiDAR (blue) and ERA5 (black) output sampled 
at the NYSERDA and NYSM locations against the separation distance between all 19 sites (17 onshore, 2 offshore). Solid blue points 
indicate location pairs with high data availability, open points represent the relationships including the remaining NYSM sites. The 385 
star represents the correlation between the two NYSERDA buoys. Best fit lines (y = Spearman correlation coefficient, x = spherical 
distance between locations) are shown for the LiDAR: y = 0.8703exp(-0.002377x) (solid red) and y = 0.4021exp(-0.01595x) + 
0.5914exp(-0.0012x) (dashed red). The fit to the ERA5 estimates has the form y = 0.9942exp(-0.00183x) (dashed black). 

4.4 Shear conditions and LLJ at the NYSM onshore sites 

LiDAR data from all 17 NYSM sites indicate a very high frequency of extreme wind shear (Table 2). This is likely due in part 390 

to the heights being considered lying outside of the surface layer when the wind power law is most likely to be an appropriate 

approximation. Nevertheless, all NYSM LiDARs have a very high frequency of shear exponents computed using wind speeds 

at 100 and 250 m for wind speeds at 150 m of 3 to 25 ms-1 that lie beyond the 0 to 0.3 expected range. At all the NYSM sites, 

5% of shear exponent values during wind turbine operation lie above 0.39 and a further 5% of values fall below -0.09. The 

high frequency of extreme positive shear at many of the sites is likely to be due to the high surface roughness lengths since 395 

many of the NYSM sites are in the southeast of the state in highly urbanized locations. The frequency of negative shear is 

highest at WANT, on Long Island, likely in part because of the local land use land cover variability. The occurrence of negative 

shear 10.9-25.0% of the time from the NYSM sites is broadly comparable to the frequency of occurrence of negative shear 

between heights of 42-292 m (12%) found in WRF simulations over the U.S. state of Iowa (Barthelmie et al., 2020). A high 

positive shear exponents (a > 0.2) was also found in analyses of WRF output in Iowa (>38%) again consistent with the 400 

estimated probability of occurrence derived using the NYSM LiDAR data (100 to 250 m) (Table 2). The implication is that 

large wind turbines deployed in these locations may experience a relatively high frequency of large unbalanced rotor loads 

and reduced component lifetimes unless such loads can be appropriately compensated (Hur et al., 2017). 

Consistent with the lower wind speeds during the summer (Figure 3), weaker synoptic forcing during this season, and previous 

analyses of LLJ offshore (Aird et al., 2022), all NYSM sites exhibit the highest frequency of LLJ occurrence in the summer 405 

months (Figure 8). The highest frequency of occurrence (14% of all 10-minute periods) of LLJ occurs during June at EHAM 

on the coast of Long Island (Figure 8). Analyses of the WRF simulations for this location found a LLJ frequency during June 

of 11% and a very similar seasonal cycle of occurrence (Aird et al., 2022). The site-to-site variability in LLJ probability at the 

different NYSM locations is due to local site conditions (e.g., proximity to the coastline, topographic variability and land use 
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land cover variability) that are linked to the dynamical causes of LLJ (Balsley et al., 2003;Kallistratova et al., 2009;Blackadar, 410 

1957;Holton, 1967). LLJ core heights are also lower during the summer months, with LiDAR observations from WANT 

indicating a mean LLJ core height of < 280 m during June (Figure 8). However, for most of the NYSM locations the mean 

LLJ core heights are above 300 m and thus above the swept area even of the IEA 15 MW reference wind turbine. There is a 

higher probability of LLJ intersecting with the rotor plane during summer. However, LLJ diagnosed from the onshore LiDARs 

are typically at greater elevations than are indicated offshore by the WRF simulations, where LLJ cores were frequently < 200 415 

m above the sea surface (Aird et al., 2022). It is important to acknowledge that comparisons of LLJ climates derived from 

LiDAR measurements and WRF modelling should be done cautiously and that LLJ detection from the LiDAR wind speed 

profiles is critically dependent on unbiased data availability. Nevertheless, this analysis suggests LLJ within the rotor plane, 

as a source of large, unbalanced rotor loads and reduced blade lifetimes, are less frequent at these onshore locations. 

 420 
Figure 8. Monthly mean low-level jet (a) core wind speed (ms-1), (b) core height (m), and (c) the mean frequency of occurrence 
(probability of occurrence in any given 10-minute LiDAR profile) across the seven NYSM sites. A LLJ frequency of 5% calculated 
from the LiDAR deployed at QUEE for the calendar month of May indicates that LLJ were indicated in 5% of all 10-minute periods 
during this month. Data in panels (a) and (b) indicate that at that site in the month of May the associated LLJ mean core wind speed 
is 11 ms-1 and the mean core height above ground is 330 m. 425 

4.5 Demand matching 

Electricity demand in New York state tends to peak in the afternoon (~ 1700 eastern standard time, EST) and in summer 

(highest values in July), though a secondary maximum occurs in January (Figure 9). Wind power production calculated from 

the NYSM/NYSERDA LiDARs and ERA5 grid-cell data (P150ERA5) show highest values at night (0100 to 0500 EST) and 

during winter to spring (December-April), with the lowest production during the day (1300 to 1600 EST) and during the 430 

summer (Figure 9). Wind power production estimated based on LiDAR data from the NYSERDA buoy locations exhibits 

markedly lower diurnal and seasonal variability than is estimated at the NYSM sites, varying by ± 10% around the mean versus 

± 25% at NYSM. This results in a reduction in mean absolute error (MAE) between time series of normalized WPP from the 

offshore LiDAR and electricity demand on both diurnal and seasonal timescales. The MAE computed from the mean hourly 

offshore WPP and demand is 0.19 when computed over the 24 hours of the day (Figure 9a) and 0.13 when computed from the 435 

time series of monthly mean values (Figure 9b). Both are smaller than MAE computed from WPP from the onshore LiDARs 
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and demand on these time scales which are 0.25 and 0.20, respectively. This implies there will be better matching to electricity 

demand for power production from wind turbines deployed offshore.  

 
Figure 9. Normalized (a) diurnal and (b) monthly cycles of electricity demand for New York State (black) and wind power production 440 
(WPP) at NYSM (red) and NYSERDA (magenta) sites. ERA5-derived WPP is shown for the grid-cells which contain the NYSM and 
NYSERDA LiDARs (thin, dashed lines) for the climatological period, 1979-2022. The data are normalized to a mean value of 1 and 
so that values of 0.9 or 1.1 in a given hour or month indicates WPP or demand that is 10% below or above the mean, respectively.  

5 Concluding remarks 

Comparative analyses of wind resources and projected power production quantity and quality at onshore and offshore locations 445 

have been hampered by the lack of high-quality hub-height wind speed observations. Here we use uniquely detailed LiDAR 

measurements from an onshore profiler network and offshore campaign to compare projections of potential power generation 

quantity and quality from offshore and onshore locations in New York State (Figure 1). Returning to the objectives articulated 

in section 1, the study results indicate there are significant benefits to offshore deployments of wind turbines: 

• Wind resources at locations in the New York Bight (coastal offshore areas southeast of New York state, Figure 1) 450 

greatly exceed those of all onshore locations within New York state. The mean wind speeds at ~ 150 m (𝑈U)	offshore 

are above 10 ms-1, while 𝑈U is below 8 ms-1 at all onshore sites. Weibull distribution fits to the 10-minute wind speed 

time series indicate scale parameters that are higher by 2 ms-1 than all onshore locations (Figure 4) except EHAM 

which is on Long Island and is within 1 km of the coastline (Figure 1). Accordingly, energy densities are 40% higher 

offshore and power production estimated offshore using the power curve of the IEA 15 MW wind turbine (Figure 2) 455 

yield over twice the AEP estimated for all onshore sites except EHAM (Table 2). Power generation estimated from 

wind speed time series offshore also exhibits lower variability on diurnal and seasonal time scales (Figure 6) and 

improved matching to current electricity demand in New York state (Figure 9).  This implies that not only is the 

offshore resource considerably larger offshore, but the ability to meet electricity demand is better for wind turbines 

deployed offshore. 460 

• Analyses presented herein also suggest that power generation intermittency is lower for the offshore sites. The 

probability of wind speeds below cut-in or above cut-out for the IEA reference wind turbine is lower offshore, as is 

the probability of large magnitude wind speed and power ramps (Figure 5). For example, the probabilities of wind 

power ramps with >  ±20% change in power over a 10-minute period are less than half as probable offshore as onshore. 

The higher temporal autocorrelation of wind power production offshore (Figure 6 and Table 2) may also aid the 465 
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accuracy of short-term wind power forecasting for wind turbines deployed offshore, yielding economic benefits to 

wind farm owner/operators and enabling grid integration. 

Conversely, the frequency of anomalous wind speed shear and LLJ close to, or within, the rotor plane computed from the 

NYSM LiDAR wind speed profiles are slightly higher than those previously reported for the offshore areas from numerical 

simulations (Aird et al., 2022) but LLJ also exhibit higher elevations of the jet cores (Figure 8) and thus may be of less concern 470 

to wind turbine loading.  

An analysis of the distance dependence of the co-variability of power production derived from measured 10-minute mean wind 

speed time series at the onshore and offshore sites indicates that the non-parametric Spearman correlation coefficient drops 

below 0.4 at distances of about 350 km (Figure 7). This implies that in order to ensure consistency of electrical power 

production from wind farms in New York state, major developments should be separated by more than 350 km.  This 475 

information could be used to guide judicious selection of wind farm locations to minimize the probability of concurrent low 

generation from onshore and offshore sites. 

Thus, in accord with a priori expectations, analyses presented herein indicate there are advantages to the emerging trend 

towards offshore wind energy deployments in terms of the wind resource and the expected power quality and predictability 

(reduced ramp events, higher probability of rated power, etc.). Despite higher project AEP for the offshore locations, the 480 

additional costs involved in installing and operating offshore wind farms results in higher LCoE estimates for the offshore 

sites (Table 2). LCoE estimates derived using AEP at the NYSM sites are 26 to 49 $/MWh while estimates for the NYSERDA 

buoy locations are 62-64 $/MWh. Nevertheless, projected LCoE from wind energy for all of the sites investigated here in NY 

are competitive with all other electricity generation sources, with the possible exception of utility-scale PV, and much less 

expensive than traditional sources such as coal and nuclear that, according to a recent analysis, have an unsubsidized LCoE of 485 

65-152 $/MWh and 131-204 $/MWh, respectively (Lazard, 2023). 

6 Code availability 

Analyses presented here were performed using normal functions within MATLABTM. No specialized codes were developed 

or employed. 

7 Data availability 490 

The LiDAR data from the NYSERDA buoy campaign are available from: NYSERDA (2022). E05 Hudson North 10 Minute. 

Det Norske Veritas. Retrieved February 13, 2022, from 

https://oswbuoysny.resourcepanorama.dnvgl.com/download/f67d14ad-07ab-4652-16d2- 08d71f257da1 and NYSERDA 

(2022). E06 Hudson South 10 Minute. Det Norske Veritas. Retrieved February 13, 2022, from 

https://oswbuoysny.resourcepanorama.dnvgl.com/download/f67d14ad-07ab-4652-16d2- 08d71f257da1 . Reports 495 

documenting LiDAR performance verification are also available for download from: 

https://oswbuoysny.resourcepanorama.dnv.com/download/f67d14ad-07ab-4652-16d2-08d71f257da1. Specifications for the 

15 MW reference wind turbine are available from GitHub - IEA Wind Task 37/IEA-15-240-RWT. 

https://github.com/IEAWindTask37/IEA-15-240-RWT. Data from the New York State Mesonet can be requested from: 

http://www.nysmesonet.org/. A readme documenting data processing for this network is available from: 500 

http://www.nysmesonet.org/networks/profiler#stid=prof_alba. ERA5 reanalysis products can be downloaded from 

https://cds.climate.copernicus.eu/#!/home.  
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Supplemental materials. Table 1. Spearman spatial correlation coefficients of the wind power production between the 2 NYSERDA buoys and the 17 NYSM stations. Cells are color 
coded to aid legibility using the following classes: white [0.8, 1], yellow [0.6, 0.8), orange [0.4, 0.6], red [0.2, 0.4], and purple [0, 0.2].  

 AL. BE. BR. BU. CH. CL. EH. JO. OW. QU. RE. STA. STO, SU. TU. WA. WE. H. N. H. S. 

ALBA 1 0.541 0.349 0.368 0.510 0.416 0.371 0.509 0.576 0.420 0.570 0.412 0.405 0.404 0.488 0.373 0.402 0.283 0.275 

BELL 0.541 1 0.297 0.590 0.601 0.497 0.338 0.644 0.574 0.366 0.434 0.409 0.333 0.435 0.506 0.349 0.616 0.160 0.219 

BRON 0.349 0.297 1 0.259 0.334 0.310 0.621 0.344 0.366 0.783 0.359 0.750 0.696 0.713 0.431 0.714 0.343 0.523 0.463 

BUFF 0.368 0.590 0.259 1 0.372 0.635 0.281 0.584 0.487 0.310 0.335 0.329 0.318 0.297 0.492 0.286 0.600 0.271 0.302 

CHAZ 0.510 0.601 0.334 0.372 1 0.404 0.341 0.514 0.489 0.341 0.328 0.335 0.360 0.313 0.556 0.308 0.445 0.282 0.294 

CLYM 0.416 0.497 0.310 0.635 0.404 1 0.308 0.584 0.591 0.332 0.286 0.357 0.340 0.322 0.476 0.312 0.577 0.266 0.288 

EHAM 0.371 0.338 0.621 0.281 0.341 0.308 1 0.349 0.378 0.657 0.386 0.621 0.764 0.618 0.418 0.719 0.342 0.657 0.579 

JORD 0.509 0.644 0.344 0.584 0.514 0.584 0.349 1 0.654 0.378 0.379 0.386 0.393 0.389 0.558 0.345 0.681 0.288 0.307 

OWEG 0.576 0.574 0.366 0.487 0.489 0.591 0.378 0.654 1 0.407 0.466 0.430 0.428 0.412 0.520 0.389 0.563 0.342 0.340 

QUEE 0.420 0.366 0.783 0.310 0.341 0.332 0.657 0.378 0.407 1 0.444 0.807 0.765 0.707 0.429 0.786 0.359 0.561 0.532 

REDH 0.570 0.434 0.359 0.335 0.328 0.286 0.386 0.379 0.466 0.444 1 0.414 0.436 0.457 0.364 0.376 0.322 0.287 0.281 

STAT 0.412 0.409 0.750 0.329 0.335 0.357 0.621 0.386 0.430 0.807 0.414 1 0.704 0.703 0.417 0.735 0.378 0.520 0.501 

STON 0.405 0.333 0.696 0.318 0.360 0.340 0.764 0.393 0.428 0.765 0.436 0.704 1 0.680 0.429 0.771 0.402 0.609 0.556 

SUFF 0.404 0.435 0.713 0.298 0.313 0.322 0.618 0.389 0.412 0.707 0.457 0.703 0.680 1 0.422 0.655 0.348 0.455 0.418 

TUPP 0.488 0.506 0.431 0.492 0.556 0.476 0.418 0.558 0.520 0.429 0.364 0.417 0.429 0.422 1 0.398 0.508 0.364 0.329 

WANT 0.373 0.349 0.714 0.286 0.308 0.312 0.719 0.345 0.389 0.786 0.376 0.735 0.771 0.655 0.398 1 0.349 0.630 0.574 

WEBS 0.402 0.616 0.343 0.600 0.445 0.577 0.342 0.691 0.563 0.359 0.322 0.378 0.402 0.348 0.508 0.349 1 0.292 0.302 

H. Nor. 0.283 0.160 0.523 0.271 0.282 0.266 0.657 0.288 0.342 0.561 0.287 0.520 0.609 0.455 0.364 0.630 0.292 1 0.834 

H. Sou. 0.275 0.219 0.463 0.302 0.294 0.288 0.579 0.307 0.340 0.532 0.281 0.556 0.556 0.418 0.329 0.574 0.302 0.834 1 
 


