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Abstract. Calibrating analytical wake models for wind farm yield assessment and wind farm flow control presents significant

challenges. This study provides a robust methodology for the calibration of the velocity deficit parameters of an analytical

wake model. Initially, a sensitivity analysis of wake parameters of the Gauss-Curl Hybrid model and their linear correlation is

conducted, followed by a calibration using SCADA data and a Tree-Structured Parzen Estimator. Results show that the tuning

parameters that are multiplied with the turbine-specific turbulence intensity pose higher sensitivity than tuning parameters not5

giving weight to the turbulence intensity. It is also observed that the optimization converges with a higher residual error when

inflow wind conditions are affected by neighbouring wind farms. The significance of this effect becomes apparent when the

energy yield of turbines situated in close proximity to nearby wind farms is compared. Sensitive parameters show strong con-

vergence, while parameters with low sensitivity show significant variance after optimization. The study also observes coastal

influences on the calibrated results, resulting in faster wake recovery, compared to wind from sea.10

1 Introduction

The wind energy sector is experiencing significant growth driven by the demand for renewable energy for the world’s energy

needs. According to the International Energy Agency (IEA (2022)), the amount of electricity generation from wind increased

by 17% in 2021, which is an increase in growth of 55% compared to 2020. The pursuit of growth has led to a significant increase

in the size of wind turbines and wind farms, capitalizing on economies of scale, particularly in operation and maintenance.15

This increase in wind turbine and wind farm size poses new challenges, among others, related to flow physics, as highlighted

in studies by Veers et al. (2019); Porté-Agel et al. (2019); Meyers et al. (2022); Veers et al. (2023). Wind turbine wakes are

typically characterized by a velocity deficit and increased turbulence behind the wind turbine (Lissaman (1979)). The velocity

deficit can result in considerable power losses in downwind turbines, while the added turbulence leads to increased fatigue

loads (Thomsen and Sørensen (1999); van Binsbergen et al. (2020); Nejad et al. (2022); Verstraeten et al. (2019)). Although it20

is widely acknowledged that clustered wind turbines lead to reduced power production for downwind turbines, the exact degree

of these losses remains uncertain, especially in the context of growing wind turbine and wind farm size.
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Methods that optimize the power production of the wind farm, such as layout optimization (Baker et al. (2019); Sickler

et al. (2023)), axial induction control (Annoni et al. (2015); Dilip and Porté-Agel (2017); Kheirabadi and Nagamune (2019);

Bossanyi and Ruisi (2021)), wake steering (Fleming et al. (2019); Quick et al. (2020); Kheirabadi and Nagamune (2019);25

Doekemeijer et al. (2021)) and power set-point optimization (Verstraeten et al. (2021)), have the potential to reduce the levelized

cost of energy. However, given the considerable complexity of wakes and the stochastic nature of wind, a significant degree of

uncertainty remains within the field of layout optimization and farm control. As a result of this, wind power plant flow physics

has been recognized as a significant challenge for the future, as outlined by Veers et al. (2019, 2023).

Wind turbine wakes are analyzed and modeled on different levels of fidelity for different purposes. Engineering tools such as30

the FLow Redirection and Induction in Steady-state (FLORIS) framework by NREL (2023) and the PyWake simulation tool by

DTU (2023) are used to study the interaction between turbines within a wind farm and the consequences on power production

in a low-fidelity but computationally inexpensive way. Both FLORIS and PyWake consist of various wake models, aiming

to accurately simulate the interaction between multiple turbines within a wind farm and can be used for wind farm design,

control, and optimization. This study employs the Gauss-Curl Hybrid (GCH) model, as described in King et al. (2021), within35

the FLORIS framework. However, the methodology is not restricted to specific models and frameworks. As understanding the

historical evolution of wake models is essential to understanding the foundations of the chosen model, it will be discussed in

the next section.

1.1 Wake model evolution

Analytical wake models within engineering frameworks are generally subdivided into four submodels: the wake velocity deficit40

model, the wake deflection model, the wake-added turbulence model, and the wake combination model. In recent years sig-

nificant progress has been made, both in scientific comprehension of the physics that are in play, and the modeling of these

physical phenomena. The propagation of the wake velocity deficit is the reason power losses occur for clustered wind farms.

The wake propagation can be subdivided into a near-wake and a far-wake region. For the near-wake region, the wake mixing

is mainly dominated by the wake-added turbulence of the wind turbine and the tip vortices are still present within the flow,45

while for the far-wake region wake mixing is mainly dominated by mixing due to atmospheric turbulence Sanderse (2009).

As previously mentioned, the wake recovery due to mixing is heavily dependent on atmospheric conditions. Over the years, a

range of wake models have been developed, such as the Jensen model (Jensen (1983); Katić et al. (1987)), Gaussian-shaped

models (Bastankhah and Porté-Agel (2014, 2016); Niayifar and Porté-Agel (2015); Blondel and Cathelain (2020); Zong and

Porté-Agel (2020)), and the Cumulative Curl (Blondel and Cathelain (2020); Bastankhah et al. (2021); Bay et al. (2022)) and50

TurbOPark (Nygaard et al. (2020); Pedersen et al. (2022); Nygaard et al. (2022)) models motivated by Ørsted (2019). Each

model describes the velocity deficit in a unique way and many of these models have found integration within frameworks such

as FLORIS and PyWake.

The Jensen model is a longstanding reliable analytical wake model based on the conservation of mass, correlating the wind

speed behind the rotor with the thrust coefficient. The Jensen model is a top-hat model, meaning that the Jensen model as-55

sumes a constant velocity across a wake cross-section. Furthermore, the model assumes linear wake growth and wake decay
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proportional to the inverse of the downwind distance. The top-hat model results in unrealistically sensitive power predictions

downwind and overestimates the velocity deficit at the edge of the wake while underestimating it in the center. This resulted

in the development of a new model by Bastankhah and Porté-Agel (2014, 2016); Niayifar and Porté-Agel (2015), which fol-

lows a self-similar Gaussian distribution. This model, recognized as the Gauss model, consists of four tuning parameters: the60

ones related to wake expansion (ka and kb), and the ones which define the transition point from the near-wake region to the

far-wake region (α and β). In research conducted by King et al. (2021), analytical modifications were made to the Gaussian

model by adding the effect of curled wakes, as depicted in the Curl model by Martínez-Tossas et al. (2019), and implementing

secondary-steering effects, observed by Fleming et al. (2018); Wang et al. (2018). This model is known as the GCH model.

Over the years, it has become clear that traditional wake models often underestimate wake losses in the far-wake region,65

thereby overestimating the expected yield, as per Ørsted (2019). This triggered the development of the Cumulative Curl model

by Blondel and Cathelain (2020); Bastankhah et al. (2021); Bay et al. (2022) and the TurbOPark model by Nygaard et al.

(2020); Pedersen et al. (2022). While the Cumulative Curl model builds upon the advancements from the Gaussian wake

model, the TurbOPark model developed by Nygaard et al. (2020) originates the Jensen/Park model. The advancements made

by Pedersen et al. (2022) incorporate the Gaussian deficit profile.70

1.2 Calibration of analytical wake models

Within the development of analytical wake models, calibration of parameters is necessary. Not calibrating scaling parameters

can potentially result in over-or underestimation of the energy yield and suboptimal wind turbine siting within a wind farm if

used for the design of a wind farm. This calibration can initially be carried out by comparing the analytical wake models with

high-fidelity computational fluid dynamics (CFD) models, large eddy simulation (LES) models (Gebraad et al. (2014); Fleming75

et al. (2017); Doekemeijer et al. (2019); Zhang and Zhao (2020); Doekemeijer et al. (2020); Bay et al. (2022)) or wind tunnel

experiments (Sanderse et al. (2022); Campagnolo et al. (2022)). This comparison provides a general idea of the parameter value.

However, given the differences in site-specific factors (like the topography, wind resource, surface roughness, atmospheric

stability, turbulence intensity, and general gradients), wind farm-specific attributes (such as size and spacing), and wind turbine-

specific properties (like power-thrust curves), wind farm specific calibration is required to improve accuracy of the acquired80

results. The recent study by Göçmen et al. (2022) further highlights the importance of an appropriate calibration procedure

for control-oriented models. Alternatives for calibration, such as field measurements (Fuertes et al. (2018); Cañadillas et al.

(2022)), are available but require the installation of additional equipment.

Calibrating wake models on SCADA data has the advantage that the site-specific, farm-specific, and turbine-specific uncer-

tainties can be minimized through optimization, and is currently being used for farm based control. For example, work done by85

Göçmen and Giebel (2018); Teng and Markfort (2020); Schreiber et al. (2020); van Beek et al. (2021); Göçmen et al. (2022)

all use SCADA data to calibrate parameters that dictate the wake model performance.

In van Beek et al. (2021) a sensitivity study is performed on the parameters of the Gauss-Curl-Hybrid model, described

in King et al. (2021), and concluded that the model is overparameterized. This can result in ill-posed and non-uniqueness

problems, as demonstrated by Doekemeijer et al. (2022), where the so-called ‘waterbed effect’ occurs between the freestream90
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turbulence and the wind direction variability within the FLORIS framework, making it impossible to identify the right value

for a set of parameters. To counteract this, Schreiber et al. (2020) applied a singular value decomposition to remove correlation

and overparameterization by mapping the original parameters onto a new set of uncorrelated parameters. However, in Göçmen

et al. (2022) blind tests were carried out, where for a similar framework, different resultant parameter sets were obtained.

Furthermore, Göçmen et al. (2022) stated that the turbine performance in yaw is highly uncertain. This can further result in95

non-uniqueness issues. In light of these findings, an approach is developed that provides a consistent optimization framework,

emphasizing robust filtering, optimization, and validation. By integrating wind speed and wind direction into the optimiza-

tion, potential biases in determining freeflow conditions are effectively mitigated. The use of timeseries data in calibration

ensures that atmospheric inflow biases are not irreversibly categorized, preserving the potential for subsequent post-processing

and ad-hoc analysis. Each optimization of individual timestamps within the SCADA data operates independently, ensuring a100

smooth parameter distribution across varied wind speeds and wind directions while limiting the effect of sporadic outliers. By

incorporating a sensitivity study and energy ratio comparisons, thorough validation of determined hyperparameters is ensured.

Assessing the Pearson correlation ensures minimized correlation among tuning parameters, thereby mitigating the occurrence

of overparametrization.

1.3 Challenges in calibration of analytical wake models with SCADA data105

While the correlation between wake parameters is one source of uncertainty within the framework of calibrating wake param-

eters of analytical wake models, additional sources of uncertainty influence the effectiveness of the calibration framework.

A first additional source of uncertainty arises from the estimation of the freeflow wind speed, wind direction, and nacelle

direction. Estimating the freeflow wind speed and wind direction of a wind farm can be difficult due to stochastic and sensor

uncertainty. Stochastic uncertainty covers all variations or random fluctuations in wind characteristics, ranging from turbulence,110

evolving weather patterns, or diurnal cycles. Specifically, turbulence can introduce uncertainty within averaged intervals, while

shifts in weather and daily patterns might cause the mean value of the parameter to drift. Barthelmie et al. (2009) points out

the complexities concerning the estimation of the freeflow wind speed and wind direction. Since wind speed serves as the most

sensitive parameter for the active power of wind turbines below rated, achieving precise estimates is essential when comparing

wake models with measurements. The freeflow wind speed can be calculated using the wind speed of the freeflow wind turbines115

or using a wind mast. Estimating wind speed from active power for calibration could yield more accurate results compared to

using the nacelle anemometer, primarily due to the large sensitivity to rapid changes in wind speed of the nacelle anemometer.

These rapid changes in wind speed do not agree with the assumption of steady-state inflow within the analytical wake model

frameworks. Furthermore, wind direction measurements can display a bias of up to 5◦, even in the case of well-maintained

wind vanes, as per Barthelmie et al. (2009). Moreover, individual wind turbines can have distinct biases in wind direction120

measurements. Determining the wind direction can be fundamentally more complex due to the non-linear relation between the

wind direction and the active power of wind turbines within a wind farm. An example of direction calibration towards true

north based on energy ratios can be found in Doekemeijer et al. (2022).
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Secondly, wind speed and turbulence gradients due to external wakes and terrain effects pose a challenge. Barthelmie et al.

(2007) investigated the effect of coastal wind speed gradients and concluded that these gradients must be considered when125

optimizing wake models for wind farms located in coastal regions. Doekemeijer et al. (2022) mentioned that the effect of higher

turbulence from the coast, compared to the sea, can induce more wake recovery. In order to address the heterogeneous inflow,

Göçmen et al. (2022) created a non-homogeneous flow field for wind speed and turbulence intensity by using anemometer

data for calibration, while Schreiber et al. (2020) applied spatial correction factors on the wind speed. With an increase in the

number of wind farms being built, farm-to-farm effects are becoming significantly more frequent. Pettas et al. (2021) showed130

that the external wake effects result in increased turbulence intensity and structural loading, with a reduced wind speed for the

considered wind farm.

In addition, time averaging of SCADA data is often necessary to remove short-term fluctuations and noise in the data, which

is especially present for anemometer measurements. The disadvantage of averaging SCADA data is the loss of information.

The averaged timestamp can be subject to changes in wind speed or wind direction, which can make the resulting timestamp135

not representative to the analytical wake models. Therefore it is important to not only consider the average of the timestamp,

but also higher-order statistical moments, like variance.

Furthermore, spatial and temporal variability across the wind farm introduces complexity. Many wake models assume steady

and horizontally homogeneous wind inflow. This assumption will always introduce additional uncertainty. Therefore it is of

significant importance to carefully filter the data used for the purpose of calibration. Especially with the increasing size of140

wind farms, the assumption that each wind turbine within the wind farm experiences the same wind condition at one point in

time is not valid anymore. Specialized frameworks, like FLORIDyn by Becker et al. (2022), have been developed specifically

to address the temporal and spatial variability across a wind farm. For steady-state models, manipulation of the SCADA data

should be considered, incorporating a time lag for specific wind conditions, in line with the methodology carried out in Ávila

et al. (2023).145

Additionally, uncertainty originating from natural fluctuations, like diurnal and annual cycles, should be considered, since

these affect atmospheric stability. Measuring atmospheric stability itself is prone to uncertainty, often arising from sensor-

related inaccuracies and stochastic variations. In work done by Hansen et al. (2011), they revealed that stable atmospheric

conditions, characterized by low turbulence, correlated with larger power deficits, than unstable atmospheric conditions due to

limited flow mixing. Wang et al. (2022) showed the effect of atmospheric stability due to diurnal cycles on the internal wake150

patterns. They concluded, similarly, that a stable atmosphere during the night resulted in larger wake losses than an unstable

atmosphere during the day. This implies that there should be a clear distinction between stable and unstable atmospheric

conditions when calibrating wind turbine wake models.

Lastly, recent advances in the understanding of flow physics in wind farms have highlighted the issue of wind farm blockage

(Porté-Agel et al. (2019); Meyers et al. (2022)), where Bleeg et al. (2018) observed that the blockage effect results in less energy155

generation than initially expected for front-row wind turbines. The deceleration caused by the blockage will subsequently result

in a deflection upwards and sideways due to mass conservation (Porté-Agel et al. (2019)). Furthermore, studies by Wu and

Porté-Agel (2017); Allaerts and Meyers (2017); Schneemann et al. (2021) showed that the global blockage effect is strongly
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influenced by atmospheric stability. Recent advancements in modeling the effects of wind farm blockage effects (Branlard

and Forsting (2020); Branlard et al. (2020); Nygaard et al. (2020), have facilitated the reduction of uncertainty in wind farm160

construction planning, as implemented by Munters et al. (2022); Nygaard et al. (2022).

1.4 Objectives

The main objective of this study is to perform a model calibration using SCADA data on the wake velocity deficit parameters of

the GCH wake model, while maintaining homogeneous freeflow conditions within the FLORIS framework. This optimization

is performed on bottom-fixed wind turbines within a large offshore wind farm. The intention of this study is to set a con-165

structive foundation for the calibration of wake parameters, creating the opportunity for possible advancements in the future.

The optimization operates under the assumption that all wind turbines are perfectly aligned with the direction of the freeflow

wind. No wind speed or turbulence gradients are introduced to the flow field. SCADA data is averaged into 10 minute averages

and no alternations are made to account for temporal variability across the wind farm. A constant turbulence intensity is used

within this optimization framework, as variable turbulence intensity introduces additional sensor and model uncertainties. It is170

furthermore observed by Doekemeijer et al. (2020) that the turbulence intensity within the FLORIS framework does not fully

represent the physical turbulence intensity. While atmospheric stability significantly influences the results obtained, it is not

analyzed in this study. Additionally,
::
the

::::::
model

::::
does

:::
not

:::::::
account

:::
for wind farm blockage is not considered, as the simulation

::::::
effects,

::
as

:
it
:
does not include neighbouring wind farms.

::::
This

:::::::::
assumption

::
is
:::::::::
considered

::::::::::
acceptable,

:::::
given

::
the

:::::::
limited

:::::::::
indications

::
of

:::::::
spatially

:::::::
varying

::::
wind

:::::::::
directions

::::::::::
attributable

::
to

::::::::
blockage

::
at

:::
this

:::::
wind

:::::
farm. Since it is assumed that all wind turbines are175

perfectly aligned, optimization of wake deflection parameters is not considered. This is in line with van Beek et al. (2021);

Göçmen et al. (2022). Initial analysis revealed that combining the optimization of wake turbulence parameters with wake ve-

locity parameters can result in the absence of a unique solution. This is in line with results found by Schreiber et al. (2020);

Doekemeijer et al. (2022). Therefore the wake turbulence parameters are not optimized.

180

To achieve these goals, a novel optimization framework is developed, where the wind speed and wind direction are calibrated

in addition to the wake parameters. This is essential in order to not skew the calibration results. This type of optimization is only

possible when the data is analyzed as a timeseries. Therefore, no prior binning is done based on environmental parameters
:
, such

as wind speed and direction. Furthermore, analyzing individual timestamps further minimizes uncertainty due to local optima

problems, since more data is optimized for each wind condition.
::::
wind

::::::::
direction.

::::::
Binned

:::::::
analysis

:::::::
assumes

:::::::
balance

:::
and

::
is
:::::
valid185

::::
when

:::
the

:::::::::
magnitude

::::
and

:::::::::
frequency

::
of

::::::::::::
overestimation

:::
are

:::
in

::::::
balance

::::
with

:::
the

::::::::::
magnitude

:::
and

:::::::::
frequency

::
of

:::::::::::::::
underestimations.

:::::::::
Otherwise,

:::::
results

::::
can

::::::
become

:::::::
skewed.

:::::::::::
Additionally,

:::
the

:::::::
volume

::
of

::::::
usable

:::
data

::::::::
becomes

::::::
limited

::
in

::::::
binned

:::::::::::
observations,

:::::
since

::::
even

:::
the

::::::::
downtime

::
of

::
a

:::::
single

::::::
turbine

:::
can

::::::::
introduce

:::::::::
significant

::::
bias.

:::::::::::
Furthermore,

:::
the

:::::::
freeflow

:::::
wind

:::::
speed

:::
and

:::::
wind

::::::::
direction,

::
in

:::::::
addition

::
to

:::
the

::::
wake

::::::::::
parameters,

:::
are

::::::::::
determined.

::::
This

::
is
:::::::
crucial,

::::
since

:::::::::
calibrating

::::
with

:::::::::
inaccurate

:::::
wind

:::::::::
conditions

:::
can

::::
lead

::
to

:::::
results

::::
that

:::::::::::
misrepresent

:::
the

::::
true

:::::
value

::
of

:::
the

:::::
wake

::::::
model

::::::
tuning

::::::::::
parameters,

::::::::
adversely

::::::::
affecting

:::
the

:::::::::
calibration

:::::::
results.190

:::::
While

:::::::
freeflow

:::::
wind

:::::
speed

:::
and

::::::::
direction

:::
are

:::
not

:::
the

::::::
primary

::::::::::
calibration

::::::
targets,

:::::::::
accurately

::::::::::
determining

::::
these

:::::
wind

:::::::::
conditions

::::::
ensures

:::
that

::::::
results

::::::
reflect

:::
the

::::::
optimal

:::::
value

::
of

:::
the

:::::
wake

:::::
model

::::::
tuning

::::::::::
parameters.
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To this end, a visual overview of the applied framework is provided in Figure 1. The framework is divided into six distinct

segments which are described throughout the paper. First, section 2 gives a description of the case study wind farm and the

input SCADA data. Different filtering procedures are described in order to ensure that no time windows are considered which195

are not representative for normal operation. Then, in section 3 a description of the wake model is given and a sensitivity

study is performed on the velocity deficit parameters of the considered wake model. The optimization framework is described

in section 4, followed with a validation of the acquired results based on energy ratio plots. Results are presented based on

wind speed, wind direction, and their joint dependence. Furthermore, the Pearson correlation is analyzed for the optimized

parameters.200

Figure 1. An illustrative overview of the applied framework is as follows: The SCADA data required, highlighted in red, and the filtering

procedure, highlighted in blue, are described in section 2. The Sensitivity analysis, highlighted in yellow, is described and performed in

section 3. Subsequently, the hyperparameter optimization, highlighted in green, the validation, highlighted in purple, and the results,

highlighted in orange are all addressed in section 4.

2 Case study wind farm and the filtering and processing of SCADA data

In the following Section, the case study wind farm, together with the surrounding topography, is discussed. Then, the input

data is described. This is followed by a description of the processing and filtering procedure applied to remove abnormal data.

The
::::::
Finally,

:::
the effect of inter-farm interaction is identified and conditionally filtered out. Finally, above-rated power set-point

mismatches are filtered out by filtering based on the wind speed and wind direction variance.205
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2.1 Available wind farm data for model calibration

The calibration in this paper is performed on one irregularly spaced offshore wind farm comprising large bottom-fixed wind

turbines, each with a rated capacity of over 8.0 MW. The farm can produce over 300 MW of active power at full capacity.

Figure 2 shows the surrounding topography to which the offshore wind farm is subjected. The performance of the offshore

wind farm is affected by wakes of neighbouring wind farms between west-southwest and north east. The wind farm experiences210

coastal effects between east-northeast and east-southeast, due to its location along an irregular coastline with scarce low-rise

structure. The coastline stretching from east-southeast to south-southwest is uniform, but features a combination of both low-

rise and high-rise structures. The wind farm experiences wind from the sea from south-southwest to west-southwest and from

northeast to east-northeast. In practice, there is a transition zone present between the above-mentioned zones, where the wind

farm may be subject to a combination of inflow conditions from neighbouring wind farms, coastal effects or wind from the sea.215

25km

27.5km

Case study wind farm 
Neighbouring farms 

Low-rise coastline 
High-rise coastline 

Figure 2. Illustration showing the surrounding topography impacting the offshore wind farm. The case study wind farm is visualized in the

center of the figure with a blue rectangle, while in yellow the neighbouring wind farms are depicted. In green the low-rise coastline is

illustrated and in red the high-rise coastline is outlined.

2.2 Input data and filtering of non-representative data windows

SCADA data over a two-year
:::::::
four-year

:
period is used to perform the presented analyses. Both the mean value and the vari-

ance of variables are calculated for the 10-minute intervals. Measurement channels include the active power, wind speed, wind

direction, and nacelle position of wind turbines. It is essential to properly filter this SCADA data in order to not skew the

calibration of the wake parameters due to windows of abnormal operation. This section explains the different steps that are220

applied within the paper in order to filter out these operating windows. These different conditions consist of underperformance,
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turbine downtime, and alarm conditions, as acquired by the turbine control system.

Considered unrealistic sensor values are wind vane sensor or anemometer stuck faults. When the variance of the wind speed

or wind direction for a 10-minute timestamp is effectively zero, it is assumed that the wind vane or anemometer is stuck,225

respectively. Similarly, a sensor stuck fault is assumed if consecutive 10-minute averages of the wind speed and wind direction

acquired from the wind vane or anemometer are exactly equal.

Underperformance is subdivided into grid curtailment and turbine derating. The former refers to the state when the power

set point of a wind farm is purposefully reduced below the maximum possible power output for a given environmental condi-

tions. Specifically, grid curtailment is usually a contractually defined condition or requirement, used to mitigate overloading230

of the grid. Derating refers to the intentional decreasing of the rated power output of a wind turbine, with the aim to im-

prove machine lifetime by reducing the mechanical loads on wind turbine components. Both types of under-performance

are considered abnormal behaviour and are therefore filtered out. Daems et al. (2021, 2023) can be consulted for a further

breakdown of the identification of these annotations.
:::::::::::
Additionally,

::::::
power

:::::
curve

:::::::
filtering,

::::::
similar

::
to
:::

the
::::::::

methods
:::::::
outlined

:::
by

:::::::::::::::::::::
Doekemeijer et al. (2022),

::
is

:::::::::
performed,

:::
but

::::
with

::
a

::::::
stricter

:::::::::
acceptance

::::::
criteria

::::::
around

:::::
rated

:::::::::
conditions,

::::::::::
specifically

:::::::
adjusted

::
to235

::::::
exclude

::::
grid

::::::::::
curtailment

:::
near

:::::
rated

:::::::
capacity.

:

During operating windows accompanied with low active power, the turbine is annotated as inactive. Low active power

corresponds with low thrust loads and therefore has a limited effect on the internal wind farm flow field. The annotation is later

used to remove the inactive turbines from the optimization for the given timestamp. When more than half of the wind farm is

annotated as inactive, the data will not be considered for optimization.240

Alarm annotations are acquired from status logs. The data is filtered out when the turbine status log occurs with high active

power production. Results from the filtering procedure can be seen in Figure 3. In blue the SCADA data before filtering
:::
red

:::
the

::::::
rejected

::::::::
SCADA

:::
data

:
can be seen, while in orange the remaining

:::::
green

:::
the

:::::::
accepted

:
SCADA data is shown. Turbine inactivity

is visualized by the green
:::
blue

:
colour.

2.3 Filtering of inter-farm effects245

An additional filter is applied in order to remove the effects
:::
The

:::::
effect

:
of neighbouring farms on the optimized results .

::
is

:::::::
removed

::
by

:::::::
filtering

::::
data

:::::
based

::
on

:::::
wind

::::::::
direction.

:::
The

:::::
effect

::
of

::::::::::::
neighbouring

:::::
farms

:
is
:::::::::
quantified

::
by

:::::::::
calculating

:::
the

::::::::::
normalized

:::::::
absolute

:::
and

:::::::
relative

:::::
power

:::::
losses

:::
per

:::::
wind

:::::
speed

::::
and

::::
wind

::::::::
direction,

::
as
:::::::::

described
::
by

:::::::::
Equations

::
1,

:::
and

::
2,

:::::::::::
respectively.

:::::
Here,

::::
Pint ::::::::

represents
:::
the

::::::
power

:::::::::
production

:::
of

:::
the

::::
wind

:::::
farm

:::
for

:
a
:::::
given

:::::
wind

:::::
speed

:::
and

:::::
wind

::::::::
direction,

:::
as

:
if
:::::

only
:::
the

::::
wind

:::::
farm

::::
itself

::
is

:::::::::
constructed

:::
in

::
the

::::::::::
concession

::::
zone.

:::
On

:::
the

:::::
other

:::::
hand,

::::
Pext::::::::

represents
:::
the

::::::::
obtained

:::::
power

:::::::::
production

:::
for

:
a
:::::
given

:::::
wind250

:::::
speed

:::
and

::::
wind

::::::::
direction

::::::::::
considering

:::
the

:::::
entire

::::
wind

:::::
farm

:::::::::
concession.

:

Ploss,abs(ws,wd) =
Pint(ws,wd)−Pext(ws,wd)

maxws,wd (Pint(ws,wd)−Pext(ws,wd))
:::::::::::::::::::::::::::::::::::::::::::::::::::

(1)

9



Figure 3. Comparison between 10-minute SCADA data before and after power-curve filtering.

Ploss,rel(ws,wd) = 100 · Pint(ws,wd)−Pext(ws,wd)

maxwdPint(ws,wd)
:::::::::::::::::::::::::::::::::::::::::::::

(2)

Figure 4 and 5 display the normalized absolute and relative external wake
:::::
power losses per wind speed and wind direction,

calculated using the TurbOPark wake model. A significant loss is observed between 250 and 50 degrees. Despite representing255

a large portion of the data, maintaining the uniformity of the freeflow inflow is critical for the accurate estimation of wake

parameters. Measurements further reveal an increase in turbulence for the wind coming from neighbouring wind farms, as

shown by the 10-minute turbulence intensity TI , variance in wind speed σ2
ws, and variance in wind direction σ2

wd in Figure 6

and 7 and 8, respectively. Both heterogeneous inflow and increased turbulence affect the optimization process. This becomes

evident when analyzing the final normalized
:::::::
resultant

::::::::::
accumulated

:
absolute and relative errors between the results

:::::::
acquired260

from FLORIS and the SCADA data, as shown in Figure 9 and 10.
:::
The

::::
error

:::::::
metrics,

:::::::
denoted

:::
as

::::
ϵabs :::

for
:::
the

:::::::::::
accumulated

:::::::
absolute

::::
error

::::
and

:::
ϵrel:::

for
::::

the
::::::::::
accumulated

:::::::
relative

:::::
error,

:::
are

:::::::
defined

::
by

:
Equation 3

::
and

:::
4,

::::::::::
respectively.

::::
NT :::::::::

represents
:::
the

::::::
number

::
of

::::::
active

:::::::
turbines,

:::::
while

:::
P̄i:::

and
:::
P̂i:::

are
:::::
active

::::::
power

:::::
from

:::::::
SCADA

::::
data

:::
and

:::::::::
calculated

::::::
power

::::
from

:::
the

:::::
wake

::::::
model

::
for

:::::::
turbine

:
i,
:::::::::::
respectively. A noticeable increase in the error can be observed where the external wake losses are the highest.

Therefore, in order to obtain results that accurately reflect unaffected freeflow conditions, it is necessary to filter out the inter-265

farm effects from the data.

ϵabs =

NT∑
i=1

|P̄i − P̂i|
::::::::::::::::

(3)

10



ϵrel =

∑NT

i=1 |P̄i − P̂i|∑NT

i=1 P̄i
::::::::::::::::::

(4)

As such, data between 250 and 50 degrees are excluded from the wind speed-dependent results. This further underlines

the importance of carrying out a simulation of the entire wind farm cluster for obtaining precise wake parameters, especially270

when the wind direction overlaps with neighbouring wind farms. This presents its own set of complications, such as fitting of

thrust-and-power curves and having limited knowledge on the operational status of the neighbouring turbines, among others.

Moreover, an increase in the relative power error between the SCADA data and the FLORIS
::::::::
analytical

::::
wake

::::::
model results can

be observed for wind originating from the irregular coastline. This suggests a potential high inflow heterogeneity, which the

homogeneous inflow assumption fails to account for.275
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Figure 4. Normalized absolute power losses [-] ,

Ploss,abs =
Pint(ws,wd)−Pext(ws,wd)

maxws,wd(Pint(ws,wd)−Pext(ws,wd))
, due to

external wake effects, calculated using the TurbOPark model.
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Figure 5. Normalized relative power losses [%] ,

Ploss,rel = 100 · Pint(ws,wd)−Pext(ws,wd)
maxwdPint(ws,wd)

, due to external

wake effects, calculated using the TurbOPark model.

2.4 Filtering of above-rated power set point mismatches

After optimization, a fraction of the SCADA data associated with the above-rated wind speed region introduces a bias in the

optimization results. The bias arises primarily when the active power does not match the active power set point, which is

particularly present during curtailment. This inconsistency subsequently causes a mismatch between the predicted wind speed

from the optimization and the actual wind speed. By applying a filter solely based on the reference wind speed, a significant280

amount of useful data would be filtered out. Instead, data characterized by high wind speed variance and low wind direction

variance is filtered out by setting the condition: σ2
ws

σ2
wd

< 1
40 . This criterion appears to effectively filter out mismatches occurring

at above-rated power set points.
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Figure 6. Freeflow turbulence intensity as function of wind

speed and wind direction.
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Figure 7. Freeflow wind direction variance as function of wind

speed and wind direction.
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Figure 8. Freeflow wind speed variance as function of wind

speed and wind direction.

3 Wake model and input parameter sensitivity

In the following Section the considered wake model used for the optimization framework is described. To identify the impor-285

tance of the tuning parameters of the wake model, a sensitivity study is performed on the wake model.

3.1 Wake Model Description

The Gauss-Curl Hybrid model, commonly referred to as the GCH model, is the wake model used in this work and has been

briefly mentioned in subsection 1.1. The decision to calibrate the GCH model is influenced by its widespread use in relevant

literature (Bastankhah and Porté-Agel (2016); Archer et al. (2018); Fleming et al. (2019, 2020, 2021); Hamilton et al. (2020);290

Doekemeijer et al. (2021); Simley et al. (2021); van Beek et al. (2021); Doekemeijer et al. (2022); Göçmen et al. (2022)), which
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Figure 9. Normalized power error per wind speed and wind

direction bin for the GCH model.
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Figure 10. Normalized relative power error per wind speed

and wind direction bin for the GCH model.

provides a strong foundation for comparative analysis. The wake velocity model of the GCH wake model can be subdivided

into two areas: The near-wake region and the far-wake region. Within the near-wake region the wake model is modeled as

a linearly converging cone. Assuming no misalignment, the width of the cone is equal to the rotor diameter at the turbine

hub and becomes zero when the near-wake region ends. The start of the far-wake region, denoted as x0, is characterized by295

a two-dimensional Gaussian distribution. The transition from the near-wake to the far-wake is governed by Equation 5. Here

Drotor represents the rotor diameter of the wind turbine, CT is the thrust coefficient of the turbine, Irotor stands for the turbine

specific turbulence intensity, and α and β are the tuning parameters, referenced earlier.

x0 =
Drotor

(
1+

√
1−CT

)
√
2
(
4αIrotor +2β

(
1−

√
1−CT

)) (5)

Without yaw misalignment, the far-wake profile can be described using Equation 6. Here U∞ represents the upstream wind300

speed, while U is the wind speed within the 3D Euclidean space (x,y,z), with its origin at the turbine hub. The x coordinate

aligns with the wind direction, whereas y and z stand perpendicular to the wind direction. The z coordinate is defined as

positive in the upward direction. Additionally, σy and σz represent the standard deviation of the Gaussian distribution in the y

and z direction, respectively.

U (x,y,z)

U∞
= 1−

(
1−

√
1− σy,0σz,0

σyσz
CT

)
exp

(
−
(

y2

2σ2
y

+
z2

2σ2
z

))
(6)305

The progression of the standard deviation of the Gaussian distribution can be described by Equation 7 and Equation 8. Here,

Equation 9 defines the standard deviation of the Gaussian at x0. The wake expansion coefficients ky and kz are described as

function of the specific turbulence intensity and the tuning parameters ka and kb, according to Equation 10.
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σy = σy,0 +(x−x0)ky (7)

σz = σz,0 +(x−x0)kz (8)310

σy,0 = σz,0 =
Drotor

2
√
2

(9)

ky = kz = kaIrotor + kb (10)

In this work, the set of tuning parameters within the velocity deficit model of the GCH wake model, Ω= {ka,kb,α,β}, are

considered for optimization. Model specifications, including the velocity, deflection, turbulence, and combination model, can

be found in Table 1. In addition, Table 1 also provides information on the atmospheric parameters.315

The reference values for the parameters are the reference values that are used within the FLORIS framework, while the

minimum and maximum values, defined in Table 2, are acquired from Doekemeijer et al. (2020); van Beek et al. (2021).

GCH References

Wake Velocity Model Gauss Bastankhah and Porté-Agel (2014); Niayifar and Porté-Agel (2015)

Wake Deflection Model Gauss Bastankhah and Porté-Agel (2014); King et al. (2021)

Wake Turbulence Model Crespo Hernandez Crespo and Hernandez (1996)

Wake Combination Model SOSFS Katić et al. (1987)

Air Density 1.225

Turbulence Intensity 0.06

Wind Shear 0.12 Gebraad et al. (2016)

Wind Veer 0.0 Gebraad et al. (2016)
Table 1. Overview of considered submodels and atmospheric parameters.

Parameter Physical representation Min: Ωmin Max: Ωmax Reference value: Ωref

ka wake expansion 0.05 1.5 0.38

kb wake expansion 0.0 0.02 0.004

α near-wake to far-wake transition 0.125 2.5 0.58

β near-wake to far-wake transition 0.015 0.3 0.077

Table 2. Parameter space, Ω̃, considered for the sensitivity study and the optimization of the Gauss-Curl hybrid wake model.

3.2 Sensitivity Analysis

In order to assess the sensitivity of the tuning parameters, the total-order Sobol indices are computed by performing Sobol’

method for sensitivity analysis with Saltelli’s extension. The Sobol’ method, as described in Sobol (2001), is a variance-320

based global sensitivity analysis tool that quantifies the degree of contribution of each individual input parameter to the output
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variance. The method involves variance decomposition of the model output to input variations, which defines the magnitude

of the Sobol indices, meaning that the magnitude of the Sobol index is directly proportional to the sensitivity of the input

parameter on the model output. The method is capable of generating both first-order indices, which ignores interactions between

input variables, and total-order indices, which consider both the contribution of input variations on the output variance and325

input interactions. To ensure that the full parameter space is covered, an evenly distributed quasi-random and low-discrepancy

sequence is required. This sequence is created by performing Saltelli’s extension by Saltelli (2002); Saltelli et al. (2010) on the

Sobol’ sequence (Sobol (2001)). Then, Sobol’ method is performed on wind speeds varying from 5 m/s to 12 m/s in 0.5 m/s

increments and all wind directions at 12◦ intervals.

The total-order Sobol indices, ST , for the parameters ka, kb, α and β are depicted in Figure 11, 12, 13 and 14, respectively.330

The results reveal that the sensitivity of the GCH model is primarily governed by the parameter ka. It is also observed that the

sensitivity of the parameter α increases with higher wind speeds from two anti-parallel directions. Generally, a high degree of

symmetry can be observed.

4 Optimization using SCADA Data

This section discusses the optimization framework performed on the GCH model and validates these results using energy ratio335

plots. Then, the optimized parameters are presented as a function of wind speed and wind direction.

4.1 Optimization Framework

A hyperparameter optimization framework, named Optuna (Akiba et al. (2019)), is used to optimize the parameters of the

velocity deficit model. Optuna serves as a specialized framework for hyperparameter optimization, aimed at finding the ideal

set of parameters for machine learning such as the learning rates and number of hidden layers in a neural network or the depth340

in a decision tree. The

::
In

:::::
order

::
to

::::::
reduce

:::
the

:::::::::::
optimization

::::
time

::::
and

:::::::
number

::
of

:::::
local

:::::::
minima,

:::
the

:::::::::::
optimization

:::::::
process

::
is

:::::::::
subdivided

::::
into

:::::
three

:::::
stages:

:

–
::::
Stage

::
1:
::::

The
::::
first

::::
stage

:::::::
involves

:::
the

:::::::::::
optimization

::
of

:::
the

:::::
wind

:::::
speed.

:

–
::::
Stage

::
2:
::::

The
::::::
second

:::::
stage

::::::::
optimizes

::::
both

:::
the

:::::
wind

:::::
speed

:::
and

::::
wind

:::::::::
direction.345

–
::::
Stage

::
3:
:::

In
:::
the

::::
final

:::::
stage,

::::
wind

::::::
speed,

::::
wind

::::::::
direction

:::
and

:::::
wake

:::::::::
parameters

:::
are

:::::::::
optimized

:::::::
together.

:

::
In

:::
the

::::
first

:::
and

::::::
second

:::::::
stages,

:::
the

:::::
Quasi

::::::
Monte

:::::
Carlo

:::::::
(QMC)

:::::::
Sampler

:::
by

:::::::::::::::::::::::
Bergstra and Bengio (2012)

:
is
:::::

used
::
to

:::::::
explore

::
the

::::::
entire

:::::
tuning

:::::::::
parameter

:::::
search

::::::
space.

:::::
QMC

:::::::::
sequences,

::::::
known

:::
for

::::
their

:::::
lower

:::::::::::
discrepancies

:::::::::
compared

::
to

:::::::
standard

:::::::
random

:::::::::
sequences,

:::
are

:::::::
effective

::
in

:::::::
initially

::::::::
exploring

::
the

::::::
search

:::::
space

::::
more

:::::::::
efficiently

::::
than

:::
the

::::::::::
Tree-Parzen

::::::::
Estimator

:::::
(TPE)

:::::::::
algorithm

::::::::::::::::::
(Bergstra et al. (2012)

:
).

:::
At

::::
these

::::::
stages,

:::::::::
obtaining

:
a
:::::::

precise
:::::::
estimate

::
is

::::
less

::::::
critical

::::
and

::::::
instead

::
a
::::::
general

:::::::::::::
approximation

::
is350

::::::::
preferred.

:::
For

:::
the

::::
final

:::::
stage

:::
the

::::::::::
multivariate Tree-structured Parzen Estimator (TPE) algorithm is used as sampling algorithm
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Figure 11. Total sobol indices for ka.
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Figure 12. Total sobol indices for kb.
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Figure 13. Total sobol indices for α.
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Figure 14. Total sobol indices for β.

within this framework. This
:::
and

:
is
:::::::::
combined

::::
with

::
50

:::::::
random

::::::
start-up

:::::
trials.

::::
The

::::
TPE algorithm fits a Gaussian Mixture Model

(GMM) to a set of parameter values linked to the best objective values. Concurrently it creates a separate GMM pertaining to

the rest of the parameter values. The TPE algorithm then chooses the parameter set that maximizes the ratio between the GMM

associated with the best objective values and the set of remaining parameters. For further information on the framework and355

the algorithm, Akiba et al. (2019) can be conducted.

In order to reduce the optimization time and number of local minima, the optimization process is subdivided into three

stages:

– Stage 1: The first stage involves the optimization of the wind speed.

– Stage 2: The second stage optimizes both the wind speed and wind direction.360
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– Stage 3: In the final stage, wind speed, wind direction and wake parameters are optimized together.

The cost function used in these stages consists of two components, f and g,

f (U,ϕ,Ω) =
1

NT

NT∑
i=1

(
P̄i − P̂i (U,ϕ,Ω)

)2
(11)

g (U,ϕ,Ω) =

(
NT∑
i=1

P̄i −
NT∑
i=1

P̂i (U,ϕ,Ω)

)2

, (12)

where P̄i is the active power from the SCADA data of turbine i, P̂i is the power of turbine i derived from FLORIS, U is365

the freeflow wind speed, ϕ is the freeflow wind direction, and Ω is the set of wake velocity deficit parameters. Function f is

divided by the number of active turbines, NT , for normalization purposes. Intuitively, f is a cost function that penalizes large

errors on turbine-level, while g is a cost function that penalizes large errors on farm-level.

The weight between the two components, f and g, is defined by the normalized constants a and b. A preliminary optimization

of a and b is conducted to find the combination that results in the fastest convergence rate and smallest normalized squared370

error per wind turbine. The criteria is that a+ b= 1, and a > 0, b > 0. The identified combination that has been determined

is then used for the optimization of the wind speed, wind direction, and wake velocity parameters. Given the importance of

penalizing large errors on turbine-level, a final ratio a
b of 4.0 is considered, emphasizing the importance of function f over g.

For the first optimization step, the freeflow wind speed U1 is optimized given a constant value for the initial freeflow wind

direction ϕ̄∞ and wake parameters Ωref . This is done by minimizing the cost function shown in Equation 13. The initial375

freeflow wind speed Ū∞ is determined as the mean wind speed of the first turbine row of the wind farm at the upstream edge.

The initial freeflow wind direction is determined from the median of all wind turbines within the wind farm. The algorithm is

allowed to shift the wind speed by up to 40%, as relatively large inconsistencies are observed between the initially determined

freeflow wind speed and the active power of the wind farm. Furthermore, it is also constrained that the optimized freeflow

wind speed is larger than 4.0 m/s. The aim for this first optimization stage is to match the freeflow wind speed better with the380

FLORIS simulation, given the power curve and the individual turbine powers are known.

minimize a · f
(
U1, ϕ̄∞,Ωref

)
+ b · g

(
U1, ϕ̄∞,Ωref

)
(13)

subject to 0.6Ū∞ ≤ U1 ≤ 1.4Ū∞ (14)

In the second optimization stage, both the freeflow wind speed U2 and wind direction Φ2 are optimized. The optimization of

the latter is important in order to minimize the biases of the directional wind vanes. To this end, a search space of 15 degrees385

from the initial guess ϕ̄∞ is considered. It is opted to allow a smaller optimization range for the freeflow wind speed, as it is

assumed that this variable has already been optimized to the value U∗
1 in the previous step. The initial value imposed to the
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optimization problem U2 is equal to the previous estimate U1. This variable is allowed to be adjusted by up to 5%. This can be

seen in Equation 15.

minimize a · f
(
U2,Φ2,Ω

ref
)
+ b · g

(
U2,Φ2,Ω

ref
)

(15)390

subject to 0.95U∗
1 ≤ U2 ≤ 1.05U∗

1 (16)

and ϕ̄∞ − 15≤ Φ2 ≤ ϕ̄∞ +15 (17)

In the final step, the three design parameters are optimized simultaneously. These consist of the freeflow wind speed U3, the

freeflow wind direction Φ3, and the wake parameters set Ω= {ka,kb,α,β}. The initial value of U3 and Φ3 are imposed as the

average of the values obtained after the two previous optimization steps, respectively, U∗
1 and U∗

2 , and ϕ̄∞ and Φ∗
2. In addition,395

the wake parameters are varied. The minimum, initial, and maximum values of the parameter set Ω can be found in Table 2,

defining the parameter space Ω̃.

minimize a · f (U3,Φ3,Ω)+ b · g (U3,Φ3,Ω) (18)

subject to 0.95U∗
2 ≤ U3 ≤ 1.05U∗

2 (19)

and Φ∗
2 − 15≤ Φ3 ≤ Φ∗

2 +15 (20)400

and Ω ∈ Ω̃ (21)

4.2 Validation of Results

The validation of the results is performed by comparing the energy ratios
::::::
Results

:::
are

::::::::
validated

::
by

:::::::::
comparing

:::
the

:::::::::::
accumulated

::::::
relative

:::::
wake

::::::
model

::::
error

::::::::
between

:::
the

::::::::
calibrated

::::::
model

::::
and

:::
the

::::::::
reference

::::::
model

:::
for

:::::
wind

::::::::
directions

::::::::
between

::
50

::::
and

::::
250

:::::::
degrees.

:::
The

::::
error

::::::
metric

::::
used

::
is

::::::::::
comparable

::
to

::
the

::::
one

::::::::
described

::
in

:::::::::::::::::
Nygaard et al. (2022)

:
.
::::::::
However,

:::
the

::::::::
described

::::
error

::::::
metric405

::::::
focuses

::
on

:::
the

:::::::::::
accumulated

::::
error

::::::::
between

:::::::
SCADA

::::
data

:::
and

:::
the

:::::
wake

:::::
model

:::
for

::::
each

:::::
wind

::::::
turbine,

::::::::
described

:::
by Equation 4

:
.

Figure 15
:::::
shows

:::
the

:::::::::::
accumulated

::::::
relative

:::::
error

::::::
without

::::::::::
calibration

::
of

:::
the

:::::
tuning

::::::::::
parameters

::
in

::::
blue

:::
and

::::
after

::::::::::
calibration

::
of

::
the

::::::
tuning

:::::::::
parameters

::
in

::::
red.

:::::
Here,

:
it
::
is
::::::
evident

:::::
from

:::
the

:::::
figure

:::
that

:::
the

:::::::::::
optimization

:::::::::
effectively

::::::
reduces

:::
the

:::::::::::
accumulated

:::::
error.

:::::
Before

::::::::::
calibration,

:::
the

:::::::
median

::::
error

::
is
:::::::
15.7%,

::::
with

::::::::::
interquartile

::::::
errors

::::
from

::::::
12.4%

::
to

::::::
20.5%.

:::::
After

::::::::::
calibration,

:::
the

:::::::
median

::::
error

::::::::
decreases

:::
to

::::::
14.2%,

::::
with

:::::::::::
interquartile

:::::
errors

:::::
from

::::::
11.4%

::
to

::::::
18.4%.

::::
This

:::::::::
represents

:::
an

:::::::::::
improvement

:::
of

:::::
9.3%

:::
for

:::
the410

::::::
median

:::::
value

:::
and

::::::
relative

::::::::::::
improvements

:::
of

::::
8.4%

::::
and

:::::
10.2%

:::
for

:::
the

::::::::::
interquartile

::::::
range.

::::::::::
Additionally,

::
a
::::::::::
comparison

::
of

:::
the

::::::
energy

:::::
ratios

:
is
:::::::::
performed

:
for clustered wind turbines within the wind farm, similar to the

energy ratio defined by Doekemeijer et al. (2022). The energy ratios are computed for two groups of wind turbines, as shown in

Figure 16. Here group 1 represents the turbines from Figure 17 and group 2 represents the turbines from Figure 18. Figure 17

shows the energy ratios for a group of clustered wind turbines far from the neighbouring wind farms, while Figure 18 shows the415

energy ratios for a group of clustered wind turbines close to neighbouring wind farms. Here, SCADA data is compared to the

simulation results acquired from the FLORIS framework. For a given bin width, the energy ratios are presented, specifically
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Figure 15.
:::::::::

Accumulated
::::::
relative

::::
error

::::::
between

:::::::
SCADA

:::
data

:::
and

:::
the

::::
GCH

::::
wake

:::::
model

:::
on

:::::
turbine

::::
level

:::
for

::::::::
time-series

:::
data

:::
and

::::
wind

:::::::
directions

::::::
ranging

::::
from

:::
50

:
to
::::

250
::::::
degrees.

:::
The

:::::::
reference

:::::
model

::
is

:::::
shown

::
in

::::
blue,

::::
while

:::
the

::::::::
calibrated

:::::
model

:
is
:::::
shown

::
in

:::
red.

for this case at 9 and 10 m/s. The line represents the median for a bin width of 3 degrees, while the opaque region signifies

the area between the 25th and 75th percentile marks. The bottom plot displays the amount of data points used to determine

the median and percentile indicators. When the energy ratios obtained from FLORIS align with the energy ratios derived from420

SCADA data, it can be concluded that the filtering procedure is effective in removing transient data. Moreover, this signifies

that the optimization process has reached convergence.

Both Figure 17 and 18 show good agreement between the energy ratios obtained using FLORIS and the energy ratios derived

from SCADA data when the inflow wind is not affected by neighbouring wind farms. Similarly, both Figures show an increase

in the mean error for wind coming from neighbouring wind farms. The magnitude of the observed error differs significantly425

between Figure 17 and 18. This can be attributed to the proximity of the wind turbines from Figure 18 to neighboring wind

farms, which is closer compared to the wind turbines from Figure 17. The neighbouring wind farms create both heterogeneous

inflow and a wake where homogeneous unaffected inflow is assumed by the model. The error will be most present close to

the neighbouring wind farms since the heterogeneous effect of wake propagation recedes due to wake recovery further from

the neighbouring wind farms. The wind turbines from Figure 17 will therefore experience less heterogeneous inflow from430

neighbouring wind farms than the wind turbines from Figure 18. The increase in the error agrees with the findings from

Figure 9 and 10, where a larger final optimization bias is observed for wind coming from neighbouring wind farms.

4.3 Optimization Results

The set of optimized parameters of the GCH velocity deficit, Ω∗ = {ka,kb,α,β}, are optimized based on the cost function, as

discussed in subsection 4.1. The Pearson correlation matrix for the set of parameters can be seen in Figure 19. All variables435

exhibit weak correlations with each other, as indicated by all correlation coefficients being below 0.2. This suggest that none

of the variables share a strong linear relationship.

The expected value over wind speed and wind direction can be seen in Figure 20 and 21, respectively. The line indicates

the median value per wind speed or wind direction bin, while the opaque area indicates the area between the 25th and 75th
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Figure 16. Overview of the groups of wind turbines used for energy ratio analysis. Group 1 represents a group of wind turbines far from

neighbouring wind farms, while group 2 represents a group of wind turbines close to neighbouring wind farms.
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Figure 17. Validation of the optimized results for group 1 using the energy ratio for the GCH wake model for wind speeds between 9 and 10

m/s. These turbines are located in far proximity from neighbouring wind farms.

percentile marks. The dotted black line represents the reference value within the FLORIS framework. The bottom plot displays440

the amount of data that is used to determine the median and percentile indicators. Figure 20 shows the expected wind speed

based on wind directions between 50 and 250 degrees. This filtering is performed to remove the effect of external wakes on the

parameter estimation, as discussed in subsection 2.3.
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Figure 18. Validation of the optimized results for group 2 using the energy ratio for the GCH wake model for wind speeds between 9 and 10

m/s. These turbines are located in close proximity from neighbouring wind farms.
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Figure 19. Pearson correlation matrix for the velocity deficit parameters of the GCH wake model.

Parameter ka, recognized as the most sensitive parameter in the GCH model from the sensitivity study, converges to a value

below its reference value, whereas the remaining parameters converge to above their respective reference value. Given the445

direct effect of ka on wake recovery, as described by Equation 6-10, this implies that the GCH wake model underestimates

the impact of internal wakes when baseline parameters are used .
::
in

::::::::::
combination

::::
with

::
a
::::::::
reference

:::::::::
turbulence

:::::::
intensity

::
of

:::::
0.06.

::::
This

::
is

::::::
further

:::::::::
confirmed

::
by

::::::::::
calculating

:::::
wake

:::::
losses

:::
for

::::
the

::::
wind

:::::::::
conditions

:::::::
specific

::
to
::::

the
::::
local

::::
site

:::::
using

:::
the

:::::::::
optimized

:::::
tuning

:::::::::
parameters

::::
and

:::::::::
comparing

::::
these

::
to
:::
the

::::::
losses

:::::::
obtained

::::
with

:::
the

::::::::
reference

::::::::::
parameters.

::::
This

::::::::::
comparison

:::::
shows

:
a
:::::::
relative

:::::::
increase

::
in

::::
wake

:::::
losses

:::
of

::::
14%

::::::::
compared

::
to

:::
the

:::::
losses

:::::::
obtained

::::
with

:::
the

::::::::
reference

::::::::::
parameters. The trend observed for α agrees450
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with the findings from the sensitivity analysis. As the importance of α increases, its value shows a consistent convergence and

decrease in variance. The same is observed for the parameter ka, where its variance increases as its importance decreases. The

wide spread observed for parameters kb and β is in line with the expectations derived from the sensitivity analysis. A large

variance is expected when non-sensitive parameters are optimized, since it should theoretically yield a uniform distribution in

a Bayesian optimization scenario. The results do not perfectly align with a uniform distribution, implying the parameters are455

not fully non-sensitive.
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Figure 20. Expected value of the set of parameters, Ω∗ = {ka,kb,α,β}, as function of wind speed.

The expected results for different wind directions are depicted in Figure 21, similar to how Figure 20 represents the parame-

ters for different wind speeds. It is noticeable that ka shows nonlinearity with respect to the wind direction. A number of factors

can contribute to this, including the layout of the wind farm, terrain features, data scarcity, or the different distributions (e.g.

Weibull scaling parameters) per wind direction. To get a more comprehensive understanding of the joint relationship between460

wind speed and wind direction, the joint relationship between wind speed and wind direction for each parameter is analyzed.

The joint distribution of the wake velocity deficit parameters (ka, kb, α, β) of the GCH wake model are illustrated in

Figure 22, 23, 24 and 25, respectively. An increase in the values for ka and kb is visible between 250 and 50 degrees, which

can be linked to neighbouring wind farms. Similarly, as identified in Figure 21, values for ka and kb are visibly higher from the

southeast
::::
east

::
to

:::::
south, which is

::
the

:
direction closest to the coast. The increase can be contributed to an increase in turbulence465

from land or a wind speed gradient due to different topographic properties between land and sea.
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Figure 21. Expected value of the set of parameters, Ω∗ = {ka,kb,α,β}, as function of wind direction.

As for parameters α and β, no distinct directional trends influenced by the layout or the placement of the wake are visible.

However, a noticeable decrease of α and β can be observed as wind speeds approach rated wind speed. It is important to note

that this study does not include wind speeds exceeding the rated value. Therefore any conclusions about the behaviour of these

parameters beyond this point cannot be made.470

:::
The

:::::::::
difference

:::::::
between

::
the

::::::::
identified

::::::
tuning

:::::::::
parameters

:::
and

:::::
those

::::::::
presented

::
in

::::::::::::::::::::::::::
Niayifar and Porté-Agel (2016)

:::
and

:::::::::::::::::::
Trabucchi et al. (2017)

:::
can

::
be

:::::::
partially

::::::::
explained

:::
by

::
the

:::::::
constant

:::::::::
turbulence

::::::::
intensity

::::::::::
assumption,

::
set

::
to

::::
0.06

:::
for

:::
this

:::::
study,

::::
since

:::::::::
accurately

::::::::::
determining

::
the

:::::::::
turbulence

::::::::
intensity

:::::
based

:::
on

:::::::
SCADA

::::
data

::
is

:::
not

::::::
trivial.

::
In

::::::
reality,

:::
the

:::::::::
turbulence

::::::::
intensity

:::::::
exhibits

:
a
::::::
strong

::::::::::
dependency

::
on

:::::
wind

:::::
speed

::::
and

::::
may

::::
also

::::
vary

::::
with

:::::
wind

:::::::::
direction.

::::
This

:::::::
explains

:::
the

::::::::
observed

::::::::::
downward

::::
trend

::::
for

:::
the

::::::::
parameter

::::
ka.

:::::::::::
Consequently,

::::::::
changing

::::
the

:::::::
ambient

:::::::::
turbulence

::::::::
intensity

:::::::
requires

:::::::::
additional

::::::::::
calibration.

:::::::::::
Additionally,

:::
the

:::::::
metrics

::::
used

:::
in475

::
the

:::::::::
optimized

::::::::::::
cost-function

:::::::
consider

:::
the

:::::::::
collective

::::::
power

:::::::::
production

:::
of

:::
the

:::::
wind

:::::
farm,

::
in

:::::::
contrast

:::::
with

:::
the

::::::
results

:::::
from

::::::::::::::::::::::::::
Niayifar and Porté-Agel (2016)

:::
and

::::::::::::::::::
Trabucchi et al. (2017)

:
,
:::::
which

:::
are

:::::
based

:::
on

:::
the

::::
wake

::
of

::
a
:::::
single

::::
wind

:::::::
turbine,

::::::::::
specifically

:::::::
focusing

::
on

::
a
::
set

:::::::
number

::
of

:::::
rotor

::::::::
diameters

::::::
behind

:::
the

::::
wind

:::::::
turbine.

:::::::::::
Optimization

::
at

:::
the

::::
scale

:::
of

::
an

:::::
entire

:::::
wind

::::
farm

:::::::
requires

::
the

::::::
tuning

:::::::::
parameters

::
to
:::::::
account

:::
for

::::
flow

::::::
physics

::::
that

:::
are

::::::::
inherently

::::::::
different

::::
from

:::::
those

::::::::::
encountered

::
in

::
a

:::::
single

:::::
wake

::::
case.

:
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Figure 22. Joint distribution of the expected value for ka after

calibration on SCADA data.
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Figure 23. Joint distribution of the expected value for kb after

calibration on SCADA data.
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Figure 24. Joint distribution of the expected value for α after

calibration on SCADA data.
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Figure 25. Joint distribution of the expected value for β after

calibration on SCADA data.

5 Conclusions480

A reliable method for calibrating analytical wake models for both yield assessment and control purposes has been established

in this study. Rather than utilizing binned data, this optimization process employs time series data. The calibration process

is executed in three stages utilizing a Tree-Structured Parzen Estimator for optimization. The first two stages determine the

freeflow wind speed and wind direction. These are based on a cost function that minimizes the error between the active power

from the Supervisory Control and Data Data Acquisition (SCADA) system and the power output estimated by the FLOw485

Redirection and Induction in Steady State (FLORIS) framework. This work focuses on optimizing the wake velocity deficit
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parameters of the Gauss-Curl Hybrid wake model. However, the set of parameters, referred to as Ω, can easily be adjusted for

different submodels or wake models.

A sensitivity analysis on the considered set of parameters reveals that parameter ka is highly sensitive, while parameters

kb and β display minimal sensitivity. It is further observed that the sensitivity of parameter α increases with wind speed,490

which jointly determines the near-wake region transition point with β, as wind speeds increase. This conclusion is reinforced

by a decrease in the variance and expected value for α approaching rated wind speed. The substantial importance of one

parameter over the others suggests that the model is subject to overparameterization. The effect of overparameterization can be

further observed when analyzing the expected results for the set of parameters. The parameters with high sensitivity converge

strongly, whereas parameters with low sensitivity retain considerable variance within the defined optimization boundaries.495

Comparing the optimized parameters to the baseline reveals that the baseline parameters underestimate the wake effects, which

subsequently leads to an overestimation of the expected yield.

A significant increase in the resultant cost function error is observed for wind coming from neighbouring wind farms,

due to the heterogeneous inflow and wake-added turbulence coming from these wind farms. This increase is also clear when

analyzing the energy ratios between turbines near the neighbouring wind farms. Moreover, the resultant parameter set shows500

considerable variation between wind directions free from external wake effects and those impacted by neighbouring wind

farms. The impact of the irregular coastline with low-rise buildings is also noticeable in the resultant cost function error.

Additionally, the regular
:::::
entire coastline, consisting of both low-rise and high-rise buildings, impacts the expected values for

the wake expansion parameters, ka and kb.

::::::
Caution

::
is
:::::::
advised

:::::
when

:::::
using

::::
these

::::::
results

::::
with

:
a
:::::::::
turbulence

::::::::
intensity

:::::::
different

::::
from

:::
the

::::::::
reference

:::::
value

::::::
within

:::
the

::::::
model.505

::::::::::
Additionally,

::
it
::
is

::::::::
important

:::
to

:::::::::::
acknowledge

:::
that

:::::
these

:::::::
findings

:::
are

::::::::::
site-specific

::::
and

::::
may

:::
not

::
be

:::::::
directly

::::::::::
transferable

::
to

:::::
other

:::::::
locations

:::::::
without

::::::
careful

:::::::::::
consideration

::
of

:::
the

::::::::::
site-specific

::::::::::::
characteristics

::::
and

:::::::::::
recalibration. Future studies will involve a com-

parison of other calibrated analytical wake models with the Gauss-Curl Hybrid model. The substantial error in the cost function

observed for wind coming from neighbouring wind farms suggest the necessity of including these wind farms during the opti-

mization of wake parameters. Additionally, accounting for the wake blockage effect, particularly relevant in large wind turbine510

clusters, should then be considered. Future analysis will incorporate the turbine yaw misalignment, taking into account its

uncertainties and impact on the resultant cost function error. Furthermore,
::::::
together

::::
with

::
a
::::::
varying

:::::::::
turbulence

::::::::
intensity,

:
results

will be analyzed under different atmospheric stabilities, and analysis of both diurnal and annual cycles will be conducted.

:::::
Lastly,

:::
in

:::
this

:::::
study

:::
the

:::::::::::
cost-function

::
is

:::::
based

::::::
solely

::
on

:::
the

:::::
error

:::::::::
associated

::::
with

:::::
active

::::::
power.

:::
For

::::::
future

:::::::
research,

::
it
::::::
would

::
be

:::::::
valuable

::
to

:::::::
conduct

::
a

::::::::::
comparative

:::::::
analysis

:::::::
between

:::
the

:::::::::::
cost-function

:::::
based

:::
on

:::::
active

::::::
power

:::
and

::::
one

:::
that

:::::::::::
incorporates

:::
the515

::::
wind

:::::
speed

:::::::
acquired

:::::
from

:::::::
SCADA.

:::::::::
Exploring

:::
the

:::::::::
differences

:::::::
between

:::::
using

:::::
active

::::::
power

:::
and

:::::
wind

:::::
speed

::
in

:::
the

:::::::::::
cost-function

::::
could

:::::::
provide

:::::::
insights

:::
into

:::::
their

::::::
relative

::::::::
accuracy,

:::
and

::::::::::
substantiate

:::
the

::::::
choice

::
of

:::
one

::::::
metric

::::
over

:::
the

:::::
other.
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