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Abstract. The high computational costs in the dynamic analysis of wind turbines prohibit efficient design assessments and

site-specific performance estimations. This study investigates the suitability of various dimensionality reduction techniques

combined with a Long Short-term Memory (LSTM) algorithm to predict turbine responses, addressing computational challenges

posed by high-dimensional inflow wind fields and complex time-stepping integration schemes. Feature selection criteria and

a multi-stage modelling approach are implemented to arrive at a robust model configuration. Additionally, multi-task learning5

strategy is implemented which enables the LSTM model to predict multiple target variables simultaneously, eliminating the

need for separate models for each target variable. Results demonstrate that this combined approach significantly reduces

computational costs while maintaining consistent accuracy across all the target variables, thereby facilitating design feasibility

studies and site-specific analyses of wind turbines.
:::
The

:::::::::
substantial

::::::::::::
computational

:::::::
expense

:::::::::
associated

::::
with

:::
the

:::::::
dynamic

:::::::
analysis

::
of

::::
wind

:::::::
turbines

::::::::
prohibits

:::::::
efficient

::::::
design

::::::::::
evaluations

::::
and

::::::::::
site-specific

:::::::::::
performance

::::::::::
predictions.

::::
This

:::::::
research

::::::::
explores

:::
the10

::::::::::
effectiveness

:::
of

:::::::
Principal

::::::::::
Component

::::::::
Analysis

:::
and

::::::::
Discrete

::::::
Cosine

:::::::::
Transform

::::::::::::
dimensionality

::::::::
reduction

::::::::
methods

::
to

:::::::
identify

:::
key

:::::
spatial

::::
and

:::::::
temporal

:::::::
patterns

::
in

:
a
:::::
wind

::::
field,

::::::
which

:::
are

::::::::::
subsequently

:::::
used

::
by

:
a
:::::::::::::
long-short-term

:::::::
memory

::::::::
(LSTM)

::::::::
algorithm

::
to

:::::
model

:::
the

:::::
wind

::::::
turbine

:::::::::
responses.

::::
This

:::::
study

:::::
strikes

::
a

::::::
balance

:::::::
between

:::::::::
prediction

::::::::
accuracy

:::
and

:::::::
training

::::
data

:::::::::::
requirements

::
by

:::::::::
employing

:::
an

:::::::
efficient

::::::
feature

::::::::
selection

::::::::
technique

::::
and

:
a
::::::::::

multi-stage
:::::::::
modelling

::::::::
approach

:::::
which

::::::::::::
incrementally

::::::
learns

:::
the

:::::::::
information

::::::
about

:::
the

:::::
target

::::::::
variable.

:::::::::::
Furthermore,

::
a
:::::::::

multi-task
::::::::

learning
:::::::
strategy

::
is

::::::::
adopted,

:::::::
allowing

::::
the

::::::
LSTM

::::::
model15

::
to

::::::
predict

:::::::
multiple

:::::
target

::::::::
variables

:::
at

:::::
once,

::::
thus

::::::::
removing

:::
the

::::::::
necessity

:::
for

::::::::
separate

::::::
models

:::
for

:::::
each

:::::
target

:::::::
variable.

:::::
This

::::::
method

::::::::
alleviates

:::
the

::::::::::::
computational

::::
cost

::
of
::::::::

dynamic
:::::::
analysis

::
of

::
a
:::::
wind

::::::
turbine

:::
by

:::::::::
addressing

:::
the

:::::::::
challenges

:::::::::
introduced

:::
by

::::::::::::::
high-dimensional

::::
wind

:::::
fields

::::
and

:::::::::::::
time-consuming

:::::::::
numerical

:::::::::
integration

::::::::
processes.

::::
The

:::::::
findings

::::
show

::::
that

:::
this

:::::::::::::
comprehensive

:::::::
approach

:::::::::::
significantly

:::::::
reduces

::::::::::::
computational

:::
cost

:::::
while

:::::::::::
maintaining

:::::::
accuracy

::::::
across

::
all

::::::
target

::::::::
variables,

::::::
thereby

::::::::::
facilitating

:::::
design

:::::::::
feasibility

::::::::::
assessments

:::
and

::::::::::
site-specific

::::::
studies

:::
of

::::
wind

:::::::
turbines.20

1 Introduction

The wind turbines, in an attempt to maximise energy captures, have grown significantly over the last few decades with their

scale seeing unprecedented growth (Roga et al., 2022). The increased scale of wind turbines translates to higher loads, defor-

mations and more accumulated damage. Achieving an efficient design in the presence of these challenges is not a trivial task.

Studies focused on efficient controls, advanced technologies, and an improved understanding of wind turbine operations have25
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led to a more efficient operation of wind turbines (Sarkar et al., 2020; Sarkar and Fitzgerald, 2020, 2022; Abbas et al., 2022;

Njiri and Söffker, 2016; Sun et al., 2012; Tan et al., 2022; Fitzgerald et al., 2023). In addition, use of reliability and optimisa-

tion principles in the design of wind turbines can further improve the design ensuring consistent reliability in the wake of these

challenges. However, evaluating multiple possible design combinations to arrive at an optimal solution satisfying multiple con-

straints requires high computational resources
::
due

:::
to

::::::::
non-linear

:::::::::
dynamics

::
of

:::
the

:::::::::
underlying

::::::
model

:::
and

::::::::::
non-convex

:::::
nature

:::
of30

::::::::::
optimisation

::::::::
problem. Such optimisation studies can become computationally unfeasible to perform with an increasing num-

ber of parameters. For a wind turbine, the computational cost of optimisation is further compounded due to a large number of

uncertain parameters involved, site-specific loading envelopes and the high computational cost of running numerical models.

To address these issues, this study present a methodology to develop a machine-learning-based model to predict the dynamic

response of a wind turbine at a fraction of the computational cost of a numerical model.35

Dynamic analysis of wind turbines refers to analysing the structural response subjected to stochastic wind inflow during

operation. Wind speeds can fluctuate significantly across the rotor plane within the wind turbine rotors, resulting in varying

wind conditions experienced at various points within the rotor area. This effect is more pronounced in turbines with higher

rotor diameters. Furthermore, since wind speeds change over time, these spatial points within the rotor area are subjected to

temporal variations in wind speed. Therefore, accurate prediction of a wind turbine’s response to dynamic forces necessitates40

a realistic simulation of wind speed variations across its large rotor area and their evolution over time. The complexity of the

spatio-temporal wind field introduces a fundamental challenge in wind turbine modelling in terms of a high dimensionality

of the input space. TurbSim (Jonkman, 2009), a widely used turbulent wind field simulator, is a key tool for this purpose

but is impacted by this dimensionality issue. The challenges arising from the high dimensionality of TurbSim data have been

highlighted in many studies (Pereira et al., 2019; Haghi and Crawford, 2021; Bashirzadeh Tabrizi et al., 2019). Some studies45

have explored the use of surrogate modelling approach (Haghi and Crawford, 2023) and dimensionality reduction techniques

(Lataniotis, 2019; Garcke et al., 2017) to alleviate this issue. In this study, the dimensionality reduction approach has been

used to extract critical information from a high-dimensional representation of the wind field. Dimensionality reduction has

been an active area of research in the domain of surrogate modelling (Hou and Behdinan, 2022), processing speech signals

(Markaki and Stylianou, 2008), digital photographs (Van Der Maaten et al., 2009), or medical imagery(Hamarneh et al., 2011).50

Specialised literature on various dimensionality reduction techniques and their comparative performance on standard datasets is

presented by Van Der Maaten et al. (2009). By identifying and retaining the most informative features, dimensionality reduction

techniques facilitate efficient analysis of a dataset while reducing computational complexity and improving interpretability. To

this end, Principal Component Analysis (PCA) and Discrete Cosine Transform (DCT) are used in this study to arrive at a

low-dimensional representation of the inflow wind. Further, building on these extracted features, an LSTM model is developed55

to capture the temporal dependence between the features of inflow wind and structural response.

Long Short-term Memory (LSTM) Models are a type of recurrent neural network (RNN) with an internal memory state

that captures the long-term dependence of the input features on the target variable. LSTM models have been implemented

successfully in wind turbines for power forecasting (Banik et al., 2020; Yu et al., 2019; Woo et al., 2018) and damage detection

(Choe et al., 2021; Xiang et al., 2021; Chen et al., 2021). Further, Dimitrov and Göçmen (2022) have demonstrated the use of60
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LSTM as a virtual sensor, which can be used to predict the wind turbine parameters which are difficult to measure accurately

on-site using SCADA and operational load measurements. Such models are applicable during the operational phase of wind

turbines where on-site measurements are available. However, very limited literature exists for the use of LSTMs in structural

response prediction of wind turbines during the design and analysis stage where extensive load measurement and SCADA data

are not available (Woo et al., 2018; Shi et al., 2023; Zhu et al., 2024; Baisthakur and Fitzgerald, 2024a). In this context, the65

current manuscript aims to develop an LSTM model for application in the analysis and design stage, focusing on predicting

the dynamic response of a wind turbine using the model-generated datasets.

Wind turbines represent a special class of structures whose response is impacted by multiple disciplines including atmo-

spheric modelling, principles of machines, structural dynamics, control engineering and electronics. An efficient surrogate

model should be able to integrate the various principles impacting the wind turbine while computing its response. To address70

this, a multi-stage modelling approach has been used where incremental information about the target is gained in multiple

stages. Due to the increasing scale and flexibility of the wind turbines, multiple degrees of freedom are required to model a

wind turbine structure and capture its intricate deformation patterns. Therefore, in order to get complete information about the

system, the response at each DOF needs to be evaluated. However, creating a surrogate model for each DOF would necessitate

developing multiple surrogate models. As the number of DOFs increases, the computational burden associated with training75

and implementing individual models can increase significantly. To address this, multi-output learning, also known as multi-task

learning has been used in this study to model multiple target variables using a single LSTM model (Thrun and Mitchell, 1995;

Caruana, 1997). Multi-task learning leverages the inherent relationships between different target variables, to develop a single,

unified model capable of simultaneously predicting multiple target variables for a given set of input parameters. This approach

is particularly useful in modelling structural response where multiple response variables are closely related to each other and80

are driven by a common external force. The use of dimensionality reduction techniques with a feature selection algorithm and

multi-task learning approach leads to an efficient LSTM model capable of emulating the dynamics of wind turbines. The orga-

nization of the manuscript is as follows: section 2 presents the approach used for generating stochastic wind fields, followed

by section 3 which describes the numerical model of the wind turbine used in this study.
::::::
Section

:
2
::::::
details

:::
the

::::::::
numerical

::::::
model

::
of

:::
the

::::
wind

::::::
turbine

:::::::::
employed

::
in

:::
this

::::::::
research,

:::::
while

:::::::
Section

:
3
:::::
offers

::
a
::::::
concise

::::::::
overview

:::
of

:::
the

:::::::::
importance

::
of

:::::::::::::
dimensionality85

::::::::
reduction

:::
and

:::
the

::::::::
methods

:::::::::::
implemented

::
in

::::
this

:::::::
research. Section 4 elaborates on the LSTM architecture and the multi-task

learning strategy. In addition, sections 5 and 6 describe the method for generating stochastic wind fields and the rationale for

selecting input and output parameters for the surrogate model, respectively. Finally, Section 7 illustrates the numerical results,

evaluating model performance regarding accuracy and computational efficiency. The manuscript concludes with Section 8,

which summarises the key findings and contributions of this research.90

2 Generation of stochastic wind field

Wind turbines are subjected to stochastic turbulent wind inflow during their operation. The power generation and load acting

on the components are mainly governed by the properties of the inflow wind. As such, generating a realistic wind inflow

pattern is crucial to ensure the validity of simulation results. In this study, TurbSim (Jonkman, 2009) is used to generate the

wind field that acts on the wind turbine. TurbSim serves as a stochastic tool to generate full field representations of turbulent95
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winds, using statistical models to emulate wind dynamics. TurbSim operates on a statistical model to produce time series data

comprising three-dimensional wind speed vectors across a fixed two-dimensional vertical grid. This grid remains stationary in

space during the inflow generation process. To generate wind fields specific to wind turbine configurations and site conditions,

TurbSim provides customisable parameters that encompass turbine geometry and meteorological factors that define the wind

speed field. For detailed information on these parameters, the reader is referred to the TurbSim user guide (Jonkman, 2009).100

Here, a summary of the key variables used in this study is presented, with their definitions and significance. These parameters

control the size and complexity of the wind datasets:

1. Random Seeds: TurbSim uses two random seeds (RandSeed1 and RandSeed2) to create random phases, one per frequency

per grid point per wind component, for the velocity time series and for random number generating schemes. These seeds

primarily ensure the reproducibility of the synthetic wind fields and generate unique stochastic realisations for specified105

environmental conditions. Further, these seeds can be varied at constant meteorological parameters to produce various

stochastic patterns with similar statistical properties.

2. Turbine/Model Specification: In configuring TurbSim, the parameters GridHeight and GridWidth define the total vertical

expanse within which the wind turbine rotor operates. This region is then subdivided into segments defined using

NumGridY and NumGridZ , governing the spatial resolution of the computational domain. The variable HubHt designates110

the hub height of the wind turbine and act as a reference point for grid placement. Horizontally, the rotor is centrally

aligned within the grid. A representative image of the TurbSim grid encompassing the wind turbine rotor is presented in

Fig.1

3. Meteorological Boundary Conditions: Within TurbSim, the variable TurbModel defines the spectral model utilised for

generating the wind speed field. The choice of spectral model is guided by site characteristics and the type of analysis.115

The statistical properties characterising the inflow, notably mean wind speed, turbulence intensity, surface roughness

length, and power law exponents, are defined through variables Uref, IECturbc, Z0, and PLExp, respectively. The mean

wind speed is specifically defined at a designated reference height, denoted as RefHt.

TurbSim employs spatial and temporal discretisation techniques to analyse the wind field comprehensively by partitioning the

domain into grid cells, enabling the calculation of wind speeds and turbulence properties at each grid point. The temporal120

dimension of the spatial grid is subdivided into small intervals to accurately capture temporal fluctuations in wind speed

and turbulence. Using the specified turbulence model and input parameters, TurbSim generates synthetic turbulent variations

in wind speed along temporal and spatial coordinates across the domain. This process involves simulating the spatial and

temporal evolution of turbulence based on statistical properties derived from the chosen turbulence model. The IEA-15MW

reference wind turbine modelled in this study, characterised by a 240m rotor diameter and a 150m hub height, is modelled125

using a rectangular domain measuring 285m x 285m, featuring a 25 x 25 spatial grid layout. Considering these turbine

specifications, a single 10-minute duration wind field, with a temporal discretisation of 0.05 seconds, yields a substantial 625

features with 1201 observations each, leading to 750,625 individual observations for a single wind field. The dimensionality
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of the input space is further compounded as multiple simulations are required to train a surrogate model. An LSTM model

may encounter challenges, such as overfitting and increased computational and memory requirements when dealing with130

such high-dimensional input data. To mitigate these issues, dimensionality reduction techniques are used to extract essential

information from the input space while minimising the number of variables. Dimensionality reduction facilitates streamlined

and efficient model training and implementation. The dimensionality reduction algorithms explored in this study are presented

in the section 3.

The wind field generated using TurbSim acts on the wind turbine and govern the load and deformation response. The next135

section describes the theoretical formulation of the numerical model of wind turbine. This model is further used to generate

the data required for training the surrogate model.

2 Numerical Model of the IEA-15MW Wind Turbine

The numerical model of wind turbine used in this study is developed using a multi-body dynamics methodology, based on

Kane’s dynamics principles (Kane and Levinson, 1985). The Knae’s dynamics approach is very effective in managing the140

intricate interactions among various components of the turbine, facilitating a precise representation of the overall system

dynamics. By employing Kane’s method, the complexity of deriving equations of motion is significantly reduced, and it allows

for a simplified computer implementation compared to traditional methods such as Euler-Lagrange and D’Alembert’s principle.

In total, 22 degrees of freedom are included to accurately represent the dynamics of the wind turbine components. The

foundation is modelled with six degrees of freedom, incorporating three translational and three rotational motions. The tower145

is represented using the modal summation technique, which involves four principal mode shapes that characterise the tower’s

movements in both the fore-aft and side-to-side directions. However, the axial shortening and twisting of the tower due to

external loads are not taken into account. To ensure an accurate depiction of rotor speed, the azimuth of the generator and the

twisting of the low-speed shaft are included in the model. The blades are treated as flexible elements, employing the modal

summation method with three mode shapes for each blade—two modes for flapwise deformations and one mode for edgewise150

deformations.

Multiple reference frames are established to articulate the motion of different system components and to define their ori-

entations relative to one another. The equilibrium equations for a simple holonomic multi-body system, derived using Kane’s

approach, are expressed as follows:

Fr +F ∗
r = 0 (1)155

Here, Fr represents the generalised active forces, while F ∗
r denotes the inertia force. These forces can be expressed in terms of

kinematic variables as follows:

Fr =

n∑
i=1

EvXi
r ·FXi +E ωNi

r ·MNi (2)
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F ∗
r =−

n∑
i=1

EvXi
r (mNiEaXi)−EωNi

r ·EḢNi (3)160

In these equations, FXi is the force vector acting on the center of mass of point Xi, and MNi is the moment vector acting on

the rigid body Ni. The terms EvXi
r and EωNi

r indicate the partial linear and angular velocities of point Xi and rigid body Ni,

respectively. Additionally, EḢNi represents the time derivative of the angular momentum of rigid body Ni about its center of

mass Xi in the inertial frame, expressed by the equation:

EḢNi = ¯̄INi ·E αNi +E ωNi × ¯̄INi ·E ωNi (4)165

The final governing equation of the system is structured as follows:

M(q, t)q̈+ f(q, q̇, t) = 0 (5)

In this expression, M(q, t) denotes the inertia matrix, while q̈ is the acceleration vector. The function f(q, q̇, t) represents the

force vector, which comprises both external and restoring forces acting on the structure. Numerical methods are employed to

solve this system of equations, specifically the fourth-order Runge-Kutta method in this study. A comprehensive derivation of170

these motion equations is outside the scope of this work, but interested readers may refer to Sarkar and Fitzgerald (2021) for

further details.

The analysis conducted in this research employs the specifications of the 15MW wind turbine from the International Energy

Agency (IEA), categorised as an International Electrotechnical Commission (IEC) Class 1B direct-drive unit, with a rotor diam-

eter of 240 m and a hub height of 150 m. The technical report outlining the IEA 15-megawatt reference wind turbine Gaertner175

et al. (2020), provides a comprehensive explanation of the wind turbine’s key characteristics and operational parameters.

The wind turbine is modelled on the basis of Kane’s dynamics principles. The multibody model developed in this re-

search has been validated by comparing its response to the OpenFast model of the National Renewable Energy Laboratory

(NREL) (Jonkman et al., 2024), a widely used open source framework for wind turbine dynamics simulation.
:::
The

:::::::::
validation

:
is
:::::::::
performed

:::
for

::::::::::
below-rated

:::::::::::
steady-state

:::::::::
conditions.

::::
The

::::::::::
steady-state

:::::::::
conditions

:::
are

::::
used

:::
as

:
a
::::::::
baseline

:::
for

:::::::::
validation,

::
as

::
it180

::::::::
simplifies

:::
the

:::::::
analysis

::
by

::::::::
isolating

:::
the

:::::::
model’s

::::::::
behaviour

:::::
from

:::
the

:::::
added

::::::::::
complexity

:::::::::
introduced

::
by

::::::::
transient

:::::::::
dynamics.

::::
This

::::::::
validation

:::::::
exercise

::::::
verifies

:::
the

::::::
overall

:::::::
stiffness

:::
of

:::
the

:::::
model

::::
and

::::::
ensures

::::
that

:
it
:::::::::
accurately

:::::::
captures

:::
the

:::::::::::
fundamental

::::::::
structural

:::
and

:::::::::::
aerodynamic

::::::::::
interactions.

::::
The

::::::
results

::
of

::::
this

::::::::
validation

:::
are

::::::
shown

::
in

:::::::
Figures

::
1,

::
2,

::
3

:::
and

::
4. The comparison highlights

that the numerical model developed in this study can accurately match the response prediction of OpenFast model establishing

the numerical model’s accuracy. This model is utilised to generate the data required for training the machine learning model.185

::::
This

::::::::
numerical

:::::
model

::::
uses

:::
the

::::::::
turbulent

::::
wind

::::::
inflow

::::::::
generated

::
by

::::::::
TurbSim

::
to

::::
drive

:::
the

::::::
system

::::::::
response.

:::::
Wind

:::::
fields

::::::
created

::
by

::::::::
TurbSim

::::
offer

::
a
:::::::::::::::
high-dimensional

::::::::::::
representation

::
of

::::::::
turbulent

::::::
wind.

::::
The

::::::::
following

::::::
section

::::::::
presents

:::
the

:::::::::::::
dimensionality

::::::::
reduction

:::::::::
techniques

::::::::
employed

::
to

:::::
tackle

:::
the

::::
high

:::::::::::::
dimensionality

::
of

:::
the

:::::::::
wind-field

::::
data.
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Figure 1.
:::::
Model

:::::::::
Verification:

:::::
Blade

::::::
in-plane

::::::::::
displacement

3 Dimensionality Reduction Techniques for Wind Field Data

Dimensionality reduction refers to the process of transforming high-dimensional data into a meaningful representation with190

reduced dimensionality. Dimensionality reduction is often used as a preprocessing step before building surrogate models for

high-dimensional input spaces. Reduction in dimensions facilitates faster model training and can improve the robustness of

surrogate models
::
by

::::::::
focussing

:::
on

:::
the

::::
most

:::::::
relevant

:::::::
features

::::::::::::::::::::::::::::::::::::::::::::::::
(Bishop and Nasrabadi, 2006; Bishop and Nasrabadi, 2022).

Mathematically, let X denote a high-dimensional dataset, where each row corresponds to an observation and each column

represents a feature. If p is the number of observations and N is the number of features, then X is an p×N matrix. If p is a195

large number, handling such high-dimensional data poses computational challenges and can lead to inefficiencies in analysis

and modelling tasks. Let Z represent the reduced-dimensional representation of the original dataset X , where Z is an p×n

matrix with, where n <<N being the reduced number of dimensions. The goal of reducing dimensionality is to find a mapping

function f :X→ Z that captures the important information in the original data while reducing its dimensionality.

In the context of wind turbines, TurbSim simulations can generate wind fields consisting of thousands of data points across200

space and time. Dimensionality reduction is crucial to transform these complex wind fields into more manageable representa-

tions for efficient response prediction. Various dimensionality reduction techniques are explored in the literature for application

to high-dimensional problems, of all these techniques, Principal Component Analysis (PCA) is one of the most widely used

approaches
:::::::::::::::::::::::::
(Pearson, 1901; Pearson, 2016). PCA is a statistical technique that focusses on capturing spatial correlations within
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Figure 2.
:::::
Model
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Verification:
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Blade
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out
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of
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plane
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displacement

the data by identifying the principal components that capture the maximum variance in the dataset. PCA offers computational205

efficiency and linear mapping, making it suitable for handling large-scale wind data sets encountered in wind turbine modelling.

Lataniotis (2019) has shown that PCA consistently outperformed the other dimensionality reduction techniques implemented in

their research in terms of reconstruction error and robustness of results over different repetitions on the standard datasets used

in dimensionality reduction problems. PCA implemented for wind speed forecasting (Skittides and Früh, 2014; Geng et al.,

2020), wind turbine fault detection (Zhang et al., 2021), and monitoring (Wang et al., 2016) has also delivered good results.210

Principal components can capture recurring spatial and temporal trends in wind speed variations. The reduced-dimensional

representation using PCA further helps in data handling and analysis. While PCA excels at capturing the variance within the

data through linear relationships, it might overlook the presence of underlying non-linear patterns in complex wind fields.

Also, while principal components represent significant variance, interpreting their physical meaning can be challenging for

wind fields. To address these potential limitations, the Discrete Cosine Transform (DCT) is used as a complementary technique215

in this research.

The Discrete Cosine Transform (DCT) offers a powerful tool to analyse the dynamics of the wind field by decomposing

the data into its underlying frequency components, revealing patterns of spatial and temporal variation
:::::::::::::::::
(Ahmed et al., 2006).

Unlike PCA, DCT emphasises the frequency-domain representation of signals or images, using its energy compaction property

to highlight dominant frequency components. This data transformation allows DCT to capture the energy content of a signal or220
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Figure 3.
:::::
Model

:::::::::
Verification:

::::::::::
Comparison

::
of

::::
rotor

::::
speed

image in fewer coefficients by exploiting the characteristics of the data in the frequency domain. This property enables effective

compression and representation of wind data, which can be exploited for dimensionality reduction by capturing dominant

spatial and temporal correlations inherent in wind speed fields. The components obtained through DCT (cosine functions with

specific frequencies) correspond directly to spatial variations of different wavelengths or scales within the wind-field data. This

representation makes the DCT components physically interpretable. Recently, DCT has been applied by Schär et al. (2024) for225

dimensionality reduction of the stochastic wind field and has been shown to deliver good results.

Given the distinct strengths and limitations of both PCA and DCT for wind field representation, their suitability to reduce the

dimensionality of turbulent wind fields and capture maximum information with minimum number of variables is investigated

in this study. The mathematical formulation of these methods is presented in the next section.

3.1 Principal Component Analysis230

PCA is a mathematical tool that transforms potentially correlated features into a smaller set of uncorrelated variables called

principal components. This transformation maximises the variance explained by each component, thus highlighting the most

prominent patterns within the data. In PCA the data is normalised to have zero mean to ensure that principal components capture

variations from the average behaviour and not the absolute magnitude of the wind speeds. Following the original notations,

assume (X ∈ Rp×N ) represent the original wind field dataset matrix, with p observations (time steps) and N features (spatial235

9
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Model
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spectrum
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tower
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response

locations). The mean-centred dataset (X′ ∈ Rp×N ) is given by:

X′ =X−x (6)

where x is the mean vector of the dataset. PCA computes the covariance matrix to quantify the pairwise linear relationships

between different features within the wind field data. The covariance matrix (Σ) of the mean centred data is computed as:

Σ=
1

p−1
(X′TX′) (7)240

Further, eigen-decomposition of the covariance matrix (Σ) is performed to identify the directions of maximum variance within

the wind field data and quantify the amount of variation captured along each direction. The eigenvectors (V ∈ RN×N and their

corresponding eigenvalues (Λ ∈ R1×N are represented using the eigenvector matrix V with N columns and eigenvalue vector

Λ with N entries:

V =
(
v1 v2 · · · vN

)
245

Λ= diag(λ1,λ2, . . . ,λN )

In PCA the eigenvectors are sorted in decreasing order of their corresponding eigenvalues so that the eigenvector with the

largest eigenvalue represents the principal component explaining the most variance in the wind field data. The number of

10



principal components required to capture the maximum information about the wind field data is examined using the cumulative250

explained variance calculated as:

ek =

∑k
i=1λi∑N
i=1λi

(8)

A common approach is to select the smallest number of principal components (k) that achieve a desired percentage of explained

variance. Finally, the original high-dimensional dataset X is projected onto the new basis spanned by the selected principal

components to obtain the reduced-dimensional representation Z ∈ Rp×n
:::::::::::::
ZPCA ∈ Rp×n, where n is the desired number of255

principal components to retain. The projection can be expressed as:

Z ZPCA =X′Vn
::::::::::::

where Vn is the matrix containing the first n eigenvectors corresponding to the largest n eigenvalues. This projection transforms

the original features representing wind speeds at different grid points into a reduced set of features. By selecting the n principal

components with the largest eigenvalues, PCA ensures that these new features capture most of the essential variation within260

the wind field data.

3.2 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a frequency-domain transformation technique which uses real-valued cosine functions

as its basis. For a discrete signal x(n) of length N, the 1D DCT is calculated using the Eq. 9

z(k) =

N−1∑
n=0

x(n) · cos
(

π

N

(
n+

1

2

)
k

)
(9)265

where z(k) is the k-th frequency component of the signal transformed using DCT. Following the approach implemented by

(Schär et al., 2024), a mathematical correspondence can be established between a 2D spatial wind field grid generated using

TurbSim and an image. At a given time instance t, the wind field is defined over a spatial grid of size (Nx ×Ny), each grid

point (i, j), representing a spatial location in the wind field, can be mapped to a pixel in the image. The magnitude of the wind

speed at a point in the grid, denoted by (X(i, j)), determines the intensity of its corresponding pixel (see Fig. 5). Using this270

representation of the wind field, 2D DCT is used to analyse wind speed variations across spatial scales and directions. The 2D

DCT of the wind field (X), denoted by Z(u,v)
::::::::::
ZDCT (u,v), is calculated using the Eq. 10:

Z(u,v)ZDCT (u,v)
:::::::::

= α(u)α(v)

Nz−1∑
i=0

Ny−1∑
j=0

X(i, j)cos

(
π(2i+1)u

2Nz

)
cos

(
π(2j+1)v

2Ny

)
(10)

such that,

α(u) =


1√
Nz

, i= 0

√
2
Nx

, 1≤ i≤Nz − 1

(11)275
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Figure 5. Modelling wind speed data as image at a time instance t

and

α(v) =


1√
Ny

, j = 0

√
2
Ny

, 1≤ j ≤Ny − 1

(12)

where u and v are frequency indices representing spatial frequencies in the transformed domain and α(u) and α(v) are normal-

isation factors ensuring orthogonality of the basis functions. The coefficients (Z(u,v))
::::::::::::
(ZDCT (u,v)) obtained from the 2D

DCT transformation represent the strength of different frequency components present within the wind field. These frequency280

components correspond to variations in wind speed at different spatial scales. The low frequency coefficients, associated with

low values of u and v, represent spatial patterns or trends throughout the wind field grid, which capture smooth variations in the

spatial domain. In contrast, high-frequency coefficients represent finer-scale, localised wind speed fluctuations, and turbulent

structures. These coefficients capture rapid, often less spatially organised changes in wind speed over short distances within

the wind field.
:::
The

:::::
DCT

::::::::
transform

:::::
must

::
be

:::::::
applied

::
at

::::
each

::::
time

::::
step,

::::::
where

:::
the

:::::::
snapshot

:::
of

:::
the

::::
wind

:::::
speed

::::
grid

::
at

::::
that

::::
time285

:::::::
instance

:::
acts

::
as

:::
an

::::::
image. By analysing the energy distribution across different DCT coefficients, the dominant spatial scales

of variation present in the wind field can be identified. Using the 2D DCT of a wind field and ranking the coefficients by their

magnitudes, a subset of coefficients that capture the majority of the essential variations of the wind field can be identified.

Retaining the significant coefficients and discarding the high-frequency components results in a compressed representation of

the wind field, preserving the dominant spatial patterns in the wind field. Further, an LSTM model is developed using these fea-290
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tures to predict the deformation response of the wind turbine blades. The details of the LSTM model architecture are presented

in the next section.

4 Long Short-term Memory Model and Multi-task learning

An LSTM model is a type of Recurrent Neural Networks (RNN) designed to work with sequential data and capture the

long-term and short-term dependencies between the input and output variables. An RNN processes sequential data by maintaining295

the memory of previous inputs through an internal state. RNNs employ feedback mechanisms, where the network’s output at

each step is fed back as input. This recursive nature enables RNNs to capture temporal dependencies inherent in sequential

data. Traditionally, the RNNs suffer from vanishing gradients where the algorithm struggles to preserve the internal state

for long-range sequences (Hu et al., 2018). This phenomenon, known as a vanishing gradient, where the gradient of the loss

function with respect to the learnable parameters becomes so small that it results in slow or ineffective learning. The LSTM300

architecture alleviates this issue by using various gates to control the flow of information (Hochreiter and Schmidhuber, 1997).

These gates control the flow of gradients during backpropagation, allowing LSTM networks to propagate gradients over long

sequences and through multiple layers effectively. An LSTM unit consisting of all these features is known as a memory cell.

Selective data retention and elimination are performed as the data passes through these gates. Based on the task of each

gate, they are commonly known as:
:::
An

::::::
LSTM

:::::
model

::
is
::
a
::::
type

::
of

::::::::
Recurrent

::::::
Neural

::::::::
Network

::::::
(RNN)

::::::::::
specifically

::::::::
designed

::
to305

:::::
handle

:::::::::
sequential

::::
data

:::
by

::::::::
capturing

::::
both

::::::::
long-term

::::
and

:::::::::
short-term

:::::::::::
dependencies

:::::::
between

:::::
input

::::
and

:::::
output

:::::::::
variables.

::::::
Unlike

::::::::::
conventional

:::::::::::
feedforward

:::::
neural

:::::::::
networks,

::::::
which

::::::
process

:::::
input

::::::::::::
independently

::::
and

::::
lack

:::::::
memory

:::
of

:::::::
previous

::::::
states,

::::::
RNNs

::::::
employ

::
a
::::::::
feedback

::::::::::
mechanism

::
in

::::::
which

:::
the

:::::::::
network’s

::::::
output

::
at

::::
each

::::
step

:::
is

:::
fed

:::::
back

::
as

:::::
input.

:::::
This

::::::::
recursive

::::::::
structure

::::::
enables

::::::
RNNs

::
to

::::::
model

:::
the

::::::::
temporal

:::::::::::
dependencies

:::::::
inherent

::
in
:::::::::

sequential
:::::
data.

::::::::
However,

:::::::::
traditional

::::::
RNNs

:::::
suffer

:::::
from

:::
the

:::::::
problem

::
of

::::::::
vanishing

::::::::
gradients,

::::::
where

::::::::
gradients

:::::::
become

:::
too

:::::
small

::
to

:::::::::
effectively

:::::
update

:::
the

::::::::::
parameters

::
of

:::
the

:::::::
network

::::::
during310

:::::::
training,

::::::::::
particularly

:::
for

::::
long

:::::::::
sequences

::::::::::::::
(Hu et al., 2018).

::::
The

::::::
LSTM

::::::::::
architecture

:::::::::
addresses

:::
this

:::::::::
limitation

:::
by

::::::::::
introducing

:::::
gating

:::::::::::
mechanisms

:::::
(input,

::::::
forget,

::::
and

::::::
output

:::::
gates)

::::
that

:::::::
regulate

:::
the

::::
flow

::
of

::::::::::
information

::::
and

::::::::
gradients

::::::
through

::::
the

:::::::
network

::::::::::::::::::::::::::::::
(Hochreiter and Schmidhuber, 1997).

::::::
These

::::
gates

::::::
allow

:::::::
LSTMs

::
to

:::::
retain

:::::::::
important

::::::::::
information

:::::
over

::::
long

:::::::::
sequences

::::
and

:::::::
mitigate

:::
the

::::::::
vanishing

:::::::
gradient

::::::::
problem,

::::::
making

:::::
them

:::::::::
well-suited

:::
for

:::::
tasks

::::::::
involving

:::::::::
sequential

:::
data

:::::
with

:::::::
complex

::::::::
temporal

:::::::::::
dependencies.

::::::::
Although

:::::
more

::::::::
advanced

:::::::::::
architectures

::::
such

::
as
::::::::::::

Transformers
::::::::::::::::::
(Vaswani et al., 2017)

::::
have

::::::
gained

:::::::::
popularity

:::
for315

::::
their

:::::
ability

::
to

::::::
model

:::::::::
long-range

:::::::::::
dependencies

:::::::
through

:::::::::::
self-attention

::::::::::
mechanisms

::::
and

::::
their

:::::::::::
parallelisable

::::::::
structure,

::::
they

:::::
often

::::::
require

::::::::::
significantly

:::::
larger

:::::::
datasets

::::
and

::::::::::::
computational

::::::::
resources

::
to

::::::
achieve

:::::::
optimal

:::::::::::
performance.

:::::::::::
Transformers

:::::
excel

::
in

:::::
tasks

:::
like

::::::
natural

::::::::
language

:::::::::
processing,

:::::
where

:::::::
massive

:::::::
datasets

:::
are

::::::::
available,

:::
and

::::::
parallel

:::::::::
computing

::::
can

::
be

::::
fully

:::::::::
leveraged.

::::::::
However,

::
for

::::::::::
applications

::::
such

:::
as

::::
wind

::::::
turbine

:::::::::
modelling,

:::::
where

::::
data

::::
sets

:::
may

:::
be

::::::
limited

:::
and

:::
the

:::::::
temporal

::::::::
structure

::
of

:::
the

::::
data

:
is
:::::::
critical,

::::::
LSTMs

:::::
offer

:
a
::::::::
practical

:::
and

:::::::
efficient

:::::::::
alternative

::::::::::::::
(Li et al., 2018).

:::::
Their

::::::
ability

::
to

::::::
capture

::::::::
temporal

:::::::::::
dependencies

:::::
with

:::::
fewer320

:::::::::
parameters

:::
and

::::::::::::
computational

:::::::::::
requirements

::::::
makes

::::
them

::
a

::::::
suitable

::::::
choice

:::
for

:::
this

:::::::
specific

:::::::
domain.

::::
The

::::
core

:::::::::
component

::
of

:::
an

:::::
LSTM

::
is
:::
the

:::::::
memory

::::
cell,

::::::
which

::::::
consists

:::
of

::::
these

::::::
gating

:::::::::::
mechanisms.

:::::::
Selective

::::
data

::::::::
retention

:::
and

::::::::::
elimination

:::
are

:::::::::
performed

::
as

:::
the

:::
data

::::::
passes

:::::::
through

::::
these

:::::
gates.

::::::
Based

::
on

:::
the

::::
task

::
of

::::
each

:::::
gate,

::::
they

:::
are

:::::::::
commonly

:::::
known

:::
as
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– Input gate: This gate receives the model features at the current time step and the hidden state predicted at the previous

time step as input. This gate combines these two inputs to create a candidate for storing new information. Mathematically,325

this operation is represented in Eq. 13

it = σg(Wi ×xt +Ri ×ht−1 + bi) (13)

– Forget gate: The input to the forget gate is the same as the input gate. This gate combines the information from input

features at the current time step with the hidden state from the previous time step and estimates what past information is

no longer relevant. This operation is presented in Eq.14330

ft = σg(Wf ×xt +Rf ×ht−1 + bf ) (14)

– Cell state: The cell state in an LSTM unit undergoes updates influenced by the output of the forget gate and the input gate,

which determine the significance of new and existing memory. A cell state is the actual memory of the LSTM, which

holds the information across many time steps. The cell state acts as the long-term memory of the unit. This operation is

represented through Eq. 15 and Eq. 16335

c′t = σg(Wc ×xt +Rc ×ht−1 + bc) (15)

ct = ft · ct−1 + it · c′t (16)

– Output gate: The output gate combines the cell state updated at the current time step with the previous hidden state,

creating the current hidden state, predicting the network’s output (hidden state) at the current time step. This gate acts as340

the short-term memory of the unit. Eq. 17 and Eq. 18 represents this operation mathematically

ot = σg(Wo ×xt +Ro ×ht−1 + bo) (17)

ht = ot ·σc(ct) (18)

In Eqs. 13 through 18, x represents the feature vector of the LSTM model, while h denotes the hidden state, a crucial output of345

the LSTM unit. The subscript t denotes the temporal position of the vectors, where t refers to the current time step, t−1 refers

to the previous step, and so forth. The symbols i, f , c, and o correspond to the input gate, forget gate, cell state, and output gate,

respectively. In each gate, W signifies the fixed weights, R denotes the recurrent weights, and b represents the bias term. The

σ symbol signifies the sigmoid activation function, ensuring non-linearity in the input-output transformation and constraining

the gate’s output within the interval [0,1]. The sigmoid activation function is given by Eq. 19350

σ(x) =
1

1+ e−x
(19)
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Figure 6. LSTM Architecture (
:::::
adopted

::::
from

::::
Ref.

:::::::::::::
(Calazone, 2022))

Multiple LSTM units can be stacked together to capture complex relationships in the data. A sketch of typical LSTM memory

cell and data flow is presented in the Fig 6, adopted from Ref. (Calazone, 2022).

Multi-task learning is an approach in machine learning in which a model leverages the information shared between different

output variables to learn the dependencies to predict multiple outputs using a set of common input parameters (Caruana,355

1997). The multi-task learning model has been found to deliver better by jointly learning various dependent parameters than by

learning them independently (Zhang and Yang, 2018). In multi-task learning method, various deep learning layers are stacked

together to efficiently learn patterns from the data. In standard machine learning approaches, only one output parameter is

learnt at once; however, multiple parameters equalling the total number of neurons in the final layer can be predicted using

a multi-task learning model. An overview of multi-task learning, their application, and detailed classification can be found360

in(Zhang and Yang, 2018).

5
::::::::::
Generation

::
of

:::::::::
Stochastic

:::::
Wind

:::::
Field

::::
and

::::
Data

:::::::::::
Preparation

::::
Wind

:::::::
turbines

::::
are

::::::::
subjected

::
to

::::::::
stochastic

::::::::
turbulent

:::::
wind

::::::
inflow

:::::
during

:::::
their

::::::::
operation,

::::::
which

::::::::::
significantly

:::::::::
influences

::::::
power

::::::::
generation

::::
and

::::::::
structural

::::::
loads.

::::::::::
Generating

:
a
:::::::
realistic

:::::
wind

::::::
inflow

::::::
pattern

::
is
::::::::

therefore
:::::::

crucial
:::
for

:::::::
ensuring

:::
the

:::::::
validity

:::
of

::::::::
simulation

:::::::
results.

::
In

::::
this

:::::
study,

::::::::
TurbSim

::::::::::::::
(Jonkman, 2009)

::
is

::::
used

:::
to

:::::::
generate

:::
the

:::::
wind

::::
field

::::
that

:::
acts

:::
on

:::
the

:::::
wind

:::::::
turbine.365

:::::::
TurbSim

:::::
serves

:::
as

:
a
::::::::
stochastic

::::
tool

::
to

:::::::
generate

::::::::
full-field

::::::::::::
representations

::
of

::::::::
turbulent

::::::
winds,

:::::
using

::::::::
statistical

::::::
models

::
to

:::::::
emulate

::::
wind

:::::::::
dynamics.

:::::::
TurbSim

:::::::
operates

:::
on

:
a
::::::::
statistical

::::::
model

::
to

:::::::
produce

::::
time

:::::
series

::::
data

:::::::::
comprising

:::::::::::::::
three-dimensional

:::::
wind

:::::
speed

::::::
vectors

:::::
across

:
a
:::::
fixed

::::::::::::::
two-dimensional

::::::
vertical

::::
grid.

::::
This

::::
grid

:::::::
remains

::::::::
stationary

::
in

:::::
space

::::::
during

::
the

::::::
inflow

:::::::::
generation

:::::::
process.

::
To

:::::::
generate

:::::
wind

:::::
fields

::::::
specific

::
to

:::::
wind

::::::
turbine

::::::::::::
configurations

:::
and

:::
site

::::::::::
conditions,

:::::::
TurbSim

::::::::
provides

::::::::::
customisable

::::::::::
parameters

15



Figure 7. Visual representation of TurbSim Grid

:::
that

:::::::::
encompass

:::::::
turbine

::::::::
geometry

:::
and

:::::::::::::
meteorological

:::::::
factors.

:::::
These

:::::::::
parameters

:::::::
control

:::
the

::::
size

:::
and

::::::::::
complexity

::
of

:::
the

:::::
wind370

::::::
dataset.

::::
Key

:::::::
TurbSim

::::::::::
parameters

:::::::
include:

1.
:::::::
Random

::::::
Seeds:

:::::::
TurbSim

::::
uses

:::
two

:::::::
random

:::::
seeds

::::::::::
(RandSeed1

:::
and

::::::::::
RandSeed2)

::
to

::::::
create

::::::
random

::::::
phases

:::
for

:::
the

:::::::
velocity

::::
time

:::::
series

:::
and

::::::
ensure

:::::::::::::
reproducibility.

:::::
These

:::::
seeds

::::::::
generate

::::::
unique

::::::::
stochastic

::::::::::
realisations

:::
for

::::::::
specified

::::::::::::
environmental

:::::::::
conditions.

:::::::
Further,

:::::
these

:::::
seeds

::::
can

:::
be

:::::
varied

:::
at

:::::::
constant

:::::::::::::
meteorological

::::::::::
parameters

::
to

:::::::
produce

:::::::
various

:::::::::
stochastic

::::::
patterns

::::
with

::::::
similar

::::::::
statistical

:::::::::
properties.375

2.
::::
Grid

::::::::::
Dimensions:

:::
The

::::::::::
parameters

:::::::::
GridHeight

:::
and

:::::::::
GridWidth

::::::
define

::
the

:::::::
vertical

:::
and

:::::::::
horizontal

:::::
extent

::
of

:::
the

:::::::::::
computational

:::::::
domain,

::::::
while

:::::::::
NumGridY

:::
and

::::::::::
NumGridZ

::::::
govern

:::
the

::::::
spatial

:::::::::
resolution.

::::
The

:::
hub

::::::
height

:::::::
(HubHt)

::::::
serves

::
as

::
a

::::::::
reference

::::
point

:::
for

:::
the

:::::::::
placement

::
of

:::
the

::::
grid.

::
A

::::::::::::
representative

:::::
image

::
of
:::

the
::::::::

TurbSim
::::
grid

::::::::::::
encompassing

:::
the

::::
wind

::::::
turbine

:::::
rotor

::
is

::::::::
presented

::
in

:::
Fig.

::
7

3.
:::::::::::::
Meteorological

::::::::::
Conditions:

:::
The

:::::::
variable

::::::::::
TurbModel

::::::
defines

:::
the

:::::::
spectral

::::::
model

::::
used

:::
for

::::::::::
generating

:::
the

::::
wind

::::::
speed380

::::
field.

::::
Key

::::::::
statistical

:::::::::
properties

:::::::
include

:::::
mean

:::::
wind

:::::
speed

::::::
(Uref ),

::::::::::
turbulence

:::::::
intensity

::::::::::
(IECturbc),

:::::::
surface

:::::::::
roughness

:::::
length

::::::
(Z0),

:::
and

:::::
power

::::
law

::::::::
exponent

:::::::
(PLExp).

:::
The

::::::::::
IEA-15MW

::::::::
reference

:::::
wind

::::::
turbine,

:::::::::::
characterised

:::
by

:
a
:::::
240m

::::
rotor

::::::::
diameter

:::
and

:
a
:::::
150m

::::
hub

::::::
height,

::
is

::::::::
modelled

::::
using

::
a

:::::::::
rectangular

::::::
domain

:::::::::
measuring

:::::
285m

::
x

:::::
285m

::::
with

:
a
:::
25

:
x
:::
25

:::::
spatial

::::
grid

::::::
layout.

::
A

:::::
single

:::::::::
10-minute

::::
wind

:::::
field,

::::
with

:
a
::::::::
temporal

:::::::::::
discretisation

::
of

::::
0.05

:::::::
seconds,

::::::
yields

:::
625

:::::::
features

:::::
with

::::::
12,000

::::::::::
observations

:::::
each,

::::::::
resulting

::
in

:
a
::::
very

:::::::::::::::
high-dimensional

:::::
input385

:::::
space.

::::
The

::::::::::::
dimensionality

::
of

:::
the

:::::
input

:::::
space

::
is

::::::
further

::::::::::::
compounded,

::
as

:::::::
multiple

:::::
wind

:::::
fields

:::
are

:::::::
required

::
to

::::
train

::
a
::::::::
surrogate

::::::
model.

:::
An

::::::
LSTM

::::::
model

::::
may

::::::::
encounter

:::::::::
challenges,

::::
such

::
as

:::::::::
overfitting

::::
and

::::::::
increased

:::::::::::
computational

::::
and

:::::::
memory

:::::::::::
requirements
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::::
when

:::::::
dealing

::::
with

::::
such

::::::::::::::
high-dimensional

:::::
input

::::
data.

:::
To

:::::::
mitigate

::::
these

::::::
issues,

:::::::::::::
dimensionality

::::::::
reduction

:::::::::
techniques

:::
are

::::
used

::
to

:::::
extract

::::::::
essential

::::::::::
information

::::
from

:::
the

:::::
input

:::::
space

:::::
while

:::::::::
minimising

:::
the

:::::::
number

::
of

::::::::
variables.

5.1 Selection of Input Variables390

A surrogate model learns the relationship between input and output purely based on the data passed during the training process,

therefore the generation of a representative dataset covering the various possible scenarios that can be encountered on-site is

an important step in the model development. To this end, selection of wind field parameters and their distributions is crucial,

as these define the conditions for which the surrogate model is applicable. While the surrogate model can extrapolate results

beyond the training dataset bounds, its prediction accuracy in those regions is uncertain. This study focuses on onshore wind395

turbine performing in normal operating conditions. This load case is chosen as it significantly influence fatigue loading and

power production and analyzing these frequent conditions for statistically significant assessment requires running a large

number of simulations, which leads to significant computational costs. Developing a surrogate model for these conditions

allows for a computationally efficient fatigue and energy yield assessment calculations.

The inflow wind patterns encountered during operation are impacted by a multitude of parameters, however modelling400

the impact of all these parameters is computationally prohibitive. For the development of surrogate model, it is important to

identify a set of parameters which significantly impact the target variables. researchers have established that the turbulence

intensity (TI), mean wind speed (U), and power law exponent (α) have the highest impact on wind turbine loads under normal

operating conditions. Dimitrov et al. (2018) performed a sensitivity analysis of environmental factors with focus on fatigue

and extreme loading, and found that mean wind speed and turbulence intensity have the maximum impact while parameters405

like wind direction, turbulence length scale, and air density exhibit minimal influence within the parameter bounds considered

in their analysis. Further, as this study aims to accurately model the blade response, the inclusion of the power law exponent

(α) is particularly important as wind shear induces cyclic changes in the wind velocity experienced by the rotating blades,

significantly influencing blade root loads. To this end, the TI, U and α are selected for generating the wind fields. The parameter

bounds used for generating the wind speed data are presented in Table 1. Using these parameter bounds along with the Sobol410

sampling method, a total of 50 wind speeds ranging from cut-in to cut-out wind speeds are generated. For each wind speed

multiple TI and α values are generated.

:::
The

:::::::::::
development

:::
of

:
a
::::::::
surrogate

::::::
model

:::::
relies

:::
on

:::
the

:::::::::
generation

:::
of

:
a
::::::::::::

representative
:::::::

dataset
:::::::
covering

:::::::
various

::::::::::
operational

::::::::
scenarios.

:::::
Since

:::
the

:::::
model

::::::
learns

:::
the

::::::::::
relationship

:::::::
between

:::::
input

:::
and

::::::
output

:::::
purely

:::::
based

:::
on

:::
the

:::::::
training

::::
data,

:::
the

::::::::
selection

::
of

::::
wind

::::
field

:::::::::
parameters

::::
and

::::
their

::::::::::
distributions

::
is
:::::::
critical.

::::::::
Although

:::
the

::::::::
surrogate

:::::
model

:::
can

::::::::::
extrapolate

::::::
beyond

:::
the

:::::::
training

::::
data415

::::::
bounds,

:::
its

::::::::
prediction

::::::::
accuracy

::
in

::::
these

::::::
regions

::
is

::::::::
uncertain

:::::::::::::::::::::::::::::::::::::::::::::
(Chen et al., 2018; Chen et al., 2009; Chen et al., 2022).

::::
This

:::::
study

:::::::
focusses

::
on

:::::::
onshore

:::::
wind

::::::
turbines

::::::::
operating

:::::
under

:::::::
normal

:::::::::
conditions,

:::::
which

:::::::::::
significantly

:::::::
influence

::::::
fatigue

:::::::
loading

:::
and

::::::
power

:::::::::
production.

::::
The

:::::
inflow

:::::
wind

::::::
patterns

:::
are

:::::::::
influenced

:::
by

:::::::
multiple

:::::::::
parameters;

::::::::
however,

:::::::::
modelling

::
all

::
of

:::::
them

:
is
::::::::::::::
computationally

:::::::::
prohibitive.

:::::::::
Sensitivity

::::::::
analyses,

::::
such

::
as

:::::
those

:::::::::
conducted

::
by

:::::::::::::::::::
Dimitrov et al. (2018),

::::
have

::::::
shown

:::
that

:::::::::
turbulence

::::::::
intensity

::::
(TI),

::::
mean

:::::
wind

:::::
speed

::::
(U),

::::
and

:::::
power

::::
law

::::::::
exponent

:::
(α)

::::
have

::::
the

::::::
greatest

::::::
impact

:::
on

:::::
wind

::::::
turbine

:::::
loads

:::::
under

:::::::
normal

::::::::
operating420

17



Parameter Lower bound Upper bound

Mean wind speed
::::
(m/s) 3 25

Turbulence intensity
:::
(%) 0.025

:::: :::::::::::::::::::::::

0.18
U

(
6.8+0.75 ·U +3

(
10
U

)2)
Shear exponent 0 αref,UB +0.4

(
R
z

)(
Umax

U

)
Table 1. Environmental parameters used and their limits

:::::::::
conditions.

:::::
These

::::::::::
parameters

:::
are

::::::::
therefore

::::::::
selected

:::
for

:::::::::
generating

::::
the

::::
wind

::::::
fields.

::::
The

:::::::
bounds

:::
for

:::::
these

:::::::::
parameters

::::
are

::::::::
presented

::
in

:::::
Table

::
1.

:::
The

::::::
spatial

::::::::::
correlations,

::::::::
temporal

:::::::::
variability,

:::
and

:::::::::
turbulence

:::::::
inherent

::
in

::::
wind

:::::
make

::
it

:
a
::::::::::::
fundamentally

:::::::
random

:::::::
process.

::::
This

::::::::::
randomness

:::::
stems

::::
from

:::::::
aleatory

::::::::::
uncertainty

::::
due

::
to

:::
the

:::::::
inherent

:::::::::
variability

::
of

:::::
wind

:::::
speed

::::
and

::::::::
epistemic

::::::::::
uncertainty

::::::
arising

::::
from

:::::::::
limitations

::
to

::::::
model

::
or

:::::::
measure

:::
all

:::::
factors

::::::::::
influencing

:::::
wind

::::::::
behaviour.

:::
To

::::
train

::
a

::::::::
surrogate

:::::
model

:::::::
capable

::
of

:::::::::
accurately425

::::::::
predicting

:::::
wind

::::::
turbine

:::::::::
responses

:::::
under

:::::
these

::::::::::
uncertainties

:::::::::::
necessitates

:::
the

:::::::::
generation

::
of

:::::::
multiple

::::::::::
realizations

:::::::::::
(ensembles)

::
for

:::::
each

:::
set

::
of

::::::::::::
environmental

::::::::::
parameters.

::::::::::
Quantifying

:::::
these

:::::::::::
uncertainties

::
is

::::::::
essential

:::
for

::::::
making

:::::::
realistic

::::
risk

:::::::::::
assessments.

::::::::
However,

:::::::::
identifying

:::
the

::::::::
minimum

::::::
number

:::
of

::::
seeds

:::::::
required

:::
so

:::
that

:::
the

::::::::
surrogate

:::::
model

::::
can

::::::::
efficiently

:::::::
identify

:::
the

:::::::::
underlying

::::::
patterns

::
in
:::::
these

:::::
wind

:::::
fields

:
is
::
a
::::::
crucial

:::::
factor

:::::::::
governing

:::
the

::::::
amount

::
of

::::
data

::::::::
required

::
for

:::::::
training

:::::
these

:::::::
models.

::
In

:
a
::::::::
different

:::::::::
application,

::::
the

::::
IEC

:::::::::
guidelines

::::::::::
(IEC, 2019)

::::::::::
recommend

::::::::::
considering

:::
six

:::::::
random

::::::::::
realisations

:::
for

::::
each

:::::
mean

:::::
wind

:::::
speed

:::
to430

:::::::
calculate

::::::
fatigue

:::::::
damage,

::::::
which

::::::
implies

::::
that

:::
six

:::::
seeds

:::
can

:::::::::
effectively

::::::
capture

:::
the

:::::::::
variability

::
in

:::::
wind

:::::
fields.

::
In

::::::::
addition,

:::::
these

::::::::
guidelines

::::::::::
recommend

:::::::
keeping

::::::::::::
environmental

:::::::::
conditions

::::::::
constant

:::::
within

::
a
::::
wind

::::::
speed

::::
limit.

:::::
This

::::::::
approach,

:::::::::
combined

::::
with

::
the

::::::::
inherent

::::::::
variability

:::
in

::
TI

::::
and

::
α,

:::::
leads

::
to

::
a

::::
large

:::::::
number

::
of

::::::::
required

::::::::::
simulations.

::
A

:::::
study

:::
by

::::::::::::::::
Hübler et al. (2018)

::::::
shows

:::
that

::::::::
assuming

::::::::
constant

::::::::::::
environmental

:::::::::
conditions

::::::
within

:
a
:::::

wind
:::::
speed

::::
bin

::::
does

:::
not

:::::
fully

::::::
capture

:::
the

::::::::::
uncertainty

::
in
:::::::

fatigue

::::::
damage

::::
and

::::::::::
recommends

:::::::::
scattering

:::::::::::
environmental

:::::::::
conditions

::::::
within

:
a
:::
bin

:::
for

:
a
:::::
more

:::::::::::::
comprehensive

:::::::::
assessment.

:::
In

:::
this

:::::
study435

:
a
::::::::::
combination

::
of

:::::
these

::::::::
sampling

:::::::::
approaches

::
is

::::
used

::
to

:::::::
simulate

:::
the

:::::
wind

::::
fields

:::::::
required

::
to
:::::
train

::
the

::::::::
surrogate

::::::
model.

:::::::::
Scattering

:::::::::::
environmental

:::::::::
conditions

::::::
within

:
a
:::::
wind

:::::
speed

:::
bin

::::
also

::::
acts

::
as

:
a
::::::
crucial

::::
data

::::::::::::
augmentation

::::::::
technique

:::
for

:::
the

::::::::
surrogate

::::::
model,

:::::
which

:::::::
prevents

:::::::::
overfitting

::
to

:
a
::::::
limited

:::
set

::
of

::::
wind

:::::::
patterns

:::
and

:::::::::::
significantly

::::::::
improves

::::::::::::
generalisation.

::
To

::::
this

:::
end,

::
in

::::
this

::::
study

::
a

::::
total

::
of

::
16

::::::::::
realisations

:::
are

::::::::
generated

:::
for

::::
each

::::
mean

:::::
wind

:::::
speed

::
U

::
in

:::
this

:::::
study,

::::::::
assuming

::
a

::::::
random

:::::::::::
combination

::
of

::::::::::
RandSeed1,

::
TI,

::::
and

::
α.

::::
This

::::::
ensures

::
a
::::::
broader

::::::::
sampling

::
of

:::::
wind

:::::::
patterns

:::::
while

:::::::::
considering

::::::::::::
computational

::::::::::
constraints.

:::
As

::::
such,

:::::
wind

:::::
fields440

::
are

:::::::::
generated

:::::
using

:::::::
TurbSim

::::
with

:::
the

::::::::
following

::::
key

:::::::
settings:

1. Spectral Model: Kaimal spectral model (IECKAI)

2. Turbulence Model: Normal Turbulence Model (NTM)

3. Grid Size: 25 x 25 grid with a spatial extent of 285m x 285m

4. Temporal discretisation: 0.05 seconds445
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:::
The

::::::::
response

::
of

:::
the

::::
wind

::::::
turbine

:::
for

:::::
these

::::::
loading

:::::::::
conditions

::
is

::::::::
simulated

:::::
using

:::
the

::::::::
numerical

::::::
model

::::::::
presented

::
in

::::::
Section

::
2

::::
with

:
a
::::
time

::::
step

::
of

:::::
0.005

:::::::
seconds

::
to

::::::
ensure

::::::::
accuracy

:::
and

:::::::::
numerical

:::::::
stability.

::::
The

:::::::
response

::
is

::::::::
simulated

:::
for

::::
800

:::::::
seconds,

::::
and

::
the

::::
data

:::
for

:::
the

::::
first

::::
200

:::::::
seconds

::
is

::::::::
excluded

::::
from

:::
the

:::::::
analysis

::
to
:::::::::

eliminate
:::
the

:::::
effect

::
of

:::::::::
transience.

::::
The

:::::::
ROSCO

:::::::::
controller

::::::::::::::::::::::
(Abbas et al., 2021, 2022)

::
is

::::
used

::
to

::::::::
optimise

:::
the

:::::::::::
performance

::
of

:::
the

:::::
wind

::::::
turbine

:::
by

::::::::
regulating

:::
the

:::::
rotor

:::::
speed

::::
and

:::::
blade

::::
pitch

::::::
angle.

::::
The

::::::::
structural

:::::::
response

::
is
::::
then

::::::::::::
downsampled

::
to

::::
align

::::
with

:::
the

::::::::
temporal

::::::::
resolution

:::
of

:::
the

::::
wind

::::
field

::::
data.450

:::
The

::::
high

:::::::::::::
dimensionality

::
of

:::
the

:::::
wind

::::
field

::::
data

::
(a

::
25

::
x
:::
25

:::
grid

:::::
over

:::
600

:::::::
seconds

::::::
results

::
in

:::
an

::::
input

::::::
matrix

::
of

:::::::::::
12000×625)

::::::::::
underscores

:::
the

::::::::::
importance

::
of

:::::::::::::
dimensionality

::::::::
reduction

::::::::::
techniques.

::::
The

:::::
PCA

::::
and

::::
DCT

::::::::
methods

:::::::::
transform

:
a
:::::

wind
:::::

field

:::
grid

::::
into

::::::::
different

:::::::::::::
representations,

:::::::::
providing

:
a
::::::::
different

:::::
basis

:::
for

::::::::
capturing

:::
the

:::::::::::::
spatio-temporal

:::::::::
variations.

:::::::::
However,

:::::
these

:::::::::
techniques

:::::
alone

:::
do

:::
not

::::::
reduce

::::
the

:::::::
number

::
of

::::::::
features.

:::
To

:::::::
address

::::
this,

:::
the

:::::::::
Recursive

:::::::
Feature

::::::::
Addition

::::::
(RFA)

:::::::
method

:::::::::::::::::::::::::::::::::::::::::::::
(Guyon and Elisseeff, 2003; Guyon and Elisseeff, 2002)

::
is

::::
used

::
to
::::::

select
::
an

:::::::
optimal

::::::
subset

::
of

:::::::
features.

:::::
RFA

::::::::
iteratively

:::::
adds455

::::::
features

::::::
based

::
on

:::::
their

::::::::
relevance

::
to

:::
the

::::::
target

:::::::
variable,

:::::::::
evaluated

:::::
using

::::::
metrics

:::::
such

::
as

::::
root

:::::
mean

:::::::
squared

:::::
error

::::::::
(RMSE).

::::
This

::::::
process

:::::::::
continues

::::
until

::::::
adding

:::::
extra

:::::::
features

:::
no

::::::
longer

::::::::
improves

::::::
model

:::::::::::
performance.

::
A
:::::::

detailed
::::::::

analysis
::
of

:::::::
various

:::::::::
approaches

:::
for

::::::
feature

:::::::::
selection,

::::
their

::::::::::::
computational

:::::
cost,

:::
and

::::::::
resulting

::::::::
accuracy

:::
for

::
an

::::::
LSTM

::::::
model

::
is

::::::::
presented

:::
in

::::
Ref.

::::::::::::::::::::::::::::
(Baisthakur and Fitzgerald, 2024b).

:::
By

::::::::::
combining

:::::
PCA,

::::
DCT,

::::
and

:::::
RFA,

:::
this

:::::
study

::::::::
identifies

:::
the

:::::
most

::::::::
influential

::::::::::
parameters

::
for

:::::::
training

:::
the

::::::
LSTM

::::::
model,

:::::::
ensuring

::::::::::::
computational

::::::::
efficiency

::::
and

:::::
robust

:::::::::::
performance.460

6 Selecting the output parameter

The versatility of a surrogate model and its ability to provide comprehensive information depend on its output parameters.

Within the existing literature, a variety of surrogate models have been formulated to predict quantities associated with load

components, such as fatigue damage equivalent load and reactions in tower and blade structures (Haghi and Crawford, 2023;

Schär et al., 2024; de N Santos et al., 2023; Bai et al., 2023). However, these load components are derived from responses at465

particular degrees of freedom (DOFs), and the extrapolation from DOF responses to load reactions remains straightforward,

thus not necessitating substantial computational resources. In this specific context, the model developed in this study is aimed

at predicting the dynamic responses of blade deformation and individual DOF which can be subsequently utilised to compute

the loads and reactions. Moreover, to obtain results that are physically quantifiable, an additional LSTM model has been

developed to predict the blade’s in-plane and out-of-plane deformation responses. This selection of target variables ensures470

that the surrogate model maintains sufficient versatility to calculate multiple derived quantities.

In this approach, multi-task learning streamlines the modelling process and enhances the model’s capacity to capture com-

plex interactions and dependencies within the system by exploiting shared information across related outputs. In the con-

text of wind turbine blade analysis, the responses of different DOFs are often governed by common load elements acting

on the blade structure. By jointly modelling these responses within a multi-task learning framework, the model can leverage475

shared features and patterns, leading to improved generalisation and predictive performance.
::
For

::::::::
example,

:::
the

::::::::
numerical

::::::
model

::::::::
presented

::
in

::::::
Section

::
2

::::
uses

:::
the

::::::
normal

:::::
mode

:::::::::
summation

:::::::
method

::
to

:::::
model

:::
the

:::::
blade

:::::::::::
deformation.

::::
This

::::::::
approach

:::::::::::
characterises

::
the

:::::
blade

::::::::
response

:::::
using

:::::
three

:::::
DOFs:

:::::::
qB1F1,

::::::
qB1F2,

:::
and

::::::
qB1E1::::::

which
:::::::
represent

::::
the

:::::
modal

:::::::::
coordinate

::
of

:::::
blade

:::::::::::
deformation
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:::::::::::
corresponding

::
to
:::
the

::::
first

:::::::
bending

:::::
mode

::
in

:::::::
flapwise

::::::::
direction,

::::::
second

:::::::
bending

:::::
mode

::
in

:::::::
flapwise

::::::::
direction

:::
and

:::
the

::::
first

:::::::
bending

::::
mode

:::
in

:::::::
edgewise

:::::::::
direction.

:::::
Using

:::
this

:::::::
method,

:::
the

:::::
blade

::::::::
deflection

::
at
::::
any

::::
point

:::::::
located

::
at

:
a
:::::::
distance

::
x

::::
from

:::
the

:::::
blade

::::
root

::
at480

:::
any

::::
time

:::::::
instance

:
t
::
is

:::::
given

::
by

::::
Eq.

:::
20,

:::::
where

::
ϕ

::::::::
represents

:::
the

::::::::::::
corresponding

:::::
mode

::::::
shape.

q(x,t) = ϕB1F1(x)qB1F1(t)+ϕB1F2(x)qB1F2(t)+ϕB1E1(x)qB1E1(t)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(20)

::::
This

::::::::::
deformation

::::::::
response

:::
can

:::
be

::::::::
projected

::::
into

::::::
global

::::::::::
coordinates

::
to

::::::::
compute

:::
the

:::::
blade

:::::::
in-plane

:::::
(qIP )

::::
and

:::::::::::
out-of-plane

::::::::::
deformation

:::::
(qOP )

:::::
using

:::
the

::::::::
approach

::::::::
presented

::
in

::::
Ref.

::::::::::::::
(Jonkman, 2003).

::::
The

::::::::::
multi-output

:::::::
learning

::::::::
paradigm

::
is
:::::::::
employed

::
to

::::::
develop

:::
an

::::::
LSTM

:::::
model

:::
to

::::::
predict

:::
the

::::
time

::::::
history

:::::::::
responses

::
of

:::::
these

::::
three

::::::
DOFs.

:::::::::
Therefore,

:::
the

::::::
LSTM

::::::
model

::::::
capable

:::
of485

::::::::
predicting

::::::::
response

::
at

::::
these

:::::
three

:::::
DOFs

:::
can

:::
be

::::
used

::
to

:::::::
compute

:::::::
multiple

:::::::
derived

::::::::
quantities

::::
such

::
as

:::::
loads,

:::::::
reaction

::::
and

::::::
fatigue

::::::
damage

:::::::::
equivalent

::::
load

:::::::
without

::::
much

::::::::::::
computational

:::::::::
overhead.

::
In

:::::::
addition,

:::
the

::::::
model

::
is

:::
also

::::::::
extended

::
to

::::::
predict

:::::::
in-plane

::::
and

::::::::::
out-of-plane

:::::
blade

:::::::::::
deformations

::
as

:::::
these

::::::::
quantities

:::::::
provide

:::::::::
physically

:::::::::
measurable

::::::::
response

:::
for

:::::::::
application

::
in
::::::
virtual

:::::::
sensing

:::
and

:::::
model

:::::::::
validation

::::::
through

:::::::::::
experimental

:::::::::::::
measurements.

:::
The

::::::
LSTM

::::::
model

::::::::::
development

::::
and

::::::::::::
corresponding

:::::
results

:::
for

:::::
these

:::::
target

:::::::
variables

::
is

::::::::
presented

::
in

:::
the

::::
next

:::::::
section.490

7 Numerical Results

::
In

:::
this

:::::::
section,

:::::::::
numerical

::::::
results

:::
are

::::::::
presented

::
to

:::::::::::
demonstrate

:::
the

::::::::::
performance

:::
of

::::::
LSTM

::::::
models

::
in

:::::::::
predicting

:::
the

::::::::
dynamic

:::::::
response

::
of

:::::
wind

::::::
turbine

::::::
blades

:::::
under

::::::::
turbulent

::::
wind

::::::::::
conditions.

::::
The

:::::::::::
methodology

::::::
begins

::::
with

:::
the

:::::::::
generation

::
of

:::::::::
stochastic

::::
wind

:::::
fields

:::::
using

:::::::::
TurbSim,

::::::::
following

:::
the

:::::::::
parameter

:::::::
bounds

::::::::
presented

:::
in

:::::
Table

::
1

:::
and

::::
the

::::::::
sampling

:::::::
strategy

::::::::
described

:::
in

::::::
Section

::
5.

:::::
These

:::::
wind

:::::
fields

::::
serve

::
as

:::::
input

::
to

:::
the

::::::::
numerical

::::::
model

::
of

:::
the

::::::
15MW

::::
wind

:::::::
turbine

:::::::
(Section

::
2),

::::::
which

::::::::
generates

:::
the495

::::::
training

::::
data

:::
for

:::
the

::::::
LSTM

::::::
model.

::
To

:::::::
address

:::
the

:::::::::
challenges

:::::
posed

:::
by

::::::::::::::
high-dimensional

:::::
input

::::
data,

:::::
while

:::::::
training

:::
the

::::::
LSTM

::::::
model,

:::::
PCA

:::
and

:::::
DCT

:::
are

::::
used

::
to

::::::
capture

:::
the

:::::::::
governing

:::::
spatial

::::
and

:::::::
temporal

::::::
trends

::
in

:::
the

::::
wind

:::::
field.

:::
The

::::
RFA

:::::::
method

::
is

::::
then

::::
used

::
to

:::::
select

::
an

:::::::
optimal

::
set

:::
of

::::
input

:::::::
features

:::
for

:::
the

::::::
LSTM

::::::
model.

:::
The

::::::
LSTM

::::::
models

:::::::::
developed

:::::
using

::::
wind

::::::
speed

:::
data

:::::
alone

:::::
were

::::
able

::
to

::::::
capture

:::
the

:::::::::::
time-varying

:::::
mean

::::::::
response;

::::::::
however,

:::
they

:::::::::
struggled

::
to

::::::
model

::::::::::
fluctuations

::::::
around

:::
the

::::::
mean.

::::
This

:::::::::
limitation

:::::
arises

:::::::
because

:::
the

:::::
wind

::::::
turbine

::::::::
response

::
is

:::::::
heavily500

::::::::
influenced

:::
by

:::
the

::::::::
controller

:::::::::
algorithm,

::::::
which

::::::::
regulates

:::
the

::::
rotor

::::::
speed

:::
and

:::::
blade

:::::
pitch

:::::
angle,

:::::::
thereby

::::::::
governing

::::
the

::::::
system

::::::::
dynamics.

:::::::::
Predicting

:::
the

::::::::
response

:::::
using

::::
only

:::::
wind

:::::
speed

::::
data

::::::
would

::::::
require

:::
an

:::::::::::
impractically

:::::
large

::::
data

:::
set

::
to

:::::::
capture

:::
the

:::::::::
underlying

::::::::::
dependence

:::
on

::::::::
controller

:::::::::
dynamics.

:::
To

:::::::
address

::::
this,

::
a

:::::::::
multi-stage

:::::::::
modelling

::::::::
approach

::
is
::::::::::::

implemented
::
in

::::
this

:::::
study.

::
In

:::
the

:::
first

:::::
stage,

::::::
LSTM

::::::
models

:::
are

:::::::::
developed

::
to

::::::
predict

::
the

:::::::::
controller

:::::::
response

:::::
(rotor

:::::
speed

:::
and

:::::
blade

:::::
pitch

:::::
angle)

:::::
using

:::::::::::
reduced-order

:::::::::::::
representations

::
of

:::
the

:::::
wind

::::
field

::
as

::::::
input.

::
In

:::
the

::::::
second

::::::
stage,

:::
the

::::::::
predicted

::::::
control

:::::::::
parameters

:::::
from

:::
the

::::
first505

:::::
LSTM

::::::
model

:::
are

::::::::
combined

::::
with

:::
the

::::
PCA

::::
and

::::
DCT

::::::::::
components

::
to

::::
train

:::::::
another

:::::
LSTM

::::::
model

::
to

::::::
predict

:::
the

:::::
blade

::::::::::
deformation

:::::::
response.

::
A
::::::::::
conceptual

:::::::::
framework

:::
for

:::
this

::::::::
approach

::
is

::::::::
presented

::
in

::::::
Figure

::
8.

::::
This

::::::::
approach

::::::
divides

:::
the

:::::::
problem

::::
into

:::::::
smaller,

::::
more

::::::::::
manageable

::::::::
sub-tasks,

:::::::::
consistent

::::
with

:::
the

::::::
physics

::
of

:::
the

::::::::
problem.

:::
The

:::::
direct

:::::::
physical

::::::::::
relationship

:::::::
between

:::
the

:::::
inputs

::::
and

::::::
outputs

::
at

::::
each

:::::::
sub-task

:::::::
reduces

::::
data

:::::::::::
requirements

::::
and

:::::
results

::
in
::

a
:::::
more

:::::::
efficient

::::::::
surrogate

::::::
model.

::::
The

::::::::::
performance

::
of
:::::

each

:::::
LSTM

::::::
model,

:::::
along

::::
with

::::
their

:::::::
training

:::
and

::::::
results,

::
is

::::::::
discussed

::
in

:::
the

::::
next

:::::::
section.

::::
Wind

::::::
turbine

:::::::::
behaviour

:::::
differs

:::::::::::
significantly510
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Figure 8. Multi-stage modelling approach for predicting blade response

:::::::
between

:::
the

::::::::::
above-rated

:::
and

::::::::::
below-rated

:::::::
regions

:::
due

::
to
:::::::

distinct
::::::::
controller

:::::::::
principles.

::::::
While

:::
the

::::::::
presented

:::::::::::
methodology

::::
can

::
be

::::::
applied

:::::::::
separately

:::
to

::::
each

::::::
region

::
to

:::::::
develop

:::::::::
individual

:::::::
models,

:::
the

:::::::
features

:::
and

::::::
model

::::::::::
architecture

::::
may

:::::
vary.

:::
To

:::::
avoid

:::::::::
information

::::::::
overload,

::::
this

::::::
section

:::::::
focusses

::::::::::
exclusively

::
on

::::::
results

:::
for

:::
the

::::::::::
above-rated

::::::::
condition.

7.1 Predicting Control Parameters

This section presents the methodology used to develop the LSTM model to predict control parameters. The numerical results515

are presented, and the model performance is comprehensively analysed. The control parameters i.e., rotor speed and blade pitch

angle are governed by the properties of the inflow wind. These parameters are tuned using a specially designed controller to

optimise the performance of a wind turbine. The controller used to regularise the rotor speed aims at achieving higher efficiency

in power production in below-rated wind speeds, whereas the blade pitch angle controller aims to maintain constant power

production for above-rated wind speeds. The controller algorithm introduces additional uncertainty in the response of the wind520

turbine. In this study, the controller algorithm is treated as a black box to develop a surrogate model. Here, an LSTM model is

developed to predict the controller response as a function of wind speed data processed through PCA and DCT algorithms. In

preliminary analysis, a multi-task learning model was used to simultaneously predict the blade pitch angle and rotor speed as a

function of PCA and DCT features. However, this approach failed to model both parameters simultaneously with the required

level of accuracy. Alternatively, individual LTSM models developed to predict one parameter at a time were found to deliver525

better results. Based on these observations, the blade pitch angle and rotor speed are modelled separately through individual

LSTM models. In addition, it was observed that the rotor speed can be better modelled through PCA features, and the blade

pitch angle dynamics is captured more accurately using DCT features. The following sections present the model architecture

and its performance in predicting the individual controller response.

21



Figure 9. LSTM Model architecture for predicting rotor speed

7.1.1 Predicting rotor speed response using PCA530

In the preliminary analysis, the PCA approach was found to be more effective in modelling the rotor speed response. Sup-

plementing the principal component with the average rotor wind speed was found to further improve the model predictions.

This section presents the development of the LSTM model trained using principal components of wind speed data and the

rotor-averaged wind speed as input features. The model architecture is shown in Fig. 9. In this deep learning model, the se-

quence input layer inputs sequential data to the network, where the size of the sequence layer is equal to the number of input535

features. The LSTM layer is used to learn long-term dependencies between time steps and extract temporal patterns from

sequential data. This layer performs additive interactions, which can help improve gradient flow over long sequences during

training (Hochreiter and Schmidhuber, 1997). Since the model should generalise well over a wide range of wind speeds, a

normalisation layer was used, which normalises a minibatch of data across all channels for each observation independently.

The use of the normalisation layer after the learning layers speeds up the training and improves the performance of the model.540

A fully connected layer was then used to combine the temporal patterns and transform these extracted features. Although a

fully connected layer extracts the learnt information from the LSTM layers, it also increases the risk of overfitting. To avoid

this, a dropout layer was added to the model. A dropout layer randomly sets the input elements to zero with a given probability,

which helps to avoid overfitting the training data and improves the generalisation ability of the network. In this architecture,

a constant dropout probability of 10% was assumed for each dropout layer. The first fully connected layer was used to ag-545

gregate the information from the LSTM layer, while the second fully connected layer was used to represent the actual output

parameters. The final fully connected layer in the model matches the number of target variables. The final fully connected

layer in the LSTM model developed to predict rotor speed has only one neuron. The number of neurons in the final layer of a

multi-task learning model is always greater than one. This model was trained using the Adam optimisation algorithm (Kingma

and Ba, 2014). Initially, the first five principal components, which cumulatively capture 50% of the variance in the wind speed550
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Hyperparameter Parameter range Optimised values

LSTM layer - 1 [1 - 100] 73
::
81

Fully connected layer - 1 [1-50]
:::::
[1-100] 50

::
64

Table 2. Summary of hyperparameter exploration for predicting controller response
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Figure 10. RMSE in rotor speed prediction using different principal components

data, were selected to capture the dominant patterns in the wind speed data. This feature set was further filtered using RFA

by iteratively adding features and evaluating the performance of the model to find the optimal feature set that yields the best

results. During the RFA process, the rotor averaged wind speed was considered as a fixed element in the input set. Table 2

summarises the range of hyperparameters used for exploration in this study. The hyperparameters are tuned using the Bayesian

optimisation technique, the optimised parameter values are also presented in Table 2.555

Fig. 10 shows the RMSE obtained from validation data using different principal components as input features. This figure

shows that the LSTM model developed using the first principal component combined with the rotor average wind speed

corresponds to the lowest prediction error in the validation data set. Adding more input features using the RFA method did not

increase the accuracy of the model predictions. To this end, the first principal component of the spatio-temporal wind along

with rotor averaged wind speed is used as input features to predict the rotor speed. A visual representation of the predictions560

of the LSTM model to the actual rotor speed across different wind fields is presented in Fig. 11, demonstrating the accuracy

of the model. The overall efficiency of this approach can be contextualised by the fact that the proposed approach reduces 625

input features to only two variables capable of capturing the overall dynamics. This underscores the importance of PCA in

simplifying complex datasets without sacrificing crucial information.
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Figure 11. Rotor speed predictions of LSTM model using PCA feature

7.1.2 Predicting blade pitch response using DCT565

The LSTM model used to predict the blade pitch response shares the same architecture as shown in Fig. 9. Wind speed

data, transformed using DCT, served as input and RFA was used to determine the most informative subset of DCT features

for optimal prediction accuracy. Similarly to the rotor speed prediction model, the rotor-averaged wind speed acts as a fixed

element of the input feature set during the RFA process of the blade pitch prediction model. In this model, the wind speed grid

at each time step was treated as an image. 2D DCT is applied to this image to decompose it into different spatial frequency570

components. The process of modelling wind speed data as an image and processing it through 2D DCT inherently distributes

relevant information across the off-diagonal terms of the output matrix. As such, the off-diagonal terms in the DCT matrix share

mutual information about spatial frequencies in the horizontal and vertical directions. To capture this information, the DCT

components were grouped to form feature subsets, each representing an incremental higher frequency subset. A mathematical

definition of a feature subset zi is given by Eq. 21575

zi = Zn×n(1 : i,1 : i)−Zn×n(1 : i− 1,1 : i− 1)∀1≤ i≤ n (21)

:
A
::::::

visual
::::::::::::
representation

::
of

::::::::::
component

::::::
groups

::
of

:::::
DCT

::::::
matrix

::
is

:::::
shown

:::
in

:::
Fig.

:::
12.

:::::
This

:::::
figure

::::::::
illustrates

:::
the

::::::::
grouping

:::
of

:::
2D

::::
DCT

::::::::::
components

:::
for

::
a
:::::
5× 5,

:::
as

::::::::
described

::
in
::::

Eq.
:::
21.

:::::
Each

:::::
group

::
zi:::::::::

represents
:::
an

::::::::::
incremental

::::::
subset

::
of

::::::
spatial

:::::::::
frequency
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Figure 12. Visual representation of DCT components considered in RFA method

::::::::::
components,

:::::::
starting

::::
from

:::
the

:::::
lowest

::::::::::
frequencies

:::::::
(top-left

:::::
corner

:::
of

::
the

:::::::
matrix)

:::
and

:::::::::::
progressively

::::::::
including

::::::
higher

::::::::::
frequencies.

::::
This

:::::::
grouping

::::::::
captures

:::
the

::::::
mutual

::::::::::
information

:::::
shared

::::::
across

:::
the

::::::::::
off-diagonal

:::::
terms

:::
of

::
the

:::::
DCT

::::::
matrix,

::::::
which

::::::
encode

::::::
spatial580

::::::::
frequency

::::::::::
information

::
in

::::
both

:::::::::
horizontal

::::
and

::::::
vertical

:::::::::
directions.

::::
The

:::::
visual

::::::::::::
representation

::
in
::::

the
:::::
figure

::::::::
highlights

::::
how

:::::
each

:::::
subset

::
of

:::::::
features

::
zi::

is
::::::::::
constructed

:::::
taking

:::
the

::::::::
difference

::::::::
between

::::::::
successive

::::::::::
submatrices

:::
of

:::
the

::::
DCT

::::::
output.

:::::
Fig.

:::
13,

:::::::
presents

:
a
::::::::::::
representative

::::
5× 5

::::::
matrix

::
of

:
a
:::::
wind

::::
field

:::::
where

:::
the

::::::
spatial

::::::::
frequency

::
in
:::
the

:::::::::
horizontal

::::::::
direction

:::::::
increases

:::::
from

:::
left

::
to

:::::
right,

:::
and

:::
the

::::::::
frequency

:::
in

:::
the

::::::
vertical

::::::::
direction

::::::::
increases

::::
from

:::
top

:::
to

::::::
bottom.

:::
In

::::
each

:::::::::
successive

:::::::
iteration

::
of

:::
the

:::::
RFA

:::::::
method,

:::
the

::::
input

:::::::
features

::
in
::::

Fig.
:::
13

::::::::::::
corresponding

::
to

:::
the

::::::::::
highlighted

:::::::::::
components

::
of

::::::
matrix

::
in

::::
Fig.

:::
12

:::
are

:::::::
selected. Using this feature585

definition along with the RFA scheme, the LSTM model was trained to predict the blade pitch response.

The initial 5× 5 submatrix of the 25× 25 matrix obtained through 2D DCT was selected as the dominant subset of input

features, as it represents the lower frequency patterns which can more effectively capture general trends in the wind speed

data. Fig. 14 presents the RMSE obtained for the LSTM model trained on each group of DCT components (presented in

Fig. 12), demonstrating that the first component, representing the lowest frequency patterns extracted by the DCT, achieves590

the best performance in predicting the pitch angle of the blade. This signifies that low-frequency fluctuations in wind speed

play a dominant role in driving the blade pitch response. The findings of the RFA showing the best predictive capacity of the

LSTM under the low frequency component can be explained using control theory. The control system governing blade pitch

angle is designed to optimise turbine performance and stability by filtering out high-frequency disturbances and adjusting the

blade pitch angle in a more deliberate and controlled manner. This intentional smoothing of blade pitch variations serves to595

mitigate the impact of sudden changes in wind speed and maintain the overall stability and efficiency of turbine operation.

Fig. 15 further reinforces this observation by comparing the actual blade pitch response to the LSTM model predictions for

different wind fields. The proposed model efficiently captures the overall trends in blade pitch response across different mean

wind speeds, highlighting the generalisability of the LSTM model. The predictions of rotor speed and blade pitch angle are

combined with the PCA and DCT data to predict the deformation response at the blade tip. In this stage, the rotor speed was600

transformed into the angular position of the blade so that it could more effectively capture the rotation frequency.
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Figure 13.
:::::
5× 5

:::::::
submatrix

::
of

::::
DCT

:::::::::::
representation

::
of

::::
wind

::::
field
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Figure 14. RMSE in blade pitch prediction using different DCT components
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Figure 15. Blade pitch angle predictions of LSTM model using DCT features

7.2 Predicting blade response

In this section, a two-layer LSTM model architecture was implemented to predict the deformation response of the wind turbine

blade. To explore the effectiveness of the PCA and DCT method, two sets of input features are considered:

1. Principal components of the wind field, combined with the angular position of the blade and the blade pitch angle605

predictions of the LSTM models described in Sections 7.1.1 and 7.1.2.

2. Coefficients of the discrete cosine transform of the wind field, combined with predictions of the pitch angle and the

angular position of the blade from the LSTM models described in Sections 7.1.1 and 7.1.2.

The results of these two approaches were compared to assess the capabilities of PCA and DCT in the context of blade response

prediction. A multi-task learning approach was employed to simultaneously predict the blade response. Initially, the model was610

trained to predict in-plane and out-of-plane deflections, which was subsequently extended to predict the response of individual

blade DOFs in the flap- and edge-wise directions. Matlab® codes used for model training and validation are available at

Baisthakur (2024).
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Figure 16. LSTM Model architecture for predicting blade response

Hyperparameter Parameter range Optimised values

LSTM layer - 1 [100 - 200] 138

LSTM layer - 2 [50 -100] 63

Fully connected layer - 1 [1-50] 44

Table 3. Summary of hyperparameter exploration to optimise the number of hidden units in learning layers

7.2.1 Blade response prediction with PCA features

Following the approach outlined in the previous sections, this section presents the model developed to predict the blade response615

and the corresponding results. The architecture of the model for the prediction of blade response is detailed in Fig. 16. The

LSTM architecture is designed through an iterative process, and hyperparameter optimisation is used to identify the most

optimal parameters for various layers. The number of hidden units in the learning layers was used as a hyperparameter in this

study.
:::
The

:::::::::::
performance

::
of

:::
the

:::::
model

::
is

::::::::
evaluated

::::
using

::::::::::
Normalised

::::
Root

:::::
Mean

::::::
Square

:::::
Error

:::::::::
(NRMSE)

:::::::
between

::
the

::::::::::
predictions

::
in

:::
the

::::::::
validation

::::
data

:::
and

:::
the

::::::
actual

::::::
results.

:::::::
NRMSE

::
is
:::::
used

::
as

::
an

:::::
error

:::::
metric

:::::::
because

::
it
:::::::::
normalises

:::
the

::::::
RMSE

:::
by

:::
the

:::::
range620

::
of

:::
the

::::::::
observed

::::
data,

:::::::
making

::
it
:::::::
suitable

:::
for

:::::::::
comparing

::::::
model

:::::::::::
performance

::::::
across

::::::
signals

::::
with

::::::::
different

::::::::::
magnitudes,

:::::
such

::
as

:::::::
in-plane

:::
and

:::::::::::
out-of-plane

::::::::::
deflections.

::::
The

:::
use

::
of

::::::::
NRMSE

:::::::
ensures

::::::::::::
interpretability

::::
and

::::::
fairness

:::
in

:::::::::
evaluating

:::
the

:::::::
model’s

:::::::
accuracy,

:::
as

::
it

:::::::
accounts

::::
for

::::::::
variations

::
in
::::::

signal
::::::
scales,

::::::
which

::
is

::::::::::
particularly

::::::::
important

:::::
when

:::::::::
analysing

::::::::
multi-task

::::::::
learning

::::::::
outcomes

::
for

:::::
wind

::::::
turbine

:::::
blade

::::::::
dynamics. Table 3 summarises the hyperparameter exploration. A progressively smaller range

is used for the bounds of hyperparameters, as consistently decreasing the number of hidden units was found to deliver better625

results. Using the angular position of the blade and the pitch angle as constant features, the principal components of the wind

speed data were selected using the RFA algorithm. This approach enables accurate predictions of both in-plane and out-of-plane
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Output Parameter
::::::

NRMSE

PCA DCT

Blade IP Deformation 0.074 0.047

Blade Oop Deformation 0.083 0.059

Blade DOF -qB1F1 0.092 0.081

Blade DOF -qB1F2 0.112 0.102

Blade DOF -qB1E1 0.073 0.065

Table 4. Comparison of LSTM Model performance trained using PCA and DCT features

blade deformations (Fig. 17). In particular, the second principal component, when paired with the angular position and pitch

angle of the blade, yielded the best performance. This suggests that the second principal component likely captures patterns

more relevant to predicting blade deformations than the first principal component, despite the fact that the first component630

captures the maximum variance in the data set. These findings further reinforce the importance of using feature selection

approaches in obtaining a simplified model representation with a small set of the most informative features. This method is

further extended to predict the response at individual blade DOFs, which are the most fundamental quantities in numerical

modelling, and the corresponding results are presented in Fig. 18. Using the fifth principal component as the input feature in

conjunction with the blade angular position and pitch angle produced the lowest RMSE to predict the response at individual635

blade DOFs. Here, it can be seen that a higher level of accuracy was obtained in the prediction of DOFs qB1F1 and qB1E1 as

compared to qB1F2. This can be attributed to the higher frequency of the mode shape for qB1F2. Furthermore, the absolute

magnitude of qB1F2 shows that this DOF has a lower impact on total deformation compared to the response of qB1F1. However,

it is evident from Fig. 18 that a good approximation in predicting all the DOFs is achieved by capturing the governing dynamics

in all the parameters.640

7.2.2 Blade response prediction with DCT features

Building upon the PCA approach, the use of DCT features for the prediction of the blade response is explored in this section.

The LSTM model follows the same model architecture presented in the previous section (Fig. 16). Following the methodology

adopted in Section 7.2.1, the model architecture was trained using DCT features. Fig. 19 and Fig. 20 demonstrate the precision

of DCT in predicting the blade response, capturing the dynamics of the target variable. The best performance for blade response645

prediction was obtained using the second group of DCT components presented in Fig. 12 as input features, while the blade

DOF predictions achieve higher accuracy under the combination of the second and third groups of DCT components.

Table 4 provides a comparison of the NRMSE obtained for models developed using the PCA and DCT features, highlighting

DCT’s superior performance in predicting the blade response. These results highlight that the LSTM model can efficiently

predict the dynamic response of wind turbine blades. The accuracy of the predictions also depends on the dimensionality650

reduction algorithm and the features chosen for the development of the model. The accuracy achieved in the intermediate stage
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(a) Blade out of plane deflection response

(b) Blade in-plane deflection response

Figure 17. Multi-task learning LSTM Model predictions of blade deflections using PCA features
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(a) Blade first flapwise DOF response

(b) Blade second flapwise DOF response

(c) Blade first edgewise DOF response

Figure 18. Multi-task learning LSTM Model predictions of blade DOFs using PCA features
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(a) Blade out of plane deflection response

(b) Blade in-plane deflection response

Figure 19. Multi-task learning LSTM Model prediction of blade deflections using DCT features
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(a) Blade first flapwise DOF response

(b) Blade second flapwise DOF response

(c) Blade first edgewise DOF response

Figure 20. Multi-task learning LSTM Model predictions of blade DOFs using DCT features
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of the multi-stage modelling approach also significantly impacts the final model predictions. These results also demonstrate

that DCT, by focussing on spatial frequency patterns, delivers better results in predicting the blade responses.
:::::
While

::::::::
Temporal

:::::::::::
Convolutional

::::::::
Networks

:::::::
(TCNs)

::::
have

::::
been

:::::::::::
successfully

::::
used

::
to

::::::
predict

::::::
damage

:::::::::
equivalent

::::
loads

:::::::
(DELs)

:::::
using

::::
wind

:::::
speed

::::
data

:::::::::::::::::::::::
(Haghi and Crawford, 2023),

:::::
direct

::::::::
parallels

::::::
cannot

::
be

::::::
drawn

:::::::
between

:::::
these

::::::
studies

::
to
::::::::

compare
::::::
model

::::::::::
performance

:::::::
against655

:::::
LSTM

::::
due

::
to

::::::::::
differences

::
in

::::::::
objectives

::::
and

::::::
scope.

:::
For

::::::::
example,

:::
the

:::::::::
referenced

:::::
study

::::
uses

:::::
TCNs

:::
to

::::::
predict

:
a
::::::
single

:::::::
variable

:::::
(DEL)

:::
for

::
a

:::::
5MW

::::
wind

:::::::
turbine,

:::::::
whereas

::::
this

::::
work

::::::::
focusses

::
on

:::::::::
predicting

:::
the

::::::::::
time-history

::::::::
response

::
of

:::::::
multiple

:::::::::::
fundamental

::::::::
quantities

:::
for

:
a
:::::::

15MW
:::::::
turbine.

::
In

:::
the

::::::
realm

::
of

::::::::
machine

:::::::
learning

:::::::::
modelling,

:::
the

:::::::::
suitability

:::
of

:
a
:::::::::

particular
:::::
model

::::::::
depends

::
on

::::::
several

::::::
factors,

:::::::::
including

:::
data

::::::::::
availability,

::::::::::::
computational

:::::::::
resources,

:::::
model

::::::::::
complexity,

:::
and

:::
the

:::::::
specific

:::::::::::
requirements

::
of

:::
the

:::::::::
application.

:::::
Only

:::::
when

::::
these

::::::::::
fundamental

:::::::::
objectives

:::
are

:::
the

:::::
same,

:
a
::::::::::::
comprehensive

::::::::::
comparison

::
of

::::::
various

::::::::
surrogate

:::::::::
modelling660

:::::::::
techniques,

::::::::
including

:::::
TCNs

::::
and

:::::::
LSTMs,

::::::
would

::
be

:::
an

:::::::::
interesting

:::::::
direction

:::
for

:::::
future

::::::::
research.

:::
To

:::
this

::::
end,

:::::
while

:::::
TCNs

:::::
have

:::::
shown

:::::::
promise

::
in

::::::
certain

:::::
tasks,

:::::::
LSTMs

:::
are

:::::
found

::
to
:::

be
::::
able

::
to

::::::
capture

:::
the

::::::::
complex

::::::::
temporal

:::::::::::
dependencies

:::::::
inherent

::
in

:::::
wind

::::::
turbine

::::::::
dynamics,

:::
as

:::::::::::
demonstrated

::
in

::::
this

:::::
study. The next section focusses on analysing the computational advantage of the

developed surrogate models.

7.3 Computational advantage of surrogate approach665

The need to reduce the computational cost in predicting the dynamic response of a wind turbine is at the heart of the surrogate

model developed in this study. Having established the accuracy of the developed surrogate model, this section focusses on the

computational advantages of using these models. A direct comparison of execution times was conducted to quantify the extent

of the computational efficiency of these models. Both the numerical model and the surrogate model were used to predict blade

response for a 600-second turbulent wind inflow generated using TurbSim. To ensure a fair comparison, only the essential blade670

DOFs and generator azimuth angle were activated within the numerical model. The surrogate modelling approach developed

in this study offers a significant computational advantage in predicting blade response. The execution time comparison shows

a 75-fold speed improvement using the surrogate model compared to the corresponding numerical model. This comparison

highlights the computational efficiency of the developed surrogate models. The computational advantage allows for conducting

a large number of simulations required for site-specific performance analysis. Furthermore, the ability of the surrogate model675

to quickly predict blade deformations and loads under varying wind and control inputs makes it a useful tool for comprehensive

fatigue analysis of wind turbine blades. While quantifying the computational gains, all the simulations were performed on a

system with an 8-core Intel Xeon CPU with a clock speed of 3.8GHz using 32GB RAM and running on Microsoft Windows

10 Pro.

8 Conclusions680

In this manuscript, an approach that combines multi-stage modelling and multi-task learning with dimensionality reduction

techniques and a feature selection algorithm was presented. This combined method aims to enhance the efficiency of developing
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LSTM models for predicting blade response. Based on the investigation performed in this paper, following conclusions can be

drawn:

– Dimensionality Reduction: The effectiveness of PCA and DCT in simplifying wind field data while retaining crucial685

information for prediction tasks was demonstrated. Both PCA and DCT, particularly when combined with recursive

feature addition, helped in achieving efficient model configuration and improved prediction accuracy.

– Rotor Speed and Blade Pitch Prediction: LSTM models were developed for rotor speed prediction (using PCA features)

and blade pitch prediction (using DCT features). These models achieved varying degrees of accuracy in capturing the

dynamics of their respective target parameters across different uncertainty levels in wind conditions. Accurate rotor690

speed and blade pitch information were identified as critical parameters for subsequent blade response prediction.

– Blade Response Prediction: A multi-stage modelling approach was employed, where predicted control parameters were

fed into an LSTM model to predict blade deformations and DOF responses. Models trained using DCT features showed

higher accuracy as compared to PCA features for this task, indicating DCT’s ability to capture spatial frequency patterns

driving blade dynamics.695

– Practical applications: The LSTM model presented in this paper are trained using input-output data only. This approach

has potential applications in design feasibility studies for those models where the exact model configuration is not

available due to the intellectual property concerns. Further, due to the low computational cost, these models can be used

within model predictive control framework for regulating the performance.
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