Direct integration of non-axisymmetric Gaussian wind-turbine wake including yaw and wind-veer effects

Karim Ali¹, Pablo Ouro¹, and Tim Stallard¹

¹School of Engineering, University of Manchester, Manchester, M13 9PL, UK **Correspondence:** Pablo Ouro (pablo.ouro@manchester.ac.uk)

Abstract. The performance of a wind farm is significantly influenced by turbine-wake interactions. These interactions are typically quantified for each turbine by either by measuring its nacelle wind speed or by evaluating its rotor-averaged wind speed , which is impacted by upstream wakes, using numerical methods that involve a set of discrete points across the rotor disk. Although various point distributions exist in the literature, we introduce an analytical expression for integrating a Gaussian

- 5 wake over a circular disk, which accounts two analytical expressions for integrating non-axisymmetric Gaussian wakes, which account for wake stretching and shearing resulting from upstream turbine yaw and wind veer. This expression is The analytical solutions correspond to modelling the target turbine as a circular actuator disk and as an equivalent rectangular actuator disk. The derived expressions are versatile, accommodating any lateral-offset and hub-height difference between the wake source (upstream turbinesturbine) and the target turbine. Validation-Verification against numerical evaluations of the rotor-averaged
- 10 deficit using 2000 averaging points at various downstream locations from the wake source demonstrates excellent agreement for both analytical solutions at small/moderate veer effects, whereas only the rectangular-disk solution was accurate at extreme veer conditions. In terms of computational cost compared to vectorised numerical averaging using 16 averaging points, both analytical solutions are computationally efficient with the circular-disk solution being approximately 15% slower and the rectangular-disk solution being approximately 10% faster. Furthermore, the analytical expression is expressions are shown to be
- 15 compatible with multiple wake superposition models . The presented solution is and are differentiable, providing a foundation for deriving mathematical expressions for the gradients of a turbine's power generation concerning its location within a farm and/or the operational conditions of upstream turbines. This capability is particularly advantageous for optimization-based analytical gradients which can be advantageous for optimisation-based applications.

1 Introduction

- 20 The widespread deployment of wind farms necessitates the use of accurate and efficient computational tools for preliminary design and optimisation (Veers et al., 2023). While Computational Fluid Dynamics (CFD) methods such as Large-Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) offer detailed insights into turbine loading and wake dynamics, they are often too computationally intensive for preliminary wind-farm design and layout optimisation (Maas and Raasch, 2022). Mesoscale models require less computational power and have been employed to examine the large-scale interactions
- 25 between wind turbine wakes and the turbulent atmospheric boundary layer, though they lack the detailed wake resolution

provided by RANS and LES models (Fitch et al., 2012; Ali et al., 2023). Conversely, engineering wake models are comparatively faster and are extensively used in various wind-energy applications, including wind-farm layout optimisation and control (Hou et al., 2016; Bay et al., 2018; Shapiro et al., 2022). Engineering wake models, which assume that a turbine's wake is self similar, represent the wake using a streamwise scaling deficit function and a shape function to describe the

- 30 deficit distribution perpendicular to the streamwise direction. Various shape functions have been proposed, including top-hat profiles (Jensen, 1983), Gaussian profiles (Bastankhah and Porté-Agel, 2014), double-Gaussian profiles (Keane et al., 2016), super-Gaussian profiles (Blondel and Cathelain, 2020), (Blondel and Cathelain, 2020; Ouro and Lazennec, 2021), Cosine-bell profiles (Jensen, 1983; Zhang et al., 2020), and profiles based on the diffusion of a passive scalar (Cheng and Porté-Agel, 2018; Ali et al., 2024d). Among these, the Gaussian wake profile is widely adopted particularly for distances comparable to a typical
- 35 turbine_inter-turbine spacing within a wind farm.

To assess the impact of an upstream turbine's wake on the onset flow of a downstream rotor, such as required to estimate energy-yield reduction the reduction of available kinetic energy flux due to wake effects, numerical methods often average upstream deficits the upstream deficit calculated at multiple control points across the rotor disk of the considered turbine. The number and distribution of these averaging points vary in the literature. Allaerts and Meyers (2019) employed a 16-point

- 40 quadrature based on Holoborodko (2011) in their analysis of wind-farm blockage and induced gravity waves, whereas Stipa et al. (2024) utilised a cross-like distribution of 16 averaging points to enhance radial resolution across the rotor. Stanley and Ning (2019) used 100 equally-spread averaging points for the evaluation of the rotor-averaged deficit. Other studies proposed uniform radial and azimuthal distribution of averaging points across the rotor within the context of farm layout optimisation and control (Li et al., 2022; Ling et al., 2024).
- 45 Uncertainties can arise from the number, distribution, and averaging weights of the control points, especially when the shape of the upstream wake deviates from the axisymmetric form due to, for instance, wind-veer effects. Rather than numerical averaging, Ali et al. (2024a) developed an analytical expression for the circular-disk integration of an axisymmetric Gaussian function depicting the wake of an upstream turbine. Their formulation is applicable to any lateral-offset between the upstream turbine (wake source) and the considered turbine, but assumes that the upstream wake is axisymmetric and that both the
- 50 upstream and downstream turbines have the same hub-height. Typically, turbines can be yawed relative to their onset wind yielding wakes that are not axisymmetric but <u>rather</u> of elliptic shape (Bastankhah and Porté-Agel, 2016). Additionally, wind-veer effects can cause planar shearing of the wake shape through stretching the wake elliptic contours and rotating <u>its-their</u> major axes (see Fig. 1 later in the article), resulting in further deviation from the axisymmetric wake shape (Abkar et al., 2018). Furthermore, onshore wind farms often have turbines with different hub heights due to <u>non-flat non-uniform</u> terrain, and offshore wind farms may have turbines of varying hub heights and diameters operating in close proximity.

In this study, we extend the analytical solution proposed by Ali et al. (2024a) by generalising the assumed upstream wake shape to include non-symmetry due to the yawing of the wake source, wind-veer effects, and different hub-heights between the wake source and target turbine. Although the The primary focus is on wind-turbine wakes, the proposed expression is but the proposed expressions are also applicable to tidal-stream turbines and can be extended to vertical-axis turbines (both wind and

60 tidal) due to the relevance of similar Gaussian wake profiles (e.g., Stallard et al., 2015; Ouro and Lazennec, 2021). Although

rotor-induction effects can alter the onset wind profile of the considered turbine, we do not consider these effects similar to various engineering wake models. Additionally, we assume that the considered turbine is modelled as a uniform actuator disk, corresponding to uniform averaging weights across the turbine's rotor, and that the effects of blade geometry are neglected. The objective of the proposed analytical solutions is not to replace numerical approaches, which are the only available option

65 for arbitrary wind-speed fields, but to provide an alternative approach in the specific case of Gaussian wakes. Furthermore, analytical solutions can be computationally cheaper than numerical approaches, and for some scenarios (such as high wind veer) can be more accurate than numerical averaging at common resolutions from the literature.

The surface integration of a Gaussian field across a circular disk is often complicated because of the modified Bessel function that arises from the azimuthal integration of a shifted Gaussian function. As will be discussed later, the analytical solution of the

- 70 rotor-averaged deficit over a circular disk will be derived based on some simplifying assumptions that limit the validity range of the analytical solution (more details in section 2.2). Conversely, the surface integration of a Gaussian field across an equivalent rectangular disk often has a closed-form analytical solution without the need to limit the solution's validity. By appropriate sizing of the rectangular disk of integration, highly accurate approximate analytical solutions of the surface integration across a circular disk can be obtained. DiDonato and Jarnagin (1961) used the circle-rectangle analogy to approximate the circular-disk
- 75 integration of an elliptic Gaussian field using look-up tables of the error function. Furthermore, Ali et al. (2024d) obtained an approximate analytical solution of a complicated two-dimensional integration involving the modified Bessel function by making use of the circle-rectangle analogy based on the analytical solution of Ali et al. (2024b). Cheung et al. (2024) used the same analogy to obtain analytical solutions of a turbine's induction effects under various conditions using a Green-function approach. As such, we also derive an analytical solution of the rotor-averaged deficit for an equivalent rectangular disk, which
- 80 is not limited by the simplifying assumptions of the circular-disk integration.

The rest of this paper is structured as follows. Section 2 presents the generalised analytical expression generalised analytical expressions for the rotor-averaged deficit , which is validated in the case of a circular disk (section 2.2) and an equivalent rectangular disk (section 2.1), which are verified against numerical solutions for a single upstream wake in section (sections 3.1 and 3.2) and for multiple upstream wakes in (section 3.5. The). The effect of some relevant parameters on the rotor-averaged

- 85 deficit is discussed in sections 3.3 and 3.4. The computational cost of the proposed solutions compared to numerical approaches are examined in section 3.6, and their accuracy against various numerical resolutions is quantified in section 3.7. The key findings of this paper are discussed in more detail in section 4 with a focus on compatibility with different wake superposition models and applicability to yawed turbines, with a summary in section 5. Appendices A–D contain mathematical details on the derivation of the generalised rotor-averaged deficit, whereas the distribution of the averaging points used in the validation
- 90 presented in section 3 are detailed various resolutions and distributions of averaging points are summarised in Appendix E. Further mathematical manipulations regarding wake superposition is are included in Appendix F following the discussion in section 4. Some additional material are included in Appendix G.

2 Analytical evaluation of the Generalised rotor-averaged wind-speed deficit of an elliptic veered Gaussian wake

In this study, we seek to analytically evaluate the a rotor-averaged deficit of a turbine operating within an upstream Gaussian

95 wake whose shape and <u>center centre</u> are defined. For simplicity, the expression for the rotor-averaged deficit is derived for a single upstream wake, but extension to multiple upstream wakes is straightforward (section 3.5). Some key definitions are presented first in section 2.1, followed by deriving analytical solutions in the case of a circular disk (section 2.2) and an equivalent rectangular disk (section 2.1). The presented analysis is applicable to any engineering wake model that utilises the Gaussian wake profile to describe the wake shape normal to the streamwise direction.

100 2.1 Problem definition

The normalised wind-speed deficit (W) due to the wake of an upstream turbine impacted by a constant transverse wind (causing wind veer) can be expressed as (Bastankhah and Porté-Agel, 2016; Abkar et al., 2018)

$$W(\underline{x,y',z'}) = 1 - \frac{u}{\underline{\tilde{u}_n}} \frac{u(x,y',z')}{\overline{u}_o} = C(x) e^{-(y_n + \omega z_n)^2 / (2\sigma_y^2) - (y' + \omega z')^2 / (2\sigma_y^2)} e^{-\frac{z_n^2}{2\sigma_y^2} - \frac{z_n'^2}{2\sigma_y^2} - \frac{z_n'^2}{2\sigma_y^2}},$$
(1)

where *u* is the streamwise wind speed, $\tilde{u}_n \cdot \bar{u}_{\alpha}$ is the rotor-averaged wind speed of the upstream turbine (wake source), *C* is a 105 streamwise scaling function, and *x* is the streamwise distance between the two turbines. The variables $\frac{y_n}{y_n}$ and $\frac{z_n}{y'}$ and $\frac{z'}{z'}$ are the lateral and vertical coordinates respectively, in a plane normal to the streamwise direction with an origin at the wake center, and $\omega = \Delta \alpha (x/D_n)$ centre, and

$$\omega = \Delta \alpha_o \left(\frac{x}{D_o}\right) \tag{2}$$

is a wind-veer coefficient with Δα Δα₀ being the difference in wind direction across the top and bottom tips of the upstream
turbine (wake source) whose diameter is D_n. The variables D₀. The quantities σ_y and σ_z are the wake standard deviations in the y_n and z_n y' and z' directions, respectively. Figure 1 illustrates a schematic of an upstream turbine (of radius R_nR₀) whose wake center centre is deflected horizontally by a distance dd₀. The Cartesian coordinates y_naxes y'-z_n z' are placed at the center centre of the wake in the plane containing the considered turbine which is at a streamwise distance x from the wake source. The considered turbine centre of the considered turbine (of radius R) is located at (Δ_y, Δ_z) with respect to the
115 wake center centre with polar coordinates ρ and δ. The Cartesian axes y-z are placed at the center centre of the considered turbine which is of radius R. The lateral. The offset ρ is measured from the center centre of the wake, which is assumed to be known from wake deflection models (e.g., Bastankhah and Porté-Agel, 2016; Qian and Ishihara, 2018; Snaiki and Makki, 2024).

For a yawed upstream turbine, the wake standard deviations σ_y and σ_z are not equal, resulting in elliptic wake contours 120 rather than circular contours in the specific case of axisymmetric wake. We define the eccentricity $\xi \ge 0$ of the wake elliptic

contours due to having non-equal σ_y and σ_z as $\xi^2 = 1 - (\sigma_y/\sigma_z)^2$.

$$\xi = \sqrt{1 - \left(\frac{\sigma_y}{\sigma_z}\right)^2}.$$
(3)

Figure 1. (a) Schematic contours of the normalised wind-speed deficit W due to an upstream-wake . The center of the wake axes (origin of $y'_{-z'}$) and the axes y_n of the considered turbine (y_{-z_nz}) is deflected horizontally separated by a distance d from its source center the distances (Δ_u, Δ_z) with polar coordinates ρ and δ . The upstream turbine denoted (wake source) is represented by the dashed red circle) with radius R_o , and whereas the considered turbine is offset from the wake center represented by a radial distance ρ and an angle δ the solid red circle with radius R. The axes y_{-z} are placed at wake centre is deflected horizontally by d_o from the center centre of the upstream turbine (red dot). An equivalent rectangle of the considered turbine and are located at $(\Delta_y, \Delta_z \text{section } 2.1)$ is shown in dashed blue with respect to the wake axes $y_n - z_n$ dimensions of $2L_y$ and $2L_z$ in y and z directions, respectively. The shown elliptic (b) Sample contours have of the normalised wind-speed deficit W/C (Eq. 1) calculated at an eccentricity $\xi = 0.4$ and a veer-coefficient $\omega = -0.3\omega = -0.6$, with where the definitions of ξ (Eq. 3) and ω (Eq. 2) are provided in the main text. The upstream turbine (wake source) has a radius R_n red circles, the blue rectangle, and the considered turbine has a radius R. The yellow dots on axes $y'_{-z'}$ and y_{-z} have the rotor disk of the considered turbine same definitions as in (downstream turbine) are exemplary of the averaging points that are used to numerically evaluate the rotor-averaged wind speed.

Here, it is assumed that $\sigma_y \leq \sigma_z$, which is the typical case for yawed horizontal-axis wind turbines. However, it is noted that where relevant, scenarios with $\sigma_y > \sigma_z$ can be obtained by a rotation of axes. In the following calculations, σ_z will be denoted as σ and hence $\sigma_y = \sigma \sqrt{1 - \xi^2}$. A typical range for the eccentricity ξ can be identified using the empirical expressions for σ_y and σ_z for a yawed upstream turbine at an angle γ_n a yaw misalignment γ_{ρ_n} .

125

130

145

$$\sigma_z = \sigma = k_z^* x + \sigma_{z_0} D_{\underline{n}o}, \quad \text{and} \quad \sigma_y = \sigma \sqrt{1 - \xi^2} = k_y^* x + \sigma_{z_0} D_{\underline{n}} \frac{\cos \gamma_{no} \cos \gamma_o}{\cos \gamma_o}, \tag{4}$$

where k_z^* and k_y^* are the rates of wake expansion in the z_n and $y_n z'$ and y'_n directions respectively, and $\sigma_{z_0} \approx 1/\sqrt{8}$ is an initial wake standard deviation (Bastankhah and Porté-Agel, 2016). For simplicity we assume that $\frac{k_z^*}{k_z} = \frac{k_y^*}{k_z} = \frac{k_z^*}{k_z} \approx \frac{k_y^*}{k_z} = \frac{k_z^*}{k_z}$, and hence

$$\xi^{2} \approx 1 - \left(\underbrace{\frac{k^{*}x/\sigma_{z_{0}} + \cos\gamma_{n}}{k^{*}x/\sigma_{z_{0}} + 1}}_{k^{*}x/\sigma_{z_{0}} + 1} \underbrace{\frac{k^{*}x/\sigma_{z_{0}} + \cos\gamma_{o}}{k^{*}x/\sigma_{z_{0}} + 1}}_{\infty} \right)^{2} \leq 1 - \cos \frac{2\gamma_{n}}{\gamma_{o}}^{2}.$$
(5)

The typical range of a turbine yaw angle is less than 30° (Zong and Porté-Agel, 2021), and hence the eccentricity of the wake elliptic contours $\xi < 0.5$ for a typical inter-turbine spacing.

A Gaussian wake description, as given in Eq. 1, assumes a neutral atmospheric boundary layer for which the typical magni-135 tude of wind veer is approximately of the order $0.03^{\circ}/m$ (Walter et al., 2009; Gao et al., 2021). Hence, for a large wind turbine (diameter ~ 220 m) operating in a neutral boundary layer, the difference in wind direction across its top and bottom tips is less than approximately 7°. While stable stratification and/or complex terrain can intensify wind veer (Ghobrial et al., 2024) , we limit our calculations for the case of a circular disk (section 2.2) to neutral boundary layers with moderate wind veer (i.e., $\Delta \alpha \leq 7^{\circ} \Delta \alpha_0 \leq 7^{\circ}$). The expression derived for the equivalent rectangular disk (section 2.1) will not be limited by the moderate-veer assumption.

The angle δ corresponds to the difference in hub-height between the upstream turbine (wake source) and the considered downstream turbine. In a typical wind farm, all turbines have the same hub-height, making $\delta = 0$ (or π). However, our calculations consider δ as a variable to accommodate cases with differing hub heights, such as adjacent wind farms or non-uniform terrain. Rather than using linear averaging of the wind-speed deficit across the disk of integration, we generalise the averaging process to an order n > 0 such that

$$\overline{W}^{(n)} = \left(\frac{1}{A} \iint_{A} W^n \, dA\right)^{1/n},\tag{6}$$

where $\overline{W}^{(n)}$ is the *n*-th order rotor-averaged deficit, *n* is the averaging order, and *A* is the area of the disk depicting the turbine (circular in section 2.2 and rectangular in section 2.1). As such, if n = 2 then a root-mean-squared averaging of the deficit across the rotor is obtained.

To summarise, the objective is to determine the rotor-averaged deficit of a turbine of radius R operating within an upstream Gaussian wake defined by the standard deviation σ , the wake eccentricity ξ , the veer coefficient ω , and the streamwise scaling

function C, by performing a surface integration of the surface integration in Eq. 1 over the rotor disk of the considered turbine (shaded circle in Fig. 1), which 6 following the definition of the normalised deficit W in Eq. 1. The considered turbine is offset from wake center the wake centre by the radial distance ρ and the angle δ . We assume that the rotor disk of the

155

170

considered turbine is normal to the free-stream direction implying that σ , ξ , ω , and C, are constants across the rotor disk of the considered turbine, variables in the streamwise direction only. This simplifying assumption has no significant impact on the rotor-averaged deficit for small yaw angles (i.e., $\gamma \leq 30^{\circ}$) as well established in the literature. Specifically, the relative error from this simplifying assumption is on the order of $k^{*2} \sin^2 \gamma \sim \mathcal{O}(10^{-3})$, which is negligible.

2.2 Generalised Analytical rotor-averaged deficit of across a Gaussian wakecircular disk

The presented derivation in this section is a generalisation to the solution by Ali et al. (2024a) who solved a similar problem 160 linear version of the problem (i.e., n = 1) but for an axisymmetric wake (i.e., $\xi = \omega = 0$) and for two turbines of the same hub-height (i.e., $\delta = 0$). From For a circular disk of radius R and by using the definition of W (Eq. 1-), Eq. 6 becomes

$$\overline{W}_{c}^{(n)} = C \left(\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2\pi} r e^{-n(y'+\omega z')^{2}/(2\sigma_{y}^{2})} e^{-nz'^{2}/(2\sigma_{z}^{2})} \, d\theta \, dr \right)^{1/n},\tag{7}$$

where $\overline{W}_{c}^{(n)}$ is the rotor-averaged deficit $\frac{\tilde{W}}{\tilde{W}}$ of the considered turbine is

165
$$\tilde{W} = \frac{C}{\pi R^2} \int_{0}^{R} \int_{0}^{2\pi} r e^{-(y_n + \omega z_n)^2/(2\sigma_y^2)} e^{-z_n^2/(2\sigma_z^2)} d\theta dr,$$

where r, of order n across a circular disk, and r and θ are the polar coordinates of the axes y-z axes placed at the center centre of the considered turbine (Fig. 1). The coordinates $\frac{y_n}{z_n-z'}$ (of the wake centercentre) and y-z can be related using $y_n = y + \Delta_y$ and $z_n = z + \Delta_z - y' = y + \Delta_y$ and $z' = z + \Delta_z$ (Fig. 1). These relations, along with $\langle y, z \rangle = r \langle \cos \theta, \sin \theta \rangle$ and $\langle \Delta_y, \Delta_z \rangle = \rho \langle \cos \delta, \sin \delta \rangle$, where $\langle t_1, t_2 \rangle$ means t_1 or t_2 , can be used to re-write Eq. 7 in the $r-\theta$ coordinates as (see Appendix A for derivation)

$$\overline{W}_{c}^{(n)} = C e^{-\rho^{2}/(2\sigma_{*}^{2})} e^{-\rho^{2} \cos(2\delta - \phi_{ns})/(2\sigma_{ns}^{2})} \left(\underbrace{\int_{0}^{1} \eta e^{-n\eta^{2}R^{2}/(2\sigma_{*}^{2})} \int_{0}^{2\pi} \frac{1}{\pi} e^{-n\eta^{2}R^{2} \cos(2\theta - \phi_{ns})/(2\sigma_{ns}^{2})} e^{-n\eta R\rho \cos(\theta - \phi_{s})/\sigma_{s}^{2}} d\theta d\eta}_{M_{\eta}} \right)_{M_{\eta}}^{1/n}$$

$$(8)$$

where $\eta = r/R$. In Eq. 8, three new length scales are introduced: σ_* , σ_{ns} , and σ_s along with two new angles: ϕ_{ns} and ϕ_s , which are defined in terms of the wake standard deviation σ , the eccentricity ξ , the veer coefficient ω , and the angle δ as

$$\sigma_*^2 = \frac{2\sigma^2(1-\xi^2)}{2+\omega^2-\xi^2}, \ \sigma_{\rm ns}^2 = \frac{2\sigma^2(1-\xi^2)}{\sqrt{(\omega^2-\xi^2)^2+4\omega^2}}, \ \sigma_{\rm s}^2 = \frac{\sigma^2\left(1-\xi^2\right)\cos\phi_{\rm s}}{\cos\delta+\omega\sin\delta}, \ \tan\phi_{\rm ns} = \frac{2\omega}{\xi^2-\omega^2}, \ \tan\phi_{\rm s} = \omega + \frac{\left(1-\xi^2\right)\tan\delta}{1+\omega\tan\delta}.$$

175 The subscript "ns" refers to wake non-symmetry. In case of an axisymmetric wake (i.e., $\omega = \xi = 0$), we have $\sigma_{ns}^{-1} = 0$ and hence its corresponding exponential terms in Eq. 8 vanish. Also, when the wake is axisymmetric we have $\sigma_* = \sigma_s = \sigma$, and $\phi_s = \delta$. The solution to the integral M_{θ} in Eq. 8 is (see derivation in Appendix B)

$$M_{\theta} = 2I_0 \left(\frac{\eta R\rho}{\sigma_s^2} \frac{n\eta R\rho}{\sigma_s^2} \right) I_0 \left(\frac{\eta^2 R^2}{2\sigma_{\rm ns}^2} \frac{n\eta^2 R^2}{2\sigma_{\rm ns}^2} \right) + 4\sum_{\nu \ge 1} (-1)^{\nu} \cos\left(\nu\phi\right) I_{2\nu} \left(\frac{\eta R\rho}{\sigma_s^2} \frac{n\eta R\rho}{\sigma_s^2} \right) I_{\nu} \left(\frac{\eta^2 R^2}{2\sigma_{\rm ns}^2} \frac{n\eta^2 R^2}{2\sigma_{\rm ns}^2} \right), \tag{10}$$

where I_{ν} is the modified Bessel function of the first kind and integer order ν , and $\phi = 2\phi_s - \phi_{ns}$. By employing Eq. 10, the an approximate solution of the integral M_{η} in Eq. 8 is (Appendix C)

$$M_{\eta} \approx 2\mu_{\sim\sim}^{(n)} \left(1 + 2\mathcal{P}_{\sim}^{(n)} ns\right) - \frac{4\sigma_{*}^{2}}{\underline{R^{2}}} \frac{4\sigma_{*}^{2}}{nR^{2}} e^{-\frac{R^{2}}{(2\sigma_{*}^{2})} - nR^{2}/(2\sigma_{*}^{2})} \mathcal{P}_{\sim\sim}^{(n)} ns \left[\frac{\lambda}{\rho} I_{1}\left(\frac{R\rho}{\sigma_{s}^{2}} \frac{nR\rho}{\sigma_{s}^{2}}\right) + \frac{\lambda^{2}}{\rho^{2}} I_{2}\left(\frac{R\rho}{\sigma_{s}^{2}} \frac{nR\rho}{\sigma_{s}^{2}}\right)\right], \quad (11)$$

where $\mathcal{P}_{ns} = \cos(\chi^2_{ns}\sin\phi)e^{-\chi^2_{ns}\cos\phi} - 1$, $\lambda = R\sigma_s^2/\sigma_*^2$, and

$$\mathcal{P}_{\rm ns}^{(n)} = \cos\left(n\chi_{\rm ns}^2\sin\phi\right)e^{-n\chi_{\rm ns}^2\cos\phi} - 1,\tag{12}$$

with $\chi_{\rm ns} = \rho \sigma_*^2 / (2\sigma_{\rm ns}\sigma_{\rm s}^2)$, and $\lambda = R\sigma_{\rm s}^2 / \sigma_*^2$. In Eq. 11, μ_0 is $\mu_{0}^{(n)}$ is

185
$$\mu_{\ldots 0}^{(n)} = \int_{0}^{1} \eta e^{\frac{-\eta^{2} R^{2} / (2\sigma_{*}^{2}) - n\eta^{2} R^{2} / (2\sigma_{*}^{2})} I_{0} \left(\frac{\eta R \rho}{\sigma_{*}^{2}} \frac{n \eta R \rho}{\sigma_{*}^{2}} \right) d\eta.$$
(13)

In the case of an axisymmetric wake (σ_{ns}⁻¹ = 0), we have χ_{ns} = P_{ns} = 0, χ_{ns} = P_{ns}⁽ⁿ⁾ = 0 and Eq. 11 simplifies to M_η ≈ 2µ₀M_n ≈ 2µ₀⁽ⁿ⁾. Therefore, Eq. 11 indicates that the solution of the non-axisymmetric wake (Eq. 1) is a perturbation (second term in Eq. 11) to a scaled axisymmetric solution (scaled by 1+2P_{ns}). Equation 1+2P_{ns}⁽ⁿ⁾. Additionally, Eq. 11 contains terms in the form I_ν(Rρ/σ_s²)/ρI_ν(nRρ/σ_s²)/ρ, which has a finite value when there is no lateral offset between the wake source and the considered turbine (ρ = 0) as lim I_ν(Rρ/σ_s²)/ρ = 1/(2^νν!) lim I_ν(nRρ/σ_s²)/ρ = 1/(2^νν!). Nonetheless, when at no offset (ρ = 0, P_{ns} = 0), we have P_{ns}⁽ⁿ⁾ = 0 similar to the axisymmetric solution. This results from the simplifying assumption made in Appendix C to solve for M_η, where the terms I_ν(η²R²/(2σ_{ns}²)) - I_ν(ny²R²/(2σ_{ns}²)) were approximated by (η²R²/(4σ_{ns}²))^ν/ν! (ny²R²/(4σ_{ns}²))^ν/ν! under the assumption that the argument of the modified Bessel function is small (following the limits on the wind veer discussed in section 2.1), and hence I₀(η²R²/(2σ_{ns}²)) ~ 1 - I₀(ny²R²/(2σ_{ns}²)) ~ 1 was employed. This means

center centre and are more profound far from the wake centercentre. We will show in section 3.1 , both numerically and analytically, that this assumption is acceptable for moderate values of wind veer by monitoring the average value (within the range $0 \le \eta \le 1$) of the argument of the modified Bessel function $\kappa = \frac{R^2}{(6\sigma_{ns}^2)}$. $\kappa_{ns}^{(n)}$, defined as

$$\kappa^{(n)} = \frac{nR^2}{2\sigma_{\rm ns}^2} \int_0^1 \eta^2 \, d\eta = \frac{nR^2}{6\sigma_{\rm ns}^2}.$$
(14)

200 The parameter $\kappa^{(n)}$ is a measure of the skewness of the wind-speed deficit within the rotor of the considered turbine. When the wake is axisymmetric (i.e., no skewness), we have $\kappa^{(n)} = 0$. As the shearing and stretching of the upstream wake contours increase, the value of $\kappa^{(n)}$ increases, which can also be raised by the averaging order *n*. In sections 3.3 and 3.4, it will be shown that a practical limit on $\kappa^{(n)}$ is around 0.4–0.5, and higher values could result in larger deviation from the numerical solution.

The solution of the integral $\mu_0 \mu_{0}^{(n)}$ can be obtained by generalising the solution introduced by Ali et al. (2024a) based on Rosenheinrich (2017)

$$\mu_{\sim\sim}^{(n)} = \frac{\sigma_*^2}{\underline{R^2}} \frac{\sigma_*^2}{nR^2} e^{-\frac{R^2}{(2\sigma_*^2)} - nR^2/(2\sigma_*^2)} \Psi_{\sim}^{(n)}(R, \rho, \sigma_s, \sigma_*),$$
(15)

where

$$\Psi_{\sim\sim}^{(n)}(R,\rho,\sigma_{s},\sigma_{*}) = I_{0}\left(\frac{R\rho}{\sigma_{s}^{2}}\frac{nR\rho}{\sigma_{s}^{2}}\right) \sum_{k\geq1} \left[\left(\frac{R^{2}}{2\sigma_{*}^{2}}\frac{nR^{2}}{2\sigma_{*}^{2}}\right)^{k} f_{k}(n\tau^{2})\right] - \frac{R\rho}{\sigma_{s}^{2}}\frac{nR\rho}{\sigma_{s}^{2}}I_{1}\left(\frac{R\rho}{\sigma_{s}^{2}}\frac{nR\rho}{\sigma_{s}^{2}}\right) \sum_{k\geq1} \left[\left(\frac{R^{2}}{2\sigma_{*}^{2}}\frac{nR^{2}}{2\sigma_{*}^{2}}\right)^{k} g_{k}(n\tau^{2})\right]$$
(16)

and $\tau = \rho \sigma_* / \sigma_s^2$. The coefficients f_k and g_k follow the recursions

$$210 \quad f_k(\underline{\tau v}) = \frac{f_{k-1}(\tau) + \tau g_{k-1}(\tau)}{k} \frac{f_{k-1}(v) + v g_{k-1}(v)}{k}, \quad g_k(\underline{\tau v}) = \frac{f_k(\tau) + 2g_{k-1}(\tau)}{2k} \frac{f_k(v) + 2g_{k-1}(v)}{k}, \quad (17)$$

with $f_0 = 1$, $g_0 = 0$. The recursions in Eq. 17 converge rapidly within 6–10 iterations of simple algebraic calculations (scalar addition and multiplication). From Eq. 8, the final form of the rotor-averaged deficit is

$$\overline{W}_{c}^{(n)} \approx \underline{2CC} e^{-\rho^2/(2\hat{\sigma}^2)} \left(\underbrace{2\mu_{c}^{(n)}}_{0} \left(1 + 2\mathcal{P}_{c}^{(n)} \operatorname{ns} \right) - \underbrace{\frac{2\sigma_*^2}{R^2} \frac{4\sigma_*^2}{nR^2}}_{\frac{R^2}{nR^2}} e^{-\frac{R^2}{2\sigma_*^2} - \frac{nR^2}{2\sigma_*^2}} \mathcal{P}_{c}^{(n)} \operatorname{ns} \left[\frac{\lambda}{\rho} I_1 \left(\underbrace{\frac{R\rho}{\sigma_*^2} \frac{nR\rho}{\sigma_*^2}}_{\frac{R^2}{\sigma_*^2}} \right) + \frac{\lambda^2}{\rho^2} I_2 \left(\underbrace{\frac{R\rho}{\sigma_*^2} \frac{nR\rho}{\sigma_*^2}}_{\frac{R^2}{\sigma_*^2}} \right) \right] \right)$$

$$(18)$$

where $\hat{\sigma}^{-2} = \sigma_*^{-2} + \sigma_{ns}^{-2} \cos(2\delta - \phi_{ns})$. Equation 18 was implemented in Python and is available from Ali et al. (2024c).

215 3 Validation

In this section , the developed analytical solution

2.1 Analytical rotor-averaged deficit across a rectangular disk

As discussed in section 2.2, the derived expression for the rotor-averaged deficit, assuming a circular-disk representation of the considered turbine (Eq. 18) is validated against numerical evaluation of , is valid when the skewness parameter $\kappa^{(n)}$ is small

- (Eq. 14; approximately less than 0.4–0.5). However, when κ⁽ⁿ⁾ is large because of strong veer and/or large averaging order n, Eq. 18 might no longer be valid or becomes of poor accuracy. As such, we derive herein an alternative expression for the rotor-averaged deficit for the case of a single upstream wake (section 3.1), assuming a rectangular-disk representation of the considered turbine following similar analogies in the literature (Ali et al., 2024d; Cheung et al., 2024). The dimensions of the rectangular disk are 2L_y and for 2L_z in y and z directions, respectively, with the same centre as the considered turbine (Fig. 1).
 We start by re-writing Eq. 6 for a rectangular disk with the aid of the definition of W in Eq. 1 as
 - $\overline{W}_{r}^{(n)} = C \left(\frac{1}{4L_{y}L_{z}} \int_{\Delta_{z}-L_{z}}^{\Delta_{z}+L_{z}} dz' e^{-nz'^{2}/(2\sigma_{z}^{2})} \int_{\Delta_{y}-L_{y}}^{\Delta_{y}+L_{y}} dy' e^{-n(y'+\omega z')^{2}/(2\sigma_{y}^{2})} \right)^{1/n},$ (19)

where $\overline{W}_{r}^{(n)}$ is the *n*-th order rotor-averaged deficit for a rectangular disk. The solution of the inner integral (over y') is

$$\int_{\Delta_y - L_y}^{\Delta_y + L_y} e^{-n(y' + \omega z')^2/(2\sigma_y^2)} dy' = \sqrt{\frac{\pi(1 - \xi^2)}{2n}} \sigma \left(\operatorname{erf}\left(\frac{\Delta_y + L_y + \omega z'}{\sigma\sqrt{2(1 - \xi^2)/n}}\right) - \operatorname{erf}\left(\frac{\Delta_y - L_y + \omega z'}{\sigma\sqrt{2(1 - \xi^2)/n}}\right) \right),$$
(20)

where $\sigma_y = \sigma \sqrt{1-\xi^2}$ (Eq. 4) and erf is the error function defined as (Ng and Geller, 1969, 3.1; 1)

230
$$\operatorname{erf}(h) = \frac{2}{\sqrt{\pi}} \int_{0}^{h} e^{-s^2} ds.$$
 (21)

As such, Eq. 19 becomes

$$\overline{W}_{r}^{(n)} = C \left(\frac{\sigma}{4L_{y}L_{z}} \sqrt{\frac{\pi(1-\xi^{2})}{2n}} \left(Q_{1}-Q_{2}\right) \right)^{1/n},$$
(22)

where Q_1 and Q_2 are defined as

$$Q_{\langle 1,2\rangle} = \int_{\Delta_z - L_z}^{\Delta_z + L_z} e^{-nz'^2/(2\sigma_z^2)} \operatorname{erf}\left(\frac{\Delta_y \pm L_y + \omega z'}{\sigma\sqrt{2(1 - \xi^2)/n}}\right) dz',$$
(23)

and the \pm sign in Eq. 23 corresponds to Q_1 and Q_2 , respectively. We can solve for the integrals Q_1 and Q_2 by making use of the generalised Owen's T function $\Omega(h, a, b)$ defined as (Przemo, 2019)

$$\underbrace{\Omega(h,a,b)}_{h} = \frac{1}{2\sqrt{2\pi}} \int_{h}^{\infty} e^{-s^{2}/2} \operatorname{erf}\left(\frac{as+b}{\sqrt{2}}\right) ds$$

$$= \frac{1}{2\pi} \left(\underbrace{\operatorname{arctan}(a)}_{h} - \operatorname{arctan}(a+b/h) - \operatorname{arctan}\left(\frac{h+ab+a^{2}h}{b}\right) \right) + \underbrace{\frac{1}{4} \operatorname{erf}\left(\frac{b}{\sqrt{2(1-a^{2})}}\right)}_{h} + \operatorname{T}(h,a+b/h)$$

$$+ \operatorname{T}\left(\frac{b}{\sqrt{1+a^{2}}}, \frac{h+ab+a^{2}h}{b}\right),$$
(24)

where T(h, a) is Owen's T function defined as (Owen, 1956)

$$T(h,a) = \frac{1}{2\pi} \int_{0}^{a} \frac{e^{-h^{2}(1+s^{2})/2}}{1+s^{2}} \, ds.$$
(25)

240 From the definition of the function Ω (Eq. 24) along with $\sigma_z = \sigma$ (Eq. 4), we can express the integrals Q_1 and Q_2 as

$$Q_{\langle 1,2\rangle} = 2\sqrt{\frac{2\pi}{n}}\sigma \left[\Omega\left(\frac{\Delta_z - L_z}{\sigma/\sqrt{n}}, \frac{\omega}{\sqrt{1-\xi^2}}, \frac{\Delta_y \pm L_y}{\sigma\sqrt{(1-\xi^2)/n}}\right) - \Omega\left(\frac{\Delta_z + L_z}{\sigma/\sqrt{n}}, \frac{\omega}{\sqrt{1-\xi^2}}, \frac{\Delta_y \pm L_y}{\sigma\sqrt{(1-\xi^2)/n}}\right)\right].$$
(26)

Combining Eqs. 26 and 22 gives the final form of the disk-averaged deficit for a rectangular disk as

$$\overline{W}_{r}^{(n)} = C \left(\frac{\pi \sigma^2 \sqrt{1-\xi^2}}{2nL_y L_z} \sum_{s_y, s_z \in \{-1,1\}} (-s_y s_z) \Omega \left(\frac{\Delta_z + s_z L_z}{\sigma/\sqrt{n}}, \frac{\omega}{\sqrt{1-\xi^2}}, \frac{\Delta_y + s_y L_y}{\sigma\sqrt{(1-\xi^2)/n}} \right) \right)^{1/n}.$$
(27)

1 /.

The expression in Eq. 27 is simply calculating the function Ω (Eq. 24) at the four vertices of the rectangular disk (Δ_y ± L_y, Δ_z ± L_z)
by changing the signs s_y and s_z between -1 and 1. Because of symmetry, the underlined terms in Eq. 24 vanish when summed over the four vertices of the rectangular disk with the signs -s_ys_z. As such, we can define a simplified version of Ω as

$$\hat{\Omega}(h,a,b) = \frac{-1}{2\pi} \left(\arctan\left(a+b/h\right) + \arctan\left(\frac{h+ab+a^2h}{b}\right) \right) + \mathbf{T}(h,a+b/h) + \mathbf{T}\left(\frac{b}{\sqrt{1+a^2}},\frac{h+ab+a^2h}{b}\right),$$
(28)

and hence, by replacing Eq. 24 with Eq. 28, the rotor-averaged deficit of the rectangular disk is

$$\overline{W}_{r}^{(n)} = C \left(\frac{\pi \sigma^2 \sqrt{1 - \xi^2}}{2nL_y L_z} \sum_{s_y, s_z \in \{-1, 1\}} (-s_y s_z) \hat{\Omega} \left(\frac{\Delta_z + s_z L_z}{\sigma/\sqrt{n}}, \frac{\omega}{\sqrt{1 - \xi^2}}, \frac{\Delta_y + s_y L_y}{\sigma\sqrt{(1 - \xi^2)/n}} \right) \right)^{1/n}.$$
(29)

250 It should be noted that the two arctan functions in Eq. 28 can be combined into a single arctan function whose argument is 1/a. However, determining the proper quadrant would require evaluating the original arguments (i.e., a + b/h and $h/b + a + a^2h/b$),

and hence Eq. 28 can be simply used in its current format. The functions T and Ω appear in the solution of the rectangular disk solely due to having $\omega > 0$ (i.e., due to wind veer). In case of no wind veer ($\omega = 0$), the case of multiple upstream wakes (section 3.5). The numerical reference against which rotor-averaged deficit for the rectangular disk simplifies to

$$\overline{W}_{r}^{(n)}\Big|_{\omega=0} = C \left[\frac{\pi \sigma^{2} \sqrt{1-\xi^{2}}}{8nL_{y}L_{z}} \left(\operatorname{erf}\left(\frac{\Delta_{y} + L_{y}}{\sigma\sqrt{2(1-\xi^{2})/n}} \right) - \operatorname{erf}\left(\frac{\Delta_{y} - L_{y}}{\sigma\sqrt{2(1-\xi^{2})/n}} \right) \right) \left(\operatorname{erf}\left(\frac{\Delta_{z} + L_{z}}{\sigma\sqrt{2/n}} \right) - \operatorname{erf}\left(\frac{\Delta_{z} - L_{z}}{\sigma\sqrt{2/n}} \right) \right) \right]^{1/r}$$

$$(30)$$

Furthermore, for the specific case of axisymmetric wake ($\omega = \xi = 0$) the rotor-averaged deficit for the rectangular disk becomes

$$\overline{W}_{r}^{(n)}\Big|_{\substack{\omega=0\\\xi=0}} = C \left[\frac{\pi\sigma^{2}}{8nL_{y}L_{z}} \left(\operatorname{erf}\left(\frac{\Delta_{y}+L_{y}}{\sigma\sqrt{2/n}}\right) - \operatorname{erf}\left(\frac{\Delta_{y}-L_{y}}{\sigma\sqrt{2/n}}\right) \right) \left(\operatorname{erf}\left(\frac{\Delta_{z}+L_{z}}{\sigma\sqrt{2/n}}\right) - \operatorname{erf}\left(\frac{\Delta_{z}-L_{z}}{\sigma\sqrt{2/n}}\right) \right) \right]^{1/n}.$$
(31)

The remaining here is to find the size of the rectangular disk $(L_y \text{ and } L_z)$. It is not straightforward to obtain a mathematically exact expression for the size of the rectangular disk $(L_y \text{ and } L_z)$ that makes Eq. 29 matches the case of a circular disk exactly. However, we can compare the simplified linear solutions (n = 1) of both cases for an axisymmetric wake $(\omega = \xi = 0)$ with no offset $(\rho = 0)$ and no hub-height difference $(\delta = 0)$, just to have a rough estimate of L_y and L_z . We also simplify the rectangular disk to a square and assume that $L_y = L_z = L$. By doing so, Eqs. 7 and 31 simplify to

$$\frac{2\sigma^2}{R^2} \left(1 - e^{-R^2/(2\sigma^2)} \right) = \frac{\pi\sigma^2}{2L^2} \operatorname{erf}^2\left(\frac{L}{\sigma\sqrt{2}}\right).$$
(32)

265 We can further simplify Eq. 32 by retaining only terms up to σ^2 in the power-series expansions of the exponential function and the error function, which leads to $L/R \approx \sqrt{3}/2$. Although this is a simplified analysis conducted under many restrictions (e.g., axisymmetric wake), it suggests that the ratio L/R is approximately 0.87. Through trial and error, we found that the ratio L/R = 0.9, which is close to the simplified ratio $\sqrt{3}/2$, gave best agreement against numerical solutions for a wide range of wake parameter as will be shown in section 3. As such, we assume that our equivalent rectangular disk is a square such that

270
$$L_y = L_z = 0.9R,$$
 (33)

where R is the turbine's radius. A Python implementation of Eq. 18 is validated is 29 is available from Ali et al. (2024c).

3 Verification, compute costs, and uncertainty

255

In this section, we verify the derived analytical solutions (Eqs. 18 and 29) by comparing them to numerical evaluations of the rotor-averaged deficit. First, we examine the case of a single upstream wake, considering both a circular disk (section 3.1)

and a rectangular disk (section 3.2). The analysis in section 2 shows that deficit contours are influenced by wind veer, and also by the averaging order n. We investigate the impact of these parameters on the rotor-averaged deficit in sections 3.3 and

3.4, respectively. Of less impact on the rotor-averaged deficit is the yaw misalignment of the wake source, which is presented as additional material in Appendix G. Furthermore, we apply the derived analytical solutions (Eqs. 18 and 29) to scenarios with multiple upstream wakes, using various wake superposition models. For numerical reference, the analytical solutions are

280

evaluated against a set of 2000 averaging points uniformly distributed across the rotor disk following a sunflower distribution (details in Appendix E) as shown in a sunflower pattern as illustrated in Fig. E1 - (see Appendix E). The computational cost of the derived analytical solutions compared to numerical averaging at various resolutions is presented in section 3.6. Finally, the uncertainty in predicting the rotor-averaged deficit for the proposed analytical solutions and for various numerical resolutions are quantified compared to 2000-point averaging in section 3.7.

285 3.1 Single upstream wake for a circular disk

We consider the non-axisymmetric Gaussian wake of a wind turbine (Eq. 1) and evaluate the compute the linear rotor-averaged deficit of (n = 1) experienced by a downstream turbine due to this wake modelled as a circular disk at various downstream locations distances relative to the wake source. The upstream turbine, acting as the wake source, operates For this analysis, the upstream turbine (wake source) is configured to operate at a yaw angle γ_n = 20° with combinations of low
(C_t = 0.4) and high (C_t = 0.8) thrust coefficients and low (T_i = 5%) and high (T_i = 12%) misalignment γ_a = 20° and a thrust coefficient C_t = 0.8 in a free-stream turbulence intensities. As discussed in intensity T_i = 5%. The influence of varying the yaw misalignment of the wake source is small compared to veer effects as outlined in Appendix G. In line with the problem

- formulation in section 2.1, the difference in wind direction across the we assume a differential wind direction of 7° across the upstream turbine's top and bottom tipsof the upstream turbine is assumed to be 7°, corresponding to a , representing moderate wind veer acting on affecting a large turbine (diameter ~ 220 m), and hence the veer coefficient $\omega \approx 0.122 x/D_n$. For simplicity, hereafter the subscript *n* for the radius and diameter of the upstream turbine is dropped by assuming that the upstream and downstream turbines are of the same size, which does not impact the generality of Eq. 18. resulting in a veer coefficient $\omega \approx 0.122 x/D_o$. Stronger wind veer is considered in section 3.3. At each downstream location from the wake sourceposition, the wake eccentricity ξ can be obtained from Eq. 5 is calculated based on Eqs. 3 and 4 under the
- 300 assumption of isotropic wake expansion rate normal to the free-stream direction (i.e., $k_y^* = k_z^* = k^*$) using the empirical expression $k^* = 0.003678 + 0.3837T_i$ (Bastankhah and Porté-Agel, 2014). Other empirical expressions can be used, but this does not impact the validation process $k^* = 0.003678 + 0.3837T_i$ (Bastankhah and Porté-Agel, 2014). Alternative empirical expressions for k^* are available; however, their use does not affect the verification process, as both analytical and numerical approaches use solutions depend on σ regardless of how it is defined. irrespective of how its defined. In the circular disk case,
- 305 we focus on the linear rotor-averaged deficit (n = 1), given the relatively high values of yaw misalignment ($\gamma_o = 20^\circ$) and wind veer ($\Delta \alpha_o = 7^\circ$) in this setup. Increasing the averaging order *n* here would extend the derived expression for a circular disk (Eq. 18) beyond the moderate wake shearing and stretching assumptions under which Eq. 18 was developed. Higher averaging orders can, however, be explored with lower wind veer or with a rectangular disk as discussed in more detail in section 3.4.

Figure 2 shows the lateral variation of the illustrates the normalised linear rotor-averaged wind speed deficit (\tilde{W}) normalised 310 by the streamwise scaling function $C \overline{W}_{5}^{(1)}/C$ as a function of the offset variation (ρ/σ) at different downstream locationsfor

Figure 2. Normalised linear rotor-averaged deficit (\overline{W}/C) for a circular disk $(\overline{W}_{c}^{(1)}/C)$ calculated numerically (markers) using the set of discrete points shown in Fig. E1 and analytically (solid curves) using Eq. 18 for different values of the lateral offset ρ (normalised by the wake standard deviation σ) between the wake source and considered turbineoffset ρ/σ . Each column represents The upstream turbine operates at a specific distance downstream of the wake source, yaw misalignment $\gamma_o = 20^\circ$ and each row corresponds to at a different combination of the thrust coefficient (C_t) of the upstream turbine and the $C_t = 0.8$ in a free-stream turbulence intensity (T_t) as indicated $T_t = 5\%$ with a wind-direction difference $\Delta \alpha_o = 7^\circ$ across its top and bottom tips. Indicated for each case downstream location x/D_o are the wind-veer coefficient $\omega \approx 0.122 x/D$ corresponding to a 7° difference in wind direction between the top and bottom tips of the upstream turbine (Eqfor $\gamma_o = 20^\circ$; Eqs. 53 and 4), and the ratio of the radius of the considered turbine to the wake standard deviation R/σ (σ is obtained from Eq. 4), and the skewness parameter $\kappa^{(1)}$ (Eq. 14). For each casedownstream location x/D_o , three values of the angle δ , which is the angle between the wake eenter-centre and the center-centre of the considered turbine (Fig. 1), are considered: 0, $\pi/4$, and $3\pi/4$. The quantity $\pi = R^2/(6\sigma_{\rm m}^2)$, which was assumed small in the derivation of Eq. 18 is recorded for each case as a validation to this simplifying assumption.

the cases summarised above as calculated numerically, comparing numerical results (markers) and analytically with analytical predictions (solid curves) using ; Eq. 18for different) across several values of the angle δ . The corresponding value For each case, the values of the eccentricity ξ , the (Eq. 3), veer coefficient ω , the (Eq. 2), ratio R/σ , and the parameter $\kappa = R^2/(6\sigma_{ns}^2)$ are indicated for each case (Eq. 4), and skewness parameter $\kappa^{(1)}$ (Eq. 14) are specified. During the derivation of

- 315 Eq. 18, the quantity κ skewness parameter $\kappa^{(n)}$ was assumed to be small enough remain sufficiently small (\lesssim 1) to employ the approximation $I_{\nu} \left(\eta^2 R^2 / (2\sigma_{ns}^2) \right) \sim \left(\eta^2 R^2 / (4\sigma_{ns}^2) \right)^{\nu} / \nu!$ enable the approximation $I_{\nu} \left(n \eta^2 R^2 / (2\sigma_{ns}^2) \right) \sim \left(n \eta^2 R^2 / (4\sigma_{ns}^2) \right)^{\nu} / \nu!$ (Appendix C). The listed values of $\kappa \kappa^{(1)}$ values shown in Fig. 2 verify this simplifying assumptionas the maximum value of κ was approximately 0.35 which occurred assumption, with the maximum $\kappa^{(1)}$ being approximately 0.27 at 10 diameters downstream of the wake source for the low C_t and low T_i case (Fig. 2d). For the other cases, κ has even smaller values.
- 320 practical limit on $\kappa^{(n)}$ so that Eq. 18 maintains high accuracy is approximately 0.4–0.5 as will be outlined in sections 3.3 and 3.4.

The comparison against the numerical evaluation Comparison with numerical evaluations of the rotor-averaged deficit indicates excellent confirms the high accuracy of Eq. 18, even far downstream of the wakeat far-wake downstream distances $(x/D_o = 10)$ where wind veer has significantly sheared the wake. Minor deviations between analytical and numerical results

- 325 occur at $x/D_{\rho} = 10$ (Fig. 2d) with zero offset ($\rho = 0$). However, at this distance from the wake source (x/D = 10), where the wake is highly sheared by wind veer10 diameters downstream), the scaling function C diminishes enough that these differences are negligible for rotor-averaged deficit evaluation. At zero lateral-offset between the considered turbine and the wake source ($\rho = 0$ centre ($\rho = 0$), the agreement congruence between Eq. 18 and the numerical solution in numerical solutions (Fig. 2 for all the shown-) across cases indicates that the assumption of minimal impact of wake shearing and stretching on the wake
- 330 center was justifiable, even at high values of the veer coefficient ω at x/D = 10. As the centre was a valid assumption. As wake stretching and shearing of the wake shape due to wind-veer effects increase downstream of the wake source (ω increases with x/D intensify due to wind veer with increasing downstream distance ($\omega \propto x$; Eq. 2), the role influence of the angle δ (hub-height difference) becomes more profound compared to locations close to wake source (first column vs last column in increasingly important compared to positions closer to the wake source.

335 3.2 Single upstream wake for a rectangular disk

340

We replicate the verification described in section 3.1, this time for a rectangular-disk representation of the turbine. In this case, the rotor-averaged deficit is defined by Eq. 29, with the disk size specified by Eq. 33. Under the same conditions outlined in section 3.1, Fig. 2)3 presents the offset variation of the normalised linear rotor-averaged wind speed deficit $\overline{W}_{r}^{(1)}/C$ at various downstream positions from the wake source and across different values of the angle δ . The comparison in Fig. 3 shows that the rectangular-disk solution (Eqs. 29 and 33) provides an excellent accuracy, performing better than the circular-disk solution without the limitations observed for the circular-disk solution at no offset (e.g., $\rho = 0$ in Figs. 2d and 3d). Beside the marginally higher accuracy, we will show in sections 3.3 and 3.4 that the rectangular-disk solution offers further advantages over the circular-disk solution by consistently predicting the rotor-averaged deficit with higher accuracy in cases of significant wind veer and/or higher averaging orders, scenarios in which the circular-disk solution is less accurate due to an elevated

Figure 3. Same as Fig. 2 but for the case of a rectangular disk (Eq. 29).

345 <u>skewness parameter $\kappa^{(n)}$ </u>. Specifically, the low C_t and low T_i case is characterised by a slow rate of wake expansion (σ is smaller than the other cases), resulting in the largest deviation between the numerical

3.3 Effect of wind veer

In all comparisons shown thus far (Figs. 2 and 3), a wind-direction difference of Δα_o = 7° was set across the top and bottom tips of the wake source, reflecting a moderate veer acting on a large upstream turbine (section 2.1). The circular-disk solution
 (Eq. 18) was derived based on the assumption of small/moderate veer, which implies a small skewness parameter (κ⁽ⁿ⁾; Eq. 14). Here, we examine a range of wind-veer magnitudes by varying the wind-direction difference Δα_o for both circular and rectangular disks to evaluate the accuracy of each under conditions of low to high wind veer.

Figure 4 presents the linear rotor-averaged deficit for both circular (dashed curves; Eq. 18) and rectangular (solid curves; Eq. 29) disk models, compared against numerical averaging (markers). In this setup, the upstream turbine (wake source) has

355 $C_t = 0.8$ and $T_i = 5\%$, as before, but with zero yaw ($\gamma_o = 0^\circ$) to isolate the impact of wind veer. Both the upstream and the considered turbines have the same hub-height (i.e., $\delta = 0$). For small wind veer ($\Delta \alpha_o = 5^\circ$, black curves in Fig. 4), both the circular- and analytical solutions far downstream of the wake source (rectangular-disk solutions match the numerical solutions with high accuracy.

The advantage of the rectangular-disk solution becomes evident for the case of moderate wind veer (Δα_e = 15°, red curves
 in Fig. 2d), because the parameter κ is relatively larger. However, at large distances downstream of the wake source (x/D ~ 10) the magnitude of the wind-speed deficit is sufficiently small (the scaling function C is small) making any differences between the numerical and analytical solutions insignificant.4), where the rectangular-disk solution matches the numerical one at all

Figure 4. Comparing analytical and numerical linear rotor-averaged deficit for different values of wind veer by changing the wind-direction difference $\Delta \alpha_o$ across the top and bottom tips of the upstream turbine (wake source). The analytical solutions shown are that of a circular disk (dashed; Eq. 18) and a rectangular disk (solid; Eq. 29), whereas numerical averaging (markers) is obtained using the averaging points of Fig. E1. Similar to Fig. 3.1, the upstream turbine has a thrust coefficient $C_t = 0.8$ and operates in a free-stream turbulence intensity $T_i = 5\%$, but has no yaw (i.e., $\gamma_R = 0$). The skewness parameter $\kappa^{(1)}$ for each veer case is indicated, and $\delta = 0$ (same hub-height) for all the cases.

downstream locations, whereas the circular-disk solution deviates from the numerical solution with the streamwise distance (e.g., red dashed curve in Fig. 4d). In cases of strong veer ($\Delta \alpha_o = 45^\circ$), only the rectangular-disk solution (Eq. 29) remains valid, as the circular-disk solution (Eq. 18) fails due to the high skewness parameter ($\kappa^{(1)} > 2$), which violates the underlying assumptions of Eq. 18 (see section 2.2 and Appendix C for details). Nevertheless, the rectangular-disk solution continues to yield predictions of rotor averaged deficit that are consistent with numerical solutions even under extreme veer conditions within a neutral boundary layer. The results in Fig. 4 indicate that for the circular-disk solution, a practical limit for the skewness parameter $\kappa^{(n)}$ would be around 0.4, beyond which the circular-disk solution deviates from the numerical solution.

Generally, as wind veer increases (i.e., as shearing of deficit contours intensifies), the deficit contours take on the appearance of a horizontally oriented strip of non-zero deficit. This trend is evident in Fig. 4d for $\Delta \alpha_e = 45^\circ$, where the rotor-averaged deficit remains approximately constant with respect to the offset ρ . Although this extreme case was analysed to test the limits of the analytical solutions, it is unlikely to be encountered in a neutral boundary layer where the Gaussian wake model (Eq. 1) applies.

375 3.4 Effect of the averaging order

365

Figure 5. Comparison of the analytical (circular and rectangular) rotor-averaged deficit to numerical averaging for different averaging orders n. The top row corresponds to the circular-disk solution (Eq. 18), whereas the bottom row is the rectangular-disk solution (Eq. 29). The upstream turbine (wake source) is operating at a yaw misalignment $\gamma_{o} = 20^{\circ}$ at $C_{t} = 0.8$ in a free-stream turbulence intensity $T_{i} = 5\%$. The wind-direction difference across the top and bottom tips of the wake source $\Delta \alpha_{\theta} = 7^{\circ}_{0}$, and both turbines have the same hub-height (i.e., $\delta = 0$). The skewness parameter $\kappa^{(n)}$ (Eq. 14) is indicated for each case.

Beside wind veer, the averaging order n has a direct influence on the skewness parameter $\kappa^{(n)}$ (Eq. 14), and hence on the shearing of the deficit contours. Here, we examine the circular and rectangular solutions for different averaging orders n by comparing them to numerical rotor averaging as presented in Fig. 5. The wake source operates at yaw misalignment $\gamma_o = 20^\circ$ (effect of yawing the wake source is minimal as shown in Appendix G) and at $C_t = 0.8$ in a free-stream turbulence intensity of 5%. The wind-direction difference across the tips of the wake source $\Delta \alpha_{o} = 7^{\circ}$ (Eq. 2), and both turbines have the same

380

hub-height ($\delta = 0$).

The case of linear averaging (n = 1; black in Fig. 5) was already examined in previous sections, where both the circular (dashed curves) and rectangular (solid curves) solutions agree well with the numerical solution (markers). However, increasing the averaging order results in accuracy deterioration of the circular-disk solution, especially at larger distances downstream

(e.g., Fig 5c, d). For instance, the circular-disk solution deviated significantly from the numerical solution for the cubic averaging (n = 3) at almost all downstream distances. Conversely, the rectangular-disk solution (Eq. 29) has excellent agreement

Figure 6. (a) The row-averaged yaw misalignment of the Horns Rev wind farm with respect to a free-stream wind from West to East (Zhang et al., 2024). Inset shows a schematic of the farm's layout where the yaw of each turbine is indicated and the first row is highlighted in green to indicate row definition. (b) The row-averaged normalised power generation (in reference to first row) of the Horns Rev wind farm using linear wake superposition (Niayifar and Porté-Agel, 2015, black), root-mean-squared superposition (Voutsinas et al., 1990, red), and the product-based wake superposition model (Lanzilao and Meyers, 2022, blue). Power generation (Eq. 35) is obtained using linear averaging of a circular disk (Eq. 18) and is compared to a numerical solution using the averaging points shown in Fig. E1 (markers). The free-stream wind speed is 8 ms^{-1} and the free-stream turbulence intensity is 7.7%. (c) same as in (b) but for the rectangular-disk solution (Eq. 29).

with the numerical solution at all distances and all averaging orders, highlighting its robustness and accuracy over the circular-disk solution.

The impact of the averaging order n on the rotor-averaged deficit (analytical or numerical) is not trivial as indicated by Fig. 5.
 However, assessing the accuracy of each averaging order is out of the scope of the current study, and should be conducted by comparing different averaging orders to a higher-fidelity model.

3.5 Multiple upstream wakes

So far, we examined the developed analytical solution have examined the analytical solutions derived for a single upstream wake , but (Eqs. 18 and 29). However, in real applications, a wind turbine is typically impacted often influenced by multiple up-

395 stream turbines, for which demanding the use of wake superposition modelsare applied. When <u>when numerically calculating</u> the rotor-averaged deficit due to from multiple upstream wakes calculated numerically using a set of discrete points on its rotor disk, a discrete set of points over the rotor disk is used. At each point, wake superposition of all upstream wakes is

applied for each point on the rotor disk independently, followed by rotor averaging of the all upstream wakes individually, and the rotor-averaged deficit is determined from these superposed deficits. Alternatively, in the analytical approach, the presented

- 400 analytical solution (Eq. 18) corresponds to evaluating the rotor-averaged deficit is calculated for each upstream wake independently , followed by superposition of (using Eqs. 18 or 29) before superposing the rotor-averaged deficits. The impact of the order of applying effect of the sequence in which wake superposition and rotor averaging are applied depends on the structure of the superposition expression. Ali et al. (2024a) showed that model. As shown by Ali et al. (2024a) for axisymmetric wakes, the order of wake superposition and rotor averaging has no significant impact minimal influence on the overall rotor-
- 405 averaged deficitfor both, regardless of whether linear superposition (Niayifar and Porté-Agel, 2015) and or root-mean-squared superposition (Voutsinas et al., 1990), and (RMS) superposition (Voutsinas et al., 1990) is used, and they demonstrated this by application to the Horns Rev wind farm. In this section, we extend this analysis to the case of the analysis to non-axisymmetric wakes to quantify-assess the impact of the order of wake superposition and rotor averaging.

(a) The row-averaged yaw angle of the Horns Rev wind farm with respect to the free-stream wind from West to East
 (Zhang et al., 2024). Inset shows a schematic of the farm's layout where the yaw of each turbine is indicated and the first row is highlighted in green to indicate row definition. (b) The row-averaged power generation of the Horns Rev wind farm using linear wake superposition (Niayifar and Porté-Agel, 2015) obtained using the analytical solution of Eq. 18 (solid curve) compared to the numerical solution using the averaging points shown in Fig. E1 (markers). For reference, the case with no turbine yaw is shown by the dashed curve. The free-stream wind speed is 8 ms⁻¹ and the free-stream turbulence intensity is 7.7%. (c) same

415 as in sub-figure b but for the root-mean-squared superposition (Voutsinas et al., 1990). (d) same as in sub-figure b but for the product-based wake superposition of Lanzilao and Meyers (2022).

Expanding on the application presented work by Ali et al. (2024a), we consider analyse the Horns Rev wind farm but with yawed turbines to demonstrate evaluate the accuracy of EqEqs. 18 and 29 when combined with various different wake superposition models against compared to numerical approaches. The yaw angle misalignment of each turbine was obtained from

- 420 the yaw is based on the optimisation study by Zhang et al. (2024)for a free stream flowing-, where a free-stream wind blows from West to East with a wind speed at a speed of 8 m s^{-1} and a turbulence intensity of 7.7%. The employed row-averaged yaw angles are shown in Fig.Figure 6a, shows the row-averaged optimised yaw misalignment of the Horns Rev wind farm along with a schematic of the farm's layout and the direction of the wind relative to the farmwind direction. We use the wake deflection model of Bastankhah and Porté-Agel (2016), and the turbine-induced turbulence model of Crespo and Hernandez (1996)
- 425 . The wake of each turbineis assumed to be Gaussian similar to the form in from Bastankhah and Porté-Agel (2016) and the turbine-added turbulence model by Crespo and Hernandez (1996), assuming each turbine's wake has a Gaussian shape consistent with Eq. 1. No wind-veer effects are included Wind veer effects are excluded in this comparison, and hence (i.e., $\omega = 0$), and all rotor-averaged deficits are linear (i.e., n = 1), so the superscript ⁽¹⁾ is omitted for brevity.

We consider three wake superposition models: linear superposition (Niayifar and Porté-Agel, 2015), root-mean-squared superposition (Voutsinas et al., 1990, hereafter RMS), and the product-based superposition model of Lanzilao and Meyers (2022, hereafter LM

, which are defined as by Lanzilao and Meyers (2022). These models are expressed as

$$\overline{W}_{\text{lin}} = \frac{1}{U_{\infty}} \sum_{j \in S} \overline{u}_j \underline{W} \overline{W}_j, \quad \overline{W}_{\text{RMS}} = \frac{1}{U_{\infty}} \sqrt{\sum_{j \in S} \tilde{u}_j^2 W_j^2} \sqrt{\sum_{j \in S} \overline{u}_j^2 \overline{W}_j^2}, \quad \text{and} \quad \underline{\mathsf{LM}} \overline{W}_{\text{prod}} = 1 - \prod_{j \in S} \left(\underline{1 - W} \underline{1 - W}_j \right), \quad (34)$$

where U_{∞} is denotes the free-stream wind speed, and S is the set of all upstream turbines whose wakes influence upstream turbines influencing the considered turbine., and \overline{u}_i and \overline{W}_j represent the rotor-averaged wind speed and the rotor-averaged

435 deficit of a turbine of index *j*. Equations 34 follow the analytical approach in which each upstream wake's rotor-averaged deficit is computed first, followed by superposition. In contrast, the numerical approach applies wake superposition across all upstream wakes before rotor averaging, as will be further discussed in section 4. Following Zhang et al. (2024), the power generation of a turbine of index *k* with yaw misalignment γ_k is given by

$$P_k = P(\bar{u}_k)\cos^{1.8}(\gamma_k),\tag{35}$$

440 where P(u) is based on the power-generation table of the Vestas V80-2.0 turbine (used in Horns Rev). Alternative methods to calculate power under yaw include modifying the power coefficient instead of absolute power (similar to Eq. 35), but this section focuses on a unified comparison framework for analytical and numerical solutions, regardless of the power calculation method.

Figures 6b-d show b and 6c illustrate the row-averaged power generation of in the Horns Rev wind farmas farm, calcu-

- 445 lated analytically (solid euroscircular and rectangular solutions) and numerically (markers) for linear superposition (Fig. 6b), root-mean-squared superposition (Fig. 6eeach superposition model: linear (black), RMS (red), and product-based superposition (Fig. 6d(blue)). The change in row-averaged power generation due to turbine yaw exhibits similar trends to that predicted by Zhang et al. (2024)with a reduction in power from due to yaw follows a similar trend to that observed by Zhang et al. (2024), with reduced power in the first row, a power uplift from increased power in the second and third rows, and only small
- 450 variations (of order minor variations (1–2%) for subsequent rows(Figs. 6b–d). This is observed for the three considered wake in subsequent rows. This pattern is consistent across all three superposition models, and power generation of though later rows (third row and onwards) are more sensitive to the used and beyond) show greater sensitivity to the chosen superposition model than to the imposed yaw. The comparisons in Figs. 6b–d show-b and 6c demonstrate that the analytical and numerical calculations of the row-averaged power generation are indistinguishable, indicating calculations are nearly identical for both
- 455 <u>circular and rectangular solutions. This result indicates</u> that the order of applying wake superposition and rotor averaging does not impact affect the accuracy of EqEqs. 18 , which can be used and 29, making these equations suitable for use with the considered wake superposition models as well as any superposition model that uses model with similar operators (i.e., linear, root-mean-squared, or product). linear, RMS, or product-based). This is further discussed in section 4.

3.6 Computational cost

460 To evaluate the computational efficiency of the derived analytical solutions (Eqs. 18 and 29) in comparison to the numerical calculation of the rotor-averaged deficit, we consider the power generation of a 25×25 wind farm. The specific conditions of

the free-stream flow and turbine setup are irrelevant here, as the primary objective is to quantify computational costs. Numerical averaging was conducted using vectorised calculations at various resolutions, ranging from 16 to 2000 points.

465

Table 1 presents the percentage change in computational cost for the analytical solutions and for numerical averaging at

different resolutions relative to using 16 averaging points, a common resolution from literature. Notably, the rectangular-disk analytical solution (Eq. 29) demonstrates a computational speed-up of approximately 10% compared to the 16-point numerical reference, making it the only approach that outperforms the baseline. Conversely, the circular-disk solution (Eq. 18) incurs a computational cost approximately 15% higher than the 16-point case, rendering its cost comparable to using 80 averaging points.

Table 1. Comparing the relative change in computational cost for the derived analytical solutions and for various numerical resolutions in reference to the cost of a numerical evaluation of the rotor-averaged deficit using 16 averaging points. If the computational cost of a specific experiment is t, the relative change is calculated as $(t - t_{16})/t_{16} \times 100\%$, where t_{16} is the computational cost of numerically averaging 16 points using vectorised calculations.

No. points	Rect.	<u>.50</u>	Circle	100	500	2000
Relative change	-10.4%	<u>6.7%</u>	14.9%	21.1%	112.4%	443.8%

470 3.7 Uncertainty quantification

Here, we consider various resolutions and distributions of averaging points to quantify the uncertainty that arises when evaluating the rotor-averaged deficit compared to the 2000-point resolution shown in Fig. E1. The considered cases are the derived analytical solutions (Eqs. 18 and 29) and the distribution of averaging points shown in Fig. E2, which include the 16-point quadrature (Eq. E2) of Holoborodko (2011, hereafter, Q16), the 16-point cross-like distribution of Stipa et al. (2024, hereafter, C10 , and various resolutions of the sunflower distribution (Eq. E1) ranging from 16 (S16) to 1000 (S1000) averaging points.

475

To quantify uncertainty, we calculate the root-mean-squared-error (RMSE) of each approach (analytical or numerical) against the 2000-point reference case (Fig. E1). RMSE is defined as

$$\mathbf{RMSE} = \sqrt{\frac{1}{N_s} \sum_{k=1}^{N_s} \left(\overline{W}_k - \overline{W}_{ref}\right)^2},\tag{36}$$

480

where N_s is the number of tested scenarios (i.e., different combinations of driving parameters such as veer and yaw), W_k
is the rotor-averaged deficit for a scenario of index k, and W_{ref} is the reference rotor-averaged deficit (from 2000 averaging points). Different scenarios are generated through different combinations of the yaw misalignment of the wake source (γ_o), the wind-direction differential across the wake source (Δα_o), the averaging order n, the normalised streamwise distance x/D_o, the angle δ, and the normalised offset ρ/σ. Based on the analysis in sections 3.3, 3.4, and Appendix G (on the effect of γ_o), wind veer was shown to have the largest impact on the rotor-averaged deficit. As such, we create two sets of scenarios different

Table 2. Ranges of the driving parameters considered in uncertainty quantification scenarios. The angle γ_o is the yaw misalignment of the wake source, $\Delta \alpha_o$ is the wind-direction differential across the top and bottom tips of the wake source, n is the averaging order, x/D_o is the normalised streamwise distance measured from the wake source, δ is the azimuthal coordinate of the considered turbine centre measured from the wake centre (Fig.1), and ρ/σ is the normalised offset between the wake centre and the centre of the considered turbine (Fig. 1), where σ is the wake standard deviation (Eq. 4). Ranges written in the form $v_o: v_s: v_f$ means this variable ranges from v_o to v_f (inclusive) with a step of v_s .

Veer scenario	Xe	$\Delta \alpha_{o}$	\widetilde{n}_{\sim}	x/Do	${\displaystyle \mathop {\delta }\limits_{\sim }}$	elo-
Small-moderate	$\underbrace{0^\circ:10^\circ:30^\circ}_{\sim\sim}$	$\underbrace{0^\circ:1^\circ:7^\circ}_{}$	{1,2,3}	$\underbrace{4:2:10}$	$\underbrace{0:\pi/4:3\pi/4}_{$	0:0.5:4
Moderate-high	$\underbrace{0^\circ:10^\circ:30^\circ}_{}$	$\underbrace{10^\circ:5^\circ:45^\circ}_{\longleftarrow}$	$\{1, 2, 3\}$	$\underbrace{4:2:10}$	$\underbrace{0:\pi/4:3\pi/4}_{4}$	$\underbrace{0:0.5:4}_{\longleftarrow}$

485 from each other only in the range of $\Delta \alpha_o$ as indicated in Table 2, and where the circular-disk solution (Eq. 18) is tested only in the "small–moderate" veer scenario (first row in Table 2) within the range of applicability as established in sections 3.3 and 3.4.

Table 3 lists scaled values of RMSE (Eq. 36; scaled by 1000) for the aforementioned cases (analytical and numerical) and wake scenarios. As the number of averaging points increases, it is expected that RMSE drops as the predicted solution

- 490 converges to that of the reference 2000-point case (e.g., S1000 vs S100 in table 3), but at the expense of computational cost as outlined in section 3.6. For the small–moderate veer scenario, the Q16 case has the lowest RMSE (0.8×10^{-3}) among the analytical cases and the 16-point averaging cases, with an accuracy that is approximately similar to that of 500 averaging points (S500). For the same scenario, the rectangular-disk solution has approximately similar RMSE as 100 averaging points (S100), whereas the circular-disk solution has slightly less accuracy.
- The moderate-high veer scenario indicates that the rectangular-disk solution (Eq. 29) has higher accuracy than all the 16-point averaging cases at an RMSE of 3.9×10⁻³ (similar to the small-moderate veer scenario). In contrast, the accuracy of Q16 is significantly reduced with RMSE of 8.3×10⁻³. The averaging distributions C16 and S16 have significantly less accuracy than the other cases, holding the highest RMSE for both veer scenarios. For the moderate-high veer scenario, 100 averaging points provides comparable accuracy to the rectangular-disk solution, whilst 500 averaging points, which are computationally expensive (Table 1), are required to have the same accuracy of Q16 in the small-moderate veer scenario.
 - 4 Discussion

505

In the current study, we derived and validated an expression verified two expressions for the surface integration of a nonaxisymmetric Gaussian wake over a circular disk and an equivalent rectangular disk, depicting the rotor of a turbine whose rotor-averaged deficit is sought. The general integrated wake profile took into consideration wake stretching arising from the yawing of upstream turbines, and wake planar shearing due to wind-veer effects through a set of controlling variables: σ , ρ , δ ,

 ξ , and ω , whose definitions were discussed in detail in section 2.1. The presented solution is solutions are compatible with any

23

Table 3. Scaled root-mean-squared-error $(1000 \times \text{RMSE}; \text{Eq. 36})$ of different rotor averaging cases including the rectangular-disk solution (Rect.; Eq. 29), the circular-disk solution (Circle; Eq. 18), the 16-point quadrature (Q16; Eq. E2) shown in Fig. E2a, the 16-point cross-like distribution shown in Fig. E2b, and various resolutions of the sunflower distribution (starting with S; Eq. E1) ranging from 16 averaging points (S16) to 1000 averaging points (S1000). The reference to which each case is compared is numerical averaging using 2000 points following a sunflower distribution as indicated in Fig. E1. The ranges of the driving parameters for both veer scenarios are listed in Table 2. The abbreviation NA stands for Not Applicable.

Veer scenario	Rect.	Circle	<u>Q16</u>	<u>C16</u>	<u>S16</u>	<u>\$100</u>	<u>\$500</u>	<u>\$1000</u>
Small-moderate	3.4	5.4	<u>0.8</u>	29.4	12.5	3.2	<u>0.9</u>	0.4
Moderate-high	3.9	NA	<u>8.3</u>	42.9	18.2	3.8	1.0	.0.4

wake deflection model from the literature as all distances were referenced to the wake <u>centercentre</u>. Alternatively, if the <u>center</u> centre of the upstream turbine is sought to be the reference location, then the definitions of the <u>offset</u> ρ and the <u>angle</u> δ need modifications to account for the wake horizontal deflection dd_{0} . In this case, the modified lateral offset ρ^* , and the modified angle δ^* measured from the <u>center</u> centre of the upstream turbine are

510

$$\rho^* = \rho \sqrt{1 + 2\left(\frac{d}{\rho}\right)\cos\delta + \left(\frac{d}{\rho}\right)^2} \sqrt{1 + 2\left(\frac{d_o}{\rho}\right)\cos\delta + \left(\frac{d_o}{\rho}\right)^2}, \quad \text{and} \quad \tan\delta^* = \frac{\sin\delta}{\frac{d}{\rho} + \cos\delta} \frac{\sin\delta}{\frac{d_o/\rho + \cos\delta}{d_o/\rho + \cos\delta}}.$$
(37)

The expressions for the rotor-averaged deficit proposed in section 2.2 (Eq(Eqs. 18 and 29) were derived for a generic averaging order n > 0, where the case of n = 1 is equivalent to obtaining the averaged momentum deficit through the turbine rotor (for incompressible steady flow), n = 2 corresponds to the averaged kinetic-energy deficit through the rotor, and n = 3

- 515 is equivalent to the averaged power deficit through the rotor. However, to obtain a solution for a circular disk (Eq. 18) it was assumed that the stretching and shearing of the wake contours are not large as quantified by the skewness parameter $\kappa^{(n)}$ (Eq. 14). Increasing the averaging order *n* naturally increases the level of skewness of the wake contours, and hence using higher-order averaging for a circular disk should be limited to cases of small/moderate wind veer (if any) to keep Eq. 18 within its validity region. The results in sections 3.3 and 3.4 indicated that for the circular-disk solution, a practical limit on the
- 520 skewness parameter $\kappa^{(n)}$ was approximately 0.4–0.5. Conversely, the solution of the rectangular disk (Eq. 29) is not limited by this simplifying assumption and was shown to perform well even in the case of extreme wind veer (Fig. 4), giving it a large advantage against the circular-disk solution.

In terms of computational cost, both analytical solutions were comparable to vectorised calculations of the rotor-averaged deficit using 16 averaging points, where the rectangular-disk solution was approximately 10% faster and the circular-disk solution was approximately 15% slower. Though higher number of averaging points corresponds to higher accuracy, the computational cost becomes notably larger. As such, we examined the accuracy of the derived analytical solutions and of various numerical resolutions and distributions against high-resolution averaging (2000 points). For the same resolution (16 points), we found that the quadrature distribution (Fig. E2a) has significantly higher accuracy than the cross-like distribution

(Fig. E2b) and than a random distribution (depicted by the sunflower distribution in Fig. E2c) of the same number of points,

- F30 regardless of the intensity of deficit-contours shearing and stretching. The rectangular-disk solution showed high accuracy for both of the considered veer scenarios, with an RMSE ~ $\mathcal{O}(10^{-3})$ that is approximately two-orders of magnitude less than an average deficit ($W \sim \mathcal{O}(10^{-1})$), which is also equivalent to numerical averaging using approximately 100 points. The circular-disk solution had a marginally lower accuracy than the rectangular-disk solution, but was only applicable to the small-moderate veer scenario. Although both are of high accuracy, the 16-point quadrature has higher accuracy than the
- rectangular-disk solution for the small-moderate veer scenario, with an accuracy of approximately 500 averaging points, but was of lower accuracy when the deficit contours became highly sheared (moderate-high veer scenario). Nonetheless, the rectangular-disk solution was 10% faster in both scenarios. It should be noted that the expression for the size of the equivalent rectangular disk (Eq. 33) is empirical, which could slightly impair the accuracy of the rectangular-disk solution. However, if the size expression is optimised, higher accuracy could be achieved, though we find that the expression in Eq. 33 is accurate enough for a wide range of operating conditions including extreme-veer conditions.

The analytical solutions proposed in sections 2.2 and 2.1 (Eqs. 18) corresponds and 29) correspond to a single upstream wake, whereas an operational wind turbine is typically impacted by multiple upstream wakes whose deficits are superposed using a variety of wake superposition models (e.g., Lissaman, 1979; Voutsinas et al., 1990). In a numerical frameworkthat relies on a set of discrete points generated on the rotor disk of the considered turbine to calculate the rotor-averaged deficit, wake

- superposition due to all upstream wakes is applied to each point averaging point on the rotor's disk independently followed by a rotor averaging for rotor averaging of the superposed wakes. Conversely, application of EqEqs. 18 or 29 to a turbine subject to multiple upstream wakes requires the evaluation of the rotor-averaged deficit for each wake followed by a superposition of these deficits. For a superposition model that relies on a linear operator to combine upstream deficits (e.g., Lissaman, 1979; Niayifar and Porté-Agel, 2015; Zong and Porté-Agel, 2021; Dar and Porté-Agel, 2024), the numerical and analytical
- 550 approaches discussed above are the same, meaning that the order of applying wake superposition and rotor averaging has no effect. However, other wake superposition models rely on root-mean-squared operators (e.g., Katic et al., 1987; Voutsinas et al., 1990) for which the order of wake superposition and rotor averaging is not trivial. Ali et al. (2024a) showed mathematically that for a column of turbines of the same hub-height ($\delta = 0$) with no lateral-offset ($\rho = 0$) where the wake of each turbine is axisymmetric ($\xi = \omega = 0$), the order in which wake superposition and rotor averaging <u>calculations</u> are applied results in
- insignificant differences as long as the number of upstream turbines with non-negligible deficits acting on the considered turbine is not large. They showed that for an analytical approach (rotor-averaging followed by superposition), the rotor-averaged deficit of the considered turbine is proportional to $e^{-1/(4\bar{\sigma}^2)}$, where $\bar{\sigma}$ is an $e^{-1/(4\bar{\sigma}^2)}$, where $\bar{\sigma}$ is a deficit-weighted averaged wake standard deviation for all the upstream turbines impacting the considered turbine, whereas for a numerical approach (superposition followed by rotor-averaging), the rotor-averaged deficit is proportional to $e^{-2/(9\bar{\sigma}^2)}e^{-2/(9\bar{\sigma}^2)}$. In a typical wind
- farm, the number of upstream turbines with non-negligible deficits acting on a turbine is 2–3, where one of these turbines has the dominant wake effect, making these two exponents very close. This conclusion. Their conclusion can be easily extended to any averaging order *n* using the substitution $\bar{\sigma}^2 \rightarrow \bar{\sigma}^2/n$, and it also naturally extends to the considered case of a non-axisymmetric wake, as the non-axisymmetric solution was shown to be a perturbation to a scaled axisymmetric solution (Eq. 18). Application

to the Horns Rev wind farm showed that the numerical and analytical approaches using root-mean-squared superposition

565 gave indistinguishable results (FigFigs. 6e)b and 6c), where all upstream wakes for a specific turbine were considered in the evaluation of the turbine's operating point.

The superposition model of Lanzilao and Meyers (2022) does not use linear nor root-mean-squared operators, but rather the product of the normalised rotor-averaged wind speeds of all upstream wake sources. We show in Appendix F that for this superposition model, and for any other superposition model of a similar operator, the numerical and analytical approaches are

- 570 asymptotically identical if the upstream wakes of the considered turbine are assumed to operate independently. This assumption is justified as each turbine can be yawed independently of the other turbines depending on its onset wind, though such a strategy is not optimal for the whole wind farm performance. We also demonstrate that for small-enough upstream deficits ($W \leq 0.3$), the superposition model of Lanzilao and Meyers (2022) this product-based superposition model converges to a non-weighted linear superposition model, which explains the closeness in the estimated power generation by the two wake superposition
- 575 models when applied to the Horns Rev wind farm (Figs. 6b , dand 6c). Similar to root-mean-squared superposition, when this product-based superposition model was applied to the Horns Rev wind farm, there were no distinguishable differences between the analytical and numerical solutions (Fig. 6d).

Some limitations should, however, be considered. The rotor-averaging process inherently assumes that a zero-deficit point on the rotor disk has a wind speed that is equal to that of the upstream turbine (wake source), rather than the free-stream wind

- 580 speed or another background wind speed. This is referred to as partial waking of a turbine. Such an effect can be profound in the case of highly heterogeneous flow within a wind farm (e.g., in the case of extreme weather conditions such as hurricanes or in the case of extremely large wind farms). In such a scenario, both the all numerical and analytical approaches based on engineering wake models have shortcomings as the underlying assumptions of the wake-deficit model cannot predict the interactions between the wakes and the heterogeneous background flow, which can lead to inaccurate wind speeds of the unwaked regions of a rotor.
- 585 unwaked regions of a rotor.

590

The obtained expression expressions for the rotor-averaged deficit was were derived assuming that the considered turbine is normal to the free-stream flow, making the parameters σ , ξ , ω , and C constants across the rotor disk. If the considered turbine is yawed, these parameters are no longer constants but vary along the streamwise extents of the considered yawed turbine. These variations are small for a small yaw angle γ and are typically ignored, as the integration over a circle normal to the free-stream flow is approximately similar to that across an inclined ellipse extending from $x_o - R\sin\gamma$ to $x_o + R\sin\gamma$, where $x_o \hat{x} - R\sin\gamma$ to $\hat{x} + R\sin\gamma$, where \hat{x} is the streamwise coordinate of the center centre of the yawed turbine. Moreover, a yawed turbine experiences transverse wind whose magnitude is typically much smaller than the streamwise wind speed (Martínez-Tossas et al., 2019). This transverse wind is not included in EqEgs. 18 and 29 and needs to be modelled numerically, if required. Nonetheless, since the streamwise wind speed is dominant for small yaw angles and typical inter-turbine spacing,

595 Eq. 18 presents a the derived analytical solutions present fast point-free expression expressions that can be used even if the considered turbine has a small yaw angle.

Importantly, Eq. 18 is differentiable. In some wind-energy applications, the nacelle wind-speed deficit (hub-height deficit) is used as a proxy for the wind speed across the entire rotor. In appendix G, we compared rotor averaging of the deficit with the

nacelle-point deficit (see Fig. G1), indicating that the nacelle deficit can be significantly different from a rotor-averaged value,

- 600 which could impair the accuracy of estimating a turbine's operating point. Hence, it is recommended to use a rotor-averaged value for the deficit rather than the nacelle-point deficit. We also explored the impact of yawing the wake source on the rotor-averaged deficit of the considered turbine, which was shown to be much less than other parameters such as wind veer and the averaging order. Although not addressed in this study, EqEqs. 18 and 29 are differentiable, which allows for obtaining mathematical expressions for the gradients of the rotor-averaged wind speed of a turbine with respect to its location in a farm
- and/or to the operating point of upstream turbines. This offers the potential to replace the heuristic search for global minima that is required for optimisation problems to a problem of obtaining the zeros of a set of non-linear equations.

5 Summary

An analytical expression <u>Analytical expressions</u> for the rotor-averaged wind-speed deficit of a turbine operating within a Gaussian wake was derived and validated non-axisymmetric Gaussian wake were derived and verified for a general lateral

- 610 offset and hub-height difference between the wake source and the considered turbine. The <u>derived expressions correspond to</u> circular- and rectangular-disk representations of a turbine's rotor. The considered Gaussian wake included wake stretching wake-stretching effects due to the yawing of the wake source as well as the planar shearing of the wake shape due to windveer effects. The presented expression was validated against numerical evaluation expressions were verified against numerical evaluations of the rotor-averaged deficit indicating excellent agreement at various downstream distances of the wake source, and
- 615 at different combinations of the thrust coefficient of the wake source and the free-stream turbulence intensity. The expression good agreement for the circular-disk case and excellent agreement for the rectangular case, which also outperformed numerical approaches in terms of computational cost. In terms of accuracy, the rectangular-disk solution was equivalent to using 100 averaging points on the rotor of the considered turbine, whereas the circular-disk solution had marginally less accuracy and is only applicable for small/moderate veer effects. In the case of highly veered flows, the presented rectangular-disk solution
- 620 had higher accuracy than the well-established numerical averaging using a 16-point quadrature. The expressions of the rotoraveraged deficit for a single turbine wake can be applied to multiple wakes using any available superposition model that rely on linear operators, root-mean-squared operators or product operators as demonstrated by application to the Horns Rev wind farm . The expression for the rotor-averaged deficit is differentiable and can lay the ground for obtaining mathematical with optimised yaw misalignment for each turbine. Whilst not derived in this study, the expressions for the gradients of the rotor-
- 625 averaged deficit , and hence power production, with respect to a turbine's location and/or the operating conditions of upstream turbines, which are differentiable and can be beneficial for optimisation-based applications.

Code availability. A Python implementation of the presented analytical expressions for the rotor-averaged deficit (Eqs. 18 and 29) is publicly available from Ali et al. (2024c).

Appendix A: Transfer of axes for the Gaussian wake equation

630 In this appendix, we show how Eq. 7 can be transferred from the wake axes $\frac{y_n y'_{-z_n z'}}{z_n z'_{-z_n z'_{-z_n}z'_{-z_$

$$\overline{W}_{\sim\sim}^{(n)} = \frac{C}{\underline{\pi R^2}} C \left(\frac{1}{\underline{\pi R^2}} \int_{0}^{R} \int_{0}^{2\pi} r e^{-(y + \Delta_y + \omega(z + \Delta_z))^2 / (2\sigma_y^2) - n(y + \Delta_y + \omega(z + \Delta_z))^2 / (2\sigma_y^2)} e^{-(z + \Delta_z)^2 / (2\sigma_z^2) - n(z + \Delta_z)^2 / (2\sigma_z^2)} d\theta dr \right) \frac{1/n}{(A1)}$$

By expanding the brackets in Eq. A1, the exponent can be written as $e^{-r^2 c_{r^2}/2} e^{-r\rho c_{r\rho}} e^{-\rho^2 c_{\rho^2}/2} e^{-nr^2 c_{r^2}/2} e^{$

$$c_{r^2} = \frac{\cos^2\theta}{\sigma_y^2} + \frac{\sin^2\theta}{\sigma_z^2} + \frac{\omega\sin^2\theta}{\sigma_y^2} + \frac{\omega^2\sin^2\theta}{\sigma_y^2},\tag{A2}$$

$$c_{r\rho} = \underbrace{\left(\frac{\omega\sin\delta + \cos\delta}{\sigma_y^2}\right)}_{a_1} \cos\theta + \underbrace{\left(\frac{1}{\sigma_z^2} + \omega\left(\frac{\omega\sin\delta + \cos\delta}{\sigma_y^2}\right)\right)}_{a_2} \sin\theta_{\underline{\cdot}},\tag{A3}$$

640 and

$$c_{\rho^2} = \frac{\cos^2 \delta}{\sigma_y^2} + \frac{\sin^2 \delta}{\sigma_z^2} + \frac{\omega \sin 2\delta}{\sigma_y^2} + \frac{\omega^2 \sin^2 \delta}{\sigma_y^2}.$$
(A4)

To simplify Eq. A2, we use the substitutions $\cos^2 \theta = (1 + \cos 2\theta)/2$ and $\sin^2 \theta = (1 - \cos 2\theta)/2$

$$c_{r^{2}} = \underbrace{\left(\frac{1}{2\sigma_{y}^{2}} + \frac{1}{2\sigma_{z}^{2}} + \frac{\omega^{2}}{2\sigma_{y}^{2}}\right)}_{1/\sigma_{*}^{2}} + \underbrace{\left(\frac{1}{2\sigma_{y}^{2}} - \frac{1}{2\sigma_{z}^{2}} - \frac{\omega^{2}}{2\sigma_{y}^{2}}\right)}_{1/\sigma_{**}^{2}} \cos 2\theta + \left(\frac{\omega}{\sigma_{y}^{2}}\right)\sin 2\theta, \tag{A5}$$

which can be further simplified by defining $1/\sigma_{ns}^2 = \sqrt{1/\sigma_{**}^4 + \omega^2/\sigma_y^4}$ and $\tan \phi_{ns} = \omega \sigma_{**}^2/\sigma_y^2$

645
$$c_{r^2} = \frac{1}{\sigma_*^2} + \frac{\cos(2\theta - \phi_{\rm ns})}{\sigma_{\rm ns}^2}.$$
 (A6)

Using the same procedure and by replacing θ with δ , we have

$$c_{\rho^2} = \frac{1}{\sigma_*^2} + \frac{\cos\left(2\delta - \phi_{\rm ns}\right)}{\sigma_{\rm ns}^2}.$$
(A7)

Finally, Eq. A3 can be simplified to

$$c_{r\rho} = \cos\left(\theta - \phi_{\rm s}\right) / \sigma_{\rm s}^2,\tag{A8}$$

650 by defining $\sigma_s^2 = 1/\sqrt{a_1^2 + a_2^2}$ and $\tan \phi_s = a_2/a_1$, where a_1 and a_2 are defined in Eq. A3.

Appendix B: Azimuthal integration of non-symmetric Gaussian wake

In this appendix, we present the solution to the integral M_{θ} in Eq. 8, which was based on a solution proposed by Gaidash (2023).

$$M_{\theta} = \frac{1}{\pi} \int_{0}^{2\pi} e^{-\frac{\eta^{2} R^{2} \cos(2\theta - \phi_{\rm ns})}{(2\sigma_{\rm ns}^{2}) - \eta R \rho \cos(\theta - \phi_{\rm s})/\sigma_{\rm s}^{2} - n\eta^{2} R^{2} \cos(2\theta - \phi_{\rm ns})/(2\sigma_{\rm ns}^{2}) - n\eta R \rho \cos(\theta - \phi_{\rm s})/\sigma_{\rm s}^{2}} d\theta.$$
(B1)

Using the Jacobi–Anger expansion (Abramowitz and Stegun, 1972, 9.1.41–45; p. 361), we can write

$$e^{\frac{-\eta R\rho \cos\left(\theta - \phi_{s}\right)/\sigma_{s}^{2} - n\eta R\rho \cos\left(\theta - \phi_{s}\right)/\sigma_{s}^{2}}}_{\nu \in \mathbb{Z}} = \sum_{\nu \in \mathbb{Z}} (-1)^{\nu} I_{\nu} \left(\frac{\eta R\rho}{\sigma_{s}^{2}} \frac{n\eta R\rho}{\sigma_{s}^{2}}\right) e^{i\nu(\theta - \phi_{ns}/2)} e^{i\nu(\phi_{ns}/2 - \phi_{s})}, \tag{B2}$$

where I_{ν} is the modified Bessel function of order ν , and \mathbb{Z} is the set of integers. Using Eq. B2, the integral M_{θ} becomes

$$M_{\theta} = \frac{1}{\pi} \sum_{\nu \in \mathbb{Z}} (-1)^{\nu} e^{i\nu(\phi_{\rm ns}/2 - \phi_{\rm s})} I_{\nu} \left(\underbrace{\frac{\eta R\rho}{\sigma_{\rm s}^2} \frac{n\eta R\rho}{\sigma_{\rm s}^2}}_{0} \right) \int_{0}^{2\pi} e^{\frac{-\eta^2 R^2 \cos(2\theta - \phi_{\rm ns})/(2\sigma_{\rm ns}^2) - n\eta^2 R^2 \cos(2\theta - \phi_{\rm ns})/(2\sigma_{\rm ns}^2)} e^{i\nu(\theta - \phi_{\rm ns}/2)} d\theta.$$
(B3)

The integral in Eq. B3 vanishes for odd values of ν . Also, since M_{θ} is real we can write

$$660 \quad M_{\theta} = 2 \sum_{\nu \in \mathbb{Z}} \cos\left(\nu(2\phi_{\rm s} - \phi_{\rm ns})\right) I_{2\nu} \left(\frac{\eta R\rho}{\sigma_{\rm s}^2} \frac{n\eta R\rho}{\sigma_{\rm s}^2}\right) \int_{0}^{\pi} e^{-\frac{\eta^2 R^2 \cos\left(\theta' - \phi_{\rm ns}\right)/2\sigma_{\rm ns}^2 - n\eta^2 R^2 \cos\left(\theta' - \phi_{\rm ns}\right)/2\sigma_{\rm ns}^2} \cos\left(\nu(\theta' - \phi_{\rm ns})\right) d\theta', \quad (B4)$$

where $\theta' = 2\theta$. The integral in Eq. B4 can be solved using (Gradshteyn and Ryzhik, 2007, 3.915(2) p. 491)

$$\int_{0}^{\pi} e^{-t\cos\zeta}\cos(\nu\zeta) \, d\zeta = (-1)^{\nu} \pi I_{\nu}(t), \tag{B5}$$

which is insensitive to a phase shift ϕ_{ns} . Hence, M_{θ} becomes

$$M_{\theta} = 2\sum_{\nu \in \mathbb{Z}} (-1)^{\nu} \cos\left(\nu(2\phi_{\rm s} - \phi_{\rm ns})\right) I_{2\nu} \left(\frac{\eta R\rho}{\sigma_{\rm s}^2} \frac{n\eta R\rho}{\sigma_{\rm s}^2}\right) I_{\nu} \left(\frac{\eta^2 R^2}{2\sigma_{\rm ns}^2} \frac{n\eta^2 R^2}{2\sigma_{\rm ns}^2}\right), \tag{B6}$$

665 which can be further simplified using the fact that $I_{-\nu}(x) = I_{\nu}(x)$ for an integer ν

$$M_{\theta} = 2I_0 \left(\frac{\eta R \rho}{\sigma_s^2} \frac{n \eta R \rho}{\sigma_s^2} \right) I_0 \left(\frac{\eta^2 R^2}{2\sigma_{\rm ns}^2} \frac{n \eta^2 R^2}{2\sigma_{\rm ns}^2} \right) + 4\sum_{\nu \ge 1} (-1)^{\nu} \cos\left(\nu(2\phi_{\rm s} - \phi_{\rm ns})\right) I_{2\nu} \left(\frac{\eta R \rho}{\sigma_{\rm s}^2} \frac{n \eta R \rho}{\sigma_{\rm s}^2} \right) I_{\nu} \left(\frac{\eta^2 R^2}{2\sigma_{\rm ns}^2} \frac{n \eta^2 R^2}{2\sigma_{\rm ns}^2} \right). \tag{B7}$$

Appendix C: Radial integration of non-symmetric Gaussian wake

In this appendix, we provide a solution to the integral M_{η} defined in Eq. 8 along with solution of the integral M_{θ} (Eq. 10) which was detailed in Appendix B

$$M_{\eta} = 2 \int_{0}^{1} \eta e^{-\frac{\eta^{2} R^{2} / (2\sigma_{*}^{2}) - n\eta^{2} R^{2} / (2\sigma_{*}^{2})}} I_{0} \left(\frac{\eta R\rho}{\sigma_{*}^{2}} \frac{n\eta R\rho}{\sigma_{*}^{2}} \right) I_{0} \left(\frac{\eta^{2} R^{2}}{2\sigma_{ns}^{2}} \frac{n\eta^{2} R^{2}}{2\sigma_{ns}^{2}} \right) d\eta + 4 \sum_{\nu \ge 1} (-1)^{\nu} \cos(\nu\phi) \int_{0}^{1} \eta e^{-\frac{\eta^{2} R^{2} / (2\sigma_{*}^{2}) - n\eta^{2} R^{2} / (2\sigma_{*}^{2})}} I_{2\nu} \left(\frac{\eta R\rho}{\sigma_{*}^{2}} \frac{n\eta R\rho}{\sigma_{*}^{2}} \right) I_{\nu} \left(\frac{\eta^{2} R^{2}}{2\sigma_{ns}^{2}} \frac{n\eta^{2} R^{2}}{2\sigma_{ns}^{2}} \right) d\eta$$
(C1)

The argument of the terms in the form $I_{\nu} \left(\eta^2 R^2 / (2\sigma_{ns}^2) \right) - I_{\nu} \left(n\eta^2 R^2 / (2\sigma_{ns}^2) \right)$ is sufficiently small ($\lesssim 1$) for the ranges outlined in section 2.1 and for small values of n with an average value of $\kappa = R^2 / (6\sigma_{ns}^2) nR^2 / (6\sigma_{ns}^2)$ for $0 \le \eta \le 1$. Hence, we employ the approximation $I_{\nu} \left(\eta^2 R^2 / (2\sigma_{ns}^2) \right) \sim \left(\eta^2 R^2 / (4\sigma_{ns}^2) \right)^{\nu} / \nu! I_{\nu} \left(n\eta^2 R^2 / (2\sigma_{ns}^2) \right) \sim \left(n\eta^2 R^2 / (4\sigma_{ns}^2) \right)^{\nu} / \nu!$ (Abramowitz and Stegun, 1972, 9.6.7; p. 375). The , and the integral M_{η} becomes

$$675 \quad M_{\eta} \approx 2\mu_{\infty0}^{(n)} + 4\sum_{\nu \ge 1} \frac{1}{\nu!} \left(\underbrace{\frac{-R^2}{4\sigma_{ns}^2}}_{-\frac{4\sigma_{ns}^2}{-\frac{4\sigma_{n$$

where

670

$$\mu_{\sim\sim}^{(n)}{}_{0} = \int_{0}^{1} \eta e^{-\frac{\eta^{2} R^{2} / (2\sigma_{*}^{2}) - n\eta^{2} R^{2} / (2\sigma_{*}^{2})} I_{0} \left(\frac{\eta R \rho}{\sigma_{*}^{2}} \frac{n\eta R \rho}{\sigma_{*}^{2}} \right) d\eta.$$
(C3)

Solving the integral $\mu_0 \mu_{0}^{(n)}$ is discussed in more detail in section 2.2. The solution to the integrals $A_{2\nu} \mu_{2\nu}^{(n)}$ is derived in detail in Appendix D.

$$680 \quad \underline{\Lambda\mu^{(n)}}_{2\nu} = \left(\frac{\rho\sigma_*^2}{R\sigma_s^2}\right)^{2\nu} \left[\mu_{\sim}^{(n)} - \frac{\sigma_*^2}{\underline{R^2}} \frac{\sigma_*^2}{nR^2} e^{-\underline{R^2/(2\sigma_*^2)} - nR^2/(2\sigma_*^2)} \sum_{k=1}^{2\nu} \left(\frac{\rho\sigma_*^2}{R\sigma_s^2}\right)^{-k} I_k \left(\frac{\underline{R\rho}}{\sigma_s^2} \frac{nR\rho}{\sigma_s^2}\right)\right]$$
(C4)

Therefore, M_{η} becomes

$$M_{\eta} \approx 2\mu_{\infty 0}^{(n)} \left(1 + 2\sum_{\nu \ge 1} \frac{(-\chi_{ns}^{2})^{\nu} \cos(\nu\phi)}{\nu!} \frac{(-n\chi_{ns}^{2})^{\nu} \cos(\nu\phi)}{\nu!} \right) - \frac{4\sigma_{*}^{2}}{R^{2}} \frac{4\sigma_{*}^{2}}{nR^{2}} e^{\frac{-R^{2}/(2\sigma_{*}^{2}) - nR^{2}/(2\sigma_{*}^{2})}{\nu!}} \sum_{\nu \ge 1} \frac{(-\chi_{ns}^{2})^{\nu} \cos(\nu\phi)}{\nu!} \frac{(-n\chi_{ns}^{2})^{\nu} \cos(\nu\phi)}{\nu!} \frac{(-n\chi$$

where $\chi_{\rm ns} = \rho \sigma_*^2/(2\sigma_{\rm ns}\sigma_{\rm s}^2).$ For the sum over ν , we have

$$\mathcal{P}_{\sim\sim}^{(n)}{}_{ns} = \sum_{\nu \ge 1} \underbrace{\frac{(-\chi_{ns}^2)^{\nu} \cos(\nu\phi)}{\nu!}}_{\nu!} \underbrace{(-n\chi_{ns}^2)^{\nu} \cos(\nu\phi)}_{\nu!} = e^{-\chi_{ns}^2 \cos\phi} \cos\left(\chi_{ns}^2 \sin\phi\right)^{-n\chi_{ns}^2 \cos\phi} \cos\left(n\chi_{ns}^2 \sin\phi\right) - 1. \tag{C6}$$

Also, the modified Bessel function $I_{\nu}(x)$ decays rapidly with ν , and hence we only keep the terms with $\nu \leq 2$ in the right-hand side of Eq. C5. Therefore, Eq. C5 simplifies to

$$M_{\eta} \approx 2\mu_{\sim 0}^{(n)} \left(1 + 2\mathcal{P}_{\sim ns}^{(n)}\right) - \frac{4\sigma_{*}^{2}}{\underline{R^{2}}} \frac{4\sigma_{*}^{2}}{nR^{2}} e^{-\frac{R^{2}}{(2\sigma_{*}^{2})} - nR^{2}/(2\sigma_{*}^{2})} \mathcal{P}_{\sim ns}^{(n)} \left[\frac{\lambda}{\rho} I_{1}\left(\frac{R\rho}{\sigma_{s}^{2}} \frac{nR\rho}{\sigma_{s}^{2}}\right) + \frac{\lambda^{2}}{\rho^{2}} I_{2}\left(\frac{R\rho}{\sigma_{s}^{2}} \frac{nR\rho}{\sigma_{s}^{2}}\right)\right].$$
(C7)
where $\lambda = R\sigma_{s}^{2}/\sigma_{*}^{2}$.

Appendix D: A solution of an integral of the modified Bessel function

690 In this appendix, we present a solution to a generic integral in the form

$$\underline{\Lambda}\underline{\mu}_{\nu}^{(n)}{}_{\nu}(\beta,\vartheta) = \int_{0}^{1} \eta^{1+\nu} e^{-\frac{\eta^{2}\beta^{2}/2 - n\eta^{2}\beta^{2}/2}{2}} I_{\nu}(\underline{n}\eta\vartheta) \, d\eta, \tag{D1}$$

where ν is an integer and n are integers, and β and ϑ are constants. To evaluate A_{ν} we employ $\partial/\partial \eta (\eta^{\nu} I_{\nu} (\eta \vartheta)) = \vartheta \eta^{\nu} I_{\nu-1} (\eta \vartheta) \mu_{\nu}^{(n)}$ we employ $\partial(\eta^{\nu} I_{\nu} (n\eta \vartheta)) / \partial \eta = n \vartheta \eta^{\nu} I_{\nu-1} (n\eta \vartheta)$. Integrating Eq. D1 by parts leads to the recursion

$$\underline{\Lambda\mu}_{\mu\nu}^{(n)}{}_{\nu}(\beta,\vartheta) = -\frac{e^{-\beta^2/2}}{\beta^2} \frac{e^{-n\beta^2/2}}{n\beta^2} I_{\nu}(\underline{n}\vartheta) + \frac{\vartheta}{\beta^2} \underline{\Lambda\mu}_{\mu\nu}^{(n)}{}_{\nu-1}(\beta,\vartheta),$$
(D2)

695 which can be solved using the generating function $\mathcal{F}(\eta) = \sum_{\nu \ge 1} \Lambda_{\nu} \eta^{\nu} \mathcal{F}_{n}(\eta) = \sum_{\nu \ge 1} \mu_{\nu}^{(n)} \eta^{\nu}$. Multiplying Eq. D2 by η^{ν} and summing over ν gives

$$\sum_{\nu \ge 1} \underline{\Lambda} \underline{\mu}_{\nu}^{(n)}{}_{\nu} \eta^{\nu} = - \underbrace{\frac{e^{-\beta^2/2}}{\beta^2}}_{\underline{\mu}_{\nu}^{(n)}} \underbrace{e^{-n\beta^2/2}}_{\nu \ge 1} \sum_{\nu \ge 1} I_{\nu}(\underline{n}\vartheta) \eta^{\nu} + \frac{\vartheta}{\beta^2} \sum_{\nu \ge 1} \underline{\Lambda} \underline{\mu}_{\nu}^{(n)}{}_{\nu-1} \eta^{\nu}, \tag{D3}$$

which simplifies into

$$\mathcal{F}_{\underline{n}}(\eta) = -\frac{\frac{e^{-\beta^2/2}}{\beta^2}}{\frac{n\beta^2}{n\beta^2}} \sum_{\nu \ge 1} I_{\nu}(\underline{n}\vartheta)\eta^{\nu} + \frac{\vartheta\eta}{\beta^2} \left(\underline{\Lambda\mu}_{\underline{n}0}^{(n)} + \mathcal{F}_{\underline{n}}(\eta)\right). \tag{D4}$$

700 Solving Eq. D4 for $\mathcal{F}(\eta)$, $\mathcal{F}_n(\eta)$ and using Taylor's expansion $(1 - \vartheta \eta / \beta^2)^{-1} = \sum_{m \ge 0} (\vartheta \eta / \beta^2)^m$

$$\mathcal{F}_{\underline{n}}(\eta) = -\frac{e^{-\beta^2/2}}{\underline{\beta^2}} \underbrace{\frac{e^{-n\beta^2/2}}{n\beta^2}}_{\nu \ge 1} \sum_{m \ge 0} \left(\frac{\vartheta}{\beta^2}\right)^m I_{\nu}(\underline{n}\vartheta)\eta^{\nu+m} + \underline{\Lambda} \underbrace{\mu_{\dots}^{(n)}}_{m \ge 0} \sum_{m \ge 0} \left(\frac{\vartheta\eta}{\beta^2}\right)^{m+1}.$$
(D5)

Finally, the integral $\frac{A_{\nu}}{\mu_{\nu}}\mu_{\nu}^{(n)}$ is the coefficient of η^{ν} in Eq. D5

$$\underline{\underline{\Lambda}}_{\mu}^{(n)}{}_{\nu}(\beta,\vartheta) = \left(\frac{\vartheta}{\beta^2}\right)^{\nu} \left[\underline{\underline{\Lambda}}_{\mu}^{(n)}{}_{0}(\beta,\vartheta) - \underbrace{\frac{e^{-\beta^2/2}}{\beta^2}}_{\mu} \underbrace{\frac{e^{-n\beta^2/2}}{n\beta^2}}_{\mu} \sum_{k=1}^{\nu} \left(\frac{\vartheta}{\beta^2}\right)^{-k} I_k(\underline{n}\vartheta)\right],\tag{D6}$$

where $A_0(\beta, \vartheta)$ is $\mu_0^{(n)}(\beta, \vartheta)$ is

705
$$\underline{\Lambda}\mu_{\underline{}}^{(n)}{}_{0}(\beta,\vartheta) = \int_{0}^{1} \eta e^{-\frac{\eta^{2}\beta^{2}/2 - n\eta^{2}\beta^{2}/2}} I_{0}(\underline{n}\eta\vartheta) \, d\eta.$$
(D7)

Figure E1. A uniform sunflower distribution of 2000 points over the surface a circle to be used to numerically evaluate the rotor-averaged deficit due to an upstream wake in the form of Eq. 1 and to provide a reference to validate verify the derived analytical expressions. The polar coordinates of the shown averaging points follow Eq.18 E1. More details on this distribution is available in Appendix E.

Appendix E: Distribution of points across a circle for numerical averaging

715

In this appendix, the we summarise various distributions and resolutions of averaging points that are used for numerical averaging of the rotor deficit.

As a reference case for verification of the derived analytical expressions (Eqs. 18 and 29) and for quantifying the uncertainty 710 of lower resolution numerical averaging, we use a sunflower distribution of points across a circle is summarised. The 2000 points. For a sunflower distribution, the polar coordinates r_k and θ_k of a point of index k (out of N total points) on a circle of radius R are defined as

$$r_k / R = \begin{cases} 1 & \text{if } k > N - b \\ \sqrt{\frac{k - 1/2}{N - (b + 1)/2}} & \text{otherwise} \end{cases}, \quad \text{and} \quad \theta_k = \frac{2\pi k}{\varphi^2}, \\ \theta_k = \frac{2\pi k}{\varphi^2}, \end{cases}$$
(E1)

where $\varphi = (\sqrt{5} + 1)/2$ is the golden ratio, and the constant $b = \text{round}(2\sqrt{N})$ with the function "round" returning the nearest integer. The resulting distribution of points is shown in Fig. E1. An implementation of this distribution can be found in Ali et al. (2024e). We also explore the distribution of 16 averaging points following the quadrature of Holoborodko (2011). For

Figure E2. Different distributions and resolutions of averaging points following: (a) the quadrature of Holoborodko (2011, Eq. E2), (b) the cross-like distribution of Stipa et al. (2024), and (c-f) various resolutions of the sunflower distribution (Eq. E1).

this quadrature, the polar coordinates of a point of index k are

720
$$r_k/R = \sqrt{\frac{3 + (-1)^{k+1}\sqrt{3}}{6}}, \text{ and } \theta_k = 2\pi(k-1)/16, \forall k \in \{1, 2, 3, \dots, 16\},$$
 (E2)

Figure E2 shows different resolutions and distributions of averaging points including (a) the quadrature in Eq. E2, (b) the cross-like distribution of 16 averaging points following Stipa et al. (2024), and (c–f) various resolutions of the sunflower distribution (Eq. E1).

Appendix F: Emphasis on the order of rotor averaging and wake superposition for a product-based superposition 725 model

In this appendix, we examine the effect of the order of applying wake superposition and the rotor averaging for the productbased wake superposition model of Lanzilao and Meyers (2022). The following analysis is generic for any averaging order $n \ge 0$, and for shortness the superscript ⁽ⁿ⁾ is dropped. Consider a wind turbine impacted by a set S of upstream wakes. Assuming a set of N discrete points on the rotor disk of the considered turbine, the numerical approach (wake superposition 730 followed by rotor averaging) of obtaining the rotor-averaged deficit is

$$\underline{\operatorname{LM}}_{\operatorname{\underline{num}}} \overset{\operatorname{\underline{num}}}{\sim} \overline{W}_{\operatorname{\underline{prod}}} = \frac{1}{N} \sum_{k=1}^{N} \left(1 - \prod_{j \in S} \left(1 - W_j(k) \right) \right), \tag{F1}$$

where $W_j(k)$ is the normalised wind-speed deficit of a point of index k on the rotor disk of the considered turbine due to the wake of an upstream turbine of index j. The product over the set S in Eq. F1 can be expanded as

$$\prod_{j \in S} (1 - W_j(k)) = 1 - \sum_{j \in S} W_j(k) + \sum_{\substack{i, j \in S \\ i \neq j}} W_i(k) W_j(k) + \mathcal{O}(W^3).$$
(F2)

735 We can neglect the higher order terms of W (order 3 and higher) compared to the lower order terms (since W < 1), and hence Eq. F1 simplifies to

$$\underbrace{\operatorname{LM}_{\operatorname{num}}}_{\sim} \operatorname{W}_{\operatorname{prod}} \approx \sum_{j \in S} \left(\frac{1}{N} \sum_{k=1}^{N} W_j(k) \right) - \sum_{\substack{i,j \in S \\ i \neq j}} \left(\frac{1}{N} \sum_{k=1}^{N} W_i(k) W_j(k) \right).$$
(F3)

If the rotor averaging over a set of N points asymptotically approaches the analytical average , then exact average (i.e., $N^{-1} \sum_{k=1}^{N} W_i(k) \sim \overline{W}_i$), then

740
$$\underline{\operatorname{LM}}_{\operatorname{num}} \overset{\operatorname{num}}{\sim} \overline{W}_{\operatorname{prod}} \simeq \sum_{j \in S} \overline{W}_j - \sum_{\substack{i, j \in S \\ i \neq j}} \overline{W_i W_j}.$$
(F4)

Alternatively, the corresponding analytical approach (rotor averaging followed by wake superposition) of obtaining the rotoraveraged deficit is

$$\underbrace{\operatorname{LM}}_{\operatorname{anl}} \overset{\operatorname{anl}}{\sim} \overline{W}_{\operatorname{prod}} = 1 - \prod_{j \in S} \left(1 - \overline{W}_j \right) \approx \sum_{j \in S} \overline{W}_j - \sum_{\substack{i, j \in S \\ i \neq j}} \overline{W}_i \overline{W}_j.$$
(F5)

The difference between the numerical and analytical approaches originates from $\widehat{W_iW_j}, \overline{W_jW_j}$ in Eq. F4 versus $\widehat{W_iW_j}, \overline{W_jW_j}$ in Eq. F5, where the difference between these two quantities acts as a covariance for the set of upstream deficits. If the mutual impacts between the upstream turbines are neglected by assuming the turbines operate almost independently (i.e., $\widehat{W_iW_j} \sim \widetilde{W_iW_j}, \overline{W_jW_j} \sim \overline{W_jW_j}$), then an asymptotic resemblance between $\frac{\text{LM}}{W_{\text{num}}}$ and $\frac{\text{LM}}{W_{\text{and}}}, \frac{\text{num}}{W_{\text{prod}}}, \frac{\text{and}}{W_{\text{prod}}}$ is achieved. In the case of small-enough deficits, the superposition of Lanzilao and Meyers (2022) this product-based superposition model approaches a non-weighted linear superposition when $W^2 \ll W$.

750 Appendix G: Additional material

Here, additional material to the main text are included. We compare the rotor-averaged deficit for a circular disk (Eq. 18) with the nacelle deficit \hat{W} , which can be derived from Eq. 1 by substituting $\langle y', z' \rangle = \rho \langle \cos \delta, \sin \delta \rangle$:

$$\hat{W}/C = e^{-\rho^2(\cos\delta + \omega\sin\delta)^2/(2\sigma^2(1-\xi^2))}e^{-\rho^2\sin^2\delta/(2\sigma^2)}.$$
(G1)

Figure G1. Comparing the linear rotor-averaged deficit (solid), assuming a circular disk (Eq. 18), to the nacelle wind-speed deficit (dashed; Eq. G1) for different values of the angle δ . The free-stream conditions and the setting of the upstream turbine (wake source) are the same as in section 3.1 and Fig. 2. The bra-ket notation in the label of the vertical axis takes the form $\langle t_1, t_2 \rangle$ which means t_1 or t_2 .

- Under the same conditions as in section 3.1, Fig. G1 presents the offset variation of the normalised linear deficit for a circular disk ($\overline{W}_{c}^{(1)}$; solid) compared with the nacelle deficit (\hat{W} ; dashed) across different values of δ at multiple downstream locations. This comparison reveals that the nacelle deficit does not adequately represent the rotor-averaged deficit, particularly at zero offset ($\rho = 0$), where $\hat{W}/C = 1$ by definition, whereas the normalised rotor-averaged deficit lies approximately between 0.6 and 0.7 for the considered case. As such, we recommend using rotor-averaging (either analytically or numerically) for applications that require a representative wind speed to estimate a turbine's operating point.
- Figure G2 shows the variation of the linear rotor-averaged deficit (n = 1) for the circular- and rectangular-disk solutions with the offset ρ at various yaw misalignments of the wake source. Both turbines have the same hub-height ($\delta = 0$), and no veer effects are considered ($\Delta \alpha_o = 0$). Both the circular- and rectangular-disk solutions agree well with the numerical solution (markers) for all yaw misalignments and at all downstream distances. The impact of the yaw angle on the rotor-averaged deficit is small, even for $\gamma_o = 30^\circ$, compared to wind-veer effects presented in section 3.3.
- 765 *Author contributions.* All the authors contributed to the conceptualisation of this study. KA derived the mathematical expressions and prepared the original draft of the manuscript, which was reviewed and edited by TS and PO. Funding acquisition and supervision was done by TS and PO.

Figure G2. Same as in Fig. 2 but with no wind veer ($\omega = 0$) and variable yaw misalignment γ_o . Top row corresponds to the circular-disk solution (Eq. 18) and the bottom row is for the rectangular-disk solution (Eq. 29). The considered turbine have the same hub height as the wake source, and hence $\delta = 0$. The value of the eccentricity ξ (Eq. 3) is indicated for each case.

Competing interests. The authors declare that they have no conflict of interest.

Financial support. This research was partly supported by the Supergen Offshore Renewable Energy Hub, funded by the Engineering and
 Physical Science Research Council (EPSRC) grants no. EP/S000747/1 and EP/Y016297/1. The present work has been partly supported by
 the Dame Kathleen Ollerenshaw Fellowship that Dr Ouro holds at the University of Manchester.

References

- Abkar, M., Sørensen, J., and Porté-Agel, F.: An Analytical Model for the Effect of Vertical Wind Veer on Wind Turbine Wakes, Energies, 11, 1838, https://doi.org/10.3390/en11071838, 2018.
- 775 Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions with formulas, graphs, and mathematical tables, Dover Publications, 1972.
 - Ali, K., Schultz, D. M., Revell, A., Stallard, T., and Ouro, P.: Assessment of Five Wind-Farm Parameterizations in the Weather Research and Forecasting Model: A Case Study of Wind Farms in the North Sea, Monthly Weather Review, 151, 2333 2359, https://doi.org/10.1175/MWR-D-23-0006.1, 2023.
- 780 Ali, K., Stallard, T., and Ouro, P.: Evaluating wind-farm power generation using a new direct integration of axisymmetric turbine wake, Journal of Physics: Conference Series, 2767, 092 015, https://doi.org/10.1088/1742-6596/2767/9/092015, 2024a.
 - Ali, K., Stallard, T., and Ouro, P.: An exact solution of a momentum-conservation condition for scalar diffusion from a uniform-concentration region, ResearchGate, https://doi.org/10.13140/RG.2.2.27966.09287, preprint, 2024b.
 - Ali, K., Stallard, T., and Ouro, P.: Analytical evaluation of non-axisymmetric Gaussian wind-turbine wake including yaw and wind-veer
- 785 effects, https://doi.org/10.5281/zenodo.14170708, 2024c.
 - Ali, K., Stallard, T., and Ouro, P.: A diffusion-based wind turbine wake model, Journal of Fluid Mechanics, https://doi.org/10.1017/jfm.2024.1077, 2024d.
 - Allaerts, D. and Meyers, J.: Sensitivity and feedback of wind-farm-induced gravity waves, Journal of Fluid Mechanics, 862, 990–1028, https://doi.org/10.1017/jfm.2018.969, 2019.
- 790 Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renewable Energy, 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, Special issue on aerodynamics of offshore wind energy systems and wakes, 2014.
 - Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, Journal of Fluid Mechanics, 806, 506–541, https://doi.org/10.1017/jfm.2016.595, 2016.
 - Bay, C. J., Annoni, J., Taylor, T., Pao, L., and Johnson, K.: Active Power Control for Wind Farms Using Distributed Model
- 795 Predictive Control and Nearest Neighbor Communication, in: 2018 Annual American Control Conference (ACC), pp. 682–687, https://doi.org/10.23919/ACC.2018.8431764, 2018.
 - Blondel, F. and Cathelain, M.: An alternative form of the super-Gaussian wind turbine wake model, Wind Energy Science, 5, 1225–1236, https://doi.org/10.5194/wes-5-1225-2020, 2020.
 - Cheng, W.-C. and Porté-Agel, F.: A Simple Physically-Based Model for Wind-Turbine Wake Growth in a Turbulent Boundary Layer,

800 Boundary-Layer Meteorology, 169, 1–10, https://doi.org/10.1007/s10546-018-0366-2, 2018.

- Cheung, L., Brown, K., Sakievich, P., deVelder, N., Herges, T., Houck, D., and Hsieh, A.: A Green's Function Wind Turbine Induction Model That Incorporates Complex Inflow Conditions, Wind Energy, p. e2956, https://doi.org/10.1002/we.2956, 2024.
 - Crespo, A. and Hernandez, J.: Turbulence characteristics in wind-turbine wakes, Journal of Wind Engineering and Industrial Aerodynamics, 61, 71–85, https://doi.org/10.1016/0167-6105(95)00033-X, 1996.
- 805 Dar, A. S. and Porté-Agel, F.: Wind turbine wake superposition under pressure gradient, Physics of Fluids, 36, 015145, https://doi.org/10.1063/5.0185542, 2024.
 - DiDonato, A. R. and Jarnagin, M. P.: Integration of the General Bivariate Gaussian Distribution over an Offset Circle, Mathematics of Computation, 15, 375–382, http://www.jstor.org/stable/2003026, 1961.

Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K., Michalakes, J., and Barstad, I.: Local and Mesoscale Impacts of Wind

- 810 Farms as Parameterized in a Mesoscale NWP Model, Monthly Weather Review, 140, 3017 3038, https://doi.org/10.1175/MWR-D-11-00352.1, 2012.
 - Gaidash, T.: Integration of exponential of a function of cosines, Mathematics Stack Exchange, https://math.stackexchange.com/q/4760090, URL: https://math.stackexchange.com/q/4760090 (version: 2023-08-29), 2023.
- Gao, L., Li, B., and Hong, J.: Effect of wind veer on wind turbine power generation, Physics of Fluids, 33, 015101, https://doi.org/10.1063/5.0033826, 2021.
 - Ghobrial, M., Stallard, T., Schultz, D. M., and Ouro, P.: Sensitivity of the Prediction of Wind Turbine Wakes to the Sub-Grid Scale Model, J. Phys. Conf. Ser., 2767, 092106, https://doi.org/10.1088/1742-6596/2767/9/092106, 2024.
 - Gradshteyn, I. and Ryzhik, I.: 3–4 Definite Integrals of Elementary Functions, in: Table of Integrals, Series, and Products, edited by Jeffrey, A., Zwillinger, D., Gradshteyn, I., and Ryzhik, I., pp. 247–617, Academic Press, Boston, 7 edn., ISBN 978-0-12-373637-6, https://doi.org/10.1016/B978-0-08-047111-2.50013-3, 2007.
- 820 https://doi.org/10.1016/B978-0-08-047111-2.50013-3, 2007.

Through 08-10-1986, 1987.

- Holoborodko, P.: Cubature formulas for the unit disk, http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/ cubature-formulas-for-the-unit-disk/, 2011.
- Hou, P., Hu, W., Chen, C., Soltani, M., and Chen, Z.: Optimization of offshore wind farm layout in restricted zones, Energy, 113, 487–496, https://doi.org/10.1016/j.energy.2016.07.062, 2016.
- Jensen, N.: A note on wind generator interaction, no. 2411 in Risø-M, Risø National Laboratory, ISBN 87-550-0971-9, 1983.
 Katic, I., Højstrup, J., and Jensen, N.: A Simple Model for Cluster Efficiency, in: EWEC'86. Proceedings. Vol. 1, edited by Palz, W. and Sesto,
 E., pp. 407–410, A. Raguzzi, European Wind Energy Association Conference and Exhibition, EWEC '86 ; Conference date: 06-10-1986
- Keane, A., Aguirre, P. E. O., Ferchland, H., Clive, P., and Gallacher, D.: An analytical model for a full wind turbine wake, Journal of Physics:
 Conference Series, 753, 032 039, https://doi.org/10.1088/1742-6596/753/3/032039, 2016.
 - Lanzilao, L. and Meyers, J.: A new wake-merging method for wind-farm power prediction in the presence of heterogeneous background velocity fields, Wind Energy, 25, 237–259, https://doi.org/10.1002/we.2669, 2022.
 - Li, B., He, J., Ge, M., Ma, H., Du, B., Yang, H., and Liu, Y.: Study of three wake control strategies for power maximization of offshore wind farms with different layouts, Energy Conversion and Management, 268, 116 059, https://doi.org/10.1016/j.enconman.2022.116059, 2022.
- 835 Ling, Z., Zhao, Z., Liu, Y., Liu, H., Ali, K., Liu, Y., Wen, Y., Wang, D., Li, S., and Su, C.: Multi-objective layout optimization for wind farms based on non-uniformly distributed turbulence and a new three-dimensional multiple wake model, Renewable Energy, 227, 120558, https://doi.org/10.1016/j.renene.2024.120558, 2024.
 - Lissaman, P. B. S.: Energy Effectiveness of Arbitrary Arrays of Wind Turbines, Journal of Energy, 3, 323–328, https://doi.org/10.2514/3.62441, 1979.
- 840 Maas, O. and Raasch, S.: Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight, Wind Energy Science, 7, 715–739, https://doi.org/10.5194/wes-7-715-2022, 2022.
 - Martínez-Tossas, L. A., Annoni, J., Fleming, P. A., and Churchfield, M. J.: The aerodynamics of the curled wake: a simplified model in view of flow control, Wind Energy Science, 4, 127–138, https://doi.org/10.5194/wes-4-127-2019, 2019.
- 845 Ng, E. W. and Geller, M.: A Table of Integrals of the Error Functions, Journal of Research of the Natianal Bureau of Standards B. Mathematical Sciences, 73B, 1969.

- Niayifar, A. and Porté-Agel, F.: A new analytical model for wind farm power prediction, Journal of Physics: Conference Series, 625, 012 039, https://doi.org/10.1088/1742-6596/625/1/012039, 2015.
- Ouro, P. and Lazennec, M.: Theoretical modelling of the three-dimensional wake of vertical axis turbines, Flow, 1, E3, https://doi.org/10.1017/flo.2021.4, 2021.
 - Owen, D. B.: Tables for Computing Bivariate Normal Probabilities, The Annals of Mathematical Statistics, 27, 1075 1090, https://doi.org/10.1214/aoms/1177728074, 1956.
 - Przemo: Generalized Owen's T function, Mathematics Stack Exchange, https://math.stackexchange.com/q/3087504, uRL:https://math.stackexchange.com/q/3087504 (version: 2019-03-28), 2019.
- 855 Qian, G.-W. and Ishihara, T.: A New Analytical Wake Model for Yawed Wind Turbines, Energies, 11, https://doi.org/10.3390/en11030665, 2018.
 - Rosenheinrich, W.: Tables of some indefinite integral of Bessel functions of integer order, Ernst Abbe Hochschule Jena, 2017.
 - Shapiro, C. R., Starke, G. M., and Gayme, D. F.: Turbulence and Control of Wind Farms, Annual Review of Control, Robotics, and Autonomous Systems, 5, 579–602, https://doi.org/10.1146/annurev-control-070221-114032, 2022.
- 860 Snaiki, R. and Makki, S.: A new analytical wind turbine wake model considering the effects of coriolis force and yawed conditions, Journal of Wind Engineering and Industrial Aerodynamics, 250, 105 767, https://doi.org/10.1016/j.jweia.2024.105767, 2024.
 - Stallard, T., Feng, T., and Stansby, P.: Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow, Journal of Fluids and Structures, 54, 235–246, https://doi.org/10.1016/j.jfluidstructs.2014.10.017, 2015.
 - Stanley, A. P. J. and Ning, A.: Massive simplification of the wind farm layout optimization problem, Wind Energy Science, 4, 663-676,
- 865 https://doi.org/10.5194/wes-4-663-2019, 2019.
 - Stipa, S., Ajay, A., Allaerts, D., and Brinkerhoff, J.: The multi-scale coupled model: a new framework capturing wind farm-atmosphere interaction and global blockage effects, Wind Energy Science, 9, 1123–1152, https://doi.org/10.5194/wes-9-1123-2024, 2024.
 - Veers, P., Bottasso, C. L., Manuel, L., Naughton, J., Pao, L., Paquette, J., Robertson, A., Robinson, M., Ananthan, S., Barlas, T., Bianchini, A., Bredmose, H., Horcas, S. G., Keller, J., Madsen, H. A., Manwell, J., Moriarty, P., Nolet, S., and Rinker, J.: Grand challenges in the
- 870 design, manufacture, and operation of future wind turbine systems, Wind Energy Science, 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, 2023.
 - Voutsinas, S., Rados, K., and Zervos, A.: On the Analysis of Wake Effects in Wind Parks, Wind Engineering, 14, 204–219, http://www.jstor. org/stable/43749429, 1990.

Walter, K., Weiss, C. C., Swift, A. H. P., Chapman, J., and Kelley, N. D.: Speed and Direction Shear in the Stable Nocturnal Boundary Layer,

- 875 Journal of Solar Energy Engineering, 131, 011 013, https://doi.org/10.1115/1.3035818, 2009.
 - Zhang, Z., Huang, P., and Sun, H.: A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit, Energies, 13, https://doi.org/10.3390/en13133353, 2020.
 - Zhang, Z., Huang, P., Bitsuamlak, G., and Cao, S.: Analytical solutions for yawed wind-turbine wakes with application to wind-farm power optimization by active yaw control, Ocean Engineering, 304, 117 691, https://doi.org/10.1016/j.oceaneng.2024.117691, 2024.
- 880 Zong, H. and Porté-Agel, F.: Experimental investigation and analytical modelling of active yaw control for wind farm power optimization, Renewable Energy, 170, 1228–1244, https://doi.org/10.1016/j.renene.2021.02.059, 2021.