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Abstract. The performance of a wind farm is significantly influenced by turbine-wake interactions. These interactions are

typically quantified for each turbine by
::::
either

:::
by

:::::::::
measuring

::
its

:::::::
nacelle

::::
wind

:::::
speed

:::
or

::
by

:
evaluating its rotor-averaged wind

speed , which is impacted by upstream wakes, using numerical methods that involve
:
a
:::
set

::
of

:
discrete points across the rotor

disk. Although various point distributions exist in the literature, we introduce an analytical expression for integrating a Gaussian

wake over a circular disk, which accounts
:::
two

::::::::
analytical

::::::::::
expressions

::
for

::::::::::
integrating

:::::::::::::::
non-axisymmetric

:::::::
Gaussian

::::::
wakes,

::::::
which5

::::::
account

:
for wake stretching and shearing resulting from upstream turbine yaw and wind veer. This expression is

:::
The

:::::::::
analytical

:::::::
solutions

::::::::::
correspond

::
to

::::::::
modelling

:::
the

:::::
target

:::::::
turbine

::
as

:
a
:::::::
circular

:::::::
actuator

::::
disk

:::
and

:::
as

::
an

:::::::::
equivalent

:::::::::
rectangular

:::::::
actuator

:::::
disk.

:::
The

:::::::
derived

::::::::::
expressions

:::
are versatile, accommodating any lateral offset and hub-height difference between the wake source

(upstream turbines
::::::
turbine) and the target turbine. Validation

::::::::::
Verification against numerical evaluations of the rotor-averaged

deficit
::::
using

::::
2000

:::::::::
averaging

:::::
points

:
at various downstream locations from the wake source demonstrates excellent agreement .10

::
for

::::
both

:::::::::
analytical

:::::::
solutions

::
at

:::::::::::::
small/moderate

::::
veer

::::::
effects,

:::::::
whereas

::::
only

:::
the

:::::::::::::
rectangular-disk

:::::::
solution

::::
was

:::::::
accurate

::
at

:::::::
extreme

:::
veer

::::::::::
conditions.

::
In

:::::
terms

::
of

::::::::::::
computational

::::
cost

:::::::::
compared

::
to

:::::::::
vectorised

::::::::
numerical

:::::::::
averaging

:::::
using

::
16

:::::::::
averaging

::::::
points,

::::
both

::::::::
analytical

::::::::
solutions

:::
are

::::::::::::::
computationally

:::::::
efficient

::::
with

::::
the

:::::::::::
circular-disk

:::::::
solution

:::::
being

::::::::::::
approximately

:::::
15%

::::::
slower

:::
and

::::
the

:::::::::::::
rectangular-disk

:::::::
solution

:::::
being

::::::::::::
approximately

::::
10%

:::::
faster. Furthermore, the analytical expression is

:::::::::
expressions

:::
are shown to be

compatible with multiple wake superposition models . The presented solution is
:::
and

:::
are

:
differentiable, providing a foundation15

for deriving mathematical expressions for the gradients of a turbine’s power generation concerning its location within a farm

and/or the operational conditions of upstream turbines. This capability is particularly advantageous for optimization-based

::::::::
analytical

::::::::
gradients

:::::
which

:::
can

:::
be

:::::::::::
advantageous

:::
for

::::::::::::::::
optimisation-based applications.

1 Introduction

The widespread deployment of wind farms necessitates the use of accurate and efficient computational tools for preliminary20

design and optimisation (Veers et al., 2023). While Computational Fluid Dynamics (CFD) methods such as Large-Eddy Sim-

ulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) offer detailed insights into turbine loading and wake dynamics,

they are often too computationally intensive for preliminary wind-farm design and layout optimisation (Maas and Raasch,

2022). Mesoscale models require less computational power and have been employed to examine the large-scale interactions

between wind turbine wakes and the turbulent atmospheric boundary layer, though they lack the detailed wake resolution25
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provided by RANS and LES models (Fitch et al., 2012; Ali et al., 2023). Conversely, engineering wake models are com-

paratively faster and are extensively used in various wind-energy applications, including wind-farm layout optimisation and

control (Hou et al., 2016; Bay et al., 2018; Shapiro et al., 2022). Engineering wake models, which assume that a turbine’s

wake is self similar, represent the wake using a streamwise scaling deficit function and a shape function to describe the

deficit distribution perpendicular to the streamwise direction. Various shape functions have been proposed, including top-hat30

profiles (Jensen, 1983), Gaussian profiles (Bastankhah and Porté-Agel, 2014), double-Gaussian profiles (Keane et al., 2016),

super-Gaussian profiles (Blondel and Cathelain, 2020),
:::::::::::::::::::::::::::::::::::::::::::::
(Blondel and Cathelain, 2020; Ouro and Lazennec, 2021)

:
,
::::::::::
Cosine-bell

::::::
profiles

::::::::::::::::::::::::::::
(Jensen, 1983; Zhang et al., 2020),

:
and profiles based on the diffusion of a passive scalar (Cheng and Porté-Agel, 2018;

Ali et al., 2024d). Among these, the Gaussian wake profile is widely adopted particularly for distances comparable to a typical

turbine
::::::::::
inter-turbine

:
spacing within a wind farm.35

To assess the impact of an upstream turbine’s wake on the onset flow of a downstream rotor, such as required to estimate

energy-yield reduction
::
the

:::::::::
reduction

::
of

::::::::
available

::::::
kinetic

::::::
energy

::::
flux

:
due to wake effects, numerical methods often average

upstream deficits
::
the

::::::::
upstream

::::::
deficit

:
calculated at multiple control points across the rotor disk of the considered turbine.

The number and distribution of these averaging points vary in the literature. Allaerts and Meyers (2019) employed a 16-point

quadrature based on Holoborodko (2011) in their analysis of wind-farm blockage and induced gravity waves, whereas Stipa40

et al. (2024) utilised a cross-like distribution of 16 averaging points to enhance radial resolution across the rotor. Stanley and

Ning (2019) used 100 equally-spread averaging points for the evaluation of the rotor-averaged deficit. Other studies proposed

uniform radial and azimuthal distribution of averaging points across the rotor within the context of farm layout optimisation

and control (Li et al., 2022; Ling et al., 2024).

Uncertainties can arise from the number, distribution, and averaging weights of the control points, especially when the shape45

of the upstream wake deviates from the axisymmetric form due to, for instance, wind-veer effects. Rather than numerical

averaging, Ali et al. (2024a) developed an analytical expression for the circular-disk integration of an axisymmetric Gaussian

function depicting the wake of an upstream turbine. Their formulation is applicable to any lateral offset between the upstream

turbine (wake source) and the considered turbine, but assumes that the upstream wake is axisymmetric and that both the

upstream and downstream turbines have the same hub-height. Typically, turbines can be yawed relative to their onset wind50

yielding wakes that are not axisymmetric but
::::
rather

:
of elliptic shape (Bastankhah and Porté-Agel, 2016). Additionally, wind-

veer effects can cause planar shearing of the wake shape through stretching the wake elliptic contours and rotating its
::::
their

major axes (see Fig. 1 later in the article), resulting in further deviation from the axisymmetric wake shape (Abkar et al.,

2018). Furthermore, onshore wind farms often have turbines with different hub heights due to non-flat
::::::::::
non-uniform

:
terrain,

and offshore wind farms may have turbines of varying hub heights and diameters operating in close proximity.55

In this study, we extend the analytical solution proposed by Ali et al. (2024a) by generalising the assumed upstream wake

shape to include non-symmetry due to the yawing of the wake source, wind-veer effects, and different hub-heights between the

wake source and target turbine. Although the
:::
The primary focus is on wind-turbine wakes, the proposed expression is

:::
but

:::
the

:::::::
proposed

::::::::::
expressions

:::
are

:
also applicable to tidal-stream turbines and can be extended to vertical-axis turbines (both wind and

tidal) due to the relevance of similar Gaussian wake profiles (e.g., Stallard et al., 2015; Ouro and Lazennec, 2021).
::::::::
Although60
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::::::::::::
rotor-induction

::::::
effects

:::
can

:::::
alter

:::
the

:::::
onset

::::
wind

::::::
profile

::
of

:::
the

::::::::::
considered

::::::
turbine,

:::
we

:::
do

:::
not

::::::::
consider

::::
these

::::::
effects

:::::::
similar

::
to

::::::
various

::::::::::
engineering

::::
wake

:::::::
models.

:::::::::::
Additionally,

:::
we

::::::
assume

::::
that

:::
the

:::::::::
considered

::::::
turbine

::
is

::::::::
modelled

::
as

::
a

::::::
uniform

:::::::
actuator

:::::
disk,

:::::::::::
corresponding

:::
to

:::::::
uniform

::::::::
averaging

:::::::
weights

::::::
across

:::
the

:::::::
turbine’s

:::::
rotor,

::::
and

:::
that

::::
the

:::::
effects

:::
of

:::::
blade

::::::::
geometry

:::
are

:::::::::
neglected.

:::
The

::::::::
objective

::
of

:::
the

::::::::
proposed

::::::::
analytical

::::::::
solutions

::
is

:::
not

::
to

::::::
replace

:::::::::
numerical

::::::::::
approaches,

:::::
which

:::
are

:::
the

::::
only

::::::::
available

::::::
option

::
for

::::::::
arbitrary

::::::::::
wind-speed

:::::
fields,

:::
but

:::
to

::::::
provide

:::
an

:::::::::
alternative

::::::::
approach

::
in

:::
the

:::::::
specific

::::
case

::
of

::::::::
Gaussian

:::::::
wakes.

:::::::::::
Furthermore,65

::::::::
analytical

::::::::
solutions

:::
can

:::
be

:::::::::::::
computationally

:::::::
cheaper

::::
than

:::::::::
numerical

::::::::::
approaches,

::::
and

:::
for

::::
some

:::::::::
scenarios

:::::
(such

::
as

::::
high

:::::
wind

::::
veer)

:::
can

:::
be

::::
more

::::::::
accurate

:::
than

:::::::::
numerical

::::::::
averaging

::
at

::::::::
common

:::::::::
resolutions

::::
from

:::
the

:::::::::
literature.

:::
The

::::::
surface

:::::::::
integration

::
of

::
a
:::::::
Gaussian

::::
field

::::::
across

:
a
:::::::
circular

:::
disk

::
is

:::::
often

::::::::::
complicated

:::::::
because

::
of

::
the

::::::::
modified

::::::
Bessel

:::::::
function

:::
that

:::::
arises

::::
from

:::
the

::::::::
azimuthal

:::::::::
integration

:::
of

:
a
::::::
shifted

:::::::
Gaussian

::::::::
function.

:::
As

:::
will

::
be

:::::::::
discussed

::::
later,

:::
the

::::::::
analytical

:::::::
solution

::
of

:::
the

::::::::::::
rotor-averaged

:::::
deficit

::::
over

:
a
:::::::
circular

::::
disk

:::
will

::
be

:::::::
derived

:::::
based

::
on

:::::
some

:::::::::
simplifying

:::::::::::
assumptions

:::
that

::::
limit

:::
the

:::::::
validity

:::::
range

::
of70

::
the

:::::::::
analytical

:::::::
solution

:::::
(more

::::::
details

::
in

::::::
section

::::
2.2).

::::::::::
Conversely,

:::
the

::::::
surface

:::::::::
integration

::
of

:
a
::::::::
Gaussian

::::
field

::::::
across

::
an

:::::::::
equivalent

:::::::::
rectangular

::::
disk

:::::
often

:::
has

::
a

::::::::::
closed-form

::::::::
analytical

:::::::
solution

:::::::
without

:::
the

:::::
need

::
to

::::
limit

:::
the

:::::::::
solution’s

:::::::
validity.

:::
By

::::::::::
appropriate

:::::
sizing

::
of

:::
the

:::::::::
rectangular

::::
disk

::
of

::::::::::
integration,

:::::
highly

:::::::
accurate

:::::::::::
approximate

::::::::
analytical

::::::::
solutions

::
of

:::
the

::::::
surface

:::::::::
integration

:::::
across

::
a

::::::
circular

::::
disk

:::
can

::
be

::::::::
obtained.

::::::::::::::::::::::::::
DiDonato and Jarnagin (1961)

:::
used

:::
the

:::::::::::::
circle-rectangle

:::::::
analogy

::
to

::::::::::
approximate

:::
the

:::::::::::
circular-disk

:::::::::
integration

::
of

:::
an

::::::
elliptic

::::::::
Gaussian

::::
field

:::::
using

:::::::
look-up

::::::
tables

::
of

:::
the

:::::
error

::::::::
function.

:::::::::::
Furthermore,

:::::::::::::::
Ali et al. (2024d)

:::::::
obtained75

::
an

:::::::::::
approximate

::::::::
analytical

:::::::
solution

::
of

::
a
::::::::::
complicated

::::::::::::::
two-dimensional

::::::::::
integration

::::::::
involving

:::
the

::::::::
modified

::::::
Bessel

:::::::
function

:::
by

::::::
making

:::
use

::
of

:::
the

:::::::::::::
circle-rectangle

:::::::
analogy

:::::
based

:::
on

:::
the

::::::::
analytical

:::::::
solution

::
of

::::::::::::::
Ali et al. (2024b)

:
.
:::::::::::::::::
Cheung et al. (2024)

::::
used

:::
the

::::
same

:::::::
analogy

::
to

::::::
obtain

::::::::
analytical

::::::::
solutions

::
of
::

a
::::::::
turbine’s

::::::::
induction

::::::
effects

:::::
under

::::::
various

:::::::::
conditions

:::::
using

::
a
:::::::::::::
Green-function

::::::::
approach.

:::
As

::::
such,

:::
we

::::
also

:::::
derive

:::
an

::::::::
analytical

:::::::
solution

::
of

:::
the

::::::::::::
rotor-averaged

::::::
deficit

::
for

:::
an

:::::::::
equivalent

:::::::::
rectangular

::::
disk,

::::::
which

:
is
:::
not

:::::::
limited

::
by

:::
the

::::::::::
simplifying

::::::::::
assumptions

::
of

:::
the

:::::::::::
circular-disk

:::::::::
integration.

:
80

The rest of this paper is structured as follows. Section 2 presents the generalised analytical expression
:::::::::
generalised

:::::::::
analytical

:::::::::
expressions

:
for the rotor-averaged deficit , which is validated

::
in

:::
the

::::
case

::
of

::
a
:::::::
circular

::::
disk

:::::::
(section

::::
2.2)

:::
and

:::
an

:::::::::
equivalent

:::::::::
rectangular

::::
disk

:::::::
(section

::::
2.1),

:::::
which

:::
are

::::::
verified

:
against numerical solutions for a single upstream wake in section

:::::::
(sections 3.1

and
::::
3.2)

:::
and

:
for multiple upstream wakes in

:
(section 3.5. The

:
).
::::
The

:::::
effect

::
of

:::::
some

:::::::
relevant

:::::::::
parameters

:::
on

:::
the

::::::::::::
rotor-averaged

:::::
deficit

::
is

::::::::
discussed

::
in

:::::::
sections

:::
3.3

:::
and

:::
3.4.

::::
The

::::::::::::
computational

:::
cost

::
of

:::
the

::::::::
proposed

::::::::
solutions

::::::::
compared

::
to

::::::::
numerical

::::::::::
approaches85

::
are

:::::::::
examined

::
in

:::::::
section

:::
3.6,

::::
and

::::
their

::::::::
accuracy

::::::
against

:::::::
various

:::::::::
numerical

:::::::::
resolutions

::
is
:::::::::
quantified

::
in

:::::::
section

:::
3.7.

::::
The

:
key

findings of this paper are discussed in more detail in section 4 with a focus on compatibility with different wake superposition

models and applicability to yawed turbines, with a summary in section 5. Appendices A–D contain mathematical details on

the derivation of the generalised rotor-averaged deficit, whereas the distribution of the averaging points used in the validation

presented in section 3 are detailed
:::::
various

::::::::::
resolutions

:::
and

:::::::::::
distributions

::
of

:::::::::
averaging

:::::
points

:::
are

:::::::::::
summarised in Appendix E.90

Further mathematical manipulations regarding wake superposition is
::
are

:
included in Appendix F following the discussion in

section 4.
:::::
Some

::::::::
additional

:::::::
material

:::
are

::::::::
included

::
in

::::::::
Appendix

::
G.

:
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2 Analytical evaluation of the
::::::::::
Generalised

:
rotor-averaged wind-speed deficit

:
of

:::
an

::::::
elliptic

::::::
veered

:::::::::
Gaussian

:::::
wake

In this study, we seek to analytically evaluate the
:
a
:
rotor-averaged deficit of a turbine operating within an upstream Gaussian

wake whose shape and center
:::::
centre

:
are defined. For simplicity, the expression for the rotor-averaged deficit is derived for95

a single upstream wake, but extension to multiple upstream wakes is straightforward (section 3.5).
::::
Some

::::
key

:::::::::
definitions

:::
are

::::::::
presented

::::
first

::
in

::::::
section

::::
2.1,

::::::::
followed

:::
by

:::::::
deriving

:::::::::
analytical

::::::::
solutions

::
in

:::
the

::::
case

:::
of

:
a
:::::::

circular
::::

disk
:::::::

(section
::::

2.2)
::::

and
:::
an

::::::::
equivalent

::::::::::
rectangular

::::
disk

:::::::
(section

::::
2.1).

:::
The

:::::::::
presented

:::::::
analysis

:
is
:::::::::

applicable
::
to

::::
any

::::::::::
engineering

::::
wake

::::::
model

::::
that

::::::
utilises

:::
the

:::::::
Gaussian

:::::
wake

::::::
profile

::
to

:::::::
describe

:::
the

:::::
wake

:::::
shape

::::::
normal

::
to

:::
the

:::::::::
streamwise

::::::::
direction.

:

2.1 Problem definition100

The normalised wind-speed deficit (W ) due to the wake of an upstream turbine impacted by a constant transverse wind (causing

wind veer) can be expressed as (Bastankhah and Porté-Agel, 2016; Abkar et al., 2018)

W (x,y′,z′)
:::::::

= 1− u

ũn

u(x,y′,z′)

uo
:::::::::

= C(x)e−(yn+ωzn)
2/(2σ2

y)−(y′+ωz′)2/(2σ2
y)

:::::::::::::
e−z2

n/(2σ
2
z)−z′2/(2σ2

z)
::::::::

, (1)

where u is the streamwise wind speed, ũn ::
uo is the rotor-averaged wind speed of the upstream turbine (wake source), C is a

streamwise scaling function, and x is the streamwise distance between the two turbines. The variables yn and zn :
y′

::::
and

::
z′ are105

the lateral and vertical coordinates respectively,
::
in

:
a
:::::
plane

::::::
normal

::
to

:::
the

:::::::::
streamwise

::::::::
direction with an origin at the wake center,

and ω =∆α(x/Dn) :::::
centre,

::::
and

ω =∆αo

(
x

Do

)
:::::::::::::

(2)

is a wind-veer coefficient with ∆α
::::
∆αo:

being the difference in wind direction across the top and bottom tips of the upstream

turbine (wake source) whose diameter is Dn. The variables
:::
Do.

::::
The

::::::::
quantities

:
σy and σz are the wake standard deviations110

in the yn and zn ::
y′

:::
and

::
z′
:

directions, respectively. Figure 1 illustrates a schematic of an upstream turbine (of radius Rn ::
Ro)

whose wake center
:::::
centre

:
is deflected horizontally by a distance d

::
do. The Cartesian coordinates yn:::

axes
:::
y′–zn ::

z′ are placed

at the center
:::::
centre of the wake in the plane containing the considered turbine which is at a streamwise distance x from the

wake source. The considered turbine
:::::
centre

::
of

:::
the

::::::::::
considered

::::::
turbine

:::
(of

:::::
radius

:::
R) is located at (∆y , ∆z) with respect to the

wake center
:::::
centre

:
with polar coordinates ρ and δ. The Cartesian axes y–z are placed at the center

:::::
centre

:
of the considered115

turbinewhich is of radius R. The lateral .
::::

The
:
offset ρ is measured from the center

:::::
centre

:
of the wake, which is assumed to

be known from wake deflection models (e.g., Bastankhah and Porté-Agel, 2016; Qian and Ishihara, 2018; Snaiki and Makki,

2024).

For a yawed upstream turbine, the wake standard deviations σy and σz are not equal, resulting in elliptic wake contours

rather than circular contours in the specific case of axisymmetric wake. We define the eccentricity ξ
:::::
ξ ≥ 0 of the wake elliptic120

contours due to having non-equal σy and σz as ξ2 = 1− (σy/σz)
2.

ξ =

√
1−

(
σy

σz

)2

.

:::::::::::::::

(3)
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Figure 1.
::

(a) Schematic contours of the normalised wind-speed deficit W due to an upstream wake . The center of the wake
:::
axes

:
(origin

of
:::::
y′–z′)

:::
and the axes yn:

of
:::

the
:::::::::
considered

:::::
turbine

::
(y–zn:z) is deflected horizontally

::::::
separated

:
by a distance d from its source center

::
the

:::::::
distances (

:::
∆y ,

:::
∆z)

::::
with

::::
polar

::::::::
coordinates

::
ρ

:::
and

:
δ.
::::

The upstream turbine denoted
::::
(wake

::::::
source)

:
is
:::::::::
represented

:
by the dashed

::
red

:
circle )

:::
with

::::
radius

:::
Ro, and

::::::
whereas

:
the considered turbine is offset from the wake center

:::::::::
represented by a radial distance ρ and an angle δ

::
the

::::
solid

:::
red

::::
circle

::::
with

:::::
radius

::
R. The axes y–z are placed at

:::
wake

:::::
centre

::
is

:::::::
deflected

:::::::::
horizontally

::
by

:::
do ::::

from the center
::::
centre

:
of the

::::::
upstream

::::::
turbine

:::
(red

::::
dot).

::
An

::::::::
equivalent

:::::::
rectangle

::
of
:::

the
:
considered turbine and are located at (∆y , ∆z:::::

section
:::
2.1)

:
is
::::::
shown

:
in
::::::

dashed
::::
blue with respect to

the wake axes yn–zn ::::::::
dimensions

::
of

::::
2Ly :::

and
:::
2Lz::

in
::
y
:::
and

::
z

::::::::
directions,

:::::::::
respectively. The shown elliptic

::
(b)

::::::
Sample

:
contours have

::
of

:::
the

::::::::
normalised

:::::::::
wind-speed

:::::
deficit

::::
W/C

::::
(Eq.

::
1)

:::::::
calculated

::
at
:
an eccentricity ξ = 0.4 and a veer-coefficient ω =−0.3

:::::::
ω =−0.6, with

::::
where

:::
the

definitions of ξ
:::
(Eq.

::
3)
:
and ω

::::
(Eq.

:
2)
:::

are
:
provided in the main text. The upstream turbine (wake source) has a radius Rn ::

red
::::::
circles,

::
the

::::
blue

:::::::
rectangle,

:
and the considered turbine has a radius R. The yellow dots on

:::
axes

::::
y′–z′

:::
and

::::
y–z

::::
have the rotor disk of the considered turbine

::::
same

::::::::
definitions

::
as

::
in (downstream turbine

:
a)are exemplary of the averaging points that are used to numerically evaluate the rotor-averaged

wind speed.
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Here, it is assumed that σy ≤ σz , which is the typical case for yawed horizontal-axis wind turbines. However, it is noted that

where relevant, scenarios with σy > σz can be obtained by a rotation of axes. In the following calculations, σz will be denoted

as σ and hence σy = σ
√
1− ξ2. A typical range for the eccentricity ξ can be identified using the empirical expressions for σy125

and σz for a yawed upstream turbine at an angle γn :
a

:::
yaw

::::::::::::
misalignment

::
γo:

σz = σ = k∗zx+σz0Dno, and σy = σ
√
1− ξ2 = k∗yx+σz0Dn cosγno cosγo

:::::
, (4)

where k∗z and k∗y are the rates of wake expansion in the zn and yn ::
z′

:::
and

::
y′

:
directions respectively, and σz0 ≈ 1/

√
8 is an initial

wake standard deviation (Bastankhah and Porté-Agel, 2016). For simplicity we assume that k∗z = k∗y = k∗
:::::::::::
k∗z ≈ k∗y = k∗, and

hence130

ξ2 ≈ 1−

k∗x/σz0 +cosγn
k∗x/σz0 +1

k∗x/σz0 +cosγo
k∗x/σz0 +1

::::::::::::::

2

≤ 1− cos2γn
2γo
::

. (5)

The typical range of a turbine yaw angle is less than 30◦ (Zong and Porté-Agel, 2021), and hence the eccentricity of the wake

elliptic contours ξ < 0.5 for a typical inter-turbine spacing.

A Gaussian wake description, as given in Eq. 1, assumes a neutral atmospheric boundary layer for which the typical magni-

tude of wind veer is approximately of the order 0.03◦/m (Walter et al., 2009; Gao et al., 2021). Hence, for
:
a large wind turbine135

(diameter ∼ 220 m) operating in a neutral boundary layer, the difference in wind direction across its top and bottom tips is

less than approximately 7◦. While stable stratification and/or complex terrain can intensify wind veer
::::::::::::::::::
(Ghobrial et al., 2024)

, we limit our calculations
:::
for

:::
the

::::
case

::
of

::
a
:::::::
circular

::::
disk

:::::::
(section

:::
2.2)

:
to neutral boundary layers with moderate wind veer

(i.e., ∆α≲ 7◦
::::::::
∆αo ≲ 7◦). The

:::::::::
expression

::::::
derived

:::
for

:::
the

:::::::::
equivalent

::::::::::
rectangular

::::
disk

:::::::
(section

:::
2.1)

::::
will

:::
not

:::
be

::::::
limited

:::
by

:::
the

::::::::::::
moderate-veer

::::::::::
assumption.140

:::
The

:
angle δ corresponds to the difference in hub-height between the upstream turbine (wake source) and the considered

downstream turbine. In a typical wind farm, all turbines have the same hub-height, making δ = 0 (or π). However, our calcu-

lations consider δ as a variable to accommodate cases with differing hub heights, such as adjacent wind farms or non-uniform

terrain.
::::::
Rather

:::
than

:::::
using

:::::
linear

:::::::::
averaging

::
of

:::
the

:::::::::
wind-speed

::::::
deficit

:::::
across

:::
the

::::
disk

::
of

::::::::::
integration,

:::
we

::::::::
generalise

:::
the

:::::::::
averaging

::::::
process

::
to

::
an

:::::
order

:::::
n > 0

::::
such

::::
that145

W (n) =

 1

A

∫∫
A

Wn dA

1/n

,

:::::::::::::::::::::::::

(6)

:::::
where

:::::
W (n)

::
is

:::
the

:::
n-th

:::::
order

::::::::::::
rotor-averaged

::::::
deficit

:
,
:
n
::
is

:::
the

::::::::
averaging

:::::
order,

::::
and

::
A

:
is
:::
the

::::
area

::
of

:::
the

::::
disk

::::::::
depicting

:::
the

::::::
turbine

:::::::
(circular

::
in

::::::
section

::::
2.2

:::
and

::::::::::
rectangular

::
in

::::::
section

:::::
2.1).

:::
As

::::
such,

::
if
::::::
n= 2

::::
then

:
a
::::::::::::::::
root-mean-squared

:::::::::
averaging

::
of

:::
the

::::::
deficit

:::::
across

:::
the

::::
rotor

::
is
::::::::
obtained.

:

To summarise, the objective is to determine the rotor-averaged deficit of a turbine of radius R operating within an upstream150

Gaussian wake defined by the standard deviation σ, the wake eccentricity ξ, the veer coefficient ω, and the streamwise scaling
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function C, by performing a surface integration of
:::
the

::::::
surface

::::::::::
integration

::
in

:
Eq. 1 over the rotor disk of the considered

turbine (shaded circle in Fig. 1), which
:
6

::::::::
following

:::
the

::::::::
definition

::
of

:::
the

:::::::::
normalised

::::::
deficit

:::
W

::
in

:::
Eq.

::
1.

:::
The

::::::::::
considered

::::::
turbine

is offset from wake center
:::
the

:::::
wake

:::::
centre

:
by the radial distance ρ and the angle δ. We assume that the rotor disk of the

considered turbine is normal to the free-stream direction implying that σ, ξ, ω, and C, are constants across the rotor disk of the155

considered turbine.
:::::::
variables

::
in
:::

the
::::::::::

streamwise
::::::::
direction

::::
only.

:::::
This

:::::::::
simplifying

::::::::::
assumption

:::
has

:::
no

:::::::::
significant

::::::
impact

:::
on

:::
the

::::::::::::
rotor-averaged

:::::
deficit

:::
for

:::::
small

::::
yaw

::::::
angles

::::
(i.e.,

::::::::
γ ≲ 30◦)

::
as

::::
well

::::::::::
established

::
in

:::
the

::::::::
literature.

:::::::::::
Specifically,

:::
the

::::::
relative

:::::
error

::::
from

:::
this

::::::::::
simplifying

::::::::::
assumption

:
is
:::
on

:::
the

:::::
order

::
of

::::::::::::::::::
k∗2 sin2 γ ∼O(10−3),

::::::
which

::
is

:::::::::
negligible.

2.2 Generalised
:::::::::
Analytical rotor-averaged deficit of

:::::
across a Gaussian wake

::::::
circular

:::::
disk

The presented derivation in this section is a generalisation to the solution by Ali et al. (2024a) who solved a similar problem160

:::::
linear

::::::
version

::
of

::::
the

:::::::
problem

::::
(i.e.,

::::::
n= 1)

:
but for an axisymmetric wake (i.e., ξ = ω = 0) and for two turbines of the same

hub-height (i.e., δ = 0). From
:::
For

:
a
:::::::
circular

::::
disk

::
of

:::::
radius

::
R
::::
and

::
by

:::::
using

:::
the

::::::::
definition

::
of

:::
W

:
(Eq. 1,

::
),

:::
Eq.

:
6
::::::::
becomes

W (n)
c = C

 1

πR2

R∫
0

2π∫
0

re−n(y′+ωz′)2/(2σ2
y)e−nz′2/(2σ2

z) dθdr

1/n

,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

(7)

:::::
where

:::::
W

(n)
c ::

is the rotor-averaged deficit W̃ of the considered turbine is

W̃ =
C

πR2

R∫
0

2π∫
0

re−(yn+ωzn)
2/(2σ2

y)e−z2
n/(2σ

2
z) dθdr,165

where r,
:
of

:::::
order

::
n
::::::
across

:
a
:::::::

circular
:::::
disk,

:::
and

::
r
::::
and θ are the polar coordinates of the axes y–z

::::
axes

:
placed at the center

:::::
centre

:
of the considered turbine (Fig. 1). The coordinates yn :

y′–zn :
z′

:
(of the wake center

:::::
centre) and y–z can be related us-

ing yn = y+∆y and zn = z+∆z ::::::::::
y′ = y+∆y :::

and
::::::::::
z′ = z+∆z:

(Fig. 1). These relations, along with ⟨y,z⟩= r ⟨cosθ,sinθ⟩
and ⟨∆y,∆z⟩= ρ⟨cosδ,sinδ⟩, where ⟨t1, t2⟩ means t1 or t2, can be used to re-write Eq. 7 in the r–θ coordinates as (see

Appendix A for derivation)170

W (n)
c
::

= Ce−ρ2/(2σ2
∗) e−ρ2 cos(2δ−ϕns)/(2σ

2
ns)


1∫

0

ηe−nη2R2/(2σ2
∗)

2π∫
0

1

π
e−nη2R2 cos(2θ−ϕns)/(2σ

2
ns)e−nηRρcos(θ−ϕs)/σ

2
s dθ

︸ ︷︷ ︸
Mθ

dη

︸ ︷︷ ︸
Mη


1/n
::

,

(8)
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where η = r/R. In Eq. 8, three new length scales are introduced: σ∗, σns, and σs along with two new angles: ϕns and ϕs, which

are defined in terms of the wake standard deviation σ, the eccentricity ξ, the veer coefficient ω, and the angle δ as

σ2
∗ =

2σ2(1− ξ2)

2+ω2 − ξ2
, σ2

ns =
2σ2(1− ξ2)√

(ω2 − ξ2)2 +4ω2
, σ2

s =
σ2
(
1− ξ2

)
cosϕs

cosδ+ω sinδ
, tanϕns =

2ω

ξ2 −ω2
, tanϕs = ω+

(
1− ξ2

)
tanδ

1+ω tanδ
.

(9)

The subscript “ns” refers to wake non-symmetry. In case of an axisymmetric wake (i.e., ω = ξ = 0), we have σ−1
ns = 0 and175

hence its corresponding exponential terms in Eq. 8 vanish. Also, when the wake is axisymmetric we have σ∗ = σs = σ, and

ϕs = δ. The solution to the integral Mθ in Eq. 8 is (see derivation in Appendix B)

Mθ = 2I0

ηRρ

σ2
s

nηRρ

σ2
s

:::::

I0

η2R2

2σ2
ns

nη2R2

2σ2
ns

::::::

+4
∑
ν≥1

(−1)ν cos(νϕ)I2ν

ηRρ

σ2
s

nηRρ

σ2
s

:::::

Iν

η2R2

2σ2
ns

nη2R2

2σ2
ns

::::::

 , (10)

where Iν is the modified Bessel function of the first kind and
::::::
integer order ν, and ϕ= 2ϕs −ϕns. By employing Eq. 10, the

::
an

::::::::::
approximate solution of the integral Mη in Eq. 8 is (Appendix C)180

Mη ≈ 2µ(n)
::0

(
1+2P(n)

::ns

)
− 4σ2

∗
R2

4σ2
∗

nR2
::::

e−R2/(2σ2
∗)−nR2/(2σ2

∗)
::::::::

P(n)
::ns

λ
ρ
I1

Rρ

σ2
s

nRρ

σ2
s

::::

+
λ2

ρ2
I2

Rρ

σ2
s

nRρ

σ2
s

::::

 , (11)

where Pns = cos(χ2
ns sinϕ)e

−χ2
ns cosϕ − 1,

:::::::::::
λ=Rσ2

s /σ
2
∗,

:::
and

P(n)
ns = cos(nχ2

ns sinϕ)e
−nχ2

ns cosϕ − 1,
:::::::::::::::::::::::::::::::

(12)

::::
with χns = ρσ2

∗/(2σnsσ
2
s ), and λ=Rσ2

s /σ
2
∗. In Eq. 11, µ0 is

::::
µ
(n)
0 :

is
:

µ(n)
::0 =

1∫
0

ηe−η2R2/(2σ2
∗)−nη2R2/(2σ2

∗)
::::::::::

I0

ηRρ

σ2
s

nηRρ

σ2
s

:::::

 dη. (13)185

In the case of an axisymmetric wake (σ−1
ns = 0), we have χns = Pns = 0,

::::::::::::
χns = P(n)

ns = 0
:
and Eq. 11 simplifies to Mη ≈ 2µ0::::::::::

Mη ≈ 2µ
(n)
0 .

Therefore, Eq. 11 indicates that the solution of the non-axisymmetric wake (Eq. 1) is a perturbation (second term in Eq. 11)

to
:
a
:
scaled axisymmetric solution (scaled by 1+2Pns). Equation

:::::::::
1+2P(n)

ns ).
:::::::::::
Additionally,

:::
Eq.

:
11 contains terms in the form

Iν(Rρ/σ2
s )/ρ::::::::::::

Iν(nRρ/σ2
s )/ρ, which has a finite value when there is no lateral offset between the wake source and the consid-

ered turbine (ρ= 0) as lim
ρ→0

Iν(Rρ/σ2
s )/ρ= 1/(2νν!)

::::::::::::::::::::::::::
lim
ρ→0

Iν(nRρ/σ2
s )/ρ= 1/(2νν!). Nonetheless, when

::
at

::
no

::::::
offset

:
(ρ= 0,190

Pns = 0
:
),

:::
we

::::
have

::::::::
P(n)

ns = 0
:
similar to the axisymmetric solution. This results from the simplifying assumption made in Ap-

pendix C to solve for Mη ,
:
where the terms Iν

(
η2R2/(2σ2

ns)
)

::::::::::::::::
Iν
(
nη2R2/(2σ2

ns)
)

were approximated by (η2R2/(4σ2
ns))

ν/ν!

:::::::::::::::::
(nη2R2/(4σ2

ns))
ν/ν! under the assumption that the argument of the modified Bessel function is small (following the limits on

the wind veer discussed in section 2.1), and hence I0
(
η2R2/(2σ2

ns)
)
∼ 1

:::::::::::::::::::
I0
(
nη2R2/(2σ2

ns)
)
∼ 1

:
was employed. This means

that the stretching and shearing acting on the wake are assumed to have minimal effect on the wake shape close to the wake195
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center
:::::
centre and are more profound far from the wake center

:::::
centre. We will show in section 3.1 , both numerically and

analytically, that this assumption is acceptable for moderate values of wind veer by monitoring the average value (within the

range 0≤ η ≤ 1) of the argument of the modified Bessel function κ=R2/(6σ2
ns). ::::

κ(n),
::::::
defined

::
as

:

κ(n) =
nR2

2σ2
ns

1∫
0

η2 dη =
nR2

6σ2
ns
.

::::::::::::::::::::::::

(14)

:::
The

:::::::::
parameter

::::
κ(n)

::
is

:
a
::::::::
measure

::
of

:::
the

::::::::
skewness

::
of

:::
the

::::::::::
wind-speed

::::::
deficit

:::::
within

:::
the

:::::
rotor

::
of

:::
the

::::::::::
considered

::::::
turbine.

::::::
When200

::
the

:::::
wake

::
is

:::::::::::
axisymmetric

::::
(i.e.,

:::
no

:::::::::
skewness),

:::
we

::::
have

::::::::
κ(n) = 0.

:::
As

:::
the

:::::::
shearing

:::
and

:::::::::
stretching

::
of

:::
the

::::::::
upstream

::::
wake

::::::::
contours

:::::::
increase,

:::
the

:::::
value

::
of

::::
κ(n)

::::::::
increases,

:::::
which

:::
can

::::
also

::
be

::::::
raised

::
by

:::
the

::::::::
averaging

:::::
order

::
n.

::
In

:::::::
sections

:::
3.3

:::
and

::::
3.4,

:
it
::::
will

::
be

::::::
shown

:::
that

:
a
::::::::
practical

::::
limit

:::
on

::::
κ(n)

:
is
::::::
around

:::::::
0.4–0.5,

::::
and

:::::
higher

::::::
values

:::::
could

:::::
result

::
in

:::::
larger

::::::::
deviation

::::
from

:::
the

:::::::::
numerical

:::::::
solution.

:

The solution of the integral µ0 ::::
µ
(n)
0 can be obtained by generalising the solution introduced by Ali et al. (2024a) based on

Rosenheinrich (2017)205

µ(n)
::0 =

σ2
∗

R2

σ2
∗

nR2
::::

e−R2/(2σ2
∗)−nR2/(2σ2

∗)
::::::::

Ψ(n)
::

(R,ρ,σs,σ∗), (15)

where

Ψ(n)
::

(R,ρ,σs,σ∗) = I0

Rρ

σ2
s

nRρ

σ2
s

::::

∑
k≥1


 R2

2σ2
∗

nR2

2σ2
∗

::::

k

fk(n:τ
2)

−Rρ

σ2
s

nRρ

σ2
s

::::

I1

Rρ

σ2
s

nRρ

σ2
s

::::

∑
k≥1


 R2

2σ2
∗

nR2

2σ2
∗

::::

k

gk(n:τ
2)

 ,
(16)

and τ = ρσ∗/σ
2
s . The coefficients fk and gk follow

:::
the

:::::::::
recursions

fk(τv:) =
fk−1(τ)+ τgk−1(τ)

k

fk−1(v)+ vgk−1(v)

k
::::::::::::::::

, gk(τv:) =
fk(τ)+ 2gk−1(τ)

2k

fk(v)+ 2gk−1(v)

2k
::::::::::::::

, (17)210

with f0 = 1, g0 = 0. The recursions in Eq. 17 converge rapidly within 6–10 iterations of simple algebraic calculations
::::::
(scalar

:::::::
addition

:::
and

::::::::::::
multiplication). From Eq. 8, the final form of the rotor-averaged deficit is

W (n)
c
::

≈ 2CC
:
e−ρ2/(2σ̂2)

2
:
µ(n)

::0

(
1+2P(n)

::ns

)
− 2σ2

∗
R2

4σ2
∗

nR2
::::

e−R2/(2σ2
∗)−nR2/(2σ2

∗)
::::::::

P(n)
::ns

λ
ρ
I1

Rρ

σ2
s

nRρ

σ2
s

::::

+
λ2

ρ2
I2

Rρ

σ2
s

nRρ

σ2
s

::::

1/n
::

,

(18)

where σ̂−2 = σ−2
∗ +σ−2

ns cos(2δ−ϕns). Equation 18 was implemented in Python and
:
is
:
available from Ali et al. (2024c).

3 Validation215

In this section , the developed analytical solution
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2.1
::::::::

Analytical
:::::::::::::
rotor-averaged

::::::
deficit

::::::
across

:
a
:::::::::::

rectangular
::::
disk

::
As

::::::::
discussed

::
in
::::::
section

::::
2.2,

:::
the

::::::
derived

:::::::::
expression

:::
for

:::
the

::::::::::::
rotor-averaged

::::::
deficit,

::::::::
assuming

:
a
:::::::::::
circular-disk

::::::::::::
representation

::
of

:::
the

:::::::::
considered

::::::
turbine

:
(Eq. 18)is validated against numerical evaluation of

:
,
:
is
:::::

valid
:::::
when

:::
the

::::::::
skewness

:::::::::
parameter

::::
κ(n)

::
is

:::::
small

:::
(Eq.

::::
14;

::::::::::::
approximately

:::
less

::::
than

::::::::
0.4–0.5).

:::::::::
However,

::::
when

:::::
κ(n)

::
is

::::
large

:::::::
because

::
of

::::::
strong

::::
veer

::::::
and/or

::::
large

:::::::::
averaging

:::::
order220

::
n,

:::
Eq.

:::
18

:::::
might

::
no

::::::
longer

:::
be

::::
valid

::
or

::::::::
becomes

::
of

:::::
poor

::::::::
accuracy.

::
As

:::::
such,

:::
we

::::::
derive

:::::
herein

:::
an

:::::::::
alternative

:::::::::
expression

:::
for the

rotor-averaged deficit for the case of a single upstream wake (section 3.1),
:::::::
assuming

::
a
:::::::::::::
rectangular-disk

::::::::::::
representation

:::
of

:::
the

:::::::::
considered

::::::
turbine

::::::::
following

::::::
similar

::::::::
analogies

::
in
:::

the
::::::::
literature

::::::::::::::::::::::::::::::::
(Ali et al., 2024d; Cheung et al., 2024).

::::
The

::::::::::
dimensions

::
of

:::
the

:::::::::
rectangular

::::
disk

:::
are

:::
2Ly:

and for
:::
2Lz::

in
::
y

:::
and

::
z

::::::::
directions,

:::::::::::
respectively,

::::
with

:::
the

::::
same

::::::
centre

::
as

:::
the

:::::::::
considered

::::::
turbine

::::
(Fig.

:::
1).

:::
We

::::
start

::
by

:::::::::
re-writing

:::
Eq.

:
6
:::
for

:
a
::::::::::

rectangular
::::
disk

::::
with

:::
the

:::
aid

::
of

:::
the

::::::::
definition

::
of

:::
W

::
in

:::
Eq.

::
1

::
as225

W (n)
r = C

 1

4LyLz

∆z+Lz∫
∆z−Lz

dz′e−nz′2/(2σ2
z)

∆y+Ly∫
∆y−Ly

dy′e−n(y′+ωz′)2/(2σ2
y)


1/n

,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(19)

:::::
where

:::::
W

(n)
r ::

is
:::
the

::::
n-th

::::
order

::::::::::::
rotor-averaged

::::::
deficit

:::
for

:
a
::::::::::
rectangular

::::
disk.

::::
The

:::::::
solution

::
of

:::
the

::::
inner

:::::::
integral

:::::
(over

::
y′)

::
is
:

∆y+Ly∫
∆y−Ly

e−n(y′+ωz′)2/(2σ2
y) dy′ =

√
π(1− ξ2)

2n
σ

(
erf

(
∆y +Ly +ωz′

σ
√

2(1− ξ2)/n

)
− erf

(
∆y −Ly +ωz′

σ
√
2(1− ξ2)/n

))
,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(20)

:::::
where

:::::::::::::
σy = σ

√
1− ξ2

::::
(Eq.

::
4)

::::
and

::
erf

::
is
:::
the

:::::
error

:::::::
function

::::::
defined

::
as

::::::::::::::::::::::::
(Ng and Geller, 1969, 3.1; 1)

erf(h) =
2√
π

h∫
0

e−s2 ds.

::::::::::::::::::::

(21)230

::
As

:::::
such,

:::
Eq.

:::
19

:::::::
becomes

:

W (n)
r = C

(
σ

4LyLz

√
π(1− ξ2)

2n
(Q1 −Q2)

)1/n

,

::::::::::::::::::::::::::::::::::::::::

(22)

:::::
where

:::
Q1:::

and
:::
Q2:::

are
:::::::
defined

::
as

Q⟨1,2⟩ =

∆z+Lz∫
∆z−Lz

e−nz′2/(2σ2
z) erf

(
∆y ±Ly +ωz′

σ
√
2(1− ξ2)/n

)
dz′,

::::::::::::::::::::::::::::::::::::::::::::::

(23)
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:::
and

:::
the

::
±

::::
sign

::
in

:::
Eq.

:::
23

::::::::::
corresponds

::
to

:::
Q1:::

and
::::
Q2,

::::::::::
respectively.

::::
We

:::
can

:::::
solve

::
for

:::
the

::::::::
integrals

:::
Q1:::

and
:::
Q2:::

by
::::::
making

::::
use

::
of235

::
the

::::::::::
generalised

:::::::
Owen’s

:
T
::::::::
function

::::::::
Ω(h,a,b)

::::::
defined

::
as

::::::::::::::
(Przemo, 2019)

Ω(h,a,b)
:::::::

=
1

2
√
2π

∞∫
h

e−s2/2erf
(
as+ b√

2

)
ds

::::::::::::::::::::::::::::

=
1

2π

(
arctan(a)︸ ︷︷ ︸−arctan(a+ b/h)− arctan

(
h+ ab+ a2h

b

))
+

1

4
erf

(
b√

2(1− a2)

)
︸ ︷︷ ︸+T(h,a+ b/h)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+T
(

b√
1+ a2

,
h+ ab+ a2h

b

)
,

:::::::::::::::::::::::::::::::

(24)

:::::
where

::::::
T(h,a)

::
is

:::::::
Owen’s

:
T
:::::::
function

:::::::
defined

::
as

::::::::::::
(Owen, 1956)

T(h,a) =
1

2π

a∫
0

e−h2(1+s2)/2

1+ s2
ds.

:::::::::::::::::::::::::::

(25)

::::
From

:::
the

::::::::
definition

:::
of

:::
the

:::::::
function

::
Ω

::::
(Eq.

:::
24)

:::::
along

::::
with

::::::
σz = σ

::::
(Eq.

::
4),

:::
we

::::
can

::::::
express

:::
the

:::::::
integrals

:::
Q1::::

and
:::
Q2 ::

as240

Q⟨1,2⟩ = 2

√
2π

n
σ

[
Ω

(
∆z −Lz

σ/
√
n

,
ω√
1− ξ2

,
∆y ±Ly

σ
√
(1− ξ2)/n

)
−Ω

(
∆z +Lz

σ/
√
n

,
ω√
1− ξ2

,
∆y ±Ly

σ
√

(1− ξ2)/n

)]
.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(26)

:::::::::
Combining

::::
Eqs.

:::
26

:::
and

::
22

:::::
gives

:::
the

::::
final

::::
form

:::
of

:::
the

:::::::::::
disk-averaged

::::::
deficit

:::
for

:
a
:::::::::
rectangular

::::
disk

::
as

:

W (n)
r = C

πσ2
√
1− ξ2

2nLyLz

∑
sy,sz∈{−1,1}

(−sysz)Ω

(
∆z + szLz

σ/
√
n

,
ω√
1− ξ2

,
∆y + syLy

σ
√
(1− ξ2)/n

)1/n

.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(27)

:::
The

:::::::::
expression

::
in

:::
Eq.

::
27

::
is
::::::
simply

:::::::::
calculating

:::
the

:::::::
function

::
Ω

::::
(Eq.

:::
24)

:
at
:::
the

::::
four

:::::::
vertices

::
of

::
the

::::::::::
rectangular

::::
disk

:::::::::::::::::
(∆y ±Ly,∆z ±Lz)

::
by

::::::::
changing

:::
the

::::
signs

:::
sy :::

and
::
sz:::::::

between
:::
−1

::::
and

::
1.

:::::::
Because

::
of

:::::::::
symmetry,

:::
the

:::::::::
underlined

::::
terms

::
in
::::
Eq.

::
24

::::::
vanish

::::
when

::::::::
summed245

:::
over

:::
the

::::
four

:::::::
vertices

::
of

:::
the

::::::::::
rectangular

:::
disk

::::
with

:::
the

:::::
signs

::::::
−sysz .

:::
As

:::::
such,

:::
we

:::
can

:::::
define

::
a

::::::::
simplified

::::::
version

:::
of

::
Ω

::
as

Ω̂(h,a,b) =
−1

2π

(
arctan(a+ b/h)+ arctan

(
h+ ab+ a2h

b

))
+T(h,a+ b/h)+T

(
b√

1+ a2
,
h+ ab+ a2h

b

)
,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(28)

:::
and

::::::
hence,

::
by

::::::::
replacing

:::
Eq.

:::
24

::::
with

:::
Eq.

:::
28,

:::
the

::::::::::::
rotor-averaged

::::::
deficit

::
of

:::
the

:::::::::
rectangular

::::
disk

::
is

W (n)
r = C

πσ2
√
1− ξ2

2nLyLz

∑
sy,sz∈{−1,1}

(−sysz)Ω̂

(
∆z + szLz

σ/
√
n

,
ω√
1− ξ2

,
∆y + syLy

σ
√
(1− ξ2)/n

)1/n

.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(29)

:
It
::::::
should

:::
be

:::::
noted

:::
that

:::
the

::::
two

::::::
arctan

::::::::
functions

::
in

:::
Eq.

:::
28

:::
can

:::
be

::::::::
combined

::::
into

:
a
::::::
single

::::::
arctan

:::::::
function

::::::
whose

::::::::
argument

::
is250

::::
1/a.

::::::::
However,

::::::::::
determining

::
the

::::::
proper

:::::::
quadrant

::::::
would

::::::
require

::::::::
evaluating

:::
the

:::::::
original

:::::::::
arguments

::::
(i.e.,

::::::
a+ b/h

:::
and

:::::::::::::::
h/b+ a+ a2h/b),
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:::
and

:::::
hence

::::
Eq.

::
28

::::
can

::
be

::::::
simply

:::::
used

::
in

::
its

:::::::
current

::::::
format.

::::
The

::::::::
functions

::
T

:::
and

::
Ω
::::::
appear

:::
in

:::
the

:::::::
solution

::
of

:::
the

::::::::::
rectangular

:::
disk

::::::
solely

:::
due

::
to

::::::
having

:::::
ω > 0

::::
(i.e.,

::::
due

::
to

:::::
wind

:::::
veer).

::
In

::::
case

::
of

::
no

:::::
wind

::::
veer

:::::::
(ω = 0),

:
the case of multiple upstream wakes

(section 3.5). The numerical reference against which
:::::::::::
rotor-averaged

::::::
deficit

:::
for

:::
the

:::::::::
rectangular

::::
disk

::::::::
simplifies

::
to

:

W (n)
r

∣∣∣
ω=0

= C

[
πσ2

√
1− ξ2

8nLyLz

(
erf

(
∆y +Ly

σ
√
2(1− ξ2)/n

)
− erf

(
∆y −Ly

σ
√

2(1− ξ2)/n

))(
erf

(
∆z +Lz

σ
√

2/n

)
− erf

(
∆z −Lz

σ
√

2/n

))]1/n
.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(30)255

::::::::::
Furthermore,

:::
for

:::
the

:::::::
specific

:::
case

:::
of

:::::::::::
axisymmetric

::::
wake

::::::::::
(ω = ξ = 0)

:::
the

::::::::::::
rotor-averaged

::::::
deficit

::
for

:::
the

::::::::::
rectangular

:::
disk

::::::::
becomes

W (n)
r

∣∣∣ω=0
ξ=0

= C

[
πσ2

8nLyLz

(
erf

(
∆y +Ly

σ
√
2/n

)
− erf

(
∆y −Ly

σ
√

2/n

))(
erf

(
∆z +Lz

σ
√

2/n

)
− erf

(
∆z −Lz

σ
√

2/n

))]1/n
.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(31)

:::
The

:::::::::
remaining

::::
here

::
is

::
to

:::
find

:::
the

::::
size

::
of

:::
the

::::::::::
rectangular

:::
disk

::::
(Ly:::

and
::::
Lz).

::
It
::
is

:::
not

:::::::::::::
straightforward

::
to

:::::
obtain

::
a
:::::::::::::
mathematically

::::
exact

:::::::::
expression

:::
for

:::
the

::::
size

::
of

:::
the

:::::::::
rectangular

::::
disk

::::
(Ly :::

and
:::
Lz)

::::
that

:::::
makes

::::
Eq.

::
29

:::::::
matches

:::
the

::::
case

::
of

::
a

::::::
circular

::::
disk

:::::::
exactly.260

::::::::
However,

::
we

::::
can

:::::::
compare

:::
the

:::::::::
simplified

:::::
linear

:::::::
solutions

:::::::
(n= 1)

::
of

::::
both

:::::
cases

:::
for

::
an

:::::::::::
axisymmetric

:::::
wake

::::::::::
(ω = ξ = 0)

::::
with

:::
no

:::::
offset

::::::
(ρ= 0)

:::
and

::
no

::::::::::
hub-height

::::::::
difference

:::::::
(δ = 0),

:::
just

::
to

::::
have

:
a
:::::
rough

:::::::
estimate

:::
of

::
Ly::::

and
:::
Lz .

:::
We

:::
also

:::::::
simplify

:::
the

::::::::::
rectangular

:::
disk

::
to
::
a
:::::
square

::::
and

::::::
assume

::::
that

::::::::::::
Ly = Lz = L.

::
By

::::::
doing

::
so,

::::
Eqs.

::
7

:::
and

:::
31

:::::::
simplify

::
to

2σ2

R2

(
1− e−R2/(2σ2)

)
=

πσ2

2L2
erf2

(
L

σ
√
2

)
.

::::::::::::::::::::::::::::::::::::

(32)

:::
We

:::
can

::::::
further

:::::::
simplify

::::
Eq.

::
32

:::
by

::::::::
retaining

::::
only

:::::
terms

:::
up

::
to

:::
σ2

::
in

:::
the

:::::::::::
power-series

:::::::::
expansions

::
of

:::
the

::::::::::
exponential

::::::::
function265

:::
and

:::
the

::::
error

::::::::
function,

:::::
which

:::::
leads

::
to

::::::::::::
L/R≈

√
3/2.

::::::::
Although

::::
this

::
is

:
a
:::::::::
simplified

:::::::
analysis

::::::::
conducted

:::::
under

:::::
many

::::::::::
restrictions

::::
(e.g.,

:::::::::::
axisymmetric

::::::
wake),

::
it

:::::::
suggests

:::
that

:::
the

:::::
ratio

::::
L/R

::
is

::::::::::::
approximately

::::
0.87.

::::::::
Through

:::
trial

::::
and

::::
error,

:::
we

:::::
found

::::
that

:::
the

::::
ratio

:::::::::
L/R= 0.9,

::::::
which

::
is

::::
close

:::
to

:::
the

::::::::
simplified

::::
ratio

::::::

√
3/2,

::::
gave

::::
best

:::::::::
agreement

::::::
against

:::::::::
numerical

::::::::
solutions

:::
for

:
a
::::
wide

:::::
range

:::
of

::::
wake

:::::::::
parameter

::
as

:::
will

:::
be

::::::
shown

::
in

::::::
section

::
3.

::
As

:::::
such,

:::
we

::::::
assume

::::
that

:::
our

:::::::::
equivalent

:::::::::
rectangular

::::
disk

::
is

:
a
::::::
square

::::
such

::::
that

Ly = Lz = 0.9R,
::::::::::::::

(33)270

:::::
where

::
R

::
is

:::
the

:::::::
turbine’s

::::::
radius.

::
A

::::::
Python

:::::::::::::
implementation

::
of

:
Eq. 18 is validated is

::
29

::
is

::::::::
available

::::
from

::::::::::::::
Ali et al. (2024c)

:
.

3
::::::::::
Verification,

::::::::
compute

:::::
costs,

::::
and

::::::::::
uncertainty

::
In

:::
this

:::::::
section,

:::
we

::::::
verify

:::
the

::::::
derived

:::::::::
analytical

::::::::
solutions

:::::
(Eqs.

::
18

::::
and

:::
29)

:::
by

:::::::::
comparing

:::::
them

::
to

:::::::::
numerical

:::::::::
evaluations

:::
of

::
the

:::::::::::::
rotor-averaged

::::::
deficit.

::::
First,

:::
we

:::::::
examine

:::
the

::::
case

:::
of

:
a
:::::
single

::::::::
upstream

:::::
wake,

::::::::::
considering

::::
both

::
a
::::::
circular

::::
disk

:::::::
(section

::::
3.1)

:::
and

:
a
::::::::::

rectangular
::::
disk

:::::::
(section

::::
3.2).

::::
The

:::::::
analysis

:::
in

::::::
section

::
2

:::::
shows

::::
that

::::::
deficit

:::::::
contours

:::
are

:::::::::
influenced

:::
by

:::::
wind

::::
veer,

::::
and275

:::
also

:::
by

:::
the

::::::::
averaging

:::::
order

::
n.

:::
We

:::::::::
investigate

:::
the

:::::::
impact

::
of

::::
these

::::::::::
parameters

::
on

:::
the

:::::::::::::
rotor-averaged

:::::
deficit

::
in

:::::::
sections

:::
3.3

::::
and

12



:::
3.4,

::::::::::
respectively.

:::
Of

::::
less

::::::
impact

::
on

:::
the

::::::::::::
rotor-averaged

::::::
deficit

::
is

:::
the

::::
yaw

:::::::::::
misalignment

::
of

:::
the

:::::
wake

::::::
source,

::::::
which

::
is

::::::::
presented

::
as

::::::::
additional

::::::::
material

::
in

::::::::
Appendix

:::
G.

:::::::::::
Furthermore,

:::
we

:::::
apply

:::
the

:::::::
derived

::::::::
analytical

::::::::
solutions

:::::
(Eqs.

:::
18

:::
and

:::
29)

:::
to

::::::::
scenarios

::::
with

:::::::
multiple

::::::::
upstream

::::::
wakes,

::::
using

:::::::
various

::::
wake

::::::::::::
superposition

:::::::
models.

:::
For

::::::::
numerical

:::::::::
reference,

:::
the

::::::::
analytical

::::::::
solutions

:::
are

::::::::
evaluated

::::::
against

:
a
:::
set

::
of

:
2000 averaging points uniformly distributed across the rotor disk following a sunflower distribution280

(details in Appendix E) as shown
::
in

:
a
::::::::
sunflower

::::::
pattern

::
as

:::::::::
illustrated in Fig. E1 .

:::
(see

::::::::
Appendix

:::
E).

::::
The

::::::::::::
computational

::::
cost

::
of

::
the

:::::::
derived

::::::::
analytical

::::::::
solutions

::::::::
compared

::
to

:::::::::
numerical

::::::::
averaging

::
at

::::::
various

::::::::::
resolutions

:
is
:::::::::
presented

::
in

::::::
section

:::
3.6.

:::::::
Finally,

:::
the

:::::::::
uncertainty

::
in

:::::::::
predicting

:::
the

::::::::::::
rotor-averaged

:::::
deficit

:::
for

:::
the

::::::::
proposed

::::::::
analytical

::::::::
solutions

::::
and

:::
for

::::::
various

::::::::
numerical

::::::::::
resolutions

::
are

:::::::::
quantified

::::::::
compared

::
to
::::::::::
2000-point

::::::::
averaging

::
in

::::::
section

::::
3.7.

3.1 Single upstream wake
::
for

::
a

:::::::
circular

::::
disk285

We consider the non-axisymmetric Gaussian wake of a wind turbine (Eq.
:
1) and evaluate the

:::::::
compute

:::
the

:::::
linear

:
rotor-

averaged deficit of
::::::
(n= 1)

:::::::::::
experienced

::
by

:
a downstream turbine due to this wake

::::::::
modelled

::
as

::
a
:::::::
circular

::::
disk

:
at various

downstream locations
::::::::
distances relative to the wake source. The upstream turbine, acting as the wake source, operates

:::
For

:::
this

:::::::
analysis,

:::
the

::::::::
upstream

:::::::
turbine

:::::
(wake

::::::
source)

::
is
::::::::::
configured

::
to

::::::
operate

:
at a yaw angle γn = 20◦ with combinations of low

(Ct = 0.4) and high (Ct = 0.8) thrust coefficients and low (Ti = 5%) and high (Ti = 12%)
:::::::::::
misalignment

::::::::
γo = 20◦

:::
and

::
a
:::::
thrust290

::::::::
coefficient

::::::::
Ct = 0.8

::
in
::

a
:
free-stream turbulence intensities. As discussed in

:::::::
intensity

::::::::
Ti = 5%.

::::
The

::::::::
influence

::
of

:::::::
varying

:::
the

:::
yaw

::::::::::::
misalignment

::
of

:::
the

:::::
wake

::::::
source

::
is

::::
small

:::::::::
compared

::
to

::::
veer

::::::
effects

::
as

:::::::
outlined

::
in
:::::::::

Appendix
::
G.

:::
In

:::
line

::::
with

:::
the

::::::::
problem

:::::::::
formulation

:::
in section 2.1, the difference in wind direction across the

::
we

:::::::
assume

:
a
::::::::::
differential

::::
wind

::::::::
direction

::
of

:::
7◦

::::::
across

::
the

:::::::::
upstream

:::::::
turbine’s

:
top and bottom tipsof the upstream turbine is assumed to be 7◦, corresponding to a ,

:::::::::::
representing

moderate wind veer acting on
:::::::
affecting a large turbine (diameter ∼ 220 m), and hence the veer coefficient ω ≈ 0.122x/Dn.295

For simplicity, hereafter the subscript n for the radius and diameter of the upstream turbine is dropped by assuming that

the upstream and downstream turbines are of the same size, which does not impact the generality of Eq. 18.
:::::::
resulting

::
in

:
a
::::
veer

:::::::::
coefficient

:::::::::::::::
ω ≈ 0.122x/Do.

::::::::
Stronger

::::
wind

::::
veer

::
is
::::::::::

considered
::
in

:::::::
section

:::
3.3.

:
At each downstream location from

the wake source
:::::::
position, the wake eccentricity ξ can be obtained from Eq. 5

::
is

:::::::::
calculated

:::::
based

::
on

:::::
Eqs.

:
3
::::
and

:
4
::::::

under
:::
the

:::::::::
assumption

::
of

::::::::
isotropic

:::::
wake

::::::::
expansion

::::
rate

::::::
normal

:::
to

:::
the

:::::::::
free-stream

::::::::
direction

::::
(i.e.,

::::::::::::
k∗y = k∗z = k∗)

:
using the empirical ex-300

pression k∗ = 0.003678+0.3837Ti (Bastankhah and Porté-Agel, 2014). Other empirical expressions can be used, but this

does not impact the validation process
::::::::::::::::::::::
k∗ = 0.003678+0.3837Ti:::::::::::::::::::::::::::::

(Bastankhah and Porté-Agel, 2014)
:
.
:::::::::
Alternative

:::::::::
empirical

:::::::::
expressions

:::
for

:::
k∗

:::
are

::::::::
available;

::::::::
however,

::::
their

:::
use

:::::
does

:::
not

:::::
affect

:::
the

::::::::::
verification

:::::::
process, as both analytical and numerical

approaches use
:::::::
solutions

::::::
depend

:::
on σ regardless of how it is defined.

:::::::::
irrespective

::
of

::::
how

:::
its

:::::::
defined.

::
In

:::
the

::::::
circular

::::
disk

:::::
case,

::
we

:::::
focus

:::
on

::
the

:::::
linear

::::::::::::
rotor-averaged

::::::
deficit

:::::::
(n= 1),

:::::
given

::
the

::::::::
relatively

::::
high

::::::
values

::
of

::::
yaw

:::::::::::
misalignment

:::::::::
(γo = 20◦)

:::
and

:::::
wind305

:::
veer

:::::::::::
(∆αo = 7◦)

::
in

:::
this

:::::
setup.

:::::::::
Increasing

:::
the

:::::::::
averaging

:::::
order

:
n
:::::

here
:::::
would

::::::
extend

:::
the

:::::::
derived

:::::::::
expression

:::
for

:
a
:::::::
circular

::::
disk

:::
(Eq.

::::
18)

::::::
beyond

:::
the

::::::::
moderate

::::
wake

::::::::
shearing

:::
and

::::::::
stretching

:::::::::::
assumptions

:::::
under

:::::
which

:::
Eq.

:::
18

:::
was

:::::::::
developed.

::::::
Higher

:::::::::
averaging

:::::
orders

::::
can,

:::::::
however,

:::
be

:::::::
explored

::::
with

:::::
lower

:::::
wind

::::
veer

::
or

::::
with

::
a
::::::::::
rectangular

::::
disk

::
as

::::::::
discussed

::
in

:::::
more

:::::
detail

::
in

::::::
section

:::
3.4.

:

Figure 2 shows the lateral variation of the
::::::::
illustrates

:::
the

:::::::::
normalised

:::::
linear

:
rotor-averaged wind speed deficit (W̃ ) normalised

by the streamwise scaling function C
:::::::
W

(1)
c /C

:::
as

:
a
:::::::
function

::
of

:::
the

:::::
offset

::::::::
variation

:::::
(ρ/σ)

:
at different downstream locationsfor310
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Figure 2. Normalised
::::
linear

:
rotor-averaged deficit (W̃/C)

::
for

:
a
::::::
circular

::::
disk

:::::::::

(
W

(1)
c /C

)
calculated numerically (markers) using the set of

discrete points shown in Fig. E1 and analytically (solid curves) using Eq. 18 for different values of the lateral offset ρ (normalised by the wake

standard deviation σ) between the wake source and considered turbine
::::
offset

:::
ρ/σ. Each column represents

:::
The

:::::::
upstream

::::::
turbine

:::::::
operates

:
at
:
a specific distance downstream of the wake source,

::
yaw

:::::::::::
misalignment

:::::::
γo = 20◦

:
and each row corresponds to

:
at
:
a different combination

of the thrust coefficient (Ct) of the upstream turbine and the
::::::
Ct = 0.8

::
in
::

a
:
free-stream turbulence intensity (Ti) as indicated

:::::::
Ti = 5%

:::
with

::
a
:::::::::::
wind-direction

::::::::
difference

::::::::
∆αo = 7◦

::::::
across

::
its

:::
top

:::
and

::::::
bottom

:::
tips. Indicated for each case

::::::::
downstream

:::::::
location

:::::
x/Do:

are the

wind-veer coefficient ω ≈ 0.122x/D corresponding to a 7◦ difference in wind direction between the top and bottom tips of the upstream

turbine
::::::::::::
ω ≈ 0.122x/Do::::

(for
::::::::
∆αo = 7◦;

:::
Eq.

::
2) , the eccentricity of the wake elliptic contour ξ due to a 20◦ yawing of the upstream turbine

(Eq
::
for

::::::::
γo = 20◦;

:::
Eqs. 5

:
3

:::
and

:
4), and the ratio of the radius of the considered turbine to the wake standard deviation R/σ (σ is obtained

from Eq. 4)
:
,
:::
and

:::
the

:::::::
skewness

::::::::
parameter

:::
κ(1)

:::
(Eq.

:::
14).

:
For each case

::::::::
downstream

:::::::
location

:::::
x/Do, three values of the angle δ, which is the

angle between the wake center
:::::
centre and the center

::::
centre

:
of the considered turbine (Fig. 1), are considered: 0, π/4, and 3π/4.The quantity

κ=R2/(6σ2
ns), which was assumed small in the derivation of Eq. 18 is recorded for each case as a validation to this simplifying assumption.
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the cases summarised above as calculated numerically ,
:::::::::
comparing

::::::::
numerical

::::::
results

:
(markers) and analytically

:::
with

:::::::::
analytical

:::::::::
predictions

:
(solid curves) using ;

:
Eq. 18for different

:
)
::::::
across

::::::
several

:
values of the angle δ. The corresponding value

:::
For

::::
each

::::
case,

::::
the

::::::
values of the eccentricity ξ , the

:::
(Eq.

:::
3),

:
veer coefficient ω , the

::::
(Eq.

:::
2), ratio R/σ , and the parameter

κ=R2/(6σ2
ns) are indicated for each case

:::
(Eq.

:::
4),

:::
and

::::::::
skewness

::::::::
parameter

::::
κ(1)

::::
(Eq.

:::
14)

:::
are

::::::::
specified. During the derivation of

Eq. 18, the quantity κ
:::::::
skewness

:::::::::
parameter

::::
κ(n) was assumed to be small enough

:::::
remain

::::::::::
sufficiently

::::
small

:
(≲ 1) to employ the315

approximation Iν
(
η2R2/(2σ2

ns)
)
∼ (η2R2/(4σ2

ns))
ν/ν!

:::::
enable

:::
the

::::::::::::
approximation

::::::::::::::::::::::::::::::::::::
Iν
(
nη2R2/(2σ2

ns)
)
∼ (nη2R2/(4σ2

ns))
ν/ν!

(Appendix C). The listed values of κ
:::
κ(1)

::::::
values

::::::
shown

:
in Fig. 2 verify this simplifying assumptionas the maximum value

of κ was approximately 0.35 which occurred
::::::::::
assumption,

::::
with

:::
the

:::::::::
maximum

:::
κ(1)

:::::
being

:::::::::::::
approximately

::::
0.27

::
at 10 diameters

downstream of the wake source for the low Ct and low Ti case (Fig. 2d). For the other cases, κ has even smaller values.
::
A

:::::::
practical

::::
limit

:::
on

::::
κ(n)

::
so

::::
that

:::
Eq.

::
18

:::::::::
maintains

::::
high

:::::::
accuracy

::
is
::::::::::::
approximately

:::::::
0.4–0.5

::
as

::::
will

::
be

:::::::
outlined

::
in

:::::::
sections

:::
3.3

::::
and320

:::
3.4.

:

The comparison against the numerical evaluation
::::::::::
Comparison

::::
with

:::::::::
numerical

::::::::::
evaluations of the rotor-averaged deficit

indicates excellent
:::::::
confirms

::::
the

::::
high accuracy of Eq. 18, even far downstream of the wake

::
at

:::::::
far-wake

:::::::::::
downstream

::::::::
distances

::::::::::
(x/Do = 10)

::::::
where

::::
wind

::::
veer

::::
has

::::::::::
significantly

:::::::
sheared

:::
the

:::::
wake.

::::::
Minor

::::::::
deviations

::::::::
between

::::::::
analytical

:::
and

:::::::::
numerical

::::::
results

::::
occur

::
at
::::::::::
x/Do = 10

::::
(Fig.

:::
2d)

::::
with

::::
zero

:::::
offset

:::::::
(ρ= 0).

::::::::
However,

::
at

::::
this

:::::::
distance

::::
from

:::
the

:::::
wake source (x/D = 10) , where the325

wake is highly sheared by wind veer
::
10

::::::::
diameters

:::::::::::
downstream),

:::
the

::::::
scaling

:::::::
function

::
C

:::::::::
diminishes

:::::::
enough

:::
that

::::
these

::::::::::
differences

::
are

:::::::::
negligible

:::
for

::::::::::::
rotor-averaged

::::::
deficit

::::::::
evaluation. At zero lateral offset between the considered turbine and the wake source

(ρ= 0
:::::
centre

::::::
(ρ= 0), the agreement

::::::::::
congruence between Eq. 18 and the numerical solution in

::::::::
numerical

:::::::
solutions

::
(Fig. 2for

all the shown )
::::::

across
:
cases indicates that the assumption of minimal impact of wake shearing and stretching on the wake

center was justifiable, even at high values of the veer coefficient ω at x/D = 10. As the
:::::
centre

:::
was

::
a
:::::
valid

::::::::::
assumption.

:::
As330

::::
wake

:
stretching and shearing of the wake shape due to wind-veer effects increase downstream of the wake source (ω increases

with x/D
:::::::
intensify

::::
due

::
to

:::::
wind

::::
veer

::::
with

:::::::::
increasing

::::::::::
downstream

::::::::
distance

::::::
(ω ∝ x;

::::
Eq.

:
2), the role

::::::::
influence of the angle δ

(hub-height difference) becomes more profound compared to locations close to wake source (first column vs last column in

::::::::::
increasingly

::::::::
important

::::::::
compared

::
to
::::::::
positions

:::::
closer

:::
to

::
the

:::::
wake

::::::
source.

:

3.2
:::::

Single
::::::::
upstream

:::::
wake

:::
for

::
a

::::::::::
rectangular

::::
disk335

:::
We

:::::::
replicate

:::
the

:::::::::
verification

:::::::::
described

::
in

::::::
section

:::
3.1,

::::
this

::::
time

::
for

::
a
:::::::::::::
rectangular-disk

::::::::::::
representation

::
of

:::
the

:::::::
turbine.

::
In

:::
this

:::::
case,

::
the

:::::::::::::
rotor-averaged

::::::
deficit

::
is

::::::
defined

:::
by

:::
Eq.

:::
29,

:::::
with

:::
the

::::
disk

::::
size

:::::::
specified

:::
by

::::
Eq.

:::
33.

:::::
Under

::::
the

::::
same

:::::::::
conditions

::::::::
outlined

::
in

::::::
section

::::
3.1, Fig. 2)

:
3
:::::::
presents

:::
the

::::::
offset

:::::::
variation

:::
of

:::
the

::::::::::
normalised

:::::
linear

::::::::::::
rotor-averaged

:::::
wind

:::::
speed

::::::
deficit

::::::::
W

(1)
r /C

::
at

::::::
various

::::::::::
downstream

::::::::
positions

::::
from

:::
the

:::::
wake

:::::
source

::::
and

:::::
across

:::::::
different

::::::
values

::
of

:::
the

:::::
angle

::
δ.

:::
The

::::::::::
comparison

::
in

::::
Fig.

:
3
::::::
shows

:::
that

:::
the

::::::::::::::
rectangular-disk

:::::::
solution

:::::
(Eqs.

:::
29

:::
and

:::
33)

::::::::
provides

:::
an

::::::::
excellent

::::::::
accuracy,

:::::::::
performing

::::::
better

::::
than

:::
the

:::::::::::
circular-disk340

::::::
solution

:::::::
without

:::
the

:::::::::
limitations

::::::::
observed

:::
for

:::
the

::::::::::
circular-disk

:::::::
solution

::
at
:::
no

:::::
offset

::::
(e.g.,

::::::
ρ= 0

::
in

::::
Figs.

:::
2d

:::
and

::::
3d).

::::::
Beside

:::
the

:::::::::
marginally

:::::
higher

::::::::
accuracy,

:::
we

::::
will

:::::
show

::
in

:::::::
sections

:::
3.3

::::
and

:::
3.4

:::
that

:::
the

::::::::::::::
rectangular-disk

:::::::
solution

:::::
offers

::::::
further

::::::::::
advantages

:::
over

:::
the

:::::::::::
circular-disk

:::::::
solution

::
by

:::::::::::
consistently

::::::::
predicting

:::
the

::::::::::::
rotor-averaged

::::::
deficit

::::
with

:::::
higher

::::::::
accuracy

::
in

:::::
cases

::
of

:::::::::
significant

::::
wind

::::
veer

::::::
and/or

::::::
higher

::::::::
averaging

:::::::
orders,

::::::::
scenarios

::
in

::::::
which

:::
the

:::::::::::
circular-disk

:::::::
solution

::
is

::::
less

:::::::
accurate

::::
due

::
to

::
an

::::::::
elevated
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Figure 3.
::::
Same

::
as

::::
Fig.

:
2
:::
but

::
for

:::
the

:::
case

::
of
::
a

::::::::
rectangular

::::
disk

:::
(Eq.

:::
29).

:::::::
skewness

:::::::::
parameter

::::
κ(n). Specifically, the low Ct andlow Ti case is characterised by a slow rate of wake expansion (σ is345

smaller than the other cases), resulting in the largest deviation between the numerical

3.3
:::::

Effect
::
of

::::
wind

:::::
veer

::
In

::
all

:::::::::::
comparisons

::::::
shown

:::
thus

:::
far

:::::
(Figs.

::
2
:::
and

:::
3),

:
a
:::::::::::::
wind-direction

::::::::
difference

::
of

:::::::::
∆αo = 7◦

::::
was

:::
set

:::::
across

:::
the

:::
top

::::
and

::::::
bottom

:::
tips

::
of

:::
the

:::::
wake

::::::
source,

::::::::
reflecting

::
a

::::::::
moderate

:::
veer

::::::
acting

::
on

::
a
::::
large

::::::::
upstream

::::::
turbine

:::::::
(section

::::
2.1).

::::
The

:::::::::::
circular-disk

:::::::
solution

:::
(Eq.

::::
18)

::::
was

::::::
derived

::::::
based

:::
on

:::
the

::::::::::
assumption

::
of

:::::::::::::
small/moderate

:::::
veer,

::::::
which

::::::
implies

::
a
:::::
small

::::::::
skewness

:::::::::
parameter

::::::
(κ(n);350

:::
Eq.

:::
14).

:::::
Here,

:::
we

::::::::
examine

:
a
:::::
range

:::
of

::::::::
wind-veer

::::::::::
magnitudes

:::
by

::::::
varying

:::
the

:::::::::::::
wind-direction

::::::::
difference

:::::
∆αo:::

for
::::
both

:::::::
circular

:::
and

:::::::::
rectangular

:::::
disks

::
to

:::::::
evaluate

:::
the

::::::::
accuracy

::
of

::::
each

:::::
under

:::::::::
conditions

::
of

:::
low

:::
to

::::
high

::::
wind

::::
veer.

:

:::::
Figure

::
4
:::::::
presents

:::
the

:::::
linear

:::::::::::::
rotor-averaged

:::::
deficit

:::
for

::::
both

:::::::
circular

:::::::
(dashed

::::::
curves;

::::
Eq.

:::
18)

::::
and

:::::::::
rectangular

:::::
(solid

:::::::
curves;

:::
Eq.

:::
29)

::::
disk

:::::::
models,

::::::::
compared

::::::
against

:::::::::
numerical

::::::::
averaging

:::::::::
(markers).

:::
In

:::
this

:::::
setup,

:::
the

::::::::
upstream

:::::::
turbine

:::::
(wake

::::::
source)

::::
has

:::::::
Ct = 0.8

::::
and

::::::::
Ti = 5%,

::
as

::::::
before,

:::
but

::::
with

::::
zero

::::
yaw

::::::::
(γo = 0◦)

:::
to

:::::
isolate

:::
the

:::::::
impact

::
of

::::
wind

:::::
veer.

::::
Both

:::
the

::::::::
upstream

::::
and

:::
the355

:::::::::
considered

:::::::
turbines

::::
have

:::
the

:::::
same

:::::::::
hub-height

::::
(i.e.,

::::::
δ = 0).

::::
For

:::::
small

::::
wind

::::
veer

::::::::::
(∆αo = 5◦,

:::::
black

::::::
curves

::
in

::::
Fig.

:::
4),

::::
both

:::
the

:::::::
circular- and analytical solutions far downstream of the wake source (

:::::::::::::
rectangular-disk

:::::::
solutions

::::::
match

:::
the

::::::::
numerical

::::::::
solutions

::::
with

::::
high

::::::::
accuracy.

:::
The

:::::::::
advantage

::
of

:::
the

:::::::::::::
rectangular-disk

:::::::
solution

::::::::
becomes

::::::
evident

:::
for

:::
the

::::
case

::
of

::::::::
moderate

::::
wind

::::
veer

:::::::::::
(∆αo = 15◦,

:::
red

::::::
curves

::
in Fig. 2d), because the parameter κ is relatively larger.However, at large distances downstream of the wake source (x/D ∼ 10)360

the magnitude of the wind-speed deficit is sufficiently small (the scaling function C is small) making any differences between

the numerical and analytical solutions insignificant.
::
4),

::::::
where

:::
the

:::::::::::::
rectangular-disk

:::::::
solution

::::::::
matches

:::
the

::::::::
numerical

::::
one

::
at

:::
all
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Figure 4.
::::::::
Comparing

::::::::
analytical

:::
and

::::::::
numerical

::::
linear

:::::::::::
rotor-averaged

:::::
deficit

:::
for

::::::
different

:::::
values

::
of

::::
wind

::::
veer

::
by

:::::::
changing

:::
the

:::::::::::
wind-direction

:::::::
difference

::::
∆αo:::::

across
:::
the

:::
top

:::
and

::::::
bottom

:::
tips

::
of

::
the

::::::::
upstream

:::::
turbine

:::::
(wake

::::::
source).

::::
The

:::::::
analytical

:::::::
solutions

:::::
shown

:::
are

:::
that

::
of
::

a
::::::
circular

:::
disk

:::::::
(dashed;

::
Eq.

:::
18)

:::
and

:
a
:::::::::
rectangular

:::
disk

:::::
(solid;

:::
Eq.

::::
29),

::::::
whereas

:::::::
numerical

::::::::
averaging

:::::::
(markers)

::
is

:::::::
obtained

::::
using

:::
the

:::::::
averaging

:::::
points

::
of

:::
Fig.

:::
E1.

:::::
Similar

::
to

:::
Fig.

:::
3.1,

:::
the

:::::::
upstream

::::::
turbine

::
has

::
a

::::
thrust

::::::::
coefficient

:::::::
Ct = 0.8

:::
and

::::::
operates

::
in

:
a
:::::::::
free-stream

::::::::
turbulence

::::::
intensity

::::::::
Ti = 5%,

::
but

:::
has

::
no

::::
yaw

:::
(i.e.,

:::::::
γo = 0).

:::
The

:::::::
skewness

::::::::
parameter

::::
κ(1)

::
for

::::
each

:::
veer

::::
case

::
is

:::::::
indicated,

:::
and

:::::
δ = 0

::::
(same

:::::::::
hub-height)

:::
for

::
all

:::
the

::::
cases.

::::::::::
downstream

::::::::
locations,

:::::::
whereas

:::
the

:::::::::::
circular-disk

:::::::
solution

:::::::
deviates

:::::
from

:::
the

:::::::::
numerical

:::::::
solution

::::
with

:::
the

::::::::::
streamwise

:::::::
distance

::::
(e.g.,

:::
red

::::::
dashed

:::::
curve

:::
in

:::
Fig.

::::
4d).

::
In

:::::
cases

::
of

::::::
strong

::::
veer

::::::::::::
(∆αo = 45◦),

::::
only

:::
the

:::::::::::::
rectangular-disk

::::::::
solution

::::
(Eq.

:::
29)

:::::::
remains

::::
valid,

:::
as

:::
the

::::::::::
circular-disk

:::::::
solution

::::
(Eq.

:::
18)

::::
fails

::::
due

::
to

:::
the

::::
high

::::::::
skewness

::::::::
parameter

:::::::::
(κ(1) > 2),

::::::
which

:::::::
violates

:::
the

:::::::::
underlying365

::::::::::
assumptions

::
of

::::
Eq.

:::
18

:::
(see

:::::::
section

:::
2.2

::::
and

::::::::
Appendix

:::
C

:::
for

:::::::
details).

:::::::::::
Nevertheless,

:::
the

::::::::::::::
rectangular-disk

:::::::
solution

:::::::::
continues

::
to

::::
yield

::::::::::
predictions

::
of

::::
rotor

::::::::
averaged

::::::
deficit

:::
that

:::
are

:::::::::
consistent

::::
with

:::::::::
numerical

:::::::
solutions

:::::
even

:::::
under

:::::::
extreme

::::
veer

:::::::::
conditions

:::::
within

:
a
::::::
neutral

::::::::
boundary

:::::
layer.

::::
The

:::::
results

::
in

::::
Fig.

:
4
:::::::
indicate

:::
that

:::
for

:::
the

::::::::::
circular-disk

::::::::
solution,

:
a
:::::::
practical

::::
limit

:::
for

:::
the

::::::::
skewness

::::::::
parameter

::::
κ(n)

:::::
would

:::
be

::::::
around

:::
0.4,

:::::::
beyond

:::::
which

:::
the

:::::::::::
circular-disk

:::::::
solution

:::::::
deviates

::::
from

:::
the

::::::::
numerical

::::::::
solution.

::::::::
Generally,

::
as

:::::
wind

::::
veer

:::::::
increases

:::::
(i.e.,

::
as

:::::::
shearing

::
of

:::::
deficit

::::::::
contours

:::::::::
intensifies),

:::
the

::::::
deficit

:::::::
contours

::::
take

::
on

:::
the

::::::::::
appearance370

::
of

:
a
::::::::::
horizontally

::::::::
oriented

::::
strip

::
of

::::::::
non-zero

::::::
deficit.

::::
This

:::::
trend

::
is

::::::
evident

::
in

::::
Fig.

:::
4d

:::
for

::::::::::
∆αo = 45◦,

:::::
where

:::
the

:::::::::::::
rotor-averaged

:::::
deficit

:::::::
remains

::::::::::::
approximately

:::::::
constant

::::
with

::::::
respect

:::
to

:::
the

:::::
offset

::
ρ.

::::::::
Although

:::
this

:::::::
extreme

::::
case

::::
was

:::::::
analysed

::
to

::::
test

:::
the

:::::
limits

::
of

:::
the

::::::::
analytical

::::::::
solutions,

::
it

::
is

:::::::
unlikely

::
to

::
be

::::::::::
encountered

::
in

::
a
::::::
neutral

::::::::
boundary

::::
layer

::::::
where

:::
the

:::::::
Gaussian

:::::
wake

::::::
model

::::
(Eq.

::
1)

::::::
applies.

:

3.4
:::::

Effect
::
of

:::
the

:::::::::
averaging

:::::
order375
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Figure 5.
:::::::::
Comparison

::
of

:::
the

:::::::
analytical

::::::
(circular

:::
and

::::::::::
rectangular)

:::::::::::
rotor-averaged

::::
deficit

::
to
::::::::
numerical

:::::::
averaging

:::
for

::::::
different

::::::::
averaging

:::::
orders

::
n.

:::
The

:::
top

:::
row

::::::::::
corresponds

::
to

::
the

::::::::::
circular-disk

::::::
solution

::::
(Eq.

::::
18),

::::::
whereas

:::
the

::::::
bottom

:::
row

::
is

:::
the

::::::::::::
rectangular-disk

::::::
solution

::::
(Eq.

:::
29).

::::
The

:::::::
upstream

:::::
turbine

:::::
(wake

::::::
source)

:
is
:::::::
operating

::
at
:
a
::::
yaw

::::::::::
misalignment

:::::::
γo = 20◦

::
at

:::::::
Ct = 0.8

::
in

:
a
:::::::::
free-stream

::::::::
turbulence

::::::
intensity

::::::::
Ti = 5%.

:::
The

:::::::::::
wind-direction

:::::::
difference

:::::
across

:::
the

:::
top

:::
and

::::::
bottom

:::
tips

::
of

:::
the

::::
wake

::::::
source

::::::::
∆αo = 7◦,

:::
and

::::
both

:::::::
turbines

:::
have

:::
the

:::::
same

::::::::
hub-height

::::
(i.e.,

:::::
δ = 0).

:::
The

::::::::
skewness

:::::::
parameter

::::
κ(n)

:::
(Eq.

:::
14)

::
is

:::::::
indicated

::
for

::::
each

::::
case.

:::::
Beside

:::::
wind

:::::
veer,

:::
the

::::::::
averaging

:::::
order

::
n
:::
has

::
a
:::::
direct

::::::::
influence

:::
on

:::
the

::::::::
skewness

:::::::::
parameter

::::
κ(n)

::::
(Eq.

::::
14),

::::
and

:::::
hence

:::
on

:::
the

:::::::
shearing

::
of

:::
the

::::::
deficit

::::::::
contours.

:::::
Here,

:::
we

:::::::
examine

:::
the

:::::::
circular

:::
and

::::::::::
rectangular

::::::::
solutions

:::
for

:::::::
different

:::::::::
averaging

:::::
orders

::
n
:::
by

:::::::::
comparing

::::
them

::
to

:::::::::
numerical

::::
rotor

::::::::
averaging

:::
as

::::::::
presented

::
in

:::
Fig.

:::
5.

:::
The

:::::
wake

::::::
source

:::::::
operates

::
at

::::
yaw

:::::::::::
misalignment

::::::::
γo = 20◦

:::::
(effect

::
of

:::::::
yawing

:::
the

:::::
wake

:::::
source

::
is
::::::::
minimal

::
as

::::::
shown

::
in

::::::::
Appendix

:::
G)

:::
and

::
at
::::::::
Ct = 0.8

::
in

::
a

:::::::::
free-stream

:::::::::
turbulence

::::::::
intensity

::
of

:::
5%.

::::
The

:::::::::::::
wind-direction

::::::::
difference

::::::
across

:::
the

:::
tips

:::
of

:::
the

::::
wake

::::::
source

:::::::::
∆αo = 7◦

::::
(Eq.

:::
2),

:::
and

:::::
both

:::::::
turbines

::::
have

:::
the

:::::
same380

:::::::::
hub-height

::::::
(δ = 0).

:

:::
The

::::
case

:::
of

:::::
linear

::::::::
averaging

:::::::
(n= 1;

:::::
black

::
in

::::
Fig.

::
5)

::::
was

::::::
already

:::::::::
examined

::
in

:::::::
previous

::::::::
sections,

::::::
where

::::
both

:::
the

:::::::
circular

::::::
(dashed

:::::::
curves)

:::
and

:::::::::
rectangular

:::::
(solid

:::::::
curves)

:::::::
solutions

:::::
agree

::::
well

::::
with

:::
the

::::::::
numerical

:::::::
solution

:::::::::
(markers).

::::::::
However,

:::::::::
increasing

::
the

:::::::::
averaging

:::::
order

::::::
results

::
in

::::::::
accuracy

:::::::::::
deterioration

::
of

:::
the

:::::::::::
circular-disk

:::::::
solution,

:::::::::
especially

::
at

:::::
larger

::::::::
distances

:::::::::::
downstream

::::
(e.g.,

::::
Fig

:::
5c,

:::
d).

:::
For

::::::::
instance,

::::
the

::::::::::
circular-disk

::::::::
solution

:::::::
deviated

:::::::::::
significantly

:::::
from

:::
the

:::::::::
numerical

:::::::
solution

:::
for

::::
the

:::::
cubic385

::::::::
averaging

::::::
(n= 3)

::
at

::::::
almost

::
all

::::::::::
downstream

::::::::
distances.

::::::::::
Conversely,

:::
the

:::::::::::::
rectangular-disk

:::::::
solution

::::
(Eq.

:::
29)

:::
has

::::::::
excellent

::::::::
agreement
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Figure 6.
::
(a)

:::
The

:::::::::::
row-averaged

:::
yaw

:::::::::::
misalignment

::
of

:::
the

:::::
Horns

::::
Rev

::::
wind

::::
farm

::::
with

::::::
respect

::
to

:
a
:::::::::

free-stream
::::
wind

:::::
from

::::
West

::
to

::::
East

::::::::::::::
(Zhang et al., 2024)

:
.
::::
Inset

:::::
shows

:
a
::::::::
schematic

:
of
:::

the
:::::
farm’s

:::::
layout

:::::
where

:::
the

:::
yaw

::
of

::::
each

:::::
turbine

::
is
:::::::
indicated

:::
and

:::
the

:::
first

:::
row

::
is
:::::::::
highlighted

:
in
:::::

green
::
to

::::::
indicate

::::
row

::::::::
definition.

::
(b)

::::
The

::::::::::
row-averaged

:::::::::
normalised

:::::
power

::::::::
generation

:::
(in

:::::::
reference

::
to

:::
first

::::
row)

::
of

:::
the

:::::
Horns

::::
Rev

::::
wind

:::
farm

:::::
using

::::
linear

:::::
wake

::::::::::
superposition

::::::::::::::::::::::::::::
(Niayifar and Porté-Agel, 2015, black)

:
,
::::::::::::::
root-mean-squared

::::::::::
superposition

:::::::::::::::::::::
(Voutsinas et al., 1990, red)

,
::::

and
::
the

:::::::::::
product-based

:::::
wake

::::::::::
superposition

:::::
model

:::::::::::::::::::::::::
(Lanzilao and Meyers, 2022, blue)

:
.
:::::
Power

::::::::
generation

::::
(Eq.

:::
35)

::
is

:::::::
obtained

::::
using

:::::
linear

:::::::
averaging

::
of

:
a
::::::

circular
::::

disk
::::
(Eq.

:::
18)

:::
and

:
is
::::::::

compared
::
to

:
a
::::::::

numerical
:::::::
solution

::::
using

:::
the

:::::::
averaging

:::::
points

:::::
shown

::
in
::::

Fig.
::
E1

::::::::
(markers).

::::
The

::::::::
free-stream

::::
wind

:::::
speed

::
is

:
8
:::::
ms−1

:::
and

:::
the

:::::::::
free-stream

::::::::
turbulence

::::::
intensity

::
is
:::::
7.7%.

::
(c)

:::::
same

::
as

:
in
:::

(b)
:::
but

:::
for

::
the

::::::::::::
rectangular-disk

:::::::
solution

:::
(Eq.

:::
29).

::::
with

::
the

:::::::::
numerical

:::::::
solution

:
at
:::
all

:::::::
distances

::::
and

::
all

::::::::
averaging

::::::
orders,

::::::::::
highlighting

:::
its

::::::::
robustness

::::
and

:::::::
accuracy

::::
over

:::
the

::::::::::
circular-disk

:::::::
solution.

:::
The

::::::
impact

::
of

:::
the

::::::::
averaging

:::::
order

:
n
:::
on

:::
the

::::::::::::
rotor-averaged

:::::
deficit

:::::::::
(analytical

::
or

:::::::::
numerical)

::
is

:::
not

:::::
trivial

::
as

::::::::
indicated

::
by

::::
Fig.

::
5.

::::::::
However,

::::::::
assessing

:::
the

:::::::
accuracy

::
of

:::::
each

::::::::
averaging

:::::
order

::
is

:::
out

::
of

:::
the

:::::
scope

::
of

:::
the

::::::
current

::::::
study,

:::
and

::::::
should

::
be

:::::::::
conducted

:::
by390

:::::::::
comparing

:::::::
different

::::::::
averaging

::::::
orders

::
to

:
a
::::::::::::
higher-fidelity

::::::
model.

:

3.5 Multiple upstream wakes

So far, we examined the developed analytical solution
:::
have

:::::::::
examined

:::
the

::::::::
analytical

::::::::
solutions

:::::::
derived for a single upstream

wake , but
:::::
(Eqs.

::
18

:::
and

::::
29).

::::::::
However,

::
in

:::
real

:::::::::::
applications, a wind turbine is typically impacted

::::
often

:::::::::
influenced

:
by multiple up-

stream turbines, for which
:::::::::
demanding

:::
the

:::
use

::
of
:
wake superposition modelsare applied. When .

:::::
When

::::::::::
numerically

::::::::::
calculating395

the rotor-averaged deficit due to
::::
from multiple upstream wakesis calculated numerically using a set of discrete points on its

rotor disk ,
::
a
:::::::
discrete

:::
set

::
of

:::::
points

:::::
over

:::
the

::::
rotor

::::
disk

::
is
:::::

used.
:::
At

::::
each

:::::
point, wake superposition of all upstream wakes is
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applied for each point on the rotor disk independently, followed by rotor averaging of the
::
all

:::::::
upstream

::::::
wakes

::::::::::
individually,

::::
and

::
the

:::::::::::::
rotor-averaged

:::::
deficit

::
is

:::::::::
determined

:::::
from

::::
these

:
superposed deficits. Alternatively,

:
in

:::
the

::::::::
analytical

:::::::::
approach, the presented

analytical solution (Eq. 18) corresponds to evaluating the rotor-averaged deficit
:
is

:::::::::
calculated for each upstream wake indepen-400

dently , followed by superposition of
:::::
(using

:::::
Eqs.

::
18

::
or

::::
29)

:::::
before

:::::::::::
superposing the rotor-averaged deficits. The impact of the

order of applying
::::
effect

:::
of

:::
the

::::::::
sequence

::
in

:::::
which

:
wake superposition and rotor averaging

::
are

:::::::
applied depends on the struc-

ture of the superposition expression. Ali et al. (2024a) showed that
::::::
model.

::
As

::::::
shown

:::
by

:::::::::::::::
Ali et al. (2024a) for axisymmetric

wakes,
:

the order of wake superposition and rotor averaging has no significant impact
:::::::
minimal

::::::::
influence

:
on the overall rotor-

averaged deficitfor both
:
,
::::::::
regardless

:::
of

::::::
whether

:
linear superposition (Niayifar and Porté-Agel, 2015) and

::
or

:
root-mean-squared405

superposition (Voutsinas et al., 1990), and
::::::
(RMS)

:::::::::::
superposition

:::::::::::::::::::
(Voutsinas et al., 1990)

::
is

::::
used,

::::
and

::::
they demonstrated this by

application to the Horns Rev wind farm. In this section, we extend this analysis to the case of
:::
the

:::::::
analysis

::
to non-axisymmetric

wakes to quantify
:::::
assess the impact of the order of wake superposition and rotor averaging.

(a) The row-averaged yaw angle of the Horns Rev wind farm with respect to the free-stream wind from West to East

(Zhang et al., 2024). Inset shows a schematic of the farm’s layout where the yaw of each turbine is indicated and the first row is410

highlighted in green to indicate row definition. (b) The row-averaged power generation of the Horns Rev wind farm using linear

wake superposition (Niayifar and Porté-Agel, 2015) obtained using the analytical solution of Eq. 18 (solid curve) compared to

the numerical solution using the averaging points shown in Fig. E1 (markers). For reference, the case with no turbine yaw is

shown by the dashed curve. The free-stream wind speed is 8 ms−1 and the free-stream turbulence intensity is 7.7%. (c) same

as in sub-figure b but for the root-mean-squared superposition (Voutsinas et al., 1990). (d) same as in sub-figure b but for the415

product-based wake superposition of Lanzilao and Meyers (2022).

Expanding on the application presented
::::
work

:
by Ali et al. (2024a), we consider

::::::
analyse the Horns Rev wind farm but with

yawed turbines to demonstrate
:::::::
evaluate the accuracy of Eq

:::
Eqs. 18

:::
and

::
29

:
when combined with various

::::::
different

:
wake super-

position models against
::::::::
compared

::
to numerical approaches. The yaw angle

:::::::::::
misalignment

:
of each turbine was obtained from

the yaw
:
is
:::::
based

:::
on

:::
the

:
optimisation study by Zhang et al. (2024)for a free stream flowing ,

::::::
where

:
a
::::::::::
free-stream

::::
wind

::::::
blows420

from West to East with a wind speed
::
at

:
a
:::::
speed

::
of

:
8 ms−1 and a turbulence intensity of 7.7%. The employed row-averaged yaw

angles are shown in Fig.
:::::
Figure 6a ,

:::::
shows

:::
the

::::::::::::
row-averaged

::::::::
optimised

::::
yaw

:::::::::::
misalignment

:::
of

:::
the

:::::
Horns

::::
Rev

::::
wind

:::::
farm along

with a schematic of the farm’s layout and the direction of the wind relative to the farm
::::
wind

:::::::
direction. We use the wake deflec-

tion model of Bastankhah and Porté-Agel (2016) , and the turbine-induced turbulence model of Crespo and Hernandez (1996)

. The wake of each turbineis assumed to be Gaussian similar to the form in
::::
from

:::::::::::::::::::::::::::::
Bastankhah and Porté-Agel (2016)

:::
and425

::
the

::::::::::::
turbine-added

:::::::::
turbulence

::::::
model

:::
by

:::::::::::::::::::::::::
Crespo and Hernandez (1996),

::::::::
assuming

:::::
each

:::::::
turbine’s

:::::
wake

::::
has

:
a
::::::::

Gaussian
::::::

shape

::::::::
consistent

::::
with

:
Eq. 1. No wind-veer effects are included

:::::
Wind

::::
veer

:::::
effects

:::
are

::::::::
excluded

:
in this comparison , and hence

::::
(i.e.,

ω = 0
:
),

:::
and

:::
all

::::::::::::
rotor-averaged

::::::
deficits

:::
are

:::::
linear

::::
(i.e.,

:::::::
n= 1),

::
so

:::
the

:::::::::
superscript

:::

(1)
::
is

::::::
omitted

:::
for

::::::
brevity.

We consider three wake superposition models: linear superposition (Niayifar and Porté-Agel, 2015), root-mean-squared su-

perposition (Voutsinas et al., 1990, hereafter RMS), and the product-based superposition model of Lanzilao and Meyers (2022, hereafter LM)430
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, which are defined as
::
by

:::::::::::::::::::::::
Lanzilao and Meyers (2022)

:
.
:::::
These

::::::
models

:::
are

::::::::
expressed

:::
as

W lin =
1

U∞

∑
j∈S

ujWW j , WRMS =
1

U∞

√∑
j∈S

ũ2
jW

2
j

√∑
j∈S

u2
jW

2
j

::::::::::

, and LMW prod
::

= 1−
∏
j∈S

(
1−W1−

::
W j

)
, (34)

where U∞ is
::::::
denotes

:
the free-stream wind speed, and S is the set of all upstream turbines whose wakes influence

::::::::
upstream

::::::
turbines

::::::::::
influencing

:
the considered turbine. ,

::::
and

::
uj::::

and
:::
W j::::::::

represent
:::
the

::::::::::::
rotor-averaged

:::::
wind

:::::
speed

:::
and

:::
the

:::::::::::::
rotor-averaged

:::::
deficit

::
of

::
a
::::::
turbine

:::
of

:::::
index

::
j.

:::::::::
Equations

::
34

::::::
follow

:::
the

:::::::::
analytical

::::::::
approach

::
in

::::::
which

::::
each

::::::::
upstream

::::::
wake’s

:::::::::::::
rotor-averaged435

:::::
deficit

::
is

::::::::
computed

::::
first,

::::::::
followed

:::
by

:::::::::::
superposition.

:::
In

:::::::
contrast,

:::
the

:::::::::
numerical

:::::::
approach

:::::::
applies

::::
wake

::::::::::::
superposition

:::::
across

:::
all

:::::::
upstream

::::::
wakes

::::::
before

::::
rotor

:::::::::
averaging,

:::
as

::::
will

::
be

::::::
further

:::::::::
discussed

::
in

::::::
section

:::
4.

::::::::
Following

::::::::::::::::
Zhang et al. (2024)

:
,
:::
the

::::::
power

::::::::
generation

:::
of

:
a
::::::
turbine

::
of

:::::
index

::
k

::::
with

::::
yaw

:::::::::::
misalignment

:::
γk :

is
:::::
given

:::
by

Pk = P (uk)cos
1.8 (γk),

:::::::::::::::::::
(35)

:::::
where

:::::
P (u)

::
is

:::::
based

::
on

::::
the

::::::::::::::
power-generation

:::::
table

::
of

:::
the

::::::
Vestas

:::::::
V80-2.0

::::::
turbine

:::::
(used

::
in

::::::
Horns

:::::
Rev).

:::::::::
Alternative

::::::::
methods440

::
to

:::::::
calculate

::::::
power

:::::
under

::::
yaw

::::::
include

:::::::::
modifying

:::
the

::::::
power

:::::::::
coefficient

::::::
instead

::
of

::::::::
absolute

:::::
power

:::::::
(similar

::
to

:::
Eq.

::::
35),

:::
but

::::
this

::::::
section

::::::
focuses

:::
on

:
a
::::::
unified

::::::::::
comparison

:::::::::
framework

:::
for

::::::::
analytical

::::
and

::::::::
numerical

::::::::
solutions,

:::::::::
regardless

::
of

:::
the

:::::
power

::::::::::
calculation

:::::::
method.

:

Figures 6b–d show
:
b
::::
and

::
6c

::::::::
illustrate

:
the row-averaged power generation of

::
in

:
the Horns Rev wind farmas

::::
farm,

:
calcu-

lated analytically (solid curves
:::::::
circular

:::
and

:::::::::
rectangular

::::::::
solutions) and numerically (markers) for linear superposition (Fig. 6b),445

root-mean-squared superposition (Fig. 6c
:::
each

::::::::::::
superposition

::::::
model:

:::::
linear

::::::
(black),

:::::
RMS

:::
(red), and product-based superposition

(Fig. 6d
:::::
(blue). The change in row-averaged power generation due to turbine yaw exhibits similar trends to that predicted by

Zhang et al. (2024)with a reduction in power from
:::
due

::
to

::::
yaw

:::::::
follows

:
a
::::::
similar

:::::
trend

::
to

:::
that

::::::::
observed

:::
by

::::::::::::::::
Zhang et al. (2024)

:
,
::::
with

:::::::
reduced

::::::
power

::
in

:
the first row, a power uplift from

::::::::
increased

:::::
power

:::
in

:
the second and third rows, and only small

variations (of order
:::::
minor

::::::::
variations

:
(1–2%) for subsequent rows(Figs. 6b–d). This is observed for the three considered wake450

::
in

:::::::::
subsequent

:::::
rows.

:::::
This

::::::
pattern

::
is

:::::::::
consistent

:::::
across

:::
all

:::::
three

:
superposition models, and power generation of

:::::
though

:
later

rows (third row and onwards) are more sensitive to the used
:::
and

:::::::
beyond)

::::
show

:::::::
greater

::::::::
sensitivity

::
to

:::
the

::::::
chosen

:
superposition

model than to the imposed yaw. The comparisons in Figs. 6b–d show
:
b

:::
and

::
6c

:::::::::::
demonstrate that the analytical and numerical

calculations of the row-averaged power generation are indistinguishable, indicating
::::::::::
calculations

:::
are

:::::
nearly

::::::::
identical

:::
for

::::
both

::::::
circular

:::
and

::::::::::
rectangular

::::::::
solutions.

::::
This

:::::
result

::::::::
indicates that the order of applying wake superposition and rotor averaging does455

not impact
:::::
affect

:
the accuracy of Eq

:::
Eqs. 18 , which can be used

:::
and

:::
29,

:::::::
making

:::::
these

::::::::
equations

:::::::
suitable

:::
for

:::
use

:
with the

considered wake superposition models as well as any superposition model that uses
:::::
model

::::
with similar operators (i.e., linear,

root-mean-squared, or product).
:::::
linear,

:::::
RMS,

::
or

:::::::::::::
product-based).

::::
This

::
is
::::::
further

::::::::
discussed

::
in
:::::::
section

::
4.

3.6
::::::::::::
Computational

::::
cost

::
To

:::::::
evaluate

:::
the

::::::::::::
computational

:::::::::
efficiency

::
of

:::
the

:::::::
derived

::::::::
analytical

::::::::
solutions

::::
(Eqs.

:::
18

::::
and

:::
29)

::
in

::::::::::
comparison

::
to

:::
the

:::::::::
numerical460

:::::::::
calculation

::
of

:::
the

::::::::::::
rotor-averaged

::::::
deficit,

:::
we

:::::::
consider

:::
the

::::::
power

:::::::::
generation

::
of

:
a
:::::::
25× 25

:::::
wind

::::
farm.

::::
The

:::::::
specific

:::::::::
conditions

::
of
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::
the

::::::::::
free-stream

::::
flow

:::
and

::::::
turbine

:::::
setup

:::
are

::::::::
irrelevant

::::
here,

::
as

:::
the

:::::::
primary

:::::::
objective

::
is

::
to

:::::::
quantify

::::::::::::
computational

:::::
costs.

:::::::::
Numerical

::::::::
averaging

:::
was

:::::::::
conducted

:::::
using

:::::::::
vectorised

::::::::::
calculations

::
at

::::::
various

::::::::::
resolutions,

::::::
ranging

:::::
from

::
16

::
to

:::::
2000

::::::
points.

::::
Table

::
1
:::::::
presents

:::
the

::::::::::
percentage

::::::
change

::
in

::::::::::::
computational

::::
cost

:::
for

:::
the

:::::::::
analytical

::::::::
solutions

:::
and

:::
for

:::::::::
numerical

:::::::::
averaging

::
at

:::::::
different

:::::::::
resolutions

:::::::
relative

::
to

:::::
using

::
16

:::::::::
averaging

::::::
points,

:
a
::::::::
common

::::::::
resolution

:::::
from

::::::::
literature.

:::::::
Notably,

:::
the

::::::::::::::
rectangular-disk465

::::::::
analytical

:::::::
solution

::::
(Eq.

:::
29)

:::::::::::
demonstrates

:
a
::::::::::::
computational

::::::::
speed-up

::
of

::::::::::::
approximately

::::
10%

::::::::
compared

::
to

:::
the

:::::::
16-point

:::::::::
numerical

::::::::
reference,

:::::::
making

:
it
::::

the
::::
only

::::::::
approach

:::
that

:::::::::::
outperforms

:::
the

::::::::
baseline.

::::::::::
Conversely,

:::
the

:::::::::::
circular-disk

:::::::
solution

::::
(Eq.

:::
18)

::::::
incurs

:
a
::::::::::::
computational

::::
cost

::::::::::::
approximately

::::
15%

::::::
higher

::::
than

:::
the

:::::::
16-point

:::::
case,

::::::::
rendering

:::
its

::::
cost

::::::::::
comparable

::
to

:::::
using

::
80

:::::::::
averaging

:::::
points.

:

Table 1.
::::::::
Comparing

:::
the

:::::
relative

::::::
change

::
in

:::::::::::
computational

:::
cost

:::
for

:::
the

:::::
derived

::::::::
analytical

:::::::
solutions

:::
and

:::
for

::::::
various

:::::::
numerical

:::::::::
resolutions

::
in

:::::::
reference

::
to

::
the

::::
cost

::
of

:
a
:::::::
numerical

::::::::
evaluation

::
of

:::
the

:::::::::::
rotor-averaged

:::::
deficit

::::
using

::
16

::::::::
averaging

:::::
points.

::
If

::
the

:::::::::::
computational

::::
cost

::
of

:
a
::::::
specific

::::::::
experiment

::
is

:
t,
:::
the

::::::
relative

:::::
change

::
is
::::::::
calculated

::
as

:::::::::::::::::
(t− t16)/t16 × 100%,

:::::
where

::
t16::

is
:::
the

::::::::::
computational

::::
cost

::
of

:::::::::
numerically

:::::::
averaging

:::
16

::::
points

:::::
using

::::::::
vectorised

:::::::::
calculations.

:::
No.

::::
points

: ::::
Rect.

::
50

:::::
Circle

:::
100

::
500

: ::::
2000

::::::
Relative

::::::
change

:::::
-10.4%

: ::::
6.7%

:::::
14.9%

:::::
21.1%

::::::
112.4%

::::::
443.8%

3.7
::::::::::

Uncertainty
::::::::::::
quantification470

::::
Here,

::::
we

:::::::
consider

:::::::
various

::::::::::
resolutions

:::
and

:::::::::::
distributions

:::
of

::::::::
averaging

::::::
points

:::
to

:::::::
quantify

:::
the

::::::::::
uncertainty

::::
that

::::::
arises

:::::
when

::::::::
evaluating

:::
the

:::::::::::::
rotor-averaged

:::::
deficit

:::::::::
compared

::
to

:::
the

::::::::::
2000-point

::::::::
resolution

::::::
shown

::
in

::::
Fig.

::::
E1.

:::
The

::::::::::
considered

:::::
cases

:::
are

:::
the

::::::
derived

::::::::
analytical

::::::::
solutions

:::::
(Eqs.

:::
18

:::
and

::::
29)

:::
and

::::
the

:::::::::
distribution

:::
of

::::::::
averaging

::::::
points

::::::
shown

::
in

::::
Fig.

:::
E2,

::::::
which

:::::::
include

:::
the

:::::::
16-point

:::::::::
quadrature

:::
(Eq.

::::
E2)

::
of

:::::::::::::::::::::::::::::
Holoborodko (2011, hereafter, Q16)

:
,
::
the

::::::::
16-point

::::::::
cross-like

:::::::::
distribution

::
of

:::::::::::::::::::::::::::
Stipa et al. (2024, hereafter, C16)

:
,
:::
and

::::::
various

::::::::::
resolutions

::
of

:::
the

::::::::
sunflower

::::::::::
distribution

::::
(Eq.

:::
E1)

:::::::
ranging

::::
from

::
16

:::::
(S16)

::
to
:::::
1000

:::::::
(S1000)

::::::::
averaging

::::::
points.

:
475

::
To

::::::::
quantify

::::::::::
uncertainty,

:::
we

::::::::
calculate

:::
the

:::::::::::::::::::::
root-mean-squared-error

:::::::
(RMSE)

:::
of

::::
each

::::::::
approach

::::::::::
(analytical

::
or

::::::::::
numerical)

::::::
against

:::
the

:::::::::
2000-point

::::::::
reference

::::
case

::::
(Fig.

::::
E1).

::::::
RMSE

::
is

::::::
defined

::
as

:

RMSE =

√√√√ 1

Ns

Ns∑
k=1

(
W k −W ref

)2
,

::::::::::::::::::::::::::::

(36)

:::::
where

:::
Ns::

is
:::
the

:::::::
number

::
of

::::::
tested

::::::::
scenarios

::::
(i.e.,

::::::::
different

:::::::::::
combinations

::
of
:::::::

driving
:::::::::
parameters

:::::
such

::
as

::::
veer

::::
and

:::::
yaw),

::::
W k

:
is
:::
the

:::::::::::::
rotor-averaged

:::::
deficit

:::
for

::
a
:::::::
scenario

::
of

:::::
index

:::
k,

:::
and

:::::
W ref :

is
::::

the
::::::::
reference

::::::::::::
rotor-averaged

:::::
deficit

::::::
(from

::::
2000

:::::::::
averaging480

::::::
points).

::::::::
Different

::::::::
scenarios

:::
are

::::::::
generated

:::::::
through

:::::::
different

:::::::::::
combinations

::
of

:::
the

::::
yaw

:::::::::::
misalignment

::
of

:::
the

:::::
wake

::::::
source

::::
(γo),

:::
the

::::::::::::
wind-direction

:::::::::
differential

::::::
across

:::
the

:::::
wake

::::::
source

::::::
(∆αo),

:::
the

::::::::
averaging

:::::
order

:::
n,

:::
the

:::::::::
normalised

::::::::::
streamwise

:::::::
distance

::::::
x/Do,

::
the

:::::
angle

::
δ,
::::

and
:::
the

:::::::::
normalised

::::::
offset

::::
ρ/σ.

:::::
Based

:::
on

:::
the

:::::::
analysis

::
in

:::::::
sections

::::
3.3,

:::
3.4,

::::
and

::::::::
Appendix

::
G
::::
(on

:::
the

:::::
effect

::
of

::::
γo),

::::
wind

::::
veer

:::
was

::::::
shown

::
to

::::
have

:::
the

::::::
largest

::::::
impact

::
on

:::
the

::::::::::::
rotor-averaged

::::::
deficit.

:::
As

:::::
such,

::
we

::::::
create

:::
two

:::
sets

:::
of

:::::::
scenarios

::::::::
different
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Table 2.
:::::
Ranges

::
of

:::
the

:::::
driving

:::::::::
parameters

::::::::
considered

::
in

:::::::::
uncertainty

::::::::::
quantification

::::::::
scenarios.

:::
The

::::
angle

:::
γo :

is
:::

the
::::
yaw

::::::::::
misalignment

::
of

:::
the

::::
wake

:::::
source,

:::::
∆αo :

is
:::

the
:::::::::::
wind-direction

:::::::::
differential

:::::
across

:::
the

:::
top

:::
and

:::::
bottom

::::
tips

::
of

::
the

:::::
wake

:::::
source,

::
n
::
is

:::
the

:::::::
averaging

:::::
order,

:::::
x/Do::

is

::
the

:::::::::
normalised

::::::::
streamwise

::::::
distance

::::::::
measured

::::
from

::
the

:::::
wake

:::::
source,

:
δ
::
is
:::
the

:::::::
azimuthal

::::::::
coordinate

::
of

:::
the

::::::::
considered

::::::
turbine

::::
centre

::::::::
measured

:::
from

:::
the

:::::
wake

:::::
centre

:::::
(Fig.1),

::::
and

:::
ρ/σ

::
is

:::
the

::::::::
normalised

:::::
offset

::::::
between

:::
the

:::::
wake

::::
centre

::::
and

::
the

:::::
centre

::
of
:::

the
:::::::::
considered

:::::
turbine

::::
(Fig.

:::
1),

::::
where

::
σ
::
is

::
the

:::::
wake

::::::
standard

:::::::
deviation

::::
(Eq.

::
4).

::::::
Ranges

::::::
written

::
in

::
the

::::
form

:::::::::
vo : vs : vf :::::

means
:::
this

::::::
variable

:::::
ranges

::::
from

::
vo::

to
:::
vf ::::::::

(inclusive)

:::
with

:
a
::::
step

::
of

::
vs.

::::
Veer

::::::
scenario

::
γo ::::

∆αo :
n

:::::
x/Do :

δ
:::
ρ/σ

:

::::::::::::
Small–moderate

::::::::::
0◦ : 10◦ : 30◦

: ::::::::
0◦ : 1◦ : 7◦

: ::::::
{1,2,3}

: :::::::
4 : 2 : 10

:::::::::::
0 : π/4 : 3π/4

:::::::
0 : 0.5 : 4

:::::::::::
Moderate–high

::::::::::
0◦ : 10◦ : 30◦

: ::::::::::
10◦ : 5◦ : 45◦

: ::::::
{1,2,3}

: :::::::
4 : 2 : 10

:::::::::::
0 : π/4 : 3π/4

:::::::
0 : 0.5 : 4

:

::::
from

::::
each

:::::
other

::::
only

::
in

:::
the

:::::
range

::
of

:::::
∆αo ::

as
::::::::
indicated

::
in

:::::
Table

::
2,

:::
and

::::::
where

:::
the

::::::::::
circular-disk

:::::::
solution

::::
(Eq.

::::
18)

:
is
::::::
tested

::::
only485

::
in

:::
the

:::::::::::::::
“small–moderate”

:::
veer

::::::::
scenario

::::
(first

:::
row

:::
in

::::
Table

:::
2)

:::::
within

:::
the

:::::
range

::
of

:::::::::::
applicability

::
as

:::::::::
established

::
in
:::::::
sections

:::
3.3

::::
and

:::
3.4.

:

::::
Table

::
3
::::
lists

::::::
scaled

::::::
values

::
of

::::::
RMSE

:::::
(Eq.

:::
36;

::::::
scaled

::
by

::::::
1000)

:::
for

:::
the

:::::::::::::
aforementioned

:::::
cases

::::::::::
(analytical

:::
and

::::::::::
numerical)

:::
and

:::::
wake

::::::::
scenarios.

:::
As

:::
the

:::::::
number

::
of

:::::::::
averaging

:::::
points

:::::::::
increases,

::
it

::
is

:::::::
expected

::::
that

::::::
RMSE

:::::
drops

::
as

::::
the

::::::::
predicted

:::::::
solution

::::::::
converges

::
to

::::
that

::
of

:::
the

::::::::
reference

:::::::::
2000-point

::::
case

:::::
(e.g.,

::::::
S1000

::
vs

:::::
S100

::
in

:::::
table

::
3),

:::
but

:::
at

:::
the

:::::::
expense

::
of

::::::::::::
computational

::::
cost490

::
as

:::::::
outlined

::
in

::::::
section

::::
3.6.

:::
For

:::
the

::::::::::::::
small–moderate

::::
veer

:::::::
scenario,

:::
the

::::
Q16

::::
case

::::
has

:::
the

:::::
lowest

:::::::
RMSE

::::::::::
(0.8×10−3)

::::::
among

:::
the

::::::::
analytical

::::
cases

::::
and

:::
the

:::::::
16-point

::::::::
averaging

:::::
cases,

::::
with

:::
an

:::::::
accuracy

:::
that

::
is
::::::::::::
approximately

::::::
similar

::
to

::::
that

::
of

:::
500

::::::::
averaging

::::::
points

::::::
(S500).

:::
For

:::
the

:::::
same

:::::::
scenario,

:::
the

::::::::::::::
rectangular-disk

:::::::
solution

:::
has

::::::::::::
approximately

::::::
similar

::::::
RMSE

::
as

::::
100

::::::::
averaging

:::::
points

:::::::
(S100),

:::::::
whereas

::
the

:::::::::::
circular-disk

:::::::
solution

:::
has

:::::::
slightly

:::
less

::::::::
accuracy.

:

:::
The

:::::::::::::
moderate–high

::::
veer

::::::::
scenario

:::::::
indicates

::::
that

::::
the

:::::::::::::
rectangular-disk

::::::::
solution

::::
(Eq.

:::
29)

::::
has

::::::
higher

:::::::
accuracy

:::::
than

::
all

::::
the495

:::::::
16-point

::::::::
averaging

:::::
cases

::
at

::
an

::::::
RMSE

::
of

:::::::::
3.9×10−3

:::::::
(similar

::
to

:::
the

:::::::::::::
small–moderate

::::
veer

::::::::
scenario).

:::
In

:::::::
contrast,

:::
the

::::::::
accuracy

::
of

:::
Q16

::
is
::::::::::
significantly

:::::::
reduced

::::
with

::::::
RMSE

::
of

:::::::::
8.3×10−3.

::::
The

::::::::
averaging

::::::::::
distributions

::::
C16

:::
and

::::
S16

::::
have

::::::::::
significantly

:::
less

::::::::
accuracy

:::
than

:::
the

:::::
other

:::::
cases,

:::::::
holding

:::
the

:::::::
highest

::::::
RMSE

::
for

:::::
both

::::
veer

::::::::
scenarios.

:::
For

:::
the

:::::::::::::
moderate–high

::::
veer

::::::::
scenario,

:::
100

:::::::::
averaging

:::::
points

:::::::
provides

::::::::::
comparable

::::::::
accuracy

::
to

:::
the

:::::::::::::
rectangular-disk

::::::::
solution,

:::::
whilst

::::
500

::::::::
averaging

::::::
points,

:::::
which

:::
are

::::::::::::::
computationally

::::::::
expensive

:::::
(Table

:::
1),

:::
are

:::::::
required

::
to

::::
have

:::
the

:::::
same

::::::::
accuracy

::
of

::::
Q16

::
in

:::
the

:::::::::::::
small–moderate

::::
veer

::::::::
scenario.500

4 Discussion

In the current study, we derived and validated an expression
::::::
verified

:::
two

::::::::::
expressions

:
for the surface integration of a non-

axisymmetric Gaussian wake over a circular disk
:::
and

::
an

:::::::::
equivalent

::::::::::
rectangular

::::
disk, depicting the rotor of a turbine whose

rotor-averaged deficit is sought. The general integrated wake profile took into consideration wake stretching arising from the

yawing of upstream turbines, and wake planar shearing due to wind-veer effects through a set of controlling variables: σ, ρ, δ,505

ξ, and ω, whose definitions were discussed in detail in section 2.1. The presented solution is
:::::::
solutions

:::
are compatible with any
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Table 3.
::::
Scaled

:::::::::::::::::::
root-mean-squared-error

::::
(1000

::
×

::::::
RMSE;

:::
Eq.

:::
36)

::
of

:::::::
different

:::
rotor

::::::::
averaging

::::
cases

::::::::
including

::
the

::::::::::::
rectangular-disk

:::::::
solution

:::::
(Rect.;

:::
Eq.

:::
29),

:::
the

:::::::::
circular-disk

:::::::
solution

::::::
(Circle;

:::
Eq.

:::
18),

:::
the

::::::
16-point

::::::::
quadrature

:::::
(Q16;

:::
Eq.

:::
E2)

:::::
shown

::
in

:::
Fig.

::::
E2a,

:::
the

::::::
16-point

::::::::
cross-like

::::::::
distribution

::::::
shown

::
in

:::
Fig.

::::
E2b,

:::
and

::::::
various

::::::::
resolutions

:::
of

::
the

::::::::
sunflower

:::::::::
distribution

::::::
(starting

::::
with

::
S;

:::
Eq.

::::
E1)

::::::
ranging

::::
from

::
16

::::::::
averaging

::::
points

:::::
(S16)

::
to

::::
1000

::::::::
averaging

:::::
points

:::::::
(S1000).

:::
The

::::::::
reference

::
to

:::::
which

:::
each

::::
case

::
is

::::::::
compared

::
is

:::::::
numerical

::::::::
averaging

::::
using

:::::
2000

:::::
points

:::::::
following

:
a
::::::::
sunflower

::::::::
distribution

::
as
::::::::

indicated
:
in
::::
Fig.

:::
E1.

:::
The

:::::
ranges

::
of

:::
the

:::::
driving

:::::::::
parameters

::
for

::::
both

:::
veer

::::::::
scenarios

::
are

:::::
listed

:
in
:::::

Table
::
2.

:::
The

:::::::::
abbreviation

:::
NA

:::::
stands

:::
for

:::
Not

:::::::::
Applicable.

::::
Veer

::::::
scenario

::::
Rect.

:::::
Circle

:::
Q16

: :::
C16

: :::
S16

: ::::
S100

::::
S500

:::::
S1000

::::::::::::
Small–moderate

::
3.4

: :::
5.4

::
0.8

:::
29.4

: :::
12.5

: ::
3.2

: ::
0.9

: :::
0.4

:::::::::::
Moderate–high

::
3.9

: :::
NA

::
8.3

:::
42.9

: :::
18.2

: ::
3.8

: ::
1.0

: :::
0.4

wake deflection model from the literature as all distances were referenced to the wake center
:::::
centre. Alternatively, if the center

:::::
centre of the upstream turbine is sought to be the reference location, then the definitions of

:::
the

:::::
offset ρ and

:::
the

:::::
angle δ need

modifications to account for the wake horizontal deflection d
::
do. In this case, the modified lateral offset ρ∗, and the modified

angle δ∗ measured from the center
:::::
centre of the upstream turbine are510

ρ∗ = ρ

√
1+2

(
d

ρ

)
cosδ+

(
d

ρ

)2
√
1+2

(
do
ρ

)
cosδ+

(
do
ρ

)2

::::::::::::::::::::::::

, and tanδ∗ =
sinδ

d/ρ+cosδ

sinδ

do/ρ+cosδ
::::::::::

. (37)

The
:::::::::
expressions

:::
for

::::
the rotor-averaged deficit proposed in section 2.2 (Eq

::::
(Eqs.

:::
18

:::
and

::::
29)

:::::
were

::::::
derived

:::
for

::
a
:::::::
generic

::::::::
averaging

:::::
order

:::::
n > 0,

::::::
where

:::
the

::::
case

::
of

:::::
n= 1

::
is

:::::::::
equivalent

::
to

::::::::
obtaining

:::
the

::::::::
averaged

:::::::::
momentum

::::::
deficit

:::::::
through

:::
the

::::::
turbine

::::
rotor

:::
(for

:::::::::::::
incompressible

::::::
steady

:::::
flow),

:::::
n= 2

:::::::::::
corresponds

::
to

:::
the

::::::::
averaged

::::::::::::
kinetic-energy

:::::
deficit

:::::::
through

:::
the

:::::
rotor,

:::
and

::::::
n= 3

:
is
:::::::::
equivalent

::
to

:::
the

::::::::
averaged

::::::
power

:::::
deficit

:::::::
through

:::
the

:::::
rotor.

::::::::
However,

::
to

::::::
obtain

:
a
:::::::
solution

:::
for

::
a

::::::
circular

::::
disk

::::
(Eq.

:::
18)

::
it
::::
was515

:::::::
assumed

::::
that

:::
the

::::::::
stretching

::::
and

:::::::
shearing

:::
of

:::
the

:::::
wake

::::::::
contours

:::
are

:::
not

:::::
large

::
as

:::::::::
quantified

::
by

::::
the

::::::::
skewness

:::::::::
parameter

::::
κ(n)

:::
(Eq.

::::
14).

:::::::::
Increasing

:::
the

:::::::::
averaging

:::::
order

::
n

:::::::
naturally

::::::::
increases

:::
the

:::::
level

::
of

::::::::
skewness

:::
of

:::
the

:::::
wake

::::::::
contours,

:::
and

::::::
hence

:::::
using

::::::::::
higher-order

:::::::::
averaging

:::
for

:
a
:::::::
circular

::::
disk

::::::
should

:::
be

::::::
limited

:::
to

::::
cases

:::
of

:::::::::::::
small/moderate

:::::
wind

::::
veer

::
(if

:::::
any)

::
to

:::::
keep

:::
Eq.

:::
18

:::::
within

::
its

:::::::
validity

::::::
region.

::::
The

:::::
results

::
in

:::::::
sections

:::
3.3

::::
and

:::
3.4

:::::::
indicated

::::
that

:::
for

::
the

:::::::::::
circular-disk

:::::::
solution,

::
a
:::::::
practical

::::
limit

:::
on

:::
the

:::::::
skewness

:::::::::
parameter

::::
κ(n)

::::
was

::::::::::::
approximately

:::::::
0.4–0.5.

::::::::::
Conversely,

:::
the

:::::::
solution

::
of
::::

the
:::::::::
rectangular

::::
disk

::::
(Eq.

:::
29)

::
is
:::
not

:::::::
limited520

::
by

:::
this

::::::::::
simplifying

::::::::::
assumption

:::
and

::::
was

:::::
shown

::
to
:::::::
perform

::::
well

::::
even

::
in
:::
the

::::
case

::
of
:::::::
extreme

:::::
wind

::::
veer

::::
(Fig.

:::
4),

:::::
giving

::
it

:
a
:::::
large

::::::::
advantage

::::::
against

:::
the

:::::::::::
circular-disk

:::::::
solution.

:

::
In

:::::
terms

::
of

::::::::::::
computational

::::
cost,

::::
both

:::::::::
analytical

::::::::
solutions

::::
were

::::::::::
comparable

::
to

:::::::::
vectorised

::::::::::
calculations

::
of

:::
the

:::::::::::::
rotor-averaged

:::::
deficit

:::::
using

:::
16

::::::::
averaging

:::::::
points,

:::::
where

:::
the

::::::::::::::
rectangular-disk

:::::::
solution

::::
was

::::::::::::
approximately

:::::
10%

:::::
faster

::::
and

:::
the

:::::::::::
circular-disk

::::::
solution

::::
was

:::::::::::::
approximately

::::
15%

:::::::
slower.

:::::::
Though

::::::
higher

:::::::
number

::
of

:::::::::
averaging

:::::
points

:::::::::::
corresponds

::
to

::::::
higher

::::::::
accuracy,

::::
the525

:::::::::::
computational

::::
cost

::::::::
becomes

:::::::
notably

::::::
larger.

:::
As

::::
such,

::::
we

::::::::
examined

:::
the

::::::::
accuracy

::
of

::::
the

::::::
derived

:::::::::
analytical

::::::::
solutions

:::
and

:::
of

::::::
various

::::::::
numerical

::::::::::
resolutions

:::
and

:::::::::::
distributions

::::::
against

:::::::::::::
high-resolution

:::::::::
averaging

:::::
(2000

:::::::
points).

:::
For

:::
the

:::::
same

::::::::
resolution

::::
(16

::::::
points),

:::
we

:::::
found

::::
that

:::
the

:::::::::
quadrature

::::::::::
distribution

::::
(Fig.

::::
E2a)

::::
has

::::::::::
significantly

::::::
higher

::::::::
accuracy

::::
than

:::
the

::::::::
cross-like

::::::::::
distribution
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::::
(Fig.

::::
E2b)

::::
and

::::
than

:
a
:::::::
random

::::::::::
distribution

::::::::
(depicted

::
by

:::
the

:::::::::
sunflower

::::::::::
distribution

::
in

:::
Fig.

:::::
E2c)

::
of

:::
the

:::::
same

::::::
number

:::
of

::::::
points,

::::::::
regardless

::
of

::::
the

:::::::
intensity

:::
of

:::::::::::::
deficit-contours

:::::::
shearing

::::
and

:::::::::
stretching.

::::
The

::::::::::::::
rectangular-disk

:::::::
solution

:::::::
showed

::::
high

::::::::
accuracy530

::
for

:::::
both

::
of

:::
the

::::::::::
considered

::::
veer

:::::::::
scenarios,

::::
with

::
an

:::::::
RMSE

::::::::::
∼O(10−3)

::::
that

::
is

::::::::::::
approximately

:::::::::
two-orders

:::
of

:::::::::
magnitude

::::
less

:::
than

:::
an

:::::::
average

::::::
deficit

::::::::::::::
(W ∼O(10−1)),

::::::
which

::
is

::::
also

:::::::::
equivalent

::
to

:::::::::
numerical

::::::::
averaging

::::::
using

::::::::::::
approximately

::::
100

::::::
points.

:::
The

:::::::::::
circular-disk

:::::::
solution

::::
had

:
a
::::::::::

marginally
:::::
lower

::::::::
accuracy

::::
than

:::
the

::::::::::::::
rectangular-disk

::::::::
solution,

:::
but

::::
was

::::
only

:::::::::
applicable

:::
to

::
the

::::::::::::::
small–moderate

::::
veer

::::::::
scenario.

::::::::
Although

::::
both

:::
are

::
of

::::
high

::::::::
accuracy,

:::
the

::::::::
16-point

:::::::::
quadrature

:::
has

::::::
higher

::::::::
accuracy

::::
than

:::
the

:::::::::::::
rectangular-disk

:::::::
solution

:::
for

:::
the

:::::::::::::
small–moderate

::::
veer

::::::::
scenario,

::::
with

:::
an

:::::::
accuracy

:::
of

::::::::::::
approximately

:::
500

:::::::::
averaging

::::::
points,

:::
but535

:::
was

:::
of

:::::
lower

::::::::
accuracy

:::::
when

:::
the

::::::
deficit

:::::::
contours

:::::::
became

::::::
highly

:::::::
sheared

::::::::::::::
(moderate–high

::::
veer

::::::::
scenario).

:::::::::::
Nonetheless,

::::
the

:::::::::::::
rectangular-disk

:::::::
solution

:::
was

:::::
10%

:::::
faster

::
in

::::
both

::::::::
scenarios.

::
It

::::::
should

::
be

:::::
noted

::::
that

::
the

:::::::::
expression

:::
for

:::
the

::::
size

::
of

:::
the

:::::::::
equivalent

:::::::::
rectangular

::::
disk

::::
(Eq.

:::
33)

::
is

:::::::::
empirical,

:::::
which

:::::
could

:::::::
slightly

::::::
impair

:::
the

:::::::
accuracy

:::
of

:::
the

:::::::::::::
rectangular-disk

::::::::
solution.

::::::::
However,

::
if

::
the

::::
size

:::::::::
expression

::
is
:::::::::
optimised,

::::::
higher

:::::::
accuracy

::::::
could

::
be

::::::::
achieved,

::::::
though

:::
we

::::
find

:::
that

:::
the

::::::::::
expression

::
in

:::
Eq.

:::
33

:
is
::::::::

accurate

::::::
enough

:::
for

:
a
::::
wide

:::::
range

:::
of

::::::::
operating

::::::::
conditions

:::::::::
including

:::::::::::
extreme-veer

:::::::::
conditions.540

:::
The

:::::::::
analytical

:::::::
solutions

::::::::
proposed

:::
in

:::::::
sections

:::
2.2

:::
and

:::
2.1

:::::
(Eqs. 18 ) corresponds

:::
and

:::
29)

::::::::::
correspond to a single upstream

wake, whereas an operational wind turbine is typically impacted by multiple upstream wakes whose deficits are superposed

using a variety of wake superposition models (e.g., Lissaman, 1979; Voutsinas et al., 1990). In a numerical frameworkthat relies

on a set of discrete points generated on the rotor disk of the considered turbine to calculate the rotor-averaged deficit, wake

superposition due to all upstream wakes is applied to each point
::::::::
averaging

:::::
point

::
on

:::
the

::::::
rotor’s

::::
disk independently followed by545

a rotor averaging for
::::
rotor

::::::::
averaging

::
of

:
the superposed wakes. Conversely, application of Eq

:::
Eqs. 18

:
or

:::
29 to a turbine subject

to multiple upstream wakes requires the evaluation of the rotor-averaged deficit for each wake followed by a superposition

of these deficits. For a superposition model that relies on a linear operator to combine upstream deficits (e.g., Lissaman,

1979; Niayifar and Porté-Agel, 2015; Zong and Porté-Agel, 2021; Dar and Porté-Agel, 2024), the numerical and analytical

approaches discussed above are the same, meaning that the order of applying wake superposition and rotor averaging has no550

effect. However, other wake superposition models rely on root-mean-squared operators (e.g., Katic et al., 1987; Voutsinas et al.,

1990) for which the order of wake superposition and rotor averaging is not trivial. Ali et al. (2024a) showed mathematically

that for a column of turbines of the same hub-height (δ = 0) with no lateral offset (ρ= 0) where the wake of each turbine

is axisymmetric (ξ = ω = 0), the order in which wake superposition and rotor averaging calculations are applied results in

insignificant differences as long as the number of upstream turbines with non-negligible deficits acting on the considered555

turbine is not large. They showed that for an analytical approach (rotor-averaging followed by superposition), the rotor-averaged

deficit of the considered turbine is proportional to e−1/(4σ̃2), where σ̃ is an
::::::::
e−1/(4σ2),

:::::
where

::
σ
::
is

:
a
::::::::::::::

deficit-weighted
:
averaged

wake standard deviation for all the upstream turbines impacting the considered turbine, whereas for a numerical approach

(superposition followed by rotor-averaging), the rotor-averaged deficit is proportional to e−2/(9σ̃2)
:::::::
e−2/(9σ2). In a typical wind

farm, the number of upstream turbines with non-negligible deficits acting on a turbine is 2–3
:
, where one of these turbines has the560

dominant wake effect, making these two exponents very close. This conclusion
:::::
Their

:::::::::
conclusion

:::
can

:::
be

:::::
easily

:::::::
extended

::
to
::::
any

::::::::
averaging

::::
order

::
n
:::::
using

:::
the

::::::::::
substitution

::::::::::
σ2 → σ2/n,

:::
and

::
it

:::
also

:
naturally extends to the considered case of a non-axisymmetric

wake, as the non-axisymmetric solution was shown to be a perturbation to a scaled axisymmetric solution (Eq. 18). Application
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to the Horns Rev wind farm showed that the numerical and analytical approaches using root-mean-squared superposition

gave indistinguishable results (Fig
:::
Figs. 6c)

:
b

:::
and

::::
6c),

:::::
where

:::
all

::::::::
upstream

:::::
wakes

:::
for

::
a
:::::::
specific

::::::
turbine

::::
were

::::::::::
considered

::
in

:::
the565

::::::::
evaluation

::
of

:::
the

::::::::
turbine’s

::::::::
operating

:::::
point.

The superposition model of Lanzilao and Meyers (2022) does not use linear nor root-mean-squared operators, but rather

the product of the normalised rotor-averaged wind speeds of all upstream wake sources. We show in Appendix F that for this

superposition model, and for any other superposition model of a similar operator, the numerical and analytical approaches are

asymptotically identical if the upstream wakes of the considered turbine are assumed to operate independently. This assumption570

is justified as each turbine can be yawed independently of the other turbines depending on its onset wind, though such a strategy

is not optimal for the whole wind farm performance. We also demonstrate that for small-enough upstream deficits (W ≲ 0.3),

the superposition model of Lanzilao and Meyers (2022)
:::
this

::::::::::::
product-based

:::::::::::
superposition

::::::
model

:
converges to a non-weighted

linear superposition model, which explains the closeness in the estimated power generation by the two wake superposition

models when applied to the Horns Rev wind farm (Figs. 6b , d
:::
and

::
6c). Similar to root-mean-squared superposition, when this575

product-based superposition model was applied to the Horns Rev wind farm, there were no distinguishable differences between

the analytical and numerical solutions (Fig. 6d).

Some limitations should, however, be considered. The rotor-averaging process inherently assumes that a zero-deficit point

on the rotor disk has a wind speed that is equal to that of the upstream turbine (wake source), rather than the free-stream wind

speed or another background wind speed. This is referred to as partial waking of a turbine. Such an effect can be profound in580

the case of highly heterogeneous flow within a wind farm (e.g., in the case of extreme weather conditions such as hurricanes

or in the case of extremely large wind farms). In such a scenario, both the
::
all

:
numerical and analytical approaches based

on engineering wake models have shortcomings as the underlying assumptions of the wake-deficit model cannot predict the

interactions between the wakes and the heterogeneous background flow, which can lead to inaccurate wind speeds of the

unwaked regions of a rotor.585

The obtained expression
::::::::::
expressions for the rotor-averaged deficit was

::::
were derived assuming that the considered turbine

is normal to the free-stream flow, making the parameters σ, ξ, ω, and C constants across the rotor disk. If the considered

turbine is yawed, these parameters are no longer constants but vary along the streamwise extents of the considered yawed

turbine. These variations are small for a small yaw angle γ and are typically ignored, as the integration over a circle normal

to the free-stream flow is approximately similar to that across an inclined ellipse extending from xo −R sinγ to xo +R sinγ,590

where xo :::::::::
x̂−R sinγ

::
to

::::::::::
x̂+R sinγ,

:::::
where

::̂
x is the streamwise coordinate of the center

:::::
centre of the yawed turbine. Moreover,

a yawed turbine experiences transverse wind whose magnitude is typically much smaller than the streamwise wind speed

(Martínez-Tossas et al., 2019). This transverse wind is not included in Eq
:::
Eqs. 18 and

::
29

:::
and

:
needs to be modelled numerically,

if required. Nonetheless, since the streamwise wind speed is dominant for small yaw angles and typical inter-turbine spacing,

Eq. 18 presents a
::
the

:::::::
derived

::::::::
analytical

::::::::
solutions

::::::
present

:
fast point-free expression

::::::::::
expressions that can be used even if the595

considered turbine has a small yaw angle.

Importantly, Eq. 18 is differentiable.
::
In

:::::
some

::::::::::
wind-energy

:::::::::::
applications,

:::
the

::::::
nacelle

::::::::::
wind-speed

::::::
deficit

::::::::::
(hub-height

::::::
deficit)

:
is
::::
used

:::
as

:
a
:::::
proxy

:::
for

:::
the

::::
wind

:::::
speed

::::::
across

:::
the

:::::
entire

::::
rotor.

::
In

::::::::
appendix

:::
G,

::
we

:::::::::
compared

::::
rotor

::::::::
averaging

::
of

:::
the

::::::
deficit

::::
with

:::
the
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::::::::::
nacelle-point

::::::
deficit

::::
(see

:::
Fig.

::::
G1),

:::::::::
indicating

:::
that

:::
the

:::::::
nacelle

:::::
deficit

:::
can

:::
be

::::::::::
significantly

:::::::
different

:::::
from

:
a
::::::::::::
rotor-averaged

::::::
value,

:::::
which

:::::
could

::::::
impair

:::
the

:::::::
accuracy

:::
of

:::::::::
estimating

:
a
::::::::
turbine’s

::::::::
operating

:::::
point.

::::::
Hence,

::
it

::
is

::::::::::::
recommended

::
to

:::
use

:
a
:::::::::::::

rotor-averaged600

::::
value

:::
for

::::
the

:::::
deficit

::::::
rather

::::
than

:::
the

::::::::::::
nacelle-point

::::::
deficit.

:::
We

::::
also

::::::::
explored

:::
the

::::::
impact

:::
of

:::::::
yawing

:::
the

:::::
wake

::::::
source

::
on

::::
the

::::::::::::
rotor-averaged

:::::
deficit

:::
of

:::
the

:::::::::
considered

:::::::
turbine,

:::::
which

::::
was

::::::
shown

::
to

:::
be

:::::
much

:::
less

::::
than

:::::
other

:::::::::
parameters

:::::
such

::
as

:::::
wind

::::
veer

:::
and

:::
the

::::::::
averaging

:::::
order.

:
Although not addressed in this study, Eq

:::
Eqs. 18

:::
and

::
29

:::
are

::::::::::::
differentiable,

:::::
which

:
allows for obtaining

mathematical expressions for the gradients of the rotor-averaged wind speed of a turbine with respect to its location in a farm

and/or to the operating point of upstream turbines. This offers the potential to replace the heuristic search for global minima605

that is required for optimisation problems to a problem of obtaining the zeros of a set of non-linear equations.

5 Summary

An analytical expression
::::::::
Analytical

:::::::::::
expressions for the rotor-averaged wind-speed deficit of a turbine operating within a

Gaussian wake was derived and validated
::::::::::::::
non-axisymmetric

::::::::
Gaussian

:::::
wake

:::::
were

::::::
derived

::::
and

:::::::
verified

:
for a general lateral

offset and hub-height difference between the wake source and the considered turbine. The
::::::
derived

::::::::::
expressions

::::::::::
correspond

::
to610

:::::::
circular-

:::
and

::::::::::::::
rectangular-disk

:::::::::::::
representations

::
of

::
a
::::::::
turbine’s

::::
rotor.

::::
The

::::::::::
considered Gaussian wake included wake stretching

:::::::::::::
wake-stretching effects due to the yawing of the wake source as well as the planar shearing of the wake shape due to wind-

veer effects. The presented expression was validated against numerical evaluation
:::::::::
expressions

::::
were

:::::::
verified

::::::
against

:::::::::
numerical

:::::::::
evaluations of the rotor-averaged deficit indicating excellent agreement at various downstream distances of the wake source, and

at different combinations of the thrust coefficient of the wake source and the free-stream turbulence intensity. The expression615

::::
good

:::::::::
agreement

:::
for

::
the

:::::::::::
circular-disk

::::
case

:::
and

::::::::
excellent

:::::::::
agreement

::
for

:::
the

::::::::::
rectangular

::::
case,

:::::
which

::::
also

:::::::::::
outperformed

:::::::::
numerical

:::::::::
approaches

::
in

:::::
terms

:::
of

::::::::::::
computational

::::
cost.

:::
In

:::::
terms

::
of

::::::::
accuracy,

:::
the

::::::::::::::
rectangular-disk

:::::::
solution

::::
was

:::::::::
equivalent

::
to

:::::
using

::::
100

::::::::
averaging

:::::
points

:::
on

:::
the

:::::
rotor

::
of

:::
the

:::::::::
considered

:::::::
turbine,

:::::::
whereas

:::
the

:::::::::::
circular-disk

:::::::
solution

::::
had

:::::::::
marginally

:::
less

::::::::
accuracy

::::
and

:
is
::::
only

:::::::::
applicable

:::
for

:::::::::::::
small/moderate

::::
veer

::::::
effects.

:::
In

:::
the

::::
case

::
of

::::::
highly

::::::
veered

:::::
flows,

:::
the

::::::::
presented

::::::::::::::
rectangular-disk

:::::::
solution

:::
had

::::::
higher

:::::::
accuracy

::::
than

:::
the

::::::::::::::
well-established

::::::::
numerical

:::::::::
averaging

:::::
using

:
a
:::::::
16-point

::::::::::
quadrature.

::::
The

:::::::::
expressions

:
of the rotor-620

averaged deficit for a single turbine wake can be applied to multiple wakes using any available superposition model that rely

on linear operators, root-mean-squared operators or product operators as demonstrated by application to the Horns Rev wind

farm . The expression for the rotor-averaged deficit is differentiable and can lay the ground for obtaining mathematical
::::
with

::::::::
optimised

::::
yaw

:::::::::::
misalignment

:::
for

::::
each

:::::::
turbine.

::::::
Whilst

:::
not

:::::::
derived

::
in

:::
this

::::::
study,

:::
the expressions for the gradients of the rotor-

averaged deficit , and hence power production, with respect to a turbine’s location and/or the operating conditions of upstream625

turbines, which
::
are

:::::::::::
differentiable

::::
and can be beneficial for optimisation-based applications.

Code availability. A Python implementation of the presented analytical expressions for the rotor-averaged deficit (Eqs. 18 and 29) is publicly

available from Ali et al. (2024c).
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Appendix A:
:::::::
Transfer

::
of
:::::
axes

:::
for

:::
the

::::::::
Gaussian

:::::
wake

::::::::
equation

In this appendix, we show how Eq. 7 can be transferred from the wake axes yn::
y′–zn::

z′ to the axes of the considered turbine y–630

z. From Eq. 7 along with the relation between the yn :
y′–zn :

z′
:
and y–z axes (Fig. 1): yn = y+∆y and zn = z+∆z ::::::::::

y′ = y+∆y

:::
and

::::::::::
z′ = z+∆z , we have

W (n)
::

=
C

πR2
C
:

 1

πR2
::::

R∫
0

2π∫
0

re−(y+∆y+ω(z+∆z))
2/(2σ2

y)−n(y+∆y+ω(z+∆z))
2/(2σ2

y)
:::::::::::::::::::::

e−(z+∆z)
2/(2σ2

z)−n(z+∆z)
2/(2σ2

z)
:::::::::::::

dθdr

1/n
::

,

(A1)

By expanding the brackets in Eq. A1, the exponent can be written as e−r2cr2/2e−rρcrρe−ρ2cρ2/2
::::::::::::::::::::::::
e−nr2cr2/2e−nrρcrρe−nρ2cρ2/2,

where cr2 , crρ, and cρ2 are coefficients of r2, rρ, and ρ2, respectively. Using ⟨y,z⟩= r ⟨cosθ,sinθ⟩ and ⟨∆y,∆z⟩= ρ⟨cosδ,sinδ⟩,635

where ⟨t1, t2⟩ means t1 or t2, we have

cr2 =
cos2 θ

σ2
y

+
sin2 θ

σ2
z

+
ω sin2θ

σ2
y

+
ω2 sin2 θ

σ2
y

, (A2)

crρ =

(
ω sinδ+cosδ

σ2
y

)
︸ ︷︷ ︸

a1

cosθ+

(
1

σ2
z

+ω

(
ω sinδ+cosδ

σ2
y

))
︸ ︷︷ ︸

a2

sinθ., (A3)

:::
and640

cρ2 =
cos2 δ

σ2
y

+
sin2 δ

σ2
z

+
ω sin2δ

σ2
y

+
ω2 sin2 δ

σ2
y

. (A4)

To simplify Eq. A2, we use the substitutions cos2 θ = (1+ cos2θ)/2 and sin2 θ = (1− cos2θ)/2

cr2 =

(
1

2σ2
y

+
1

2σ2
z

+
ω2

2σ2
y

)
︸ ︷︷ ︸

1/σ2
∗

+

(
1

2σ2
y

− 1

2σ2
z

− ω2

2σ2
y

)
︸ ︷︷ ︸

1/σ2
∗∗

cos2θ+

(
ω

σ2
y

)
sin2θ, (A5)

which can be further simplified by defining 1/σ2
ns =

√
1/σ4

∗∗ +ω2/σ4
y and tanϕns = ωσ2

∗∗/σ
2
y

cr2 =
1

σ2
∗
+

cos(2θ−ϕns)

σ2
ns

. (A6)645

Using the same procedure and by replacing θ with δ, we have

cρ2 =
1

σ2
∗
+

cos(2δ−ϕns)

σ2
ns

. (A7)

Finally, Eq. A3 can be simplified to

crρ = cos(θ−ϕs)/σ
2
s , (A8)

by defining σ2
s = 1/

√
a21 + a22 and tanϕs = a2/a1, where a1 and a2 are defined in Eq. A3.650
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Appendix B:
:::::::::
Azimuthal

::::::::::
integration

::
of

:::::::::::::
non-symmetric

:::::::::
Gaussian

:::::
wake

In this appendix, we present the solution to the integral Mθ in Eq. 8, which was based on a solution proposed by Gaidash

(2023).

Mθ =
1

π

2π∫
0

e−η2R2 cos(2θ−ϕns)/(2σ
2
ns)−ηRρcos(θ−ϕs)/σ

2
s −nη2R2 cos(2θ−ϕns)/(2σ

2
ns)−nηRρcos(θ−ϕs)/σ

2
s

::::::::::::::::::::::::::::::::::
dθ. (B1)

Using the Jacobi–Anger expansion (Abramowitz and Stegun, 1972, 9.1.41–45; p. 361), we can write655

e−ηRρcos(θ−ϕs)/σ
2
s −nηRρcos(θ−ϕs)/σ

2
s

:::::::::::::::
=
∑
ν∈Z

(−1)νIν

ηRρ

σ2
s

nηRρ

σ2
s

:::::

eiν(θ−ϕns/2)eiν(ϕns/2−ϕs), (B2)

where Iν is the modified Bessel function of order ν, and Z is the set of integers. Using Eq. B2, the integral Mθ becomes

Mθ =
1

π

∑
ν∈Z

(−1)νeiν(ϕns/2−ϕs)Iν

ηRρ

σ2
s

nηRρ

σ2
s

:::::

 2π∫
0

e−η2R2 cos(2θ−ϕns)/(2σ
2
ns)−nη2R2 cos(2θ−ϕns)/(2σ

2
ns)

:::::::::::::::::::
eiν(θ−ϕns/2) dθ. (B3)

The integral in Eq. B3 vanishes for odd values of ν. Also, since Mθ is real we can write

Mθ = 2
∑
ν∈Z

cos(ν(2ϕs −ϕns))I2ν

ηRρ

σ2
s

nηRρ

σ2
s

:::::

 π∫
0

e−η2R2 cos(θ′−ϕns)/2σ
2
ns−nη2R2 cos(θ′−ϕns)/2σ

2
ns

:::::::::::::::::
cos(ν(θ′ −ϕns)) dθ

′, (B4)660

where θ′ = 2θ. The integral in Eq. B4 can be solved using (Gradshteyn and Ryzhik, 2007, 3.915(2) p. 491)

π∫
0

e−tcosζ cos(νζ) dζ = (−1)νπIν(t), (B5)

which is insensitive to a phase shift ϕns. Hence, Mθ becomes

Mθ = 2
∑
ν∈Z

(−1)ν cos(ν(2ϕs −ϕns))I2ν

ηRρ

σ2
s

nηRρ

σ2
s

:::::

Iν

η2R2

2σ2
ns

nη2R2

2σ2
ns

::::::

 , (B6)

which can be further simplified using the fact that I−ν(x) = Iν(x) for an integer ν665

Mθ = 2I0

ηRρ

σ2
s

nηRρ

σ2
s

:::::

I0

η2R2

2σ2
ns

nη2R2

2σ2
ns

::::::

+4
∑
ν≥1

(−1)ν cos(ν(2ϕs −ϕns))I2ν

ηRρ

σ2
s

nηRρ

σ2
s

:::::

Iν

η2R2

2σ2
ns

nη2R2

2σ2
ns

::::::

 .

(B7)
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Appendix C:
::::::
Radial

::::::::::
integration

::
of

:::::::::::::
non-symmetric

::::::::
Gaussian

:::::
wake

In this appendix, we provide a solution to the integral Mη defined in Eq. 8 along with solution of the integral Mθ (Eq. 10)

which was detailed in Appendix B

Mη =2

1∫
0

ηe−η2R2/(2σ2
∗)−nη2R2/(2σ2

∗)
::::::::::

I0

ηRρ

σ2
s

nηRρ

σ2
s

:::::

I0

η2R2

2σ2
ns

nη2R2

2σ2
ns

::::::

 dη+

4
∑
ν≥1

(−1)ν cos(νϕ)

1∫
0

ηe−η2R2/(2σ2
∗)−nη2R2/(2σ2

∗)
::::::::::

I2ν

ηRρ

σ2
s

nηRρ

σ2
s

:::::

Iν

η2R2

2σ2
ns

nη2R2

2σ2
ns

::::::

 dη (C1)670

The argument of the terms in the form Iν
(
η2R2/(2σ2

ns)
)

:::::::::::::::
Iν
(
nη2R2/(2σ2

ns)
)
:
is sufficiently small (≲ 1) for the ranges out-

lined in section 2.1
:::
and

:::
for

:::::
small

:::::
values

:::
of

:
n
:
with an average value of κ=R2/(6σ2

ns) ::::::::::
nR2/(6σ2

ns) for 0≤ η ≤ 1. Hence, we

employ the approximation Iν
(
η2R2/(2σ2

ns)
)
∼ (η2R2/(4σ2

ns))
ν/ν!

:::::::::::::::::::::::::::::::::::
Iν
(
nη2R2/(2σ2

ns)
)
∼ (nη2R2/(4σ2

ns))
ν/ν! (Abramowitz

and Stegun, 1972, 9.6.7; p. 375). The
:
,
:::
and

:::
the

:
integral Mη becomes

Mη ≈ 2µ(n)
::0 +4

∑
ν≥1

1

ν!

−R2

4σ2
ns

−nR2

4σ2
ns

:::::

ν

cos(νϕ)Λ2ν

1∫
0

η1+2νe−nη2R2/(2σ2
∗)I2ν

(
nηRρ

σ2
s

)
dη

︸ ︷︷ ︸µ
(n)
2ν

:::

, (C2)675

where

µ(n)
::0 =

1∫
0

ηe−η2R2/(2σ2
∗)−nη2R2/(2σ2

∗)
::::::::::

I0

ηRρ

σ2
s

nηRρ

σ2
s

:::::

 dη. (C3)

Solving the integral µ0 :::
µ
(n)
0 :

is discussed in more detail in section 2.2. The solution to the integrals Λ2ν ::::
µ
(n)
2ν is derived in detail

in Appendix D.

Λµ(n)

:::
2ν =

(
ρσ2

∗
Rσ2

s

)2ν
µ(n)

::0 −
σ2
∗

R2

σ2
∗

nR2
::::

e−R2/(2σ2
∗)−nR2/(2σ2

∗)
::::::::

2ν∑
k=1

(
ρσ2

∗
Rσ2

s

)−k

Ik

Rρ

σ2
s

nRρ

σ2
s

::::

 (C4)680

Therefore, Mη becomes

Mη ≈ 2µ(n)
::0

1+2
∑
ν≥1

(−χ2
ns)

ν cos(νϕ)

ν!

(−nχ2
ns)

ν cos(νϕ)

ν!
:::::::::::::::

−4σ2
∗

R2

4σ2
∗

nR2
::::

e−R2/(2σ2
∗)−nR2/(2σ2

∗)
::::::::

∑
ν≥1

(−χ2
ns)

ν cos(νϕ)

ν!

(−nχ2
ns)

ν cos(νϕ)

ν!
:::::::::::::::

 2ν∑
k=1

(
ρσ2

∗
Rσ2

s

)−k

Ik

Rρ

σ2
s

nRρ

σ2
s

::::

 ,
(C5)

where χns = ρσ2
∗/(2σnsσ

2
s ). For the sum over ν, we have

P(n)
::ns =

∑
ν≥1

(−χ2
ns)

ν cos(νϕ)

ν!

(−nχ2
ns)

ν cos(νϕ)

ν!
:::::::::::::::

= e−χ2
ns cosϕ cos(χ2

ns sinϕ)
−nχ2

ns cosϕ cos(nχ2
ns sinϕ)

::::::::::::::::::::
− 1. (C6)
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Also, the modified Bessel function Iν(x) decays rapidly with ν, and hence we only keep the terms with ν ≤ 2 in the right-hand685

side of Eq. C5. Therefore, Eq. C5 simplifies to

Mη ≈ 2µ(n)
::0

(
1+2P(n)

::ns

)
− 4σ2

∗
R2

4σ2
∗

nR2
::::

e−R2/(2σ2
∗)−nR2/(2σ2

∗)
::::::::

P(n)
::ns

λ
ρ
I1

Rρ

σ2
s

nRρ

σ2
s

::::

+
λ2

ρ2
I2

Rρ

σ2
s

nRρ

σ2
s

::::

 . (C7)

where λ=Rσ2
s /σ

2
∗.

Appendix D:
:
A
::::::::
solution

::
of

::
an

::::::::
integral

::
of

:::
the

::::::::
modified

::::::
Bessel

:::::::
function

In this appendix, we present a solution to a generic integral in the form690

Λµ(n)

:::
ν(β,ϑ) =

1∫
0

η1+νe−η2β2/2−nη2β2/2
:::::::

Iν(n:ηϑ) dη, (D1)

where ν is an integer
:::
and

::
n

:::
are

::::::
integers, and β and ϑ are constants. To evaluate Λν we employ ∂/∂η (ηνIν (ηϑ)) = ϑηνIν−1(ηϑ):::

µ
(n)
ν

::
we

:::::::
employ

::::::::::::::::::::::::::::::::
∂ (ηνIν (nηϑ))/∂η = nϑηνIν−1(nηϑ). Integrating Eq. D1 by parts leads to the recursion

Λµ(n)

:::
ν(β,ϑ) =−e−β2/2

β2

e−nβ2/2

nβ2
:::::::

Iν(n:ϑ)+
ϑ

β2
Λµ(n)

:::
ν−1(β,ϑ), (D2)

which can be solved using the generating function F(η) =
∑
ν≥1

Λνη
ν
::::::::::::::::
Fn(η) =

∑
ν≥1

µ
(n)
ν ην . Multiplying Eq. D2 by ην and sum-695

ming over ν gives∑
ν≥1

Λµ(n)

:::
νη

ν =−e−β2/2

β2

e−nβ2/2

nβ2
:::::::

∑
ν≥1

Iν(n:ϑ)η
ν +

ϑ

β2

∑
ν≥1

Λµ(n)

:::
ν−1η

ν , (D3)

which simplifies into

Fn
:
(η) =−e−β2/2

β2

e−nβ2/2

nβ2
:::::::

∑
ν≥1

Iν(n:ϑ)η
ν +

ϑη

β2

(
Λµ(n)

:::
0 +Fn

:
(η)

)
. (D4)

Solving Eq. D4 for F(η)
::::::
Fn(η) and using Taylor’s expansion (1−ϑη/β2)−1 =

∑
m≥0

(
ϑη/β2

)m
700

Fn
:
(η) =−e−β2/2

β2

e−nβ2/2

nβ2
:::::::

∑
ν≥1

∑
m≥0

(
ϑ

β2

)m

Iν(n:ϑ)η
ν+m +Λµ(n)

:::
0

∑
m≥0

(
ϑη

β2

)m+1

. (D5)

Finally, the integral Λν :::
µ
(n)
ν :

is the coefficient of ην in Eq. D5

Λµ(n)

:::
ν(β,ϑ) =

(
ϑ

β2

)ν
Λµ(n)

:::
0(β,ϑ)−

e−β2/2

β2

e−nβ2/2

nβ2
:::::::

ν∑
k=1

(
ϑ

β2

)−k

Ik(n:ϑ)

 , (D6)

where Λ0(β,ϑ) is
::::::::
µ
(n)
0 (β,ϑ)

::
is

Λµ(n)

:::
0(β,ϑ) =

1∫
0

ηe−η2β2/2−nη2β2/2
:::::::

I0(n:ηϑ) dη. (D7)705
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Figure E1. A uniform sunflower distribution of 2000 points over the surface a circle to be used to numerically evaluate the rotor-averaged

deficit due to an upstream wake in the form of Eq. 1 and
::
to provide a reference to validate

::::
verify

:::
the

::::::
derived

:::::::
analytical

:::::::::
expressions.

::::
The

::::
polar

::::::::
coordinates

::
of

:::
the

:::::
shown

:::::::
averaging

:::::
points

:::::
follow

:
Eq.18

:::
E1.More details on this distribution is available in Appendix E.

Appendix E:
::::::::::
Distribution

::
of

::::::
points

::::::
across

:
a
::::::
circle

:::
for

:::::::::
numerical

:::::::::
averaging

In this appendix, the
::
we

::::::::::
summarise

::::::
various

:::::::::::
distributions

::::
and

::::::::::
resolutions

::
of

:::::::::
averaging

:::::
points

::::
that

:::
are

:::::
used

:::
for

:::::::::
numerical

::::::::
averaging

::
of

:::
the

::::
rotor

::::::
deficit.

:

::
As

::
a

:::::::
reference

::::
case

:::
for

::::::::::
verification

::
of

:::
the

::::::
derived

::::::::
analytical

::::::::::
expressions

:::::
(Eqs.

::
18

:::
and

::::
29)

:::
and

:::
for

:::::::::
quantifying

:::
the

::::::::::
uncertainty

::
of

:::::
lower

::::::::
resolution

:::::::::
numerical

:::::::::
averaging,

:::
we

:::
use

::
a
:
sunflower distribution of points across a circle is summarised. The

::::
2000710

:::::
points.

::::
For

:
a
::::::::
sunflower

:::::::::::
distribution,

:::
the polar coordinates rk and θk of a point of index k (out of N total points) on a circle of

radius R are defined as

rk/R
::

=

1 if k > N − b√
k−1/2

N−(b+1)/2 otherwise
,
:::::

and θk =
2πk

φ2
,

::::::::::::

(E1)

θk =
2πk

φ2
,715

where φ= (
√
5+1)/2 is the golden ratio, and the constant b= round(2

√
N) with the function “round" returning the near-

est integer. The resulting distribution of points is shown in Fig. E1. An implementation of this distribution can be found in

Ali et al. (2024c).
:::
We

:::
also

:::::::
explore

:::
the

:::::::::
distribution

:::
of

::
16

::::::::
averaging

::::::
points

::::::::
following

:::
the

:::::::::
quadrature

::
of

:::::::::::::::::
Holoborodko (2011)

:
.
:::
For
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Figure E2.
::::::
Different

::::::::::
distributions

:::
and

::::::::
resolutions

::
of

::::::::
averaging

:::::
points

:::::::
following:

:::
(a)

:::
the

::::::::
quadrature

::
of

:::::::::::::::::::::
Holoborodko (2011, Eq. E2),

:::
(b)

:::
the

:::::::
cross-like

:::::::::
distribution

::
of

:::::::::::::
Stipa et al. (2024),

:::
and

::::
(c–f)

::::::
various

::::::::
resolutions

::
of
:::
the

::::::::
sunflower

::::::::
distribution

::::
(Eq.

:::
E1).

:::
this

:::::::::
quadrature,

:::
the

:::::
polar

::::::::::
coordinates

::
of

:
a
:::::
point

::
of

:::::
index

::
k

:::
are

rk/R=

√
3+ (−1)k+1

√
3

6
, and θk = 2π(k− 1)/16, ∀ k ∈ {1,2,3, . . . ,16},

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(E2)720

:::::
Figure

:::
E2

::::::
shows

:::::::
different

::::::::::
resolutions

:::
and

:::::::::::
distributions

:::
of

::::::::
averaging

::::::
points

::::::::
including

:::
(a)

:::
the

:::::::::
quadrature

:::
in

:::
Eq.

::::
E2,

:::
(b)

:::
the

::::::::
cross-like

::::::::::
distribution

::
of

:::
16

:::::::::
averaging

:::::
points

:::::::::
following

:::::::::::::::
Stipa et al. (2024)

:
,
:::
and

:::::
(c–f)

:::::::
various

:::::::::
resolutions

:::
of

:::
the

:::::::::
sunflower

:::::::::
distribution

::::
(Eq.

::::
E1).

Appendix F:
::::::::
Emphasis

:::
on

:::
the

:::::
order

::
of

:::::
rotor

:::::::::
averaging

::::
and

:::::
wake

::::::::::::
superposition

:::
for

:
a
:::::::::::::
product-based

::::::::::::
superposition

:::::
model725

In this appendix, we examine the effect of the order of applying wake superposition and the rotor averaging for the product-

based wake superposition model of Lanzilao and Meyers (2022).
:::
The

::::::::
following

:::::::
analysis

::
is
:::::::
generic

:::
for

:::
any

:::::::::
averaging

:::::
order

:::::
n > 0,

::::
and

:::
for

::::::::
shortness

:::
the

::::::::::
superscript

:::

(n)
::
is

::::::::
dropped. Consider a wind turbine impacted by a set S of upstream wakes.

Assuming a set of N discrete points on the rotor disk of the considered turbine, the numerical approach (wake superposition
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followed by rotor averaging) of obtaining the rotor-averaged deficit is730

LM
num

num
::

W prod
::

=
1

N

N∑
k=1

1−
∏
j∈S

(1−Wj(k))

 , (F1)

where Wj(k) is the normalised wind-speed deficit of a point of index k on the rotor disk of the considered turbine due to the

wake of an upstream turbine of index j. The product over the set S in Eq. F1 can be expanded as∏
j∈S

(1−Wj(k)) = 1−
∑
j∈S

Wj(k)+
∑
i,j∈S
i̸=j

Wi(k)Wj(k)+O(W 3). (F2)

We can neglect the higher order terms of W (order 3 and higher) compared to the lower order terms
:::::
(since

:::::::
W < 1), and hence735

Eq. F1 simplifies to

LM
num

num
::

W prod
::

≈
∑
j∈S

(
1

N

N∑
k=1

Wj(k)

)
−
∑
i,j∈S
i ̸=j

(
1

N

N∑
k=1

Wi(k)Wj(k)

)
. (F3)

If the rotor averaging over a set of N points asymptotically approaches the analytical average , then
::::
exact

:::::::
average

:::::
(i.e.,

:::::::::::::::::::
N−1

N∑
k=1

Wj(k)∼W j),
::::
then

:

LM
num

num
::

W prod
::

≃
∑
j∈S

W j −
∑
i,j∈S
i ̸=j

WiWj . (F4)740

Alternatively, the corresponding analytical approach (rotor averaging followed by wake superposition) of obtaining the rotor-

averaged deficit is

LM
anl

anl
:
W prod

::
= 1−

∏
j∈S

(
1−W j

)
≈
∑
j∈S

W j −
∑
i,j∈S
i ̸=j

W iW j . (F5)

The difference between the numerical and analytical approaches originates from W̃iWj :::::
WiWj:

in Eq. F4 versus W̃iW̃j ::::::
W iW j

in Eq. F5, where the difference between these two quantities acts as a covariance for the set of upstream deficits. If the745

mutual impacts between the upstream turbines are neglected by assuming the turbines operate almost independently (i.e.,

W̃iWj ∼ W̃iW̃j::::::::::::::
WiWj ∼W iW j), then an asymptotic resemblance between LMW̃num and LMW̃anl ::::::::

numW prod :::
and

::::::::

anlW prod is

achieved. In the case of small-enough deficits, the superposition of Lanzilao and Meyers (2022)
:::
this

:::::::::::
product-based

::::::::::::
superposition

:::::
model

:
approaches a non-weighted linear superposition when W 2 ≪W .

Appendix G:
:::::::::
Additional

::::::::
material750

::::
Here,

:::::::::
additional

:::::::
material

::
to

:::
the

::::
main

::::
text

:::
are

::::::::
included.

::
We

::::::::
compare

::
the

:::::::::::::
rotor-averaged

:::::
deficit

:::
for

:
a
:::::::
circular

::::
disk

::::
(Eq.

:::
18)

::::
with

::
the

:::::::
nacelle

:::::
deficit

:::
Ŵ ,

::::::
which

:::
can

::
be

:::::::
derived

::::
from

:::
Eq.

::
1
::
by

::::::::::
substituting

::::::::::::::::::::
⟨y′,z′⟩= ρ⟨cosδ,sinδ⟩:

:

Ŵ/C = e−ρ2(cosδ+ω sinδ)2/(2σ2(1−ξ2))e−ρ2 sin2 δ/(2σ2).
:::::::::::::::::::::::::::::::::::::::::::

(G1)
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Figure G1.
::::::::
Comparing

:::
the

::::
linear

:::::::::::
rotor-averaged

:::::
deficit

::::::
(solid),

:::::::
assuming

:
a
::::::
circular

::::
disk

:::
(Eq.

:::
18),

::
to
:::
the

:::::
nacelle

:::::::::
wind-speed

:::::
deficit

:::::::
(dashed;

::
Eq.

::::
G1)

::
for

:::::::
different

:::::
values

::
of

::
the

:::::
angle

::
δ.

:::
The

:::::::::
free-stream

::::::::
conditions

:::
and

::
the

:::::
setting

::
of
:::

the
:::::::
upstream

::::::
turbine

:::::
(wake

:::::
source)

:::
are

:::
the

::::
same

::
as

:
in
::::::
section

:::
3.1

:::
and

:::
Fig.

::
2.

:::
The

::::::
bra-ket

::::::
notation

::
in

::
the

::::
label

::
of
:::
the

::::::
vertical

:::
axis

::::
takes

:::
the

::::
form

:::::
⟨t1, t2⟩:::::

which
:::::
means

::
t1::

or
:::
t2.

:::::
Under

:::
the

:::::
same

::::::::
conditions

:::
as

::
in

::::::
section

:::
3.1,

::::
Fig.

:::
G1

:::::::
presents

:::
the

:::::
offset

::::::::
variation

::
of

:::
the

:::::::::
normalised

:::::
linear

::::::
deficit

:::
for

:
a
:::::::
circular

:::
disk

::::::
(W (1)

c ;
:::::
solid)

:::::::::
compared

::::
with

:::
the

::::::
nacelle

:::::
deficit

::::
(Ŵ ;

:::::::
dashed)

:::::
across

:::::::
different

::::::
values

::
of

:
δ
::
at
:::::::
multiple

:::::::::::
downstream

::::::::
locations.755

::::
This

::::::::::
comparison

::::::
reveals

:::
that

:::
the

:::::::
nacelle

:::::
deficit

:::::
does

:::
not

:::::::::
adequately

::::::::
represent

:::
the

:::::::::::::
rotor-averaged

::::::
deficit,

::::::::::
particularly

::
at

::::
zero

:::::
offset

::::::
(ρ= 0),

:::::
where

:::::::::
Ŵ/C = 1

::
by

:::::::::
definition,

:::::::
whereas

:::
the

:::::::::
normalised

::::::::::::
rotor-averaged

:::::
deficit

::::
lies

:::::::::::
approximately

::::::::
between

::
0.6

::::
and

:::
0.7

::
for

:::
the

:::::::::
considered

:::::
case.

::
As

:::::
such,

:::
we

::::::::::
recommend

:::::
using

::::::::::::
rotor-averaging

::::::
(either

::::::::::
analytically

::
or

:::::::::::
numerically)

:::
for

::::::::::
applications

:::
that

::::::
require

::
a

:::::::::::
representative

:::::
wind

:::::
speed

::
to

:::::::
estimate

:
a
::::::::
turbine’s

::::::::
operating

:::::
point.

:

:::::
Figure

:::
G2

::::::
shows

:::
the

::::::::
variation

::
of

:::
the

:::::
linear

:::::::::::::
rotor-averaged

:::::
deficit

:::::::
(n= 1)

:::
for

:::
the

::::::::
circular-

:::
and

::::::::::::::
rectangular-disk

::::::::
solutions760

::::
with

:::
the

:::::
offset

:
ρ
::

at
:::::::

various
::::
yaw

::::::::::::
misalignments

::
of
::::

the
::::
wake

:::::::
source.

::::
Both

:::::::
turbines

:::::
have

:::
the

::::
same

::::::::::
hub-height

:::::::
(δ = 0),

:::
and

:::
no

:::
veer

::::::
effects

:::
are

:::::::::
considered

::::::::::
(∆αo = 0).

::::
Both

:::
the

:::::::
circular-

::::
and

:::::::::::::
rectangular-disk

::::::::
solutions

:::::
agree

:::
well

::::
with

:::
the

:::::::::
numerical

:::::::
solution

::::::::
(markers)

:::
for

::
all

::::
yaw

::::::::::::
misalignments

:::
and

::
at

::
all

:::::::::::
downstream

::::::::
distances.

:::
The

::::::
impact

::
of

:::
the

::::
yaw

:::::
angle

::
on

:::
the

::::::::::::
rotor-averaged

::::::
deficit

:
is
::::::
small,

::::
even

:::
for

::::::::
γo = 30◦,

::::::::
compared

::
to
:::::::::
wind-veer

::::::
effects

::::::::
presented

::
in

::::::
section

::::
3.3.
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Figure G2.
::::
Same

::
as

::
in

:::
Fig.

::
2
:::
but

:::
with

:::
no

::::
wind

:::
veer

:::::::
(ω = 0)

:::
and

::::::
variable

:::
yaw

:::::::::::
misalignment

:::
γo.

:::
Top

:::
row

:::::::::
corresponds

::
to
:::

the
::::::::::
circular-disk

::::::
solution

:::
(Eq.

:::
18)

:::
and

:::
the

::::::
bottom

:::
row

::
is

::
for

:::
the

::::::::::::
rectangular-disk

:::::::
solution

:::
(Eq.

::::
29).

:::
The

::::::::
considered

::::::
turbine

::::
have

::
the

:::::
same

:::
hub

:::::
height

::
as

:::
the

::::
wake

:::::
source,

:::
and

:::::
hence

:::::
δ = 0.

:::
The

:::::
value

::
of

::
the

:::::::::
eccentricity

:
ξ
::::
(Eq.

::
3)

:
is
::::::::

indicated
::
for

::::
each

::::
case.
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