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Abstract. The performance of a wind farm is significantly influenced by turbine-wake interactions. These interactions are

typically quantified for each turbine by evaluating its rotor-averaged wind speed, which is impacted by upstream wakes, using

numerical methods that involve discrete points across the rotor disk. Although various point distributions exist in the liter-

ature, we introduce an analytical expression for integrating a Gaussian wake over a circular disk, which accounts for wake

stretching and shearing resulting from upstream turbine yaw and wind veer. This expression is versatile, accommodating any5

lateral offset and hub-height difference between the wake source (upstream turbines) and the target turbine. Validation against

numerical evaluations of the rotor-averaged deficit at various downstream locations from the wake source demonstrates excel-

lent agreement. Furthermore, the analytical expression is shown to be compatible with multiple wake superposition models.

The presented solution is differentiable, providing a foundation for deriving mathematical expressions for the gradients of a

turbine’s power generation concerning its location within a farm and/or the operational conditions of upstream turbines. This10

capability is particularly advantageous for optimization-based applications.

1 Introduction

The widespread deployment of wind farms necessitates the use of accurate and efficient computational tools for preliminary

design and optimisation (Veers et al., 2023). While Computational Fluid Dynamics (CFD) methods such as Large-Eddy Sim-

ulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) offer detailed insights into turbine loading and wake dynamics,15

they are often too computationally intensive for preliminary wind-farm design and layout optimisation (Maas and Raasch,

2022). Mesoscale models require less computational power and have been employed to examine the large-scale interactions

between wind turbine wakes and the turbulent atmospheric boundary layer, though they lack the detailed wake resolution pro-

vided by RANS and LES models (Fitch et al., 2012; Ali et al., 2023). Conversely, engineering wake models are comparatively

faster and are extensively used in various wind-energy applications, including wind-farm layout optimisation and control (Hou20

et al., 2016; Bay et al., 2018; Shapiro et al., 2022). Engineering wake models, which assume that a turbine’s wake is self

similar, represent the wake using a streamwise scaling deficit function and a shape function to describe the deficit distribution

perpendicular to the streamwise direction. Various shape functions have been proposed, including top-hat profiles (Jensen,

1983), Gaussian profiles (Bastankhah and Porté-Agel, 2014), double-Gaussian profiles (Keane et al., 2016), super-Gaussian

profiles (Blondel and Cathelain, 2020), and profiles based on the diffusion of a passive scalar (Cheng and Porté-Agel, 2018;25
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Ali et al., 2024c). Among these, the Gaussian wake profile is widely adopted particularly for distances comparable to a typical

turbine spacing within a wind farm.

To assess the impact of an upstream turbine’s wake on the onset flow of a downstream rotor, such as required to estimate

energy-yield reduction due to wake effects, numerical methods often average upstream deficits calculated at multiple control

points across the rotor disk of the considered turbine. The number and distribution of these averaging points vary in the30

literature. Allaerts and Meyers (2019) employed a 16-point quadrature based on Holoborodko (2011) in their analysis of wind-

farm blockage and induced gravity waves, whereas Stipa et al. (2024) utilised a cross-like distribution of 16 averaging points to

enhance radial resolution across the rotor. Stanley and Ning (2019) used 100 equally-spread averaging points for the evaluation

of the rotor-averaged deficit. Other studies proposed uniform radial and azimuthal distribution of averaging points across the

rotor within the context of farm layout optimisation and control (Li et al., 2022; Ling et al., 2024).35

Uncertainties can arise from the number, distribution, and averaging weights of the control points, especially when the shape

of the upstream wake deviates from the axisymmetric form due to, for instance, wind-veer effects. Rather than numerical

averaging, Ali et al. (2024a) developed an analytical expression for the circular-disk integration of an axisymmetric Gaussian

function depicting the wake of an upstream turbine. Their formulation is applicable to any lateral offset between the upstream

turbine (wake source) and the considered turbine, but assumes that the upstream wake is axisymmetric and that both the40

upstream and downstream turbines have the same hub-height. Typically, turbines can be yawed relative to their onset wind

yielding wakes that are not axisymmetric but of elliptic shape (Bastankhah and Porté-Agel, 2016). Additionally, wind-veer

effects can cause planar shearing of the wake shape through stretching the wake elliptic contours and rotating its major axes (see

Fig. 1 later in the article), resulting in further deviation from the axisymmetric wake shape (Abkar et al., 2018). Furthermore,

onshore wind farms often have turbines with different hub heights due to non-flat terrain, and offshore wind farms may have45

turbines of varying hub heights and diameters operating in close proximity.

In this study, we extend the analytical solution proposed by Ali et al. (2024a) by generalising the assumed upstream wake

shape to include non-symmetry due to the yawing of the wake source, wind-veer effects, and different hub-heights between the

wake source and target turbine. Although the primary focus is on wind-turbine wakes, the proposed expression is also applicable

to tidal-stream turbines and can be extended to vertical-axis turbines (both wind and tidal) due to the relevance of similar50

Gaussian wake profiles (e.g., Stallard et al., 2015; Ouro and Lazennec, 2021). The rest of this paper is structured as follows.

Section 2 presents the generalised analytical expression for the rotor-averaged deficit, which is validated against numerical

solutions for a single upstream wake in section 3.1 and for multiple upstream wakes in section 3.2. The key findings of this

paper are discussed in more detail in section 4 with a focus on compatibility with different wake superposition models and

applicability to yawed turbines, with a summary in section 5. Appendices A–D contain mathematical details on the derivation55

of the generalised rotor-averaged deficit, whereas the distribution of the averaging points used in the validation presented

in section 3 are detailed in Appendix E. Further mathematical manipulations regarding wake superposition is included in

Appendix F following the discussion in section 4.
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2 Analytical evaluation of the rotor-averaged wind-speed deficit

In this study, we seek to analytically evaluate the rotor-averaged deficit of a turbine operating within an upstream Gaussian60

wake whose shape and center are defined. For simplicity, the expression for the rotor-averaged deficit is derived for a single

upstream wake, but extension to multiple upstream wakes is straightforward (section 3.2).

2.1 Problem definition

The normalised wind-speed deficit (W ) due to the wake of an upstream turbine impacted by a constant transverse wind (causing

wind veer) can be expressed as (Bastankhah and Porté-Agel, 2016; Abkar et al., 2018)65

W = 1− u

ũn
= C(x)e−(yn+ωzn)2/(2σ2

y)e−z2
n/(2σ2

z), (1)

where u is the streamwise wind speed, ũn is the rotor-averaged wind speed of the upstream turbine (wake source), C is a

streamwise scaling function, and x is the streamwise distance between the two turbines. The variables yn and zn are the lateral

and vertical coordinates respectively, with an origin at the wake center, and ω = ∆α(x/Dn) is a wind-veer coefficient with ∆α

being the difference in wind direction across the top and bottom tips of the upstream turbine (wake source) whose diameter is70

Dn. The variables σy and σz are the wake standard deviations in the yn and zn directions, respectively. Figure 1 illustrates a

schematic of an upstream turbine (of radius Rn) whose wake center is deflected horizontally by a distance d. The Cartesian

coordinates yn–zn are placed at the center of the wake in the plane containing the considered turbine which is at a streamwise

distance x from the wake source. The considered turbine is located at (∆y , ∆z) with respect to the wake center with polar

coordinates ρ and δ. The Cartesian axes y–z are placed at the center of the considered turbine which is of radius R. The lateral75

offset ρ is measured from the center of the wake, which is assumed to be known from wake deflection models (e.g., Bastankhah

and Porté-Agel, 2016; Qian and Ishihara, 2018; Snaiki and Makki, 2024).

For a yawed upstream turbine, the wake standard deviations σy and σz are not equal, resulting in elliptic wake contours rather

than circular contours in the specific case of axisymmetric wake. We define the eccentricity ξ of the wake elliptic contours due

to having non-equal σy and σz as ξ2 = 1− (σy/σz)2. Here, it is assumed that σy ≤ σz , which is the typical case for yawed80

horizontal-axis wind turbines. However, it is noted that where relevant, scenarios with σy > σz can be obtained by a rotation

of axes. In the following calculations, σz will be denoted as σ and hence σy = σ
√

1− ξ2. A typical range for the eccentricity

ξ can be identified using the empirical expressions for σy and σz for a yawed upstream turbine at an angle γn

σz = σ = k∗zx + σz0Dn, and σy = σ
√

1− ξ2 = k∗yx + σz0Dn cosγn, (2)

where k∗z and k∗y are the rates of wake expansion in the zn and yn directions respectively, and σz0 ≈ 1/
√

8 is an initial wake85

standard deviation (Bastankhah and Porté-Agel, 2016). For simplicity we assume that k∗z = k∗y = k∗, and hence

ξ2 ≈ 1−
(

k∗x/σz0 + cosγn

k∗x/σz0 + 1

)2

≤ 1− cos2 γn. (3)

The typical range of a turbine yaw angle is less than 30◦ (Zong and Porté-Agel, 2021), and hence the eccentricity of the wake

elliptic contours ξ < 0.5 for a typical inter-turbine spacing.
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Figure 1. Schematic contours of the normalised wind-speed deficit W due to an upstream wake. The center of the wake (origin of the axes

yn–zn) is deflected horizontally by a distance d from its source center (upstream turbine denoted by the dashed circle), and the considered

turbine is offset from the wake center by a radial distance ρ and an angle δ. The axes y–z are placed at the center of the considered turbine and

are located at (∆y , ∆z) with respect to the wake axes yn–zn. The shown elliptic contours have an eccentricity ξ = 0.4 and a veer-coefficient

ω =−0.3, with definitions of ξ and ω provided in the main text. The upstream turbine (wake source) has a radius Rn and the considered

turbine has a radius R. The yellow dots on the rotor disk of the considered turbine (downstream turbine) are exemplary of the averaging

points that are used to numerically evaluate the rotor-averaged wind speed.

4

https://doi.org/10.5194/wes-2024-107
Preprint. Discussion started: 10 September 2024
c© Author(s) 2024. CC BY 4.0 License.



A Gaussian wake description, as given in Eq. 1, assumes a neutral atmospheric boundary layer for which the typical magni-90

tude of wind veer is approximately of the order 0.03◦/m (Walter et al., 2009; Gao et al., 2021). Hence, for large wind turbine

(diameter ∼ 220 m) operating in a neutral boundary layer, the difference in wind direction across its top and bottom tips is less

than approximately 7◦. While stable stratification and/or complex terrain can intensify wind veer, we limit our calculations to

neutral boundary layers with moderate wind veer (i.e., ∆α ≲ 7◦). The angle δ corresponds to the difference in hub-height be-

tween the upstream turbine (wake source) and the considered downstream turbine. In a typical wind farm, all turbines have the95

same hub-height, making δ = 0 (or π). However, our calculations consider δ as a variable to accommodate cases with differing

hub heights, such as adjacent wind farms or non-uniform terrain.

To summarise, the objective is to determine the rotor-averaged deficit of a turbine of radius R operating within an upstream

Gaussian wake defined by the standard deviation σ, the wake eccentricity ξ, the veer coefficient ω, and the streamwise scaling

function C, by performing a surface integration of Eq. 1 over the rotor disk of the considered turbine (shaded circle in Fig. 1),100

which is offset from wake center by the radial distance ρ and the angle δ. We assume that the rotor disk of the considered

turbine is normal to the free-stream direction implying that σ, ξ, ω, and C, are constants across the rotor disk of the considered

turbine.

2.2 Generalised rotor-averaged deficit of a Gaussian wake

The presented derivation in this section is a generalisation to the solution by Ali et al. (2024a) who solved a similar problem105

but for an axisymmetric wake (i.e., ξ = ω = 0) and for two turbines of the same hub-height (i.e., δ = 0). From Eq. 1, the

rotor-averaged deficit W̃ of the considered turbine is

W̃ =
C

πR2

R∫

0

2π∫

0

re−(yn+ωzn)2/(2σ2
y)e−z2

n/(2σ2
z) dθdr, (4)

where r, θ are the polar coordinates of the axes y–z placed at the center of the considered turbine (Fig. 1). The coordinates

yn–zn (of the wake center) and y–z can be related using yn = y + ∆y and zn = z + ∆z (Fig. 1). These relations, along with110

⟨y,z⟩= r ⟨cosθ,sinθ⟩ and ⟨∆y,∆z⟩= ρ⟨cosδ,sinδ⟩, where ⟨t1, t2⟩ means t1 or t2, can be used to re-write Eq. 4 in the r–θ

coordinates as (see Appendix A for derivation)

W̃ = Ce−ρ2/(2σ2
∗) e−ρ2 cos(2δ−ϕns)/(2σ2

ns)

1∫

0

ηe−η2R2/(2σ2
∗)

2π∫

0

1
π

e−η2R2 cos(2θ−ϕns)/(2σ2
ns)e−ηRρcos(θ−ϕs)/σ2

s dθ

︸ ︷︷ ︸
Mθ

dη

︸ ︷︷ ︸
Mη

, (5)

where η = r/R. In Eq. 5, three new length scales are introduced: σ∗, σns, and σs along with two new angles: ϕns and ϕs, which

are defined in terms of the wake standard deviation σ, the eccentricity ξ, the veer coefficient ω, and the angle δ as115

σ2
∗ =

2σ2(1− ξ2)
2 +ω2− ξ2

, σ2
ns =

2σ2(1− ξ2)√
(ω2− ξ2)2 + 4ω2

, σ2
s =

σ2
(
1− ξ2

)
cosϕs

cosδ + ω sinδ
, tanϕns =

2ω

ξ2−ω2
, tanϕs = ω +

(
1− ξ2

)
tanδ

1 +ω tanδ
.
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(6)

The subscript “ns” refers to wake non-symmetry. In case of an axisymmetric wake (i.e., ω = ξ = 0), we have σ−1
ns = 0 and

hence its corresponding exponential terms in Eq. 5 vanish. Also, when the wake is axisymmetric we have σ∗ = σs = σ, and

ϕs = δ. The solution to the integral Mθ in Eq. 5 is (see derivation in Appendix B)

Mθ = 2I0

(
ηRρ

σ2
s

)
I0

(
η2R2

2σ2
ns

)
+ 4
∑

ν≥1

(−1)ν cos(νϕ)I2ν

(
ηRρ

σ2
s

)
Iν

(
η2R2

2σ2
ns

)
, (7)120

where Iν is the modified Bessel function of the first kind and order ν, and ϕ = 2ϕs−ϕns. By employing Eq. 7, the solution of

the integral Mη in Eq. 5 is (Appendix C)

Mη ≈ 2µ0 (1 +2Pns)−
4σ2
∗

R2
e−R2/(2σ2

∗)Pns

[
λ

ρ
I1

(
Rρ

σ2
s

)
+

λ2

ρ2
I2

(
Rρ

σ2
s

)]
, (8)

where Pns = cos(χ2
ns sinϕ)e−χ2

ns cosϕ− 1, χns = ρσ2
∗/(2σnsσ

2
s ), and λ = Rσ2

s /σ2
∗. In Eq. 8, µ0 is

µ0 =

1∫

0

ηe−η2R2/(2σ2
∗)I0

(
ηRρ

σ2
s

)
dη. (9)125

In the case of an axisymmetric wake (σ−1
ns = 0), we have χns = Pns = 0, and Eq. 8 simplifies to Mη ≈ 2µ0. Therefore, Eq. 8

indicates that the solution of the non-axisymmetric wake (Eq. 1) is a perturbation (second term in Eq. 8) to scaled axisymmetric

solution (scaled by 1 +2Pns). Equation 8 contains terms in the form Iν(Rρ/σ2
s )/ρ, which has a finite value when there is

no lateral offset between the wake source and the considered turbine (ρ = 0) as lim
ρ→0

Iν(Rρ/σ2
s )/ρ = 1/(2νν!). Nonetheless,

when ρ = 0, Pns = 0 similar to the axisymmetric solution. This results from the simplifying assumption made in Appendix130

C to solve for Mη where the terms Iν

(
η2R2/(2σ2

ns)
)

were approximated by (η2R2/(4σ2
ns))

ν/ν! under the assumption that

the argument of the modified Bessel function is small (following the limits on the wind veer discussed in section 2.1), and

hence I0

(
η2R2/(2σ2

ns)
)
∼ 1 was employed. This means that the stretching and shearing acting on the wake are assumed to

have minimal effect on the wake shape close to the wake center and are more profound far from the wake center. We will

show in section 3.1, both numerically and analytically, that this assumption is acceptable for moderate values of wind veer by135

monitoring the average value (within the range 0≤ η ≤ 1) of the argument of the modified Bessel function κ = R2/(6σ2
ns). The

solution of the integral µ0 can be obtained by generalising the solution introduced by Ali et al. (2024a) based on Rosenheinrich

(2017)

µ0 =
σ2
∗

R2
e−R2/(2σ2

∗)Ψ(R,ρ,σs,σ∗), (10)

where140

Ψ(R,ρ,σs,σ∗) = I0

(
Rρ

σ2
s

)∑

k≥1

[(
R2

2σ2∗

)k

fk(τ2)

]
− Rρ

σ2
s

I1

(
Rρ

σ2
s

)∑

k≥1

[(
R2

2σ2∗

)k

gk(τ2)

]
, (11)

and τ = ρσ∗/σ2
s . The coefficients fk and gk follow

fk(τ) =
fk−1(τ) + τgk−1(τ)

k
, gk(τ) =

fk(τ) + 2gk−1(τ)
2k

, (12)
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with f0 = 1, g0 = 0. The recursions in Eq. 12 converge rapidly within 6–10 iterations of simple algebraic calculations. From

Eq. 5, the final form of the rotor-averaged deficit is145

W̃ ≈ 2Ce−ρ2/(2σ̂2)

(
µ0 (1 +2Pns)−

2σ2
∗

R2
e−R2/(2σ2

∗)Pns

[
λ

ρ
I1

(
Rρ

σ2
s

)
+

λ2

ρ2
I2

(
Rρ

σ2
s

)])
, (13)

where σ̂−2 = σ−2
∗ + σ−2

ns cos(2δ−ϕns). Equation 13 was implemented in Python and available from Ali et al. (2024b).

3 Validation

In this section, the developed analytical solution (Eq. 13) is validated against numerical evaluation of the rotor-averaged deficit

for the case of a single upstream wake (section 3.1), and for the case of multiple upstream wakes (section 3.2). The numerical150

reference against which Eq. 13 is validated is 2000 averaging points uniformly distributed across the rotor disk following a

sunflower distribution (details in Appendix E) as shown in Fig. E1.

3.1 Single upstream wake

We consider the non-axisymmetric Gaussian wake of a wind turbine (Eq. 1) and evaluate the rotor-averaged deficit of a down-

stream turbine due to this wake at various downstream locations relative to the wake source. The upstream turbine, acting as155

the wake source, operates at a yaw angle γn = 20◦ with combinations of low (Ct = 0.4) and high (Ct = 0.8) thrust coefficients

and low (Ti = 5%) and high (Ti = 12%) free-stream turbulence intensities. As discussed in section 2.1, the difference in wind

direction across the top and bottom tips of the upstream turbine is assumed to be 7◦, corresponding to a moderate wind veer

acting on a large turbine (diameter∼ 220 m), and hence the veer coefficient ω ≈ 0.122x/Dn. For simplicity, hereafter the sub-

script n for the radius and diameter of the upstream turbine is dropped by assuming that the upstream and downstream turbines160

are of the same size, which does not impact the generality of Eq. 13. At each downstream location from the wake source, the

wake eccentricity ξ can be obtained from Eq. 3 using the empirical expression k∗ = 0.003678 +0.3837Ti (Bastankhah and

Porté-Agel, 2014). Other empirical expressions can be used, but this does not impact the validation process as both analytical

and numerical approaches use σ regardless of how it is defined.

Figure 2 shows the lateral variation of the rotor-averaged wind speed deficit (W̃ ) normalised by the streamwise scaling func-165

tion C at different downstream locations for the cases summarised above as calculated numerically (markers) and analytically

(solid curves) using Eq. 13 for different values of the angle δ. The corresponding value of the eccentricity ξ, the veer coefficient

ω, the ratio R/σ, and the parameter κ = R2/(6σ2
ns) are indicated for each case. During the derivation of Eq. 13, the quantity κ

was assumed to be small enough (≲ 1) to employ the approximation Iν

(
η2R2/(2σ2

ns)
)
∼ (η2R2/(4σ2

ns))
ν/ν! (Appendix C).

The listed values of κ in Fig. 2 verify this simplifying assumption as the maximum value of κ was approximately 0.35 which170

occurred 10 diameters downstream of the wake source for the low Ct and low Ti case (Fig. 2d). For the other cases, κ has even

smaller values.

The comparison against the numerical evaluation of the rotor-averaged deficit indicates excellent accuracy of Eq. 13, even far

downstream of the wake source (x/D = 10), where the wake is highly sheared by wind veer. At zero lateral offset between the
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Figure 2. Normalised rotor-averaged deficit (W̃/C) calculated numerically (markers) using the set of discrete points shown in Fig. E1 and

analytically (solid curves) using Eq. 13 for different values of the lateral offset ρ (normalised by the wake standard deviation σ) between the

wake source and considered turbine. Each column represents a specific distance downstream of the wake source, and each row corresponds

to a different combination of the thrust coefficient (Ct) of the upstream turbine and the free-stream turbulence intensity (Ti) as indicated.

Indicated for each case are the wind-veer coefficient ω ≈ 0.122x/D corresponding to a 7◦ difference in wind direction between the top and

bottom tips of the upstream turbine, the eccentricity of the wake elliptic contour ξ due to a 20◦ yawing of the upstream turbine (Eq. 3), and

the ratio of the radius of the considered turbine to the wake standard deviation R/σ (σ is obtained from Eq. 2). For each case, three values

of the angle δ, which is the angle between the wake center and the center of the considered turbine (Fig. 1), are considered: 0, π/4, and

3π/4. The quantity κ = R2/(6σ2
ns), which was assumed small in the derivation of Eq. 13 is recorded for each case as a validation to this

simplifying assumption.
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considered turbine and the wake source (ρ = 0), the agreement between Eq. 13 and the numerical solution in Fig. 2 for all the175

shown cases indicates that the assumption of minimal impact of wake shearing and stretching on the wake center was justifiable,

even at high values of the veer coefficient ω at x/D = 10. As the stretching and shearing of the wake shape due to wind-veer

effects increase downstream of the wake source (ω increases with x/D), the role of the angle δ (hub-height difference) becomes

more profound compared to locations close to wake source (first column vs last column in Fig. 2). Specifically, the low Ct

and low Ti case is characterised by a slow rate of wake expansion (σ is smaller than the other cases), resulting in the largest180

deviation between the numerical and analytical solutions far downstream of the wake source (Fig. 2d), because the parameter

κ is relatively larger. However, at large distances downstream of the wake source (x/D ∼ 10) the magnitude of the wind-speed

deficit is sufficiently small (the scaling function C is small) making any differences between the numerical and analytical

solutions insignificant.

3.2 Multiple upstream wakes185

So far, we examined the developed analytical solution for a single upstream wake, but a wind turbine is typically impacted

by multiple upstream turbines, for which wake superposition models are applied. When the rotor-averaged deficit due to

multiple upstream wakes is calculated numerically using a set of discrete points on its rotor disk, wake superposition of all

upstream wakes is applied for each point on the rotor disk independently, followed by rotor averaging of the superposed

deficits. Alternatively, the presented analytical solution (Eq. 13) corresponds to evaluating the rotor-averaged deficit for each190

upstream wake independently, followed by superposition of the rotor-averaged deficits. The impact of the order of applying

wake superposition and rotor averaging depends on the structure of the superposition expression. Ali et al. (2024a) showed

that for axisymmetric wakes the order of wake superposition and rotor averaging has no significant impact on the overall rotor-

averaged deficit for both linear superposition (Niayifar and Porté-Agel, 2015) and root-mean-squared superposition (Voutsinas

et al., 1990), and demonstrated this by application to the Horns Rev wind farm. In this section, we extend this analysis to the195

case of non-axisymmetric wakes to quantify the impact of the order of wake superposition and rotor averaging.

Expanding on the application presented by Ali et al. (2024a), we consider the Horns Rev wind farm but with yawed turbines

to demonstrate the accuracy of Eq. 13 when combined with various wake superposition models against numerical approaches.

The yaw angle of each turbine was obtained from the yaw optimisation study by Zhang et al. (2024) for a free stream flowing

from West to East with a wind speed 8 ms−1 and a turbulence intensity of 7.7%. The employed row-averaged yaw angles are200

shown in Fig. 3a, along with a schematic of the farm’s layout and the direction of the wind relative to the farm. We use the wake

deflection model of Bastankhah and Porté-Agel (2016), and the turbine-induced turbulence model of Crespo and Hernandez

(1996). The wake of each turbine is assumed to be Gaussian similar to the form in Eq. 1. No wind-veer effects are included in

this comparison, and hence ω = 0.

We consider three wake superposition models: linear superposition (Niayifar and Porté-Agel, 2015), root-mean-squared205

superposition (Voutsinas et al., 1990, hereafter RMS), and the product-based superposition model of Lanzilao and Meyers

9
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Figure 3. (a) The row-averaged yaw angle of the Horns Rev wind farm with respect to the free-stream wind from West to East (Zhang et al.,

2024). Inset shows a schematic of the farm’s layout where the yaw of each turbine is indicated and the first row is highlighted in green to

indicate row definition. (b) The row-averaged power generation of the Horns Rev wind farm using linear wake superposition (Niayifar and

Porté-Agel, 2015) obtained using the analytical solution of Eq. 13 (solid curve) compared to the numerical solution using the averaging

points shown in Fig. E1 (markers). For reference, the case with no turbine yaw is shown by the dashed curve. The free-stream wind speed is

8 ms−1 and the free-stream turbulence intensity is 7.7%. (c) same as in sub-figure b but for the root-mean-squared superposition (Voutsinas

et al., 1990). (d) same as in sub-figure b but for the product-based wake superposition of Lanzilao and Meyers (2022).

(2022, hereafter LM), which are defined as

W̃lin =
1

U∞

∑

j∈S

ũjWj , W̃RMS =
1

U∞

√∑

j∈S

ũ2
jW

2
j , and W̃LM = 1−

∏

j∈S

(1−Wj) , (14)

where U∞ is the free-stream wind speed, and S is the set of all upstream turbines whose wakes influence the considered

turbine. Figures 3b–d show the row-averaged power generation of the Horns Rev wind farm as calculated analytically (solid210

curves) and numerically (markers) for linear superposition (Fig. 3b), root-mean-squared superposition (Fig. 3c), and product-

based superposition (Fig. 3d). The change in row-averaged power generation due to turbine yaw exhibits similar trends to that

predicted by Zhang et al. (2024) with a reduction in power from the first row, a power uplift from the second and third rows,

and only small variations (of order 1–2%) for subsequent rows (Figs. 3b–d). This is observed for the three considered wake

superposition models, and power generation of later rows (third row and onwards) are more sensitive to the used superposition215

model than to the imposed yaw. The comparisons in Figs. 3b–d show that the analytical and numerical calculations of the row-

averaged power generation are indistinguishable, indicating that the order of applying wake superposition and rotor averaging

10

https://doi.org/10.5194/wes-2024-107
Preprint. Discussion started: 10 September 2024
c© Author(s) 2024. CC BY 4.0 License.



does not impact the accuracy of Eq. 13, which can be used with the considered wake superposition models as well as any

superposition model that uses similar operators (i.e., linear, root-mean-squared, or product).

4 Discussion220

In the current study, we derived and validated an expression for the surface integration of a non-axisymmetric Gaussian wake

over a circular disk, depicting the rotor of a turbine whose rotor-averaged deficit is sought. The general integrated wake profile

took into consideration wake stretching arising from the yawing of upstream turbines, and wake planar shearing due to wind-

veer effects through a set of controlling variables: σ, ρ, δ, ξ, and ω, whose definitions were discussed in detail in section 2.1.

The presented solution is compatible with any wake deflection model from the literature as all distances were referenced to the225

wake center. Alternatively, if the center of the upstream turbine is sought to be the reference location, then the definitions of

ρ and δ need modifications to account for the wake horizontal deflection d. In this case, the modified lateral offset ρ∗, and the

modified angle δ∗ measured from the center of the upstream turbine are

ρ∗ = ρ

√
1 +2

(
d

ρ

)
cosδ +

(
d

ρ

)2

, and tanδ∗ =
sinδ

d/ρ + cosδ
. (15)

The rotor-averaged deficit proposed in section 2.2 (Eq. 13) corresponds to a single upstream wake, whereas an operational230

wind turbine is typically impacted by multiple upstream wakes whose deficits are superposed using a variety of wake super-

position models (e.g., Lissaman, 1979; Voutsinas et al., 1990). In a numerical framework that relies on a set of discrete points

generated on the rotor disk of the considered turbine to calculate the rotor-averaged deficit, wake superposition due to all

upstream wakes is applied to each point independently followed by a rotor averaging for the superposed wakes. Conversely,

application of Eq. 13 to a turbine subject to multiple upstream wakes requires the evaluation of the rotor-averaged deficit for235

each wake followed by a superposition of these deficits. For a superposition model that relies on a linear operator to com-

bine upstream deficits (e.g., Lissaman, 1979; Niayifar and Porté-Agel, 2015; Zong and Porté-Agel, 2021; Dar and Porté-Agel,

2024), the numerical and analytical approaches discussed above are the same, meaning that the order of applying wake su-

perposition and rotor averaging has no effect. However, other wake superposition models rely on root-mean-squared operators

(e.g., Katic et al., 1987; Voutsinas et al., 1990) for which the order of wake superposition and rotor averaging is not trivial.240

Ali et al. (2024a) showed mathematically that for a column of turbines of the same hub-height (δ = 0) with no lateral offset

(ρ = 0) where the wake of each turbine is axisymmetric (ξ = ω = 0), the order in which wake superposition and rotor averag-

ing calculations are applied results in insignificant differences as long as the number of upstream turbines with non-negligible

deficits acting on the considered turbine is not large. They showed that for an analytical approach (rotor-averaging followed by

superposition), the rotor-averaged deficit of the considered turbine is proportional to e−1/(4σ̃2), where σ̃ is an averaged wake245

standard deviation for all the upstream turbines impacting the considered turbine, whereas for a numerical approach (superpo-

sition followed by rotor-averaging), the rotor-averaged deficit is proportional to e−2/(9σ̃2). In a typical wind farm, the number

of upstream turbines with non-negligible deficits acting on a turbine is 2–3 where one of these turbines has the dominant wake

effect, making these two exponents very close. This conclusion naturally extends to the considered case of a non-axisymmetric
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wake, as the non-axisymmetric solution was shown to be a perturbation to a scaled axisymmetric solution (Eq. 13). Application250

to the Horns Rev wind farm showed that the numerical and analytical approaches using root-mean-squared superposition gave

indistinguishable results (Fig. 3c).

The superposition model of Lanzilao and Meyers (2022) does not use linear nor root-mean-squared operators, but rather

the product of the normalised rotor-averaged wind speeds of all upstream wake sources. We show in Appendix F that for this

superposition model, and for any other superposition model of a similar operator, the numerical and analytical approaches are255

asymptotically identical if the upstream wakes of the considered turbine are assumed to operate independently. This assumption

is justified as each turbine can be yawed independently of the other turbines depending on its onset wind, though such a

strategy is not optimal for the whole wind farm performance. We also demonstrate that for small-enough upstream deficits

(W ≲ 0.3), the superposition model of Lanzilao and Meyers (2022) converges to a non-weighted linear superposition model,

which explains the closeness in the estimated power generation by the two wake superposition models when applied to the260

Horns Rev wind farm (Figs. 3b, d). Similar to root-mean-squared superposition, when this product-based superposition model

was applied to the Horns Rev wind farm, there were no distinguishable differences between the analytical and numerical

solutions (Fig. 3d).

Some limitations should, however, be considered. The rotor-averaging process inherently assumes that a zero-deficit point

on the rotor disk has a wind speed that is equal to that of the upstream turbine (wake source), rather than the free-stream wind265

speed or another background wind speed. This is referred to as partial waking of a turbine. Such an effect can be profound in the

case of highly heterogeneous flow within a wind farm (e.g., in the case of extreme weather conditions such as hurricanes or in

the case of extremely large wind farms). In such a scenario, both the numerical and analytical approaches based on engineering

wake models have shortcomings as the underlying assumptions of the wake-deficit model cannot predict the interactions

between the wakes and the heterogeneous background flow, which can lead to inaccurate wind speeds of the unwaked regions270

of a rotor.

The obtained expression for the rotor-averaged deficit was derived assuming that the considered turbine is normal to the free-

stream flow, making the parameters σ, ξ, ω, and C constants across the rotor disk. If the considered turbine is yawed, these

parameters are no longer constants but vary along the streamwise extents of the considered yawed turbine. These variations

are small for a small yaw angle γ and are typically ignored, as the integration over a circle normal to the free-stream flow is275

approximately similar to that across an inclined ellipse extending from xo−R sinγ to xo +R sinγ, where xo is the streamwise

coordinate of the center of the yawed turbine. Moreover, a yawed turbine experiences transverse wind whose magnitude is

typically much smaller than the streamwise wind speed (Martínez-Tossas et al., 2019). This transverse wind is not included in

Eq. 13 and needs to be modelled numerically, if required. Nonetheless, since the streamwise wind speed is dominant for small

yaw angles and typical inter-turbine spacing, Eq. 13 presents a fast point-free expression that can be used even if the considered280

turbine has a small yaw angle.

Importantly, Eq. 13 is differentiable. Although not addressed in this study, Eq. 13 allows for obtaining mathematical ex-

pressions for the gradients of the rotor-averaged wind speed of a turbine with respect to its location in a farm and/or to the
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operating point of upstream turbines. This offers the potential to replace the heuristic search for global minima that is required

for optimisation problems to a problem of obtaining the zeros of a set of non-linear equations.285

5 Summary

An analytical expression for the rotor-averaged wind-speed deficit of a turbine operating within a Gaussian wake was derived

and validated for a general lateral offset and hub-height difference between the wake source and the considered turbine. The

Gaussian wake included wake stretching effects due to the yawing of the wake source as well as the planar shearing of the

wake shape due to wind-veer effects. The presented expression was validated against numerical evaluation of the rotor-averaged290

deficit indicating excellent agreement at various downstream distances of the wake source, and at different combinations of the

thrust coefficient of the wake source and the free-stream turbulence intensity. The expression of the rotor-averaged deficit for

a single turbine wake can be applied to multiple wakes using any available superposition model that rely on linear operators,

root-mean-squared operators or product operators as demonstrated by application to the Horns Rev wind farm. The expression

for the rotor-averaged deficit is differentiable and can lay the ground for obtaining mathematical expressions for the gradients295

of the rotor-averaged deficit, and hence power production, with respect to a turbine’s location and/or the operating conditions

of upstream turbines, which can be beneficial for optimisation-based applications.

Code availability. A Python implementation of the presented analytical expression for the rotor-averaged deficit (Eq. 13) is publicly available

from Ali et al. (2024b). The Python script used to generate Fig. 2 is also available in the same repository.

Appendix A300

In this appendix, we show how Eq. 4 can be transferred from the wake axes yn–zn to the axes of the considered turbine y–z.

From Eq. 4 along with the relation between the yn–zn and y–z axes (Fig. 1): yn = y + ∆y and zn = z + ∆z , we have

W̃ =
C

πR2

R∫

0

2π∫

0

re−(y+∆y+ω(z+∆z))2/(2σ2
y)e−(z+∆z)2/(2σ2

z) dθdr, (A1)

By expanding the brackets in Eq. A1, the exponent can be written as e−r2cr2/2e−rρcrρe−ρ2cρ2/2, where cr2 , crρ, and cρ2 are

coefficients of r2, rρ, and ρ2, respectively. Using ⟨y,z⟩= r ⟨cosθ,sinθ⟩ and ⟨∆y,∆z⟩= ρ⟨cosδ,sinδ⟩, where ⟨t1, t2⟩ means305

t1 or t2, we have

cr2 =
cos2 θ

σ2
y

+
sin2 θ

σ2
z

+
ω sin2θ

σ2
y

+
ω2 sin2 θ

σ2
y

, (A2)

crρ =
(

ω sinδ + cosδ

σ2
y

)

︸ ︷︷ ︸
a1

cosθ +
(

1
σ2

z

+ ω

(
ω sinδ + cosδ

σ2
y

))

︸ ︷︷ ︸
a2

sinθ. (A3)
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310

cρ2 =
cos2 δ

σ2
y

+
sin2 δ

σ2
z

+
ω sin2δ

σ2
y

+
ω2 sin2 δ

σ2
y

. (A4)

To simplify Eq. A2, we use the substitutions cos2 θ = (1 + cos2θ)/2 and sin2 θ = (1− cos2θ)/2

cr2 =
(

1
2σ2

y

+
1

2σ2
z

+
ω2

2σ2
y

)

︸ ︷︷ ︸
1/σ2

∗

+
(

1
2σ2

y

− 1
2σ2

z

− ω2

2σ2
y

)

︸ ︷︷ ︸
1/σ2

∗∗

cos2θ +
(

ω

σ2
y

)
sin2θ, (A5)

which can be further simplified by defining 1/σ2
ns =

√
1/σ4∗∗+ ω2/σ4

y and tanϕns = ωσ2
∗∗/σ2

y

cr2 =
1
σ2∗

+
cos(2θ−ϕns)

σ2
ns

. (A6)315

Using the same procedure and by replacing θ with δ, we have

cρ2 =
1
σ2∗

+
cos(2δ−ϕns)

σ2
ns

. (A7)

Finally, Eq. A3 can be simplified to

crρ = cos(θ−ϕs)/σ2
s , (A8)

by defining σ2
s = 1/

√
a2
1 + a2

2 and tanϕs = a2/a1, where a1 and a2 are defined in Eq. A3.320

Appendix B

In this appendix, we present the solution to the integral Mθ in Eq. 5, which was based on a solution proposed by Gaidash

(2023).

Mθ =
1
π

2π∫

0

e−η2R2 cos(2θ−ϕns)/(2σ2
ns)−ηRρcos(θ−ϕs)/σ2

s dθ. (B1)

Using the Jacobi–Anger expansion (Abramowitz and Stegun, 1972, 9.1.41–45; p. 361), we can write325

e−ηRρcos(θ−ϕs)/σ2
s =

∑

ν∈Z
(−1)νIν

(
ηRρ

σ2
s

)
eiν(θ−ϕns/2)eiν(ϕns/2−ϕs), (B2)

where Iν is the modified Bessel function of order ν, and Z is the set of integers. Using Eq. B2, the integral Mθ becomes

Mθ =
1
π

∑

ν∈Z
(−1)νeiν(ϕns/2−ϕs)Iν

(
ηRρ

σ2
s

) 2π∫

0

e−η2R2 cos(2θ−ϕns)/(2σ2
ns)eiν(θ−ϕns/2) dθ. (B3)

The integral in Eq. B3 vanishes for odd values of ν. Also, since Mθ is real we can write

Mθ = 2
∑

ν∈Z
cos(ν(2ϕs−ϕns))I2ν

(
ηRρ

σ2
s

) π∫

0

e−η2R2 cos(θ′−ϕns)/2σ2
ns cos(ν(θ′−ϕns)) dθ′, (B4)330
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where θ′ = 2θ. The integral in Eq. B4 can be solved using (Gradshteyn and Ryzhik, 2007, 3.915(2) p. 491)

π∫

0

e−tcosζ cos(νζ) dζ = (−1)νπIν(t), (B5)

which is insensitive to a phase shift ϕns. Hence, Mθ becomes

Mθ = 2
∑

ν∈Z
(−1)ν cos(ν(2ϕs−ϕns))I2ν

(
ηRρ

σ2
s

)
Iν

(
η2R2

2σ2
ns

)
, (B6)

which can be further simplified using the fact that I−ν(x) = Iν(x) for an integer ν335

Mθ = 2I0

(
ηRρ

σ2
s

)
I0

(
η2R2

2σ2
ns

)
+ 4
∑

ν≥1

(−1)ν cos(ν(2ϕs−ϕns))I2ν

(
ηRρ

σ2
s

)
Iν

(
η2R2

2σ2
ns

)
. (B7)

Appendix C

In this appendix, we provide a solution to the integral Mη defined in Eq. 5 along with solution of the integral Mθ (Eq. 7) which

was detailed in Appendix B

Mη = 2

1∫

0

ηe−η2R2/(2σ2
∗)I0

(
ηRρ

σ2
s

)
I0

(
η2R2

2σ2
ns

)
dη + 4

∑

ν≥1

(−1)ν cos(νϕ)

1∫

0

ηe−η2R2/(2σ2
∗)I2ν

(
ηRρ

σ2
s

)
Iν

(
η2R2

2σ2
ns

)
dη

(C1)340

The argument of the terms in the form Iν

(
η2R2/(2σ2

ns)
)

is sufficiently small (≲ 1) for the ranges outlined in section 2.1 with an

average value of κ = R2/(6σ2
ns) for 0≤ η ≤ 1. Hence, we employ the approximation Iν

(
η2R2/(2σ2

ns)
)
∼ (η2R2/(4σ2

ns))
ν/ν!

(Abramowitz and Stegun, 1972, 9.6.7; p. 375). The integral Mη becomes

Mη ≈ 2µ0 + 4
∑

ν≥1

1
ν!

(−R2

4σ2
ns

)ν

cos(νϕ)

1∫

0

η1+2νe−η2R2/(2σ2
∗)I2ν

(
ηRρ

σ2
s

)
dη

︸ ︷︷ ︸
Λ2ν

, (C2)

where345

µ0 =

1∫

0

ηe−η2R2/(2σ2
∗)I0

(
ηRρ

σ2
s

)
dη. (C3)

Solving the integral µ0 is discussed in more detail in section 2.2. The solution to the integrals Λ2ν is derived in detail in

Appendix D.

Λ2ν =
(

ρσ2
∗

Rσ2
s

)2ν
[
µ0−

σ2
∗

R2
e−R2/(2σ2

∗)
2ν∑

k=1

(
ρσ2
∗

Rσ2
s

)−k

Ik

(
Rρ

σ2
s

)]
(C4)
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Therefore, Mη becomes350

Mη ≈ 2µ0


1 +2

∑

ν≥1

(−χ2
ns)

ν cos(νϕ)
ν!


− 4σ2

∗
R2

e−R2/(2σ2
∗)
∑

ν≥1

(−χ2
ns)

ν cos(νϕ)
ν!

[
2ν∑

k=1

(
ρσ2
∗

Rσ2
s

)−k

Ik

(
Rρ

σ2
s

)]
, (C5)

where χns = ρσ2
∗/(2σnsσ

2
s ). For the sum over ν, we have

Pns =
∑

ν≥1

(−χ2
ns)

ν cos(νϕ)
ν!

= e−χ2
ns cosϕ cos(χ2

ns sinϕ)− 1. (C6)

Also, the modified Bessel function Iν(x) decays rapidly with ν, and hence we only keep the terms with ν ≤ 2 in the right-hand

side of Eq. C5. Therefore, Eq. C5 simplifies to355

Mη ≈ 2µ0 (1 +2Pns)−
4σ2
∗

R2
e−R2/(2σ2

∗)Pns

[
λ

ρ
I1

(
Rρ

σ2
s

)
+

λ2

ρ2
I2

(
Rρ

σ2
s

)]
. (C7)

where λ = Rσ2
s /σ2

∗.

Appendix D

In this appendix, we present a solution to a generic integral in the form

Λν(β,ϑ) =

1∫

0

η1+νe−η2β2/2Iν(ηϑ) dη, (D1)360

where ν is an integer, and β and ϑ are constants. To evaluate Λν we employ ∂/∂η (ηνIν (ηϑ)) = ϑηνIν−1(ηϑ). Integrating

Eq. D1 by parts leads to the recursion

Λν(β,ϑ) =−e−β2/2

β2
Iν(ϑ) +

ϑ

β2
Λν−1(β,ϑ), (D2)

which can be solved using the generating function F(η) =
∑
ν≥1

Λνην . Multiplying Eq. D2 by ην and summing over ν gives

∑

ν≥1

Λνην =−e−β2/2

β2

∑

ν≥1

Iν(ϑ)ην +
ϑ

β2

∑

ν≥1

Λν−1η
ν , (D3)365

which simplifies into

F(η) =−e−β2/2

β2

∑

ν≥1

Iν(ϑ)ην +
ϑη

β2
(Λ0 +F(η)) . (D4)

Solving Eq. D4 for F(η) and using Taylor’s expansion (1−ϑη/β2)−1 =
∑

m≥0

(
ϑη/β2

)m

F(η) =−e−β2/2

β2

∑

ν≥1

∑

m≥0

(
ϑ

β2

)m

Iν(ϑ)ην+m + Λ0

∑

m≥0

(
ϑη

β2

)m+1

. (D5)
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Figure E1. A uniform sunflower distribution of 2000 points over the surface a circle to be used to numerically evaluate the rotor-averaged

deficit due to an upstream wake in the form of Eq. 1 and provide a reference to validate Eq. 13. More details on this distribution is available

in Appendix E.

Finally, the integral Λν is the coefficient of ην in Eq. D5370

Λν(β,ϑ) =
(

ϑ

β2

)ν
[
Λ0(β,ϑ)− e−β2/2

β2

ν∑

k=1

(
ϑ

β2

)−k

Ik(ϑ)

]
, (D6)

where Λ0(β,ϑ) is

Λ0(β,ϑ) =

1∫

0

ηe−η2β2/2I0(ηϑ) dη. (D7)

Appendix E

In this appendix, the sunflower distribution of points across a circle is summarised. The polar coordinates rk and θk of a point375

of index k (out of N total points) on a circle of radius R are defined as

rk =





R if k > N − b

R
√

k−1/2
N−(b+1)/2 otherwise

(E1)

θk =
2πk

φ2
, (E2)
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where φ = (
√

5 +1)/2 is the golden ratio, and the constant b = round(2
√

N) with the function “round" returning the nearest380

integer. The resulting distribution of points is shown in Fig. E1. An implementation of this distribution can be found in Ali

et al. (2024b).

Appendix F

In this appendix, we examine the effect of the order of applying wake superposition and the rotor averaging for the product-

based wake superposition model of Lanzilao and Meyers (2022). Consider a wind turbine impacted by a set S of upstream385

wakes. Assuming a set of N discrete points on the rotor disk of the considered turbine, the numerical approach (wake super-

position followed by rotor averaging) of obtaining the rotor-averaged deficit is

LMW̃num =
1
N

N∑

k=1


1−

∏

j∈S

(1−Wj(k))


 , (F1)

where Wj(k) is the normalised wind-speed deficit of a point of index k on the rotor disk of the considered turbine due to the

wake of an upstream turbine of index j. The product over the set S in Eq. F1 can be expanded as390

∏

j∈S

(1−Wj(k)) = 1−
∑

j∈S

Wj(k) +
∑

i,j∈S
i ̸=j

Wi(k)Wj(k) +O(W 3). (F2)

We can neglect the higher order terms of W (order 3 and higher) compared to the lower order terms, and hence Eq. F1 simplifies

to

LMW̃num ≈
∑

j∈S

(
1
N

N∑

k=1

Wj(k)

)
−
∑

i,j∈S
i ̸=j

(
1
N

N∑

k=1

Wi(k)Wj(k)

)
. (F3)

If the rotor averaging over a set of N points asymptotically approaches the analytical average, then395

LMW̃num ≃
∑

j∈S

W̃j −
∑

i,j∈S
i ̸=j

W̃iWj . (F4)

Alternatively, the corresponding analytical approach (rotor averaging followed by wake superposition) of obtaining the rotor-

averaged deficit is

LMW̃anl = 1−
∏

j∈S

(
1− W̃j

)
≈
∑

j∈S

W̃j −
∑

i,j∈S
i ̸=j

W̃iW̃j . (F5)

The difference between the numerical and analytical approaches originates from W̃iWj in Eq. F4 versus W̃iW̃j in Eq. F5,400

where the difference between these two quantities acts as a covariance for the set of upstream deficits. If the mutual impacts

between the upstream turbines are neglected by assuming the turbines operate almost independently (i.e., W̃iWj ∼ W̃iW̃j),

then an asymptotic resemblance between LMW̃num and LMW̃anl is achieved. In the case of small-enough deficits, the superposi-

tion of Lanzilao and Meyers (2022) approaches a non-weighted linear superposition when W 2 ≪W .
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