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Abstract.

The present work is an amendment to Glauert’s optimum rotor disk solution for the maximum power coefficient, CPmax
,

as a function of tip speed ratio, λ. First, an alternate mathematical approach is pursued towards the optimization problem by

means of calculus of variations. Secondly, analytical solutions for thrust and bending moment coefficients, CT and CBe, are

derived, where an interesting characteristic is revealed pertaining to their asymptotic behavior for λ→∞. In addition, the limit5

case of the non-rotating actuator disk for λ→ 0 is shown for all three performance coefficients by repeated use of L’Hôpital’s

theorem, and its validity is discussed in the context of other works since Glauert.

1 Introduction

The original work of Glauert consisted of a closed-form solution describing the optimum performance of a rotating actuator10

disk (Glauert, 1935), where the simplified actuator disk concept for infinitely bladed propellers (Betz, 1919; Lanchester, 1915)

was extended to wake rotation of energy-extracting rotors; see also Okulov and van Kuik (2012) for a review on the early

history of momentum theory. In order for Glauert to close the basic equations of rotor disk theory, additional assumptions had

to be applied that utilized a simple relationship between the induced velocity components and pressure jump at the rotor disk

(Sørensen, 2016). At the time of Glauert, it was assumed that the kinetic energy required for wake rotation was extracted from15

the freestream (Goldstein, 1929), and this assumed wake energy—in conjunction with a constant pressure jump across the rotor

disk—remain the fundamental assumptions in Glauert’s theory. In this regard, Glauert’s model differed from that of Joukowski

(1918), which was built on the assumption of constant circulation across the rotor disk (Burton et al., 2011; Sørensen, 2016).

Also, de Vries (1979) questioned the validity of ignoring the static pressure drop caused by wake rotation. Indeed, an additional

pressure drop is required to balance the centrifugal force of rotating air parcels as a function of radial location on the disk; see20

also Sharpe (2004) for a discussion of a general momentum theory. A complete and comprehensive summary of the validity of

all rotor disk theory models can be found in Sørensen (2016). In the end, various rotor disk models all approach the accepted

Betz limit for maximum rotor power coefficient at high tip speed ratio. To date, however, no exact integrals have been presented

for thrust and bending moment coefficients based on Glauert’s optimum solution for axial and angular induction factors.
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The objective of the present work is to determine the exact integrals for thrust and bending moment coefficients, serving as25

an addendum to Glauert’s original work deriving optimum power coefficients. In doing so, an elegant solution by means of

calculus of variation reveals itself, recovering Glauert’s optimum distributions for axial and angular induction factors. Exact

integrals for thrust and bending moment coefficients are then derived, including proper limit behavior of performance coef-

ficients for low and high tip speed ratio. This work is organized as follows: Section 2 introduces classical rotor disk theory

and relevant dimensionless parameters. Section 3 discusses Glauert’s optimum solution for the maximum power coefficient, as30

well as an alternate optimization approach by means of calculus of variation, and a formal asymptotic behavior of induction

factors. Sections 4 and 5 detail the mathematics uncovering the exact integrals for thrust and bending moment coefficients,

respectively. Section 6 summarizes the analytical solutions for all three performance coefficients and discusses the limitations

with respect to validity at very low tip speed ratio. Section 7 contains some concluding remarks highlighting results obtained

within the context of the typical range of tip speed ratio for modern wind turbines.35

2 Rotor Disk Theory — Axial/Angular Induction Factors & Power Coefficient

The classical rotor disk formulation according to Glauert (1935) has been documented in various texts (Wilson et al., 1974;

Hansen, 2008; Manwell et al., 2009; Burton et al., 2011; Wood, 2011; Schaffarczyk, 2014; Sørensen, 2016; Schmitz, 2019). In

the following, only the primary relations relevant to this work are summarized:40

Consider an axi-symmetric streamtube model that encompasses a wind turbine. The cross section, where the rotor is located,

can be represented by a thin rotor disk of area, A= πR2, where R is the disk radius. The axial induction factor, a, determines

the reduction in wind speed, V0, at the disk. This coefficient is defined as

a= 1− u

V0
, (1)

where u is the axial speed at the rotor disk. As a consequence of rotor thrust, there exists a discontinuity in pressure, ∆p, at45

the disk. Therefore, Bernoulli’s equation is applied both upstream and downstream of the disk. Adding these two equations

together allows to solve for ∆p, i.e. the pressure jump arising from disk theory

∆p= 2ρV 2
0 a(1− a) (2)

in terms of the fluid density, ρ, V0 and a as shown. Next, disk rotation is added at an angular speed, Ω. The wake angular

velocity component, ω, just downstream of the disk, however, is affected by a rotor disk torque in the circumferential direction.50

The angular induction factor, a′, relates the wake angular velocity to the angular speed of the rotor disk:

a′ =
ω

2Ω
(3)

Bernoulli’s equation is applied once more upstream and downstream of the rotor disk. Note that in Glauert’s theory, the

assumption is that the same pressure jump, ∆p, that generates thrust also generates rotor torque and power. The resulting ∆p

equation arising from added wake rotation becomes:55

∆p= 2ρV 2
0 a

′(1+ a′)λ2
r (4)
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A practical relation between a and a′ is obtained by equating Eqs. (2) and (4) such that

λ2
r =

a(1− a)

a′(1+ a′)
, (5)

where λr =
r
R is the local tip speed ratio, with r

R being the non-dimensional blade radius and λ= ΩR
V0

the tip speed ratio.

In rotor disk theory, the rotor power coefficient, CP = P/( 12ρV
2
0 A), with P being rotor power, is obtained by the following60

integral:

CP =
8

λ2

λ∫
0

a′(1− a)λ3
r dλr (6)

3 Glauert’s Original Optimum Solution

In 1935, aerodynamicist Hermann Glauert approached the mathematical optimization problem of maximizing CP as a function

of λ. Glauert’s formal definition of the objective function f is given as:65

f(a,a′) = a′(1− a) (7)

For the sake of brevity, Glauert’s detailed derivation is not presented here but is included in modified form in Appendix A.

It concludes in a third-order polynomial for a(λr)

16a3 − 24a2 +(9− 3λ2
r)a+(λ2

r − 1) = 0 (8)

which can be solved iteratively using, for example, a Newton-Raphson algorithm. Glauert also found a simple expression for70

a′(a) that reads:

a′ =
1− 3a

4a− 1
(9)

Next, Glauert substituted the optimum solutions for a(λr) and a′(a) back into Eq. (6) and solved for the exact integral for

the maximum power coefficient, CPmax , as a function of tip speed ratio, λ

CPmax =
1

λ2
·
(
2

9

)3[
64

5
x5 +72x4 +124x3 +38x2 − 63x− 12lnx− 4

x

]x1=
1
4

x2=1−3a2

(10)75

where a2 is the corresponding solution of a(λr) when evaluating Eq. (8) at λ. The exact CPmax integral from Eq. (10) converges

to the theoretical Betz limit at 16
27 ≈ 0.5926 for high λ. The reader is referred to Appendix A for details.

In the present paper, Glauert’s work is amended first by finding a simple alternative solution based on calculus of variations

and formally showing the behavior for low and high λ, and then by deriving corresponding exact integrals for thrust and

bending moment coefficients, CT and CBe.80
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3.1 A Calculus of Variations Solution for CPmax

A Lagrangian function, L(a,a′,X ), is defined as

L(a,a′,X ) = f(a,a′)+X g(a,a′) (11)

where f(a,a′) = a′(1− a) is the objective function from Eq. (7), g(a,a′) = a(1− a)− a′(1+ a′)λ2
r is the equality constraint

from Eq. (5), and X is the Lagrange multiplier. To maximize f(a,a′) under the equality constraint of g(a,a′) = 0, the stationary85

points of L(a,a′,X ) must be determined by setting all partial derivatives of L with respect to a, a′, and X equal to 0. Those

partial derivatives become:

∂L
∂a

=−a′ +X (1− 2a) = 0 (12)

∂L
∂a′

= 1− a−Xλ2
r(1+2a′) = 0 (13)90

∂L
∂X

= a(1− a)− a′(1+ a′)λ2
r = 0 (14)

The goal is to solve this system of equations for polynomials a(λr) and a′(λr). This can be done multiple ways; however, a

simple method involves equating X from Eqs. (12) and (13). The resulting expression is then substituted into the final partial

derivative in Eq. (14). After some algebraic manipulation, a factored polynomial for a(λr) reads95

(16a3 − 24a2 +(9− 3λ2
r)a+(λ2

r − 1)) · (a− 1) = 0 (15)

where its factor of third order recovers Glauert’s original polynomial from Eq. (8).

The same system of equations can be solved instead to compute a polynomial for a′(λr). This time, a′ from Eqs. (12) and

(13) is equated, and the resulting expression for a is then substituted into the partial derivative from Eq. (14). After some

algebraic simplification, a third-order polynomial for a′(λr) is obtained:100

16λ2
r(a

′)3 +24λ2
r(a

′)2 +(9λ2
r − 3)a′ − 2 = 0 (16)

The relations presented in Eqs. (15) and (16) were computed by means of calculus of variations, a methodology different

from Glauert’s original approach. However, both approaches produce identical results for the optimum flow conditions. Note

that a calculus of variations approach for lightly-loaded propellers has been documented in Breslin and Andersen (1994).

3.2 Limiting Case of a & a′ for Low and High Tip Speed Ratio105

Next, it is of interest to determine the limiting case for a as λr tends to both 0 and ∞. As λr → 0, Eq. (15) becomes

16a3 − 24a2 +9a− 1 = (a− 1)(4a− 1)2 = 0 (17)
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which has the trivial roots a= 1
4 ,1. Here, the physical solution of a= 1

4 is consistent with Glauert’s original work. As for the

upper limit of λr →∞ for Eq. (15), the equation can be recast to obtain

1

1+λ2
r

=
1− 3a

−2(2a− 1)3
, (18)110

where it becomes apparent that as the left-hand side of Eq. (18) tends to zero for λr →∞, the right-hand side can only reconcile

this for a→ 1
3 . This result is again consistent with Glauert’s original solution. Alternatively, the factorization in Eq. (17) can

be used to restate the third-order factor in Eq. (15) to obtain

1

λ2
r

=
1− 3a

(1− a)(1− 4a)2
(19)

which concludes the same for λr → 0, ∞ and is in fact a relation used by Glauert in the exact integral for CPmax
, see Appendix115

A, and is used in Section 3 for the exact integrals of CT and CBe. For completeness, the limiting case for a′ as λr tends to both

0 and ∞ is also determined. Equation (16) is rearranged to:

1

λ2
r

=
(4a′ +3)2

2+3a′
a′ (20)

For added wake rotation a′ > 0, the left-hand side of Eq. (20) tends to ∞ for λr → 0. This can be reconciled on the right-

hand side by a′ →∞. Likewise, as the limit of the left-hand side of Eq. (20) becomes 0 for λr →∞, the right-hand side will120

only be satisfied with a physical solution of a′ → 0. Both behaviors are consistent with Glauert’s solution, see Appendix A.

3.3 Limiting Case of CPmax for Low and High Tip Speed Ratio

The limiting case of the CPmax integral for λr → 0 is not easily shown, and in fact was not explicitly stated in Glauert’s original

work. It is added here as part of the amendment. To better illustrate the behavior, the substitution x= 1−3a is used along with

the practical relation from Eq. (19) at the integration bound a2 such that Eq. (10) becomes:125

CPmax
=

(1− 3a2)

(1− a2)(1− 4a2)2
·
(
2

9

)3[
−10.5082−

(64
5
(1− 3a2)

5 +72(1− 3a2)
4 +124(1− 3a2)

3

+ 38(1− 3a2)
2 − 63(1− 3a2)− 12ln(1− 3a2)−

4

(1− 3a2)

)]
(21)

It is evident that for λr = 0, where a2 =
1
4 , there exists a singularity for CPmax

. Therefore, a limit for CPmax
as λr → 0, or

as a2 → 1
4 , must be taken that results in the following:

lim
a2→ 1

4

CPmax =
0

0
(22)

Since evaluating this limit results in the indeterminate form of 0
0 , the mathematical theorem known as L’Hôpital’s rule can130

be applied to determine the true limit using derivatives.

lim
a2→ 1

4

f(a2)

g(a2)
= lim

a2→ 1
4

f ′(a2)

g′(a2)
= lim

a2→ 1
4

f ′′(a2)

g′′(a2)
(23)
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For ease of reference, the functions f and g extracted from Eq. (21) are explicitly stated below:

f(a2) =

(
2

9

)3[
−10.5082− 64

5
(1− 3a2)

5 +72(1− 3a2)
4 +124(1− 3a2)

3

+ 38(1− 3a2)
2 − 63(1− 3a2)− 12ln(1− 3a2)−

4

(1− 3a2)

]
(24)

135

g(a2) =
(1− a2)(1− 4a2)

2

1− 3a2
(25)

Applying the limit of a2 → 1
4 (or λr → 0) does result in the following:

lim
a2→ 1

4

f ′(a2)

g′(a2)
= lim

a2→ 1
4

24(64a62 − 224a52 +308a42 − 212a32 +77a22 − 14a2 +1)

(3a2 − 1)2

6(4a2 − 1)(4a22 − 4a2 +1)

(3a2 − 1)2

=
0

0
(26)

Applying L’Hôpital’s rule twice, however, proves the following:

lim
a2→ 1

4

f ′′(a2)

g′′(a2)
= lim

a2→ 1
4

96(192a62 − 600a52 +742a42 − 467a32 +159a22 − 28a2 +2)

12(24a32 − 24a22 +8a2 − 1)
= 0 (27)140

Thereby the intuitive result that CPmax → 0 as λr → 0 has been formally shown. Note that the high tip speed ratio limit of

Eq. 21 for a2 → 1
3 (or λr →∞) is more readily shown with

lim
a2→ 1

3

CPmax
= lim

a2→ 1
3

4

(1− a2)(1− 4a2)2
·
(
2

9

)3

=
16

27
, (28)

which indeed recovers the known Betz limit. Next follows an additional amendment to Glauert’s work by means of analytical

derivations for thrust and bending moment coefficients, CT and CBe, based on optimum a and a′ distributions.145

4 Exact Integral of the Thrust Coefficient CT Based on Glauert’s Optimum Solution

The pressure jump, ∆p, generates a rotor thrust, T =∆p A, across the rotor disk in the axial direction. In differential form,

this becomes dT =∆p dA= 4πρV 2
0 a(1− a)rdr, using the definition of ∆p from Eq. (2) and dA= 2πrdr. A dimensionless

rotor thrust coefficient is then defined as:

CT =
T

1
2ρV

2
0 A

(29)150

The incremental thrust coefficient, dCT , can be computed by dividing the incremental thrust, dT , by 1
2ρV

2
0 A, resulting in

the following expression for dCT .

dCT = 8a(1− a)
r

R
d(

r

R
) (30)
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155

Recall that the definition for local tip speed ratio is λr =
r
Rλ. Substituting the expression for non-dimensional blade radius,

r
R , into Eq. (30) leads to the final expression for dCT :

dCT =
8

λ2
a(1− a)λrdλr (31)

To write CT exclusively in terms of a, differentiating Eq. (19) yields a relation for λrdλr with160

λrdλr =
3(4a− 1)(1− 2a)2

(1− 3a)2
da (32)

such that an integral for CT can be written as:

CT =
8

λ2

λ∫
0

a(1− a)λr dλr

=−24

λ2

λ∫
0

a(1− a)(1− 4a)(1− 2a)2

(1− 3a)2
da (33)

The same substitution as used by Glauert is carried through, where x= 1− 3a, resulting in

CT =
1

λ2
· 8

243

x1∫
x2

[
(1−x)(2+x)(1− 4x)(1+2x)2

x2

]
dx

=− 1

λ2
· 8

243

x2∫
x1

(
16x3 +28x2 − 20x− 25− 1

x
+

2

x2

)
dx (34)165

which can be easily integrated to yield the following:

CT =
1

λ2
· 8

243

[
4x4 +

28

3
x3 − 10x2 − 25x− lnx− 2

x

]x1=
1
4

x2=1−3a2

(35)

To better understand the behavior of the CT integral, Eq. (35) is rewritten again in terms of a. The integration bounds x1

and x2 are substituted in as 1
4 and (1− 3a2), respectively, where λ2 = λ2

r|a2
such that:

CT =
(1− 3a2)

(1− a2)(1− 4a2)2
· 8

243

[
−13.3272−

(
4(1− 3a2)

4 +
28

3
(1− 3a2)

3 − 10(1− 3a2)
2

− 25(1− 3a2)− ln(1− 3a2)−
2

(1− 3a2)

)]
(36)170

As λr → 0, or a2 → 1
4 , there exists a singularity and CT is not defined (note: a similar behavior was found earlier for CPmax ).

Indeed the limit for CT as λr → 0, or a2 → 1
4 , becomes:

lim
a2→ 1

4

CT =
0

0
(37)
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Since evaluating this limit results in the indeterminate form of 0
0 , L’Hôpital’s rule can be applied to determine the true limit.

The theorem equates the following limits, where functions f and g are differentiable:175

lim
a2→c

f(a2)

g(a2)
= lim

a2→c

f ′(a2)

g′(a2)
(38)

For ease of reference, the functions f and g extracted from Eq. (36) are explicitly stated below:

f(a2) =
8

243

[
−13.3272−

(
4(1− 3a2)

4 +
28

3
(1− 3a2)

3 − 10(1− 3a2)
2

− 25(1− 3a2)− ln(1− 3a2)−
2

(1− 3a2)

)]
(39)

g(a2) =
(1− a2)(1− 4a2)

2

1− 3a2
(40)

Applying L’Hôpital’s rule once results in the following as a2 approaches 1
4 :180

lim
a2→ 1

4

f ′(a2)

g′(a2)
= lim

a2→ 1
4

−24a2(16a
4
2 − 36a32 +28a22 − 9a2 +1)

(3a2 − 1)2

6(4a2 − 1)(4a22 − 4a2 +1)

(3a2 − 1)2

=
0

0
(41)

It is valid to apply L’Hôpital’s rule a second time, as functions f and g are differentiable. This yields

lim
a2→ 1

4

f ′′(a2)

g′′(a2)
= lim

a2→ 1
4

−80a42 +144a32 − 84a22 +18a2 − 1

12a22 − 10a2 +2
=

3

4
(42)

where it is interesting to note that the thrust coefficient, CT , converges to 0.75 as λ→ 0. Though seemingly a surprising result

at first, it will be reconciled with actuator disk theory in a later section.185

Note again that the high tip speed ratio limit of Eq. (36) for λr →∞ (or a2 → 1
3 ) is more readily shown with

lim
a2→ 1

3

CT = lim
a2→ 1

3

2

(1− a2)(1− 4a2)2
· 8

243
=

8

9
(43)

which is also fully consistent with actuator disk theory, as will be shown further below.

5 Exact Integral of the Bending Moment Coefficient CBe Based on Glauert’s Optimum Solution

The bending moment, Be, is an important structural parameter when assessing the loading of wind turbine blades. A dimen-190

sionless bending moment coefficient is defined as:

CBe =
Be

1
2ρV

2
0 AR

(44)
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In differential form, dBe is essentially the product of thrust dCT and lever arm r
R of the local annulus such that

dCBe = dCT · r
R

=
8

λ2
a(1− a)λrdλr ·

r

R

=
8

λ3
a(1− a)λ2

rdλr (45)

where Eq. (31) was used. The exact integral for the total bending moment coefficient, CBe is hence defined as:195

CBe =

λ∫
0

dCBe =
8

λ3

λ∫
0

a(1− a)λ2
rdλr (46)

Substituting a combination of Eqs. (5) and (32) yields:

CBe =−24

λ3

λ∫
0

a(1− a)3/2(1− 4a)2(1− 2a)2

(1− 3a)5/2
da

(47)

Once more, the integration substitution is performed, where x= 1− 3a, so that CBe can be solved analytically to:

CBe =
1

λ3
· 8

243 · 271/2

x2∫
x1

(1−x)(2+x)3/2(1− 4x)2(1+2x)2

x5/2
dx

=
1

λ3
· 8

243 · 271/2

[
−24ln((x+2)1/2 +x1/2)

− (x+2)1/2(192x6 +408x5 − 532x4 − 890x3 +585x2 − 260x+20)

15x3/2

]x1=
1
4

x2=1−3a2

(48)200

To better understand the behavior of the CBe function, Eq. (48) is rewritten solely in terms of a. This means substituting

λ3 = λ3
r|a2

in the denominator by raising Eq. (19), which is evaluated at the integration bound a2, to the power 3
2 such that:

λ3 =− (1− a2)
3
2 (1− 4a2)

3

(1− 3a2)
3
2

(49)

The values for x1 and x2 are substituted in as well, being 1
4 and (1−3a2), respectively, where a2 is simply a(λr) such that:

CBe =− (1− 3a2)
3/2

(1− a2)3/2(1− 4a2)3
· 8

243 · 271/2

[
2.5457−

(
−24ln[(3− 3a2)

1/2 +(1− 3a2)
1/2]

− (3− 3a2)
1/2 · (192(1− 3a2)

6 +408(1− 3a2)
5 − 532(1− 3a2)

4 − 890(1− 3a2)
3)

15 · (1− 3a2)3/2

− (3− 3a2)
1/2 · (585(1− 3a2)

2 − 260(1− 3a2)+ 20)

15 · (1− 3a2)3/2

)]
(50)205

As λr → 0 (or a2 → 1
4 ), the bending moment coefficient, CBe, yields the following indeterminate form:

lim
a→ 1

4

CBe =
f(a2)

g(a2)
=

0

0
(51)
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For ease of reference, the functions f and g extracted from Eq. (50) are explicitly stated below:

f(a) =
8

243 · 271/2

[
2.5457−

(
(−24ln[(3− 3a2)

1/2 +(1− 3a2)
1/2]

− (3− 3a2)
1/2 · (192(1− 3a2)

6 +408(1− 3a2)
5 − 532(1− 3a2)

4 − 890(1− 3a2)
3)

15 · (1− 3a2)3/2

− (3− 3a2)
1/2 · (585(1− 3a2)

2 − 260(1− 3a2)+ 20)

15 · (1− 3a2)3/2

)]
(52)

g(a) =− (1− a2)
3/2(1− 4a2)

3

(1− 3a2)3/2
(53)210

Using L’Hôpital’s rule once leads to the indeterminate form of 0
0 with

f ′(a2) =
3359232a72 − 11757312a62 +16166304a52 − 11127456a42 +4041576a32 − 734832a22 +52488a2

3
13
2 (1− 3a2)

5
2 (3− 3a2)1/2

g′(a2) =
9(1− a2)

1/2 (4a2 − 1)
2 (

4a22 − 4a2 +1
)

(1− 3a2)
5
2

and

CBe = lim
a2→ 1

4

f ′(a2)

g′(a2)
=

0

0
(54)215

Applying L’Hôpital’s rule a second time still results in the indeterminate form of 0
0 as

f ′′(a2) =

120932352a82 − 519001344a72 +925888320a62 − 893765664a52 +509553504a42
− 175414896a32 +35429400a22 − 3779136a2 +157464

3
13
2 (1− 3a2)

7
2 (3− 3a2)3/2

g′′(a2) =
3456a52 − 7776a42 +6624a32 − 2736a22 +558a2 − 45

(1− 3a2)7/2(1− a2)1/2

and

CBe = lim
a2→ 1

4

f ′′(a2)

g′′(a2)
=

0

0
(55)220

Differentiating functions f and g a third time results in a definite value for the limiting case of CBe with

f ′′′(a2) =

3265173504a92 − 16597965312a82 +36147435840a72 − 44231007744a62 +33530384160a52
− 16363658880a42 +5158048248a32 − 1017532368a22 +114791256a2 − 5668704

3
13
2 (1− 3a2)

9
2 (3− 3a2)

5
2

(56)
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g′′′(a2) =
10368a62 − 31104a52 +36288a42 − 21312a32 +6642a22 − 1026a2 +63

(1− 3a2)
9
2 (1− a2)

3
2

(57)

and

CBe = lim
a2→ 1

4

f ′′′(a2)

g′′′(a2)
=

1

2
(58)225

Note again that the high tip speed ratio limit of Eq. (50) for λr →∞ is more readily shown with

lim
a2→ 1

3

CBe = lim
a2→ 1

3

−(3− 3a2)
1
2 · 4

3

(1− a2)
3
2 (1− 4a2)3

· 8

243 · 27 1
2

=
16

27
(59)

For the high λr limit, the value of CBe approaches 16
27 ≈ 0.5926. Here it is interesting to note that both CPmax

and CBe tend

to the Betz limit as λr →∞, which is reconciled in the next section.

6 Summary of Coefficients Derived from Glauert’s Optimum Model230

Figure 1 shows the three coefficients of interest, CPmax
, CT , and CBe, and their tabulated values over a range of design tip

speed ratios between 0 and 10. Note that Glauert’s original work showed exclusively CPmax based on optimum flow conditions.

Exact analytical solutions for CT and CBe, on the other hand, constitute an amendment to Glauert’s original work.

  

Figure 1. Power CPmax , thrust CT ,and bending moment CBe coefficients as functions of tip speed ratio, λ. for optimal a and a′ distribution.

Beginning with the high tip speed ratio limit of λ→∞, both power and bending moment coefficients, CPmax and CBe,

converge to the Betz limit 16
27 ≈ 0.5926. This may at first seem surprising for CBe; however, it is a direct consequence of the235
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respective limit for the thrust coefficient, CT . In fact, CT → 8
9 for λ→∞, which describes the limit of actuator disk theory

with CT = 4a(1− a) = 8
9 for the optimum a→ 1

3 . In addition, one consequence of a constant pressure jump, ∆p, across the

rotor disk is a linear thrust distribution dT =∆p 2πr dr whose center of pressure is known to be at 2
3

r
R . From this simple

thought experiment, it is indeed understood that CBe =
2
3 CT = 16

27 (Betz limit) for λ→∞.

For the low tip speed ratio limit of λ→ 0, it is known that CPmax
→ 0; however, it has been formally proven for the first240

time as part of this amendment using L’Hôpital’s theorem. On the other hand, thrust and bending moment coefficients, CT and

CBe, tend towards non-zero values. The thrust coefficient, CT , remains consistent with a non-rotating actuator disk such that

CT = 4a(1− a) = 3
4 for a→ 1

4 . The center of pressure stays at 2
3

r
R in the limit such that CBe =

2
3 CT = 1

2 , all of which is

consistent with Fig. 1 and the limit of actuator disk theory. Note however that for rotor disk theory where 0< λ <∞, the ratio

CBe/CT ≈ 2
3 , though not exactly, as a(λr) ̸= const. in Glauert’s solution, see Fig. A1.245

6.1 Validity of Classical Glauert Theory

In his approach, Glauert assumed the pressure in the wake to be approximately equal to the freestream pressure, and the az-

imuthal velocity in the wake to be approximately equal to the azimuthal velocity immediately behind the rotor plane (Sørensen,

2016). The first assumption has been questioned by others (de Vries, 1979) due to the pressure gradient required to maintain250

swirl. Generally, areas of improvement have been identified within Glauert’s work for low tip speed ratio that include refine-

ment of the blade model, swirl effects, tip correction, the optimization routine, and considerations to atmospheric and rotor

conditions (van Kuik, 2018). In this context, the greatest variation among different aerodynamic rotor models is present within

the optimum flow conditions, a(λr) and a′(λr), for low tip speed ratio (λ < 4). For example, Wood and Hammam (2022)

investigated the optimal performance of actuator disk models for horizontal-axis turbines. By implementing thrust from the255

Kutta-Joukowsky equation, dependence on pressure within the wake is avoided. Their results highlighted that optimal perfor-

mance at low λ is constrained as a measure to avoid recirculation in the wake, something that was not captured in Glauert’s

theory. While apparent effects on CPmax
are small at low tip speed ratio, the thrust coefficient CT for the limit λ→ 0 computed

by Wood and Hammam (2022) is less than half to the computed value of 0.75 in Figure 1. At λ= 1, however, CT from Wood

and Hammam (2022) equals 0.738 compared to 0.8458 in Figure 1, and CPmax
is 0.4381 compared to 0.4155 in Figure 1.260

Overall, results obtained using Glauert’s theory are impressive given the inherent assumptions.

7 Concluding Remark

This work derived several amendments to Glauert’s original optimum rotor disk solution. First, an alternative approach by

means of calculus of variations was pursued to solve the underlying classical objective function for CPmax in wind turbine265

aerodynamics. Second, Glauert’s optimum rotor disk solution was used to derive exact solutions for the thrust and bending

moment coefficients, CT and CBe. Here, L’Hôpital’s theorem was employed to determine the convergence behavior of all

three coefficients for λ→ 0, while the high tip speed ratio limit of λ→∞ was more readily shown. Some surprising results
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included that both power and bending moment coefficients, CPmax
and CBe, approach the Betz limit for λ→∞ and that thrust

and bending moment coefficients, CT and CBe, have non-zero values for λ→ 0. Using a simple thought experiment, it was270

shown that all observations are indeed consistent with the limit of a uniformly loaded (constant pressure jump) rotor disk,

whose validity holds for tip speed ratios typical of modern utility-scale wind turbines but has, due to its inherent assumptions,

limited validity at very low tip speed ratio as discussed. Nevertheless, this work presents an interesting addendum to one of the

pioneering works in wind turbine aerodynamics.

Appendix A: Glauert’s Original CPmax Derivation275

The following analysis is adjusted from Glauert’s original derivation (Glauert, 1935) and consistent with other versions pub-

lished in various textbooks (Burton et al., 2011; Hansen, 2008; Manwell et al., 2009; Schaffarczyk, 2014; Sørensen, 2016;

Wilson et al., 1974; Wood, 2011; Schmitz, 2019). The function to be optimized is:

f(a,a′) = a′(1− a) (A1)

To determine the maximum of f , one must differentiate both sides of the objective function f with respect to the axial280

induction factor, a. The result is equated to 0 in order to find the appropriate stationary point, as shown:

df

da
=

da′

da
(1− a)− a′ = 0 (A2)

Rearranging the equation above yields a new condition which must be satisfied at maximum CP :

da′

da
=

a′

1− a
(A3)

Now, a second look is taken at the pressure relation from Eq. (5) which was known to Glauert. A derivative with respect to285

a is taken on both left- and right-hand sides of the equation, resulting in the following:

1− 2a= λ2
r(1+2a′)

da′

da
(A4)

The right-hand side of Eq. (5) is substituted in for the λ2
r term, and the right-hand side of Eq. (A3) is substituted in for the

differential term above, simplifying to the following:

1+ a′

1+2a′
=

a

1− 2a
(A5)290

Upon algebraic rearranging of this intermediate step in Eq. (A5), the optimum relationship between a and a′ is revealed:

a′ =
1− 3a

4a− 1
(A6)

This solution for a′ can be substituted into the pressure relation from Eq. (5) to obtain a relationship between λr and a:

λ2
r =

(1− a)(1− 4a)2

1− 3a
(A7)
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Equation (A7) is then rearranged into a third-degree polynomial representing the optimal axial induction factors across the295

rotor disk as a function of local tip speed ratio, λr, as shown below:

16a3 − 24a2 +(9− 3λ2
r)a+(λ2

r − 1) = 0 (A8)

A Newton-Raphson algorithm is employed to iteratively solve Glauert’s third-order polynomial, with

ai+1 = ai −
f(ai)

f ′(ai)
(A9)

The resulting optimum function a(λr) has been tabulated and plotted in Fig. A1 for λr ranging from 0 to 10. A formal proof300

of CP exhibiting a maximum, i.e. via d2f
da2 < 0, has only been shown recently (Schmitz, 2019).

  

Figure A1. Glauert’s theoretical solutions for optimum axial and angular induction factors, a and a’ respectively, as a function of local tip

speed ratio, λr

With optimum flow conditions known for a and a′ as a function of λr, Glauert was able to determine the exact solution for

CPmax
. Returning to Eq. (6), there is a λ3

rdλr term that must be addressed in order to fully solve CPmax
in terms of a. The

approach taken by Glauert involved taking a second look at Eq. (A7). Upon differentiating both sides of this equation, a new

expression for 2λrdλr is found, relating dλr and da such that305

2λrdλr =
6(4a− 1)(1− 2a)2

(1− 3a)2
da (A10)
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The λ3
rdλr term of interest can then be broken into a λ2

r and λrdλr term, for which Eqs. (A7) and (A10) can be substituted

in. Now, the integral for the maximum power coefficient, CPmax
, can be defined by just one unknown, i.e. a, as shown below:

CPmax
=

8

λ2

λ∫
0

a′(1− a)λ2
r ·λr dλr

=
24

λ2

a2∫
a1

(1− a)2(1− 4a)2(1− 2a)2

(1− 3a)2
da (A11)

Note that the limits of integration have been modified to account for the variable substitution from λr to a. The value of the310

lower bound, a1, can be calculated by setting λr equal to 0 in Eq. (A8) and solving for a such that a1 = 1
4 ; the upper bound,

a2, is the solution to Eq. (A8) for a variable input of λr. Through integration by substitution, a new variable x= 1− 3a is

introduced to allow solving for CPmax . The exact integral can now be expressed in terms of only x.

CPmax =− 1

λ2
· 8

729

x2∫
x1

[
(x+2)(4x− 1)(2x+1)

x

]2
dx (A12)

Here the integration bounds must be adjusted to account for the substitution from a into terms of x such that x2 = 1− 3a2315

and x1 = 1− 3a. Expanding the integrand and switching the integration bounds to avoid representing the exact integral as a

negative expression yields the following:

CPmax
=

1

λ2
·
(
2

9

)3
x1∫

x2

[
64x4 +288x3 +372x2 +76x− 63− 12

x
+

4

x2

]
dx (A13)

Integration of Eq. (A13) results in:

CPmax =
1

λ2
·
(
2

9

)3[
64

5
x5 +72x4 +124x3 +38x2 − 63x− 12lnx− 4

x

]x1=
1
4

x2=1−3a2

(A14)320

These results for CPmax
, representing Glauert’s optimum model, are plotted over a range of tip speed ratio, λ, as a solid line

in Fig. A2.
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Figure A2. Maximum power coefficient, CP , for Glauert’s actuator disk model and Betz’s theoretical limit.

The dotted horizontal line represents the theoretical Betz limit at 16
27 = 0.5926. A more compact form of Glauert’s solution

can be found in Durand’s review (Glauert, 1935) and other texts.
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