
Spatio-Temporal Graph Neural Networks for Power Prediction in
Offshore Wind Farms Using SCADA Data
Simon Daenens1, 2, 3, Timothy Verstraeten1, 2, 3, Pieter-Jan Daems1, 2, Ann Nowé3, and Jan Helsen1, 2

1OWI-Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
2Acoustics & Vibration Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
3Artificial Intelligence Lab Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium

Correspondence: Simon Daenens (simon.daenens@vub.be)

Abstract. This paper introduces a novel model for predicting wind turbine power output within a wind farm at a high temporal

resolution of 30 seconds. The wind farm is represented as a graph, with Graph Neural Networks (GNNs) used to aggregate

selected input features from neighboring turbines. A temporal component is introduced by feeding a time series of input features

into the graph, processed through a Long Short-Term Memory (LSTM) network before being passed to the GNN. Our model is

integrated into a Normal Behavior Model (NBM) framework for analyzing power loss events in wind farms. The results show5

that both the Spatial and Spatio-Temporal GNN models outperform traditional data-driven power curve methods, achieving

reductions in Mean Absolute Error (MAE) of approximately 22.6% and 30.3%, respectively, and in Mean Absolute Percentage

Error (MAPE) of around 20.7% and 30.5%. Notably, the Spatio-Temporal GNN demonstrates superior performance, attributed

to its ability to effectively capture both spatial and temporal dynamics. Additionally, the model achieves remarkable agreement

with SCADA-derived energy ratios across the full range of wind directions, with a weighted average error of 0.0373; an10

improvement of approximately 57.4% compared to the power curve binning method. This advantage is especially pronounced

under waked conditions, where traditional methods such as the power curve and Multilayer Perceptron (MLP) models exhibit

significantly higher error rates. Beyond power prediction, we illustrate the model’s effectiveness in detecting and analyzing

instances of reduced performance and its ability to identify various types of abnormal events beyond what is recorded in

standard status logs. Compared to the power curve method, the Spatio-Temporal GNN reduces the rate of undetected power15

loss events from 12.6% to just 0.02%, demonstrating a substantial improvement in capturing abnormal events.

1 Introduction

Wind energy plays a vital role in addressing the escalating global energy demand while aligning with sustainability goals to

combat climate change. As countries worldwide strive to reduce greenhouse gas emissions and transition towards renewable

energy sources, wind energy emerges as a clean and abundant resource capable of meeting a significant portion of our energy20

needs (Yousefi et al., 2019). Offshore wind farms offer promising opportunities to harness stronger and more consistent wind

speeds compared to onshore locations, thereby contributing to a more resilient and sustainable energy infrastructure (Inter-

national Energy Agency, 2023). As technology advances and costs continue to decline, offshore wind projects are becoming
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more economically viable and attractive investments for governments, developers, and energy consumers alike (European

Commission, 2023).25

Accurate estimation of potential power allows wind farm operators to optimize the operation of individual turbines and the

entire wind farm. By understanding the potential power each turbine could generate under different wind conditions, operators

can make informed decisions about operation settings and maintenance schedules to maximize production while minimizing

costs. As wind conditions and turbine performance can fluctuate significantly, developing precise power prediction models

becomes essential to navigating these complexities.30

Building on this need for accurate power forecasts, it is equally important to utilize these predictions to identify power loss

events - instances of reduced performance where the generated power falls below the potential output - within the wind farm.

By comparing predicted energy output with actual performance, we can detect potential inefficiencies and operational issues.

In this context, this research addresses two key questions:

1. Can we leverage temporal trends in wind flow, turbine positioning, and integrated measurements from different turbines35

within the wind farm to improve power prediction accuracy?

2. Can we detect power loss events by comparing precise power predictions with actual turbine performance?

Potential power prediction methods can be integrated into a broader performance monitoring framework through the im-

plementation of normal behavior modeling (NBM). The essence of NBM lies in training models to recognize normal be-

havior, enabling the identification of abnormal observations based on low model support. For instance, in the context of a40

regression-based NBM model, training on a dataset representing purely normal behavior enables the detection of abnormalities

by identifying deviations from an expected residual of zero when presented with new test set observations.

Additionally, quantifying losses during power loss events enables stakeholders to assess the economic impact of turbine

downtime or grid curtailments. High levels of curtailment can lead to increased wear and tear on turbines, reduced operational

lifespan, and potential reliability issues (Robbelein et al., 2023). With curtailment strategies evolving to be more dynamic, the45

need to refine these strategies increases. By quantifying the magnitude and frequency of power losses during curtailments, op-

erators can identify patterns and evaluate the economic impact of curtailments. This data enables them to implement strategies

to reduce curtailment frequency or duration and make informed decisions about investments in grid upgrades or energy storage

solutions that could mitigate future losses.

Finally, the development of state-of-the-art wind farm control methods typically relies on models that capture the wake effect50

between wind turbines (Verstraeten et al., 2021). Wake effects are highly non-linear and difficult to capture, and traditionally

modeled using physics-based wake models that can be calibrated using real-world data (Van Binsbergen et al., 2024a, b, c).

In this work, we propose a model to predict the potential power of wind turbines operating in wakes, specifically designed for

wind farm control applications. The model utilizes integrated measurements from the supervisory control and data acquisition

(SCADA) system of multiple turbines at a high temporal resolution of 30 seconds.55

The remainder of this paper is structured as follows: In Sect. 2, we position our research within the context of existing

literature. Sect. 3 details our approach, including the data processing pipeline, the GNN framework, and the training and
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hyperparameter tuning process of our models. Sect. 4 presents a comprehensive analysis of the model’s performance, including

its predictive accuracy and ability to detect abnormal events, compared against baseline methods. In Sect. 5, the most important

results are further discussed, and finally, in Sect. 6, we summarize the key findings of our study and outline potential directions60

for further research.

2 Related Work

An example of a normal behavior model for performance analysis, based on an artificial neural network trained on an abnormality-

filtered SCADA dataset for power prediction, is shown by Lyons and Gocmen (2021). The authors demonstrate the effectiveness

of the developed NBM for power performance analysis by qualitatively discussing instances of over- and underperformance65

identified by the model. However, the NBM seemed to struggle to model power production at higher wind speeds and ex-

pressed a tendency to underestimate the wake effect at play within the farm. In another study by Bilendo et al. (2022), a

different normal behavior model is introduced for condition monitoring of wind turbines, leveraging a heterogeneous stacked

regressor (HET-SR) algorithm. This algorithm learns from optimal power curve data to serve as a predictive model within their

NBM framework. While a qualitative analysis of a variety of faults that can be detected by the model is shown, employing70

more advanced prediction models that account for additional variables beyond wind speed could offer opportunities for a more

comprehensive performance analysis beyond general fault detection.

Traditionally, the manufacturer’s power curve, which describes the theoretical behavior of a wind turbine in constant and low

turbulence wind conditions, is used to predict the expected power output at different wind speeds. However, this method fails to

account for the specific atmospheric conditions in a particular wind farm. Therefore, most wind farm operators use the method75

of binning (International Electrotechnical Commission (IEC), 2017) to estimate the power curve based on measurement data

from their own wind turbines. With this method, the range of measured wind speeds is partitioned into separate bins of 0.5 m/s,

and the power response is calculated by averaging the power data falling in each bin. While this method is easy to implement

and can capture the primary nonlinear relationship between wind speed and power output, it does not account for inter-turbine

interactions and varying environmental conditions such as turbulence intensity.80

These limitations are particularly important in large wind farms, where wake losses and other complex dynamics become

more prevalent. Modeling these wake losses and the flow patterns within the farm has been an active area of research and various

approaches have been devised to predict expected power in wake-affected wind farms. These methods can be categorized as

either physics-based or data-driven (or a combination of the two).

Physics-based models aim to model the wind and wake flows within the wind farm based on prior knowledge about the85

physical behavior of the system. These models range from low to high fidelity, depending on the amount of detail they capture.

Low-fidelity models are relatively fast, but neglect lots of details in modeling the wind flow. An example is the FLOw Redi-

rection and Induction in Steady State (FLORIS) model developed at NREL, a control-focused wind farm simulation software

incorporating steady-state engineering wake models into a Python framework (NREL, 2024). On the other hand, high-fidelity

models describe the flow in detail based on the 3D Navier-Stokes equations and use large-eddy simulations (LES) to accurately90
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resolve the turbulent flow structures, but they are limited by their high computational cost. Examples of high-fidelity models

are SOWFA (NREL, 2012) and PALM (Raasch and Schröter, 2001).

Data-driven models construct relationships between the inputs and outputs based on statistical or machine learning mod-

els, without prior knowledge about the physical behavior of the process. Recent advancements in deep learning and big data

resulted in a growing interest towards wind farm power prediction using deep learning methods. For instance, Lin and Liu95

(2020) provide a comprehensive overview of prior studies employing deep learning methods and introduces a predictive model

using deep learning in conjunction with high-frequency SCADA data. Similarly, Lyons and Gocmen (2021) delve into power

prediction tasks using deep learning, utilizing high-frequency SCADA data and integrating local information from neighboring

turbines to enhance predictive accuracy. Moreover, the significance of spatiotemporal factors influencing wind power genera-

tion is addressed in Zhang et al. (2021) and Yin et al. (2021), employing specialized model architectures such as Convolutional100

Neural Networks (CNNs) and Long Short- Term Memory networks (LSTMs) to extract spatial and temporal feature informa-

tion. Finally, Daenens et al. (2024) developed a turbine-level power prediction model, incorporating high-frequency SCADA

data from neighboring turbines into a prediction model for potential power based on a hybrid CNN-LSTM model architecture,

by organizing the input data in a grid structure based on the wind farm layout.

A different approach to represent the spatial correlations between wind turbines in a wind farm is the use of graphs. Graphs105

can be used to represent complex data that is not inherently structured in a grid-like manner, allowing for arbitrary connections

between nodes through edges. This approach has proven beneficial for wind farms in previous studies. For example Verstraeten

et al. (2021) utilized coordination graphs to develop scalable wind farm control strategies, effectively decomposing large-scale

multi-agent optimization problems. In another study, Hammer et al. (2023) represented the wind farm as a graph and employed

an extreme gradient boosting model to predict the wake interaction losses between turbine pairs.110

Graph Neural Networks (GNNs) (Scarselli et al., 2009) have emerged as powerful tools for learning on graph-structured

data. GNNs leverage the structure of the graph to learn rich node representations by iteratively aggregating information from

neighboring nodes. They are particularly well-suited for tasks that involve node-level predictions, such as power prediction in

wind farms.

For example, Bleeg (2020) introduced GNNs as surrogate models for steady-state Reynolds-Averaged Navier-Stokes (RANS)115

simulations, providing a more computationally efficient alternative to traditional RANS models while maintaining reasonable

accuracy. More complex GNNs are explored in the work of Park and Park (2019) and Bentsen et al. (2022), where the former

proposed a physics-induced GNN (PGNN) and the latter an attention-based GNN for the power prediction of individual wind

turbines in a wind farm. Both these methods use synthetic wind farm data simulated using the FLORIS model.

In a different application, de N Santos et al. (2024) presented a GNN framework for layout-agnostic modeling of fatigue120

load effects. Using graph representations derived from PyWake (Pedersen et al., 2023) simulations, with inflow conditions as

inputs and geometrical properties encoded on edges, the framework models wind farm dynamics across various layouts and

conditions.

Combining spatial and temporal aspects of wind farm dynamics, Yu et al. (2020) developed the Superposition Graph Neural

Network, a spatio-temporal model that processes a timeseries of graphs to predict the power output of the wind turbines in a125
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wind farm. This model was trained on data for four offshore wind farms sampled at 10-minute intervals and showcases the

capability of GNNs to capture the evolution of wind flow through the farm and its impact on power generation.

3 Methodology

The data-driven methodology proposed in this work leverages high-resolution SCADA data to predict the potential power for

each wind turbine within a wind farm. In this section, we describe the key aspects of our modeling framework and we show130

the design choices that were made to develop a unified framework that can be applied to any wind farm. The data as well

as the preprocessing pipeline are described in detail in Sect. 3.1. In Sect. 3.2, the graph representation of the wind farm is

introduced. The different model architectures and characteristics are elaborated on in Sect. 3.3, and finally, the hyperparameter

tuning process is explained in Sect. 3.4.

3.1 Data collection and preprocessing135

We considered a wind farm in the Dutch-Belgian offshore zone for this study, consisting of more than 40 turbines with >8MW

rated power. Specifically, the signals obtained by the SCADA system were used, covering a two-year period from 2021 to

2022. The SCADA system records real-time information at a resolution of 1 Hz collected from sensors and control systems

for monitoring and optimizing turbine performance and overall wind farm operations and is widely used in the offshore wind

industry. As most contemporary wind farms have the used input signals readily available (e.g., through their SCADA system),140

the model is easily accessible and applicable to other wind farms.

From the SCADA system, the data signals shown in table 1 were retained and used in our analysis. The input features to the

prediction model are wind_speed, wind_direction_sin, wind_direction_cos, and turbulence_intensity.

They were chosen because they directly capture the key physical factors influencing wind farm power generation, such as wind

resource characteristics, directional influences, and flow variability. Other features were excluded due to data availability limi-145

tations, potential redundancy, and a focus on simplifying the model while retaining interpretability and accuracy. Wind speed

was taken directly from SCADA data and represents the wind speed at turbine hub height as measured by the anemometer

located on the nacelle. The absolute wind direction, measured by a wind vane mounted on the nacelle, was represented by sine

and cosine transformations to account for its circular nature. This approach ensures a smooth representation of wind direction

throughout its entire range and prevents issues where a model might incorrectly interpret a large difference between wind150

directions close to 0 and 360 degrees. Turbulence intensity (TI) refers to the measure of fluctuations in wind speed over time,

indicating the variability or instability of the airflow. The turbulence intensity was calculated using Eq. (1).

TI =
σws

µws
(1)

where σws is the standard deviation of wind speed (ws), and µws is the mean wind speed, both computed over a 10-minute

interval centered around the 1-second data point. In practical terms, this method requires wind speed data from 5 minutes before155
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and 5 minutes after each point to compute the turbulence intensity. As a result, any real-time application of this calculation

would inherently introduce a 5-minute lag, since the full 10-minute window is not complete until 5 minutes after the moment

being analyzed. However, in our case, this method is used for historical data analysis rather than real-time predictions, so this

lag does not impact the accuracy or usability of our power predictions.

The target of our prediction model is the active_power signal extracted from the SCADA data. Additionally, we included160

two more SCADA signals: rotor_speed and pitch_angle, which were utilized for filtering normal operational behavior

across our training, validation, and test datasets.

Table 1. Overview of Data Signals and Input Features

Signal Name Description Data source Usage

wind_speed The wind speed as measured by the anemometer lo-

cated on the turbine nacelle [m/s]

SCADA Model Input

wind_direction The wind direction as measured by the wind vane lo-

cated on the turbine nacelle [°]

SCADA Calculation of input fea-

tures

wind_direction_sin The sine of the wind direction [-] Calculated Model Input

wind_direction_cos The cosine of the wind direction [-] Calculated Model Input

turbulence_intensity The turbulence intensity as calculated by formula 1 [-] Calculated Model Input

active_power The active power produced by the wind turbine [kW] SCADA Model Target

rotor_speed The rotational speed of the wind turbine blades [rpm] SCADA Data Filtering

pitch_angle The angle between the plane of rotation and the chord

line of the blade [°]

SCADA Data Filtering

The steps to prepare the raw data for the training, validation, and testing of our prediction model are outlined in Table 2.

First, the raw SCADA data with a sampling frequency of 1 Hz was resampled to 30-second averages as a trade-off between

high temporal resolution, acceptable noise levels, and manageable computational costs. This approach smooths out rapid165

fluctuations while preserving key temporal dynamics. Next, the data was annotated with control conditions for filtering normal

behavior. As mentioned previously, to create a Normal Behavior Model (NBM) capable of accurately detecting abnormal

behavior and predicting potential power output under any conditions, the model must be trained exclusively on data that

represents normal system behavior.

To achieve this, we used a physics-based filtration method, which relies on the properties of the power curve as per IEC170

standards (International Electrotechnical Commission (IEC), 2017) to annotate steady-state control conditions. Using this

approach, we classified the data into different operating regions (i.e., torque control, pitch control), flagged data points falling

outside these regions as abnormal, and removed them from the dataset. We removed the entire timestamp across all turbines

when any individual turbine exhibited abnormal operation. While this reduces the number of data points available for model

training, we found that this approach yields the best results in creating a reliable NBM.175

To leverage temporal patterns in the wind flow throughout the wind farm, we incorporated lagged values of the input features

into the model. Specifically, a time series of input features between the prediction time t and t – T (with T = 5 minutes) was

included. Given the time-series nature of the data, it is essential to maintain temporal continuity, so a final filtering step was
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implemented to ensure that lagged values used by the model are consecutive and free from discontinuities caused by missing

data. To ensure continuity in the time series, we required that no timestamps were missing across all turbines for the current180

and lagged timestamps.

Finally, the resulting dataset was partitioned into distinct subsets for model training, validation, and testing. The first year of

data was used as training data and was used to fit the model parameters. The second year of data was split into equal parts as

the validation and test set. Validation data is utilized to tune hyperparameters and prevent overfitting, and testing data is used

to assess the model’s performance on unseen data, ensuring its generalizability.185

Table 2. Preprocessing Steps and Remaining Data Points

Preprocessing Step Initial Data Points Remaining Data Points Final Data Split

Raw SCADA Data 39,118,140 - -

Resampling to 30s Averages - 1,303,938 -

Retaining Normal Behavior - 262,614 -

Consecutive Timestamps - 164,124 -

Train, Validation, Test Split

Training Set - - 116,410

Validation Set - - 23,857

Test Set - - 23,857

3.2 Graph representation of the wind farm

With the datasets for training, validation, and testing of the prediction model defined, they were transformed into a format

suited for our model. Specifically, the wind farm was represented as a graph, and the selected input features from the SCADA

data were converted into graph-structured data.

A graph G is usually defined as a tuple of two sets G= (V,E), where V = {v1,v2, . . . ,vN} and E ⊆ V ×V are the sets190

of nodes and edges. To model a wind farm as a graph using this structure, each turbine in the wind farm is represented as a

node, and edges connect neighboring turbines. An edge eij = (vi,vj) ∈ E between nodes vi and vj exists if these nodes have

line-of-sight visibility and there are no obstacles (other turbines) blocking the direct view. This visibility check is performed

using Algorithm 1.

Each node v ∈ V can be associated with a vector of features xv ∈X , comprising the input features as defined previously.195

Similarly, a vector of edge attributes can be defined for each edge e ∈ E, containing a set of geometric features, specifically

the length and direction of each edge. Similar to our representation of wind direction, we represented edge direction using its

sine and cosine components to account for its circular nature.
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Algorithm 1 Visibility Check

1: Input: node1, node2, obstacles, tolerance

2: Output: True if node1 and node2 are in line-of-sight, False otherwise

3: Initialize a flag, visible, to True.

4: for each obstacle in obstacles do

5: if obstacle ̸= node1 and obstacle ̸= node2 then

6: Calculate the distance from node1 to the obstacle, d1.

7: Calculate the distance from node2 to the obstacle, d2.

8: Calculate the direct distance between node1 and node2, d_direct.

9: if |d1+ d2− d_direct|< tolerance (250m) then

10: Set visible to False and break out of the loop.

11: end if

12: end if

13: end for

14: return visible, indicating whether node1 and node2 have line-of-sight visibility.

3.3 GNN Models

At the heart of GNNs is the concept of message passing, a process through which nodes in a graph communicate with their200

neighbors to update their representations (Gilmer et al., 2017). This iterative process can be described in two main steps:

message aggregation and node update.

1. Message Aggregation: Each node aggregates messages from its neighbors. The nature of this aggregation can vary, but

common methods include summation, mean, and max pooling of neighbor features.

2. Node Update: After aggregation, each node updates its own feature based on the aggregated message and its previous205

state. This update is typically performed using a neural network, such as a multilayer perceptron (MLP).

For the task of power prediction, we developed two models: a Spatial GNN and a Spatio-Temporal GNN. The Spatial GNN

considers the node features only at the current timestep, whereas the Spatio-Temporal GNN also incorporates lagged values of

the input features. Both models utilize the GENeralized Graph Convolution (GENConv) model proposed by Li et al. (2020)

due to its ability to incorporate edge features into the message-passing process. Its message construction at layer k can be210

expressed as:

hk+1
i =MLP

(
hk
i +AGG

({
ReLU

(
hk
j + eji

)
+ ϵ : j ∈N (i)

}))
where h(k)

i is the representation of node i at the k-th layer, eji is the feature vector associated with the edge connecting nodes

i and j, ϵ is a small positive constant set as 10−7, and N (i) denotes the set of neighbors of node i. Finally, AGG represents the

aggregation function, with softmax aggregation used in this work.215
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The Spatial GNN model consists of a node and edge feature encoder, followed by a series of message-passing layers,

and concludes with a decoder: a dense layer with sigmoid activation to normalize the predictions between 0 and 1. Both the

node and edge encoders are two-layer multi-layer perceptrons (MLPs). The message-passing layers were implemented using

PyTorch Geometric (Fey and Lenssen, 2019) and were constructed according to the GENConv model by Li et al. (2020).

The Spatio-Temporal GNN model first processes the time series of node features with an LSTM network. Similar to the220

Spatial GNN, this block serves as the node feature encoder; however, in this case, the output of the LSTM network is passed

through the GNN model.

An overview of the methodology for power prediction is shown in Figure 1.

3.4 Hyperparameter tuning

Hyperparameter tuning is crucial for optimizing a machine learning model’s performance and ensuring it generalizes well to225

unseen data. In this study, we used the hyperparameter optimization framework Optuna (Akiba et al., 2019). Optuna allows

users to dynamically construct the parameter search space, benefits from efficient sampling and pruning algorithms, and is easy

to set up.

Table 3 lists the hyperparameters that were tuned, along with their proposed ranges, as well as the optimized value for both

models. Optuna automatically searched for the optimal hyperparameters by minimizing the objective function, defined as the230

Mean Squared Error (MSE) between the model’s predictions and the target values. Hyperparameter combinations that resulted

in the lowest MSE for the validation dataset were retained and used to build the final models.

Table 3. Hyperparameters, Proposed Ranges, and Optimal Values for Each Model

Hyperparameter Description Proposed Range Best Hyperparameters

Spatial GNN Spatio-Temporal GNN

Encoding Channels Number of units in the encoder MLP {8, 16, 32, 64} 64 16

Hidden Channels Number of units in the MLP for message passing (hidden state) {8, 16, 32, 64} 64 64

Number of Layers Number of message passing layers {1, 2, 4, 8} 8 8

Number of LSTM Layers Number of LSTM layers in the Spatio-Temporal GNN encoder {1, 2, 4, 8} n/a 1

GNN Dropout Dropout percentage in message passing layers [0, 0.1] 0.0367 0.0971

Encoding Dropout Dropout percentage in the encoder MLP [0, 0.1] 0.0236 0.0199

Number of Epochs Total number of training epochs [20, 100] 100 100

Batch Size Number of samples per batch during training {64, 128, 256, 512} 64 256

Learning Rate (lr) Step size for optimization (log scale) [1e-5, 0.5] 0.00217 0.0134

Learning Rate Decay Factor by which the learning rate is reduced over time [0.9, 1] 0.998 0.997
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Figure 1. Overview of the proposed methodology for power prediction. The wind farm (a) is represented as a graph (b). The input features

are encoded by the encoder blocks. In the Spatial GNN, these are MLPs (c); in the Spatio-Temporal GNN, the timeseries of node features is

encoded using an LSTM network. The edge feature encoder remains the same (d). The GNN learns rich representations for each node in the

graph using message passing (e). Each node representation is decoded using an MLP with sigmoid activation, to normalize the predictions

between 0 and 1 (f). Finally, a power prediction is made for each node within the graph (g).

4 Results

In this section, the performance of the different models concerning the specified objectives is discussed. As mentioned in Sect.

3.1, SCADA data of an offshore wind farm comprising over 40 turbines has been used to train and evaluate the Spatial and235

Spatio-Temporal GNNs described in Sect. 3.3.
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4.1 Model performance during normal operation

In Table 4, the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE) are reported for each model.

The models are compared with a Power Curve model based on the power curve binning method (International Electrotechnical

Commission (IEC), 2017) as a baseline. Furthermore, we evaluated our models compared to a standard Multilayer Perceptron240

(MLP), a commonly used data-driven approach in wind power forecasting. The MLP configuration includes two hidden layers

with 64 and 32 units, respectively. The input features for this MLP are wind_speed and turbulence_intensity; wind

direction is excluded as it does not directly affect the power output of an individual turbine.

Table 4. Performance Metrics. The MAE values have been normalized by dividing them by the turbine’s rated power for confidentiality

reasons. The lowest errors are highlighted to showcase the model with the best predictive performance on each dataset.

Power Curve MLP Spatial GNN Spatio-Temporal GNN

MAE Train 0.0476 0.0450 0.0287 0.0258

Validation 0.0481 0.0473 0.0348 0.0311

Test 0.0478 0.0468 0.0370 0.0333

MAPE Train 12.717 % 12.451 % 7.859% 6.839 %

Validation 13.265 % 13.306 % 9.916% 8.516 %

Test 12.442 % 12.503 % 9.872% 8.647 %

The results indicate that both the Spatial GNN and the Spatio-Temporal GNN models significantly outperform the power

curve binning method and the MLP across all metrics and datasets. Specifically, the Spatio-Temporal GNN model exhibits245

the best performance, as evidenced by the lowest Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)

values in the training, validation, and test datasets. Comparatively, while the Spatial GNN also outperforms the power curve

binning method and the MLP, it falls short of the Spatio-Temporal GNN. The Spatial GNN only utilizes input features at

the time of prediction, missing out on the temporal trends that the Spatio-Temporal GNN can exploit. Therefore, while spa-

tial awareness, integrated measurements, and the ability to model interactions between turbines are crucial, the inclusion of250

temporal dynamics further enhances predictive accuracy.

To provide a more granular analysis of our models’ predictive performance, Figure 2 presents the Mean Absolute Errors

(MAE) for different wind speed bins on the test dataset. While the previous analysis highlighted the overall performance of

each model across the entire dataset, this plot shows their performance across varying wind speeds.

The analysis shows a slight increase in MAE at higher wind speeds across all models, with a subsequent decrease in errors255

near the turbine’s rated wind speed. This trend aligns with expectations, as higher wind speeds typically result in higher power

output and, consequently, larger absolute errors. The observed pattern follows the inherent uncertainties of the power curve,

but the models still achieve significantly higher accuracy.
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Figure 2. Mean Absolute Error (MAE) per wind speed bin for the two GNN models, the MLP, and the power curve binning method. The

plot at the bottom shows the number of data points per wind speed bin.

Figure 3. Energy ratio plot (left) and Energy ratio error plot (right) between two turbines for each wind direction as predicted by the Spatio-

Temporal GNN, the power curve binning method, the MLP, and the SCADA data. The plot at the bottom shows the number of data points in

each wind direction bin. Grey-shaded areas indicate waked conditions.

An essential step in model validation involves comparing the model’s predictions with historical data, specifically focusing

on whether the individual turbine wake losses are accurately predicted. This can be achieved by analyzing the energy ratio260
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between a test turbine and a reference turbine for each wind direction bin (Fleming et al., 2019; Doekemeijer et al., 2022).

By examining the predicted energy ratio for each wind direction, we can gain deeper insights into how the model evaluates

the impact of wake interactions within the wind farm. In an unbiased model, the energy ratio curves should align closely with

those observed in the SCADA data.

The energy ratio REnergy is defined in Eq. (2) and represents the ratio of the sum of all power measurements between a test265

turbine and a reference turbine, computed for each wind direction bin. This sum of power measurements over a fixed period

is equivalent to the total energy produced during that time. Because the ratio is calculated over the same time period for both

the test and reference turbines, the time factor cancels out. In this equation, P Turbine 1
i,θ and P Turbine 2

i,θ are the observed powers of

point i in a given wind direction bin for the two test turbines, and N is the number of points in this wind direction bin.

REnergy (θ) =

∑N
i=1P

Turbine 1
i,θ∑N

i=1P
Turbine 2
i,θ

(2)270

Figure 3 illustrates the energy ratio curves for two test turbines within the wind farm. One turbine is positioned in the

free flow relative to the dominant wind direction, while the other is located in a subsequent row behind the first turbine, thus

experiencing the wake effect generated by the upstream turbine (Turbine 1 and Turbine 2, respectively, as indicated in Eq. (2)).

These curves compare the energy ratio, per wind direction bin, as predicted by the Spatio-Temporal GNN, the power curve

binning method, and the MLP with the energy ratios derived from the SCADA data.275

Our Spatio-Temporal GNN model demonstrates remarkable agreement with the energy ratios from the SCADA data across

the full range of wind directions. Discrepancies are minor and primarily occur in wind directions that are underrepresented in

the dataset. This suggests that the model’s predictive accuracy is robust, even though it may be slightly less accurate in areas

with sparse data. To quantify this, we calculated the wind-direction-frequency-weighted average of the differences between the

predictions and the actual energy ratios. The power curve method has an average error of 0.0875, and the MLP achieves an av-280

erage error of 0.0828. In contrast, the Spatio-Temporal GNN attains a significantly lower average error of 0.0373, representing

a relative improvement of approximately 57.4% over the power curve binning method.

Furthermore, the energy ratios align with intuitive expectations. For instance, in wind directions between 220° and 245°,

both turbines experience undisturbed wind inflow, leading to similar power outputs. As the wind direction shifts towards 250°

to 260°, one of the test turbines becomes obstructed by another turbine, resulting in reduced power production. Consequently,285

the energy ratio increases, reflecting the higher power output of the turbine with unobstructed inflow compared to the blocked

turbine.

The energy ratio error plot reveals that the Spatio-Temporal GNN significantly outperforms both the power curve binning

method and the MLP, particularly under waked conditions. This highlights the strength of our GNN in accurately predicting

potential power in waked flows, where conventional methods like the power curve binning and MLP models fall short.290
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4.2 Quantitative detection of abnormal events

Having quantified our models’ accuracy on the test set containing normal behavior, the next step is to evaluate their performance

under abnormal conditions. While our primary objective is not to develop a Normal Behavior Modeling (NBM) framework, we

aim to validate the robustness of our power prediction model in scenarios where no ground truth is available, such as turbine

shutdowns or curtailments. To achieve this, we employ a commonly used anomaly detection methodology: a threshold-based295

approach that identifies anomalies by analyzing the residuals between the predicted and actual values. This allows us to assess

the model’s ability to detect abnormal observations based on deviations from expected behavior.

In our methodology, anomalies are flagged when the deviation between the predicted and actual power exceeds two times the

standard deviation of the produced power for a given wind speed bin. These standard deviations are derived from a data-driven

power curve and calculated for wind speed bins of 0.5 m/s width.300

At low wind speeds, the standard deviation of the produced power is relatively low due to the reduced influence of aero-

dynamic and mechanical complexities; the turbine operates in a more linear torque control regime, where power production

closely follows a predictable cubic relationship with wind speed. As wind speed increases, turbulence and wake interactions

introduce greater variability, leading to higher uncertainty in power output and, consequently, a higher standard deviation.

However, as the wind speed approaches the rated value, the turbine enters pitch control mode, where power output stabilizes305

at the rated capacity, reducing variability and lowering the standard deviation again.

This approach means that our NBM methodology tolerates higher errors in regions where there is more uncertainty about

the potential power and enforces stricter error thresholds in regions where the potential power is more certain. This adaptive

error tolerance is crucial for accurately identifying abnormal behavior without generating excessive false positives, particularly

in regions where power output uncertainty is naturally higher. Thus, the proposed NBM methodology ensures more precise310

and context-aware detection of anomalies in wind turbine performance.

To validate the NBM methodology, we applied our Spatio-Temporal GNN to detect anomalous observations in a dataset

spanning two months. Similarly, the NBM methodology was applied to the same dataset using the power curve binning method

as a predictor. Predictions from both models were then compared against curtailments, shutdowns, and warnings documented

in the status logs for the same period. The results are summarized in Figure 4, which presents a confusion matrix comparing315

the events recorded in the status logs with the anomalies detected by the NBM methodology. In this matrix, True Positives (TP)

represent correctly predicted abnormal events; True Negatives (TN) denote correctly predicted normal observations; False

Positives (FP) indicate events flagged as abnormal by the model, though no corresponding power loss event was recorded in

the status logs; and False Negatives (FN) are abnormal events that the model failed to detect.

With the Spatio-Temporal GNN, the majority of data points in the confusion matrix fall into the categories of True Positives320

or True Negatives, representing the desired outcomes of the methodology. Notably, the model achieves a very low False

Negative rate, with only 0.02% of power loss events going undetected. The few False Negatives that do occur correspond to

turbine shutdowns under extremely low wind conditions, where the potential power is nearly zero, and the prediction error does

not exceed the threshold for abnormal behavior. The remaining data points are False Positives, representing instances where

14



Figure 4. Confusion Matrix for NBM Methodology using the Spatio-Temporal GNN and the Power Curve model. Each entry represents the

number of correctly predicted timestamps during the evaluation period.

the model flagged anomalies without corresponding evidence in the status logs. In contrast, the power curve binning method325

exhibits a significantly higher False Negative rate, leaving approximately 12.6% of power loss events undetected. While this

method yields fewer False Positives, as discussed in Sect. 4.4, the absence of an exhaustive record of all power loss events

prevents drawing meaningful conclusions from this metric.

4.3 Analysis of a known power loss event

To further demonstrate the efficacy of our methodology in detecting power loss events, we conducted a detailed case study.330

Figure 5 illustrates a 24-hour period during which the active power output of a wind turbine, along with the corresponding

predictions by the Spatio-Temporal GNN model, were analyzed. This period was chosen arbitrarily because it includes known

loss events, making it suitable for demonstrating the model’s ability to detect such anomalies. During this period, five loss

events were detected, as indicated by the grey-shaded areas. Since these events were confirmed by the status logs, they were

categorized as True Positives.335

The first three power loss events exhibit similar characteristics, as do the last two. In the first three events, the turbine’s active

power remains around 95% of its rated capacity, whereas the prediction model suggests that the turbine should be operating at

full capacity. These power loss events are briefly interrupted by periods where the active power returns to the rated level. This

pattern is consistent with a known curtailment strategy employed by the wind farm, where high wind speeds generate more

power than can be transmitted to the grid, necessitating partial curtailment of the farm’s output.340
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Figure 5. Performance analysis case study. A time series of the turbine’s active power and the Spatio-Temporal GNN’s prediction, smoothed

using a 10-minute rolling average. The grey zones indicate abnormal performance events and are annotated using the NBM.

Figure 6 provides a broader perspective by aggregating data from individual turbines to represent the total active power output

and the Spatio-Temporal GNN model’s predictions for the entire wind farm. Additionally, the figure displays the number of

turbines experiencing power loss events as detected by the NBM method.

During the period encompassing the first three power loss events, the total active power of the farm remains at its maximum

capacity, while the predicted power exceeds this level. During this time, the farm controller actively manages the total output345

by curtailing certain turbines to avoid exceeding grid capacity limits.

The last two events follow a different pattern, where the turbine shuts down completely while the prediction model continues

to forecast nonzero active power. These significant prediction errors enable the NBM method to effectively detect these power

loss events. Examination of the total wind farm data reveals that these shutdowns affected the entire farm, not just individual

turbines. While a detailed root cause analysis is beyond the scope of this study, these events demonstrate the utility of our350

methods in identifying and analyzing power loss events. Furthermore, the ability to predict potential power output during these

events provides valuable insights into the magnitude of power losses and their associated revenue impacts.
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Figure 6. Performance analysis case study. A time series of the wind farm’s total active power and the Spatio-Temporal GNN’s prediction,

smoothed using a 10-minute rolling average. The black line denotes the number of turbines with reduced performance, as detected by the

NBM.

4.4 Analysis of unknown power loss events

It is worth noting that there is a considerable number of False Positives. This outcome is partially expected, given the lack of

an exhaustive list of status logs containing all power loss events. However, upon closer examination, two wind turbines stand355

out for having a significantly higher number of False Positives compared to the rest of the wind farm.

The first case involves a wind turbine that consistently produces around 80% of its rated power, as shown in Figure 7. A

brief analysis indicates that this is a deration of an individual turbine within the farm, a detail not captured in the available

status logs. Since derations often result from spontaneous operator decisions and are typically not well-documented in status

logs, automated post hoc detection of these events is valuable for ensuring accurate availability data. This enables operators to360

more precisely assess key performance indicators like turbine availability, quantify revenue losses due to derated turbines, and

verify compliance with required performance standards.

The second case is more complex and is depicted in Figure 8. In the days leading up to a maintenance event, we observed

large and continuous discrepancies between the turbine’s active power output and the model’s predictions. The turbine consis-

tently produced less energy than expected, followed by a deration and eventual shutdown. Upon investigating this previously365

unknown power loss event through historical logs, we discovered issues with the wind sensors on that turbine. These issues led
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Figure 7. Performance analysis case study. A time series of the turbine’s active power and the Spatio-Temporal GNN’s prediction, both

smoothed with a 10-minute rolling average, over a two-day period.

Figure 8. Performance analysis case study. A time series of the turbine’s active power and the Spatio-Temporal GNN’s prediction, both

smoothed with a 10-minute rolling average, over a five-day period.

to inconsistent pitch behavior, affecting the power output, as pitch regulation is dependent on accurate wind speed measure-

ments from the sensors.
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5 Discussion

As demonstrated in the Sect. 4, our GNN-based power prediction models consistently outperform traditional methods for370

both predicting power during normal operations and detecting abnormal events. The Spatio-Temporal GNN’s unique ability to

incorporate lagged input feature values introduces an additional temporal dimension, enabling it to identify and exploit trends

over time. This temporal insight proves particularly valuable in capturing dynamic wind condition changes, such as fluctuations

in wind speed and direction, while also smoothing out noise in high-frequency SCADA data.

Our findings show that the Spatio-Temporal GNN excels in power prediction, especially under waked conditions. Unlike375

the power curve binning method and a simple MLP, which struggle to accurately predict energy ratios in these scenarios, the

Spatio-Temporal GNN achieves significantly greater accuracy. This consistency between model predictions and the intuitive

understanding of turbine interactions under varying wind conditions highlights the model’s capability to effectively capture the

intricate dynamics of wake interactions within the wind farm.

Additionally, we validated our model in scenarios lacking ground truth data by using it to detect anomalies through deviations380

from expected behavior. The GNN-based methodology demonstrated remarkable proficiency in detecting nearly all power loss

events, whereas the power curve binning method failed to identify a substantial portion of these anomalies.

The superior performance of the GNN models emphasizes the advantage of representing the wind farm as a graph. In this

representation, each turbine not only considers its local measurements but also incorporates information from neighboring

turbines through message passing, capturing complex spatial dependencies across the wind farm. By integrating wind farm385

topology into power predictions and learning local features, we anticipate that this model is transferable to new and unseen

wind farms. However, this claim needs further investigation.

Despite its advanced capabilities, developing and training the Spatio-Temporal GNN requires minimal effort. A single model

suffices for an entire wind farm, and training time ranges from minutes to a few hours on a GPU, depending on the selected

hyperparameters. This efficiency, combined with its predictive power, makes the GNN-based approach a practical and scalable390

solution for wind farm power prediction and anomaly detection.

6 Conclusions

Our study introduces a robust and innovative approach for predicting the potential power output of wind turbines within a wind

farm at a 30-second temporal resolution by leveraging the spatial and temporal dynamics of the wind environment. By modeling

the wind farm as a graph and using Graph Neural Networks (GNNs) to aggregate information from neighboring turbines, we395

significantly improve prediction accuracy compared to traditional power curve methods. The addition of a temporal component

further enhances the model’s ability to capture and leverage temporal patterns in the data, achieving reductions of 30.3% and

30.5% in Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), respectively, compared to the power

curve method.

The Spatio-Temporal GNN demonstrates remarkable agreement with SCADA-derived energy ratios across the full range400

of wind directions, achieving a weighted average error of 0.0373; an improvement of approximately 57.4% compared to the
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power curve binning method. Notably, the model excels under waked conditions, where the power curve and MLP models

exhibit higher error rates.

Beyond power prediction, our methodology shows exceptional utility in detecting turbine underperformance and power loss

events. Integrated into a Normal Behavior Model (NBM) framework, the Spatio-Temporal GNN achieves a remarkably low405

False Negative rate of just 0.02%, identifying nearly all power loss events accurately. In contrast, the power curve binning

method leaves approximately 12.6% of such events undetected, underscoring the practical advantages of the GNN-based ap-

proach. The case studies presented validate the model’s effectiveness in detecting grid curtailments, shutdowns, individual

turbine derations, and anomalous behavior, offering valuable insights into the operational performance of wind farms.

Our findings confirm the scalability and practicality of the GNN approach. A single Spatio-Temporal GNN model suffices410

for an entire wind farm, requiring minimal computational effort and delivering significant accuracy improvements.

Future work could aim to improve model accuracy by incorporating additional environmental factors and expanding its ap-

plication to different wind farms. Developing a model that operates effectively across multiple wind farms presents a promising

research direction. Achieving this, however, requires further efforts in data standardization and the consolidation of varying

data formats across wind farms. In this context, the use of ontologies and taxonomies (e.g., RDS-PP), could facilitate consistent415

data integration. Furthermore, we plan to explore the use of this power prediction framework in wind farm control. Accurate

predictions of potential power output are critical for optimizing power setpoints; however, such optimization must also consider

the load spectrum to balance energy production and turbine longevity (Verstraeten et al., 2019; Nejad et al., 2022).
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