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Abstract. Wind farm layout optimization involves placing wind turbines in a defined domain to minimize the expected produc-

tion losses due to wake effects within the wind farm. Because of navigational regulations, tenders for offshore wind farms often

impose so-called alignment constraints, i.e., wind turbines must be located at the intersections of a parallelogram-made grid.

The shape and orientation of these parallelograms are to be optimally determined to minimize wake losses. To the authors’ best

knowledge and despite its practical interest, the wind farm layout optimization problem under alignment constraints has not5

been investigated in the literature. The contributions of this paper are twofold, the first contribution is a dedicated optimization

method to handle this problem, and the second contribution is to provide a challenging benchmark based on open data for

layout optimization with alignment constraints.

1 Introduction

Selecting a proper layout is an important task when building a wind farm. A layout far from optimal is prone to significant10

loss of expected Annual Energy Production (AEP) due to wake effects within the farm. Having an optimized method of

turbine placement in a given area helps to maximize the energy production over the life span of the wind farm. In its full

generality, the problem of optimizing a wind farm layout is a complex one for several reasons. The first is that computing a given

farm’s mean annual energy production is numerically complex, i.e., evaluating the optimization problem’s objective function

is computationally time-consuming. The second difficulty is that the problem is not convex, i.e., neither the objective function15

nor the minimization set are convex. As a result, the problem of wind farm layout optimization requires developing dedicated

optimization tools. Wind farm optimization has been the subject of much scientific research, see for example, Herbert-Acero

et al. (2014) for a review of such methods. Let us now focus on recent contributions to the field. In Quick et al. (2023), the

authors develop a stochastic gradient-based method for wind farm optimization. The presented algorithm is developed for

circular or square domains and could be easily extended to convex domains but not to non-convex or non-connected ones.20

In Kumar and Sharma (2023), the authors use a so-called teaching-learning-based algorithm to also solve the wind farm

layout optimization problem for a circular domain. In Liang and Liu (2023), the authors use genetics and particle swarm

algorithms to solve the problem on a square domain. In Fischetti and Fischetti (2022), the authors propose a Mixed Integer

Linear Programming model to solve turbine placement and cable routing optimization problems. In Kunakote et al. (2022),

the authors compare 12 meta-heuristic methods for wind farm layout optimization. The presented methods do not rely on25
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any assumption on the shape of the admissible domain. However, the method relies on a very coarse discretization of the

domain and can be numerically intractable using a finer one. In Thomas et al. (2023), the authors compare eight wind farm

optimization methods and provide a benchmark case study for comparing algorithm performances. The proposed benchmark

is highly complex since the admissible domain is neither convex nor connected. However, no alignment constraints are taken

into account in this contribution. Finally, in Stanley and Ning (2019), the authors propose a so-called inner-grid wind farm30

layout parameterization that satisfies strong alignment constraints. However, the authors assume a one-to-one correspondence

between this parameterization and the layout configuration, dramatically reducing the degree of freedom and potentially leading

to far-from-optimal solutions. In fact, despite the extensive literature on wind farm optimization, to the best of our knowledge,

no other method than the latter can handle turbine alignment constraints. By alignment constraint, we mean that we place the

turbines on the intersections of a regular grid made of parallelograms whose shape and orientation are to be determined. Far35

from being just an academic question, turbine alignment constraints are, in practice, often imposed on developers by maritime

authorities to secure the navigation of boats within the wind farm. The contribution of this paper is to provide an optimization

algorithm for wind farm layout optimization that is able to handle alignment constraints. Mathematically, these alignment

constraints make the wind farm layout optimization problem a mixed integer non-linear programming (MINLP). The integer

variables are the positions of the turbines, which belong to the finite set of grid intersections located in the admissible domain.40

The continuous variables are the grid parameters, that is to say the size and orientation of the grid’s unit parallelogram. The non-

linearity mainly stems from the wind farm’s Annual Energy Production (AEP) as a function of the optimization parameters.

These problems are generally extremely difficult to solve. As detailed in Burer and Letchford (2012), solving algorithms for

non-convex MINLP falls into two different categories: exact methods and heuristics-based methods. Exact methods often rely

on Branch and Bound methods Papadimitriou and Steiglitz (1998) or separation properties of the objective function. Heuristics45

methods include tabu research Exler et al. (2008), particle swarm algorithms Yiqing et al. (2007); Young et al. (2007), genetic

algorithms Schlüter et al. (2009) or local search methods Liberti et al. (2011). The strategy adopted in this paper is to adapt

the DEBO method the authors developed in Thomas et al. (2023) to the problem at hand. This method is a local-search-based

method coupled with an optimization-parameters-set exploration heuristic. The paper is organized as follows. In section 2, we

introduce useful notations and definitions. In section 3, we describe the aligned-layout optimization problem; that is to say, we50

present the objective function, the constraints, and the optimization variables. We fully describe the optimization algorithm in

section 4. In section 5, we take up the benchmark presented in Thomas et al. (2023) and add the alignment constraints, and we

conduct a thorough study on the setting of the optimization algorithm hyper-parameters. In section 6, we illustrate the impact

of the alignment-grid parameters exploration method on the AEP and prove that an efficient exploration method yields a strong

improvement of the AEP. Finally, in section 7, we give the conclusions of this work and draw up research perspectives on the55

subject.

2 Notations and definitions

Throughout the paper we will use recurrently the following notations
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– R,R+ denote respectively the set of real numbers and the set of non negative real numbers.

– Z,Z∗ denote respectively the set of integers and the set of non zero integers60

– Ω ∈R2: Two dimensional domain where turbines can be planted

– Nmax: Maximal number of turbines to be placed within the admissible domain E

– turbdiam: Turbine diameter

– Dmin: Minimal distance between turbines

– Dmax: Maximal distance between turbines65

– ws: Wind speed

– wd: Wind direction

– ⊤: Logical True

– ⊥: Logical False

– ¬: Logical negation70

– ∧: Logical conjonction (and)

– ∨: Logical disjonction (or)

Definition 1 (Wind farm). A capital bold character associated with a subscript such as Fn denotes a n-turbines wind farm.

Mathematically Fn is a function satisfying:

Fn : {1, . . . ,n} ∋ k 7→ (xk yk)⊤ ∈R2 (1)75

where (xk yk)⊤ is the position of the kth-turbine. Let Fn and let (x y)⊤ ∈R2, we denote Hn+1 := Fn⊕ (x y) the wind farm

defined as follows

Hn+1(k) :=





Fn(k) if k ≤ n

(x y)⊤ if k = n + 1
(2)

Definition 2 (Wind farm Power Production). We denote P : (Fn,ws,wd) 7→R+ the power production of the wind farm Fn

for a wind speed ws and a wind direction wd.80

Definition 3 (Wind random variable). Let (E,P) be a probability space. We denote W : E 7→ Z :=R+× [0,2π) the wind

random variable which associates a random event, denoted e ∈ E, to a wind configuration (ws wd) ∈ Z, that is to say, W(e) =
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(ws wd). We also denote PW the probability measure on Z associated with the random variable W. Finally, we denote EW

the expectation with respect to the probability PW defined as

EW(f) :=
∫

Z

f(ws,wd)dPW(ws,wd) (3)85

for all measurable function f : Z 7→R.

3 Optimization model for layout optimization with alignment constraints

The optimization problem we are interested in consists of optimizing the grid configuration and the turbine placement on the

intersections of this grid. This optimization problem is a non-linear mixed integer programming problem, a class of problems

known to be challenging to solve. In this section, we describe the parameterization of our problem.90

3.1 Grid parameterization

To write the optimization problem, we parameterize the grid using 6 parameters (r1, r2,θ1,θ2,vx,vy) as represented on fig. 1.

Using this parameterization we define the change-of-basis matrix from the canonical basis denoted B0 to the grid basis denoted

B(θ1,θ2, r1, r2) as follows

P
B(θ1,θ2,r1,r2)
B0

=


 r1 cos(θ1) r2 cos(θ2)

r1 sin(θ1) r2 sin(θ2)


 (4)95

In the grid-basis coordinates, any intersection point p writes as follows:

p :=


 k1

k2


 +

(
P
B(θ1,θ2,r1,r2)
B0

)−1


vx

vy


 k1,k2 ∈Z

This parameterization in grid basis is, in turn, equivalent to

p =


 k1

k2


 +


 ∆1

∆2


 k1,k2 ∈Z and ∆1,∆2 ∈ [0,1) (5)

3.2 Layout parameterization100

Using the grid parameterization described in section 3.1, an aligned layout has its turbines located on the intersections of the

grid which writes

F[B]n(i) : {1, . . . ,n} ∋ i 7→
(
ki
1 ki

2

)⊤
+

(
∆1 ∆2

)⊤
, ki

1,k
i
2 ∈Z; ∆1,∆2 ∈ [0,1) (6)

The corresponding wind farm in canonical coordinates Fn thus writes

Fn(i) = P
B(θ1,θ2,r1,r2)
B0

F[B]n(i), i = 1, . . . ,n (7)105
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Figure 1. Grid parameterization for aligned layout

3.3 Optimization problem

We are now ready to write the general wind farm layout optimization problem with alignment constraints. This optimization

problem consists of maximizing the AEP, which, in turn, is equivalent to maximizing the expected power production of the

wind farm with respect to the wind random variable as defined in eq. (3). This writes

max
(ki

1,ki
2)i=1,...,Nmax ,∆1,∆2,r1,r2,θ1,θ2

EW [P(F[B]Nmax ,ws,wd)] (8)110

under the following constraints

ki
1,k

i
2 ∈Z; i = 1, . . . ,Nmax (9)

∣∣∣ki
1− kj

1

∣∣∣ +
∣∣∣ki

2− kj
2

∣∣∣≥ 1; ∀i ̸= j (10)

∆1,∆2 ∈ [0,1) (11)

FNmax(i) ∈ Ω; i = 1, . . . ,Nmax (12)115

θ1 ∈
(
−π

2
,
π

2

]
(13)

θ2 ∈
[
−π

2
,θ1

)
(14)

Dmin ≤ min
z∈Z2

∗

∥∥∥P
B(θ1,θ2,r1,r2)
B0

z
∥∥∥ (15)

Equations (9) to (11) ensure that the turbines are located at the intersections of the grid defined by the parameters

(r1, r2,θ1,θ2,vx,vy) and thus, that the turbines are aligned along the directions θ1 and θ2. The constraint from eq. (12) guar-120
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antees that the turbines are located in the admissible domain. Constraints defined in eqs. (13) and (14) allow to generate all

possible parallelogram-based grids. Finally, the constraint from eq. (15) guarantees that the minimal distance between two

turbines is greater than Dmin.

4 Solving Algorithm

4.1 General description of the proposed solving algorithm125

The method presented in this paper belongs to the category of heuristic-based methods and consists in the following steps.

1. The first step consists of computing the set R1,2 of parameters (r1, r2) by discretization of the space [Dmin,Dmax]
2

using a grid size of ∆r.

2. The second step consists in reducing the size of the angle-search space. To do so, for each couple (r1, r2) ∈R1,2, we

discretize the search space
(
−π

2 , π
2

]
×

[
−π

2 ,θ1

)
using a discretization size of ∆θ. Then, for each grid configuration130

(r1, r2,θ
k
1 ,θk

2 )k satisfying eq. (15) we compute the AEP of an elementary 4 turbines wind farm. Then, we store the Nθ

best angle configurations (θ1,θ2) in a angle set Θ. This latter set Θ is the reduced angle-search space.

3. Then, we compute a set of grid configurations (r1, r2,θ1,θ2) denoted grids defined as grids := {(r1, r2,θ1,θ2) : (r1, r2) ∈
R1,2, (θ1,θ2) ∈Θ, eq. (15) holds}

4. For each explored shape configuration (r1, r2,θ1,θ2), compute an optimal layout using a greedy algorithm for placing135

the Nmax-turbines on the intersections of the grid and using a local search optimization method to move the turbines

on the intersections. The sequence of greedy initialization followed by a local search method has already been proved

efficient for wind farm layout optimization without alignment constraints, see the DEBO algorithm from Thomas et al.

(2023).

4.2 Angle search space reduction and grid configuration selection140

In this section, we describe the first part of the algorithm which consists in finding a set of grid configurations (r1, r2,θ1,θ2)

of reasonable size and to perform a complete wind farm layout optimization for each element of this set. To do so, we first

compute the set R1,2 of parameters (r1, r2) by discretizing the space [Dmin,Dmax]
2 using a discretization of size ∆r. Then,

for each (r1, r2) ∈R1,2, discretize the following search space

S :=
{

(θ1,θ2) ∈
[
−π

2
,
π

2

]2

: θ1 ≥−
π

2
+ ∆θ, θ2 ≤ θ1−∆θ

}
(16)145

with an angle discretization parameter ∆θ. We denote SD this discrete search space. Then, for each (r1, r2) ∈R1,2, we define

the corresponding angle search space Θr1,r2 as follows

Θr1,r2 := {(θ1,θ2) ∈ SD : eq. (15) holds} (17)
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Then, for each configuration (r1, r2,θ
k
1 ,θk

2 )k with (θk
1 ,θk

2 ) ∈Θr1,r2 we compute the AEP of the elementary farms (F[B(r1, r2,θ
k
1 ,θk

2 )]4)k

defined as follows150

F[B(r1, r2,θ
k
1 ,θk

2 )]4(i) :=





(0 0)⊤ if i = 1

(1 0)⊤ if i = 2

(0 1)⊤ if i = 3

(1 1)⊤ if i = 4

(18)

and sort the couples (θk
1 ,θk

2 )i by decreasing order of AEP. Finally, for each (r1, r2) ∈R1,2, we store in the set Θ the best Nθ an-

gles configuration (θk
1 ,θk

2 ) ∈Θr1,r2 . Then, the continuous variables search-space denoted grids consists in all the combinations

of the (r1, r2) ∈R1,2 explored with all the angles configuration from Θ, i.e.

grids := {(r1, r2,θ1,θ2) : (r1, r2) ∈R1,2, (θ1,θ2) ∈Θ : eq. (15) holds} (19)155

The corresponding algorithm in pseudo-code is described in algorithm A1, algorithm A2, algorithm A3, algorithm A4.

4.3 Compute intersections for each grid configuration

This part of the algorithm consists of traversing grids(k) and, for each configuration (rk
1 , rk

2 ,θk
1 ,θk

2 ), calculating the maximum

number of intersections located in the admissible domain Ω and their positions. If this set of intersections has more than Nmax

elements and if all intersections are Dmin-apart from each other, this set of intersections is stored in a set of set-of-intersections160

that we denote intersections_sets. The corresponding algorithm is written in pseudo-code in algorithm A5.

4.4 Optimize turbines placement

4.4.1 Greedy Initialization

Given a grid configuration (r1, r2,θ1,θ2,∆1,∆2), a greedy algorithm is used to sequentially place Nmax turbines on the

admissible intersections. This algorithm consists in sequentially placing the turbines on the best possible empty intersection,165

in the sense of AEP maximization, until Nmax turbines are placed. The corresponding algorithm in pseudo-code is given in

algorithm A6.

4.4.2 Local Search

This part of the algorithm sequentially moves each turbine in random order from its current intersection to a free one if it

provides a strict increase in AEP. The algorithm stops when a complete course of all the turbines has been made without170

a single one being moved. When the number of intersections in the admissible domain is much bigger than Nmax, one can

explore a subset of the free intersections. For example, one can explore the p closest intersections from the turbine to be

moved or select p random free intersections. In this case, the size of the subset to explore and its definition, p, are user-defined

parameters. The algorithm in pseudo-code is given in algorithm A7.
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4.4.3 Turbine placement optimization175

Finally, given a set of intersections, the optimization algorithm for optimal turbine placement consists of using sequentially the

greedy initialization and the local search algorithm as described in pseudo-code in algorithm A9.

4.5 Complete Algorithm

Finally, the complete algorithm includes all the blocks described in sections 4.3 and 4.4. The corresponding pseudo-code is

displayed in algorithm A10. As one can see on lines 2, and 6 from algorithm A10, large parts of the proposed algorithm can be180

run in parallel.

5 Numerical Examples

5.1 Problem presentation

For this numerical example, we use the same case study as in Thomas et al. (2023), whose data are available in Baker et al.

(2021). This case study was created within the International Energy Association (IEA) Wind Task 37, and is based on the185

Borssele III and IV wind farms. Of particular interest in this case study is the presence of five disconnected boundary regions

and concave boundary features, as shown in fig. 2. The turbines are 10 MW machines with 198 m rotor diameters based on

the IEA 10 MW reference wind turbine (Bortolotti et al. (2019)). For the AEP computation, we also use the same algorithm

as in Thomas et al. (2023). This method is based on a simple Gaussian wake model based on Bastankhah’s Gaussian wake

model (Bastankhah and Porté-Agel (2016)), and presented in the IEA case study 3 and 4 announcement documents (Baker190

et al. (2021)), to calculate wind speeds at each turbine in the wind farm. However, any other AEP computation software, such

as FLORIS, can be used with the presented algorithm as long as the computation time of the AEP is fast enough. Indeed, our

optimization algorithm requires a large number of AEP evaluations.

5.2 Influence of the hyper-parameters on the AEP and the computation time

The optimization procedure described in section 4 requires setting 5 hyper-parameters Dmin, Dmax, ∆θ, Nθ, and ∆r. The195

turbine’s manufacturer usually sets Dmin at a fixed value. In this example, we set Dmin = 2turbdiam. The parameter Dmax

must be chosen large enough to allow a good exploration range for the grid parameters (r1, r2). However, setting Dmax with

a significant value generates grids with a number of admissible intersections smaller than the number of turbines to be placed,

i.e., in generating non-admissible layouts. Therefore, we have set Dmax = 6turbdiam. The parameter ∆θ should be chosen to the

minimal value such that the wake model used to compute the AEP is valid. For this example, we set ∆θ = 1°. The remaining200

hyper-parameters, Nθ, and ∆r, dramatically affect the optimization procedure regarding AEP value and computation time.

Indeed, as explained in section 4.2, the larger Nθ, the larger the reduced angle-set denoted Θ, and the smaller ∆r, the larger

the set R1,2. The number of configurations to optimize being the product of the cardinal of the sets Θ and R1,2, the larger

these sets, the longer the computation time. However, the more configuration to optimize, the greater the AEP. Therefore,
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Figure 2. An overhead view of the boundaries of the admissible domain Ω
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Figure 3. This figure, reproduced from Thomas et al. (2023), displays the full wind resource used for evaluating the final wind farm layouts.

(a) The wind direction probability (360 bins). (b) A representative wind speed probability distribution (20 bins).

any layout optimization needs to make a trade-off between computation time and size of the set of configuration to optimize.205

In this section, we will show the effect of the parameters Nθ and ∆r on the optimal AEP and the computation time, and

give the user some guidelines to set these parameters. To do so, we run algorithm A10 for all possible configurations of the
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hyper-parameters valued in their respective value-set given in table 1, for wind farm sizes of 81, 100, 150, and 250 turbines

respectively. The numerical results of these optimizations are gathered in table 2 and illustrated in figs. 4 and 5. On fig. 4,

Dmin Dmax ∆θ Nθ ∆r

{2 turbdiam} {6 turbdiam} {1◦} {1,5,10}
{

turbdiam
2

, turbdiam,2 turbdiam

}
Table 1. Value set of each hyper-parameter

one can see that the expected power per turbine1 is growing with respect to Nθ and decreasing with respect to ∆r. Also,210

when Nθ ≥ 5 and ∆r ≤ 1turbdiam, the expected powers per turbine are similar whatever the value of these hyper parameters.

However, as illustrated on fig. 5, the execution time is strongly increasing with respect to Nθ and strongly decreasing with

respect to ∆r. Therefore, if algorithm A10 is run using an AEP computation method more precise and computationally more

expensive than the one we used, (see Baker et al. (2021); Thomas et al. (2023)), keeping Nθ reasonably small (≈ 5) and ∆r

reasonably large (≈ 1) should enable the solving algorithm to find a well-performing layout in a reasonable execution time.215

In addition, as illustrated in table 1, the solving algorithm often sets the optimal shape parameters (r1, r2) to their minimal

authorized values. This behavior indicates that the method generates grids with many intersections and, thus, a large degree of

freedom for the local search part of the algorithm. The larger the degree of freedom for the local-search algorithm, the better the

solution. The best layout for each wind farm size is displayed on fig. 6 and the optimal parameters (r1, r2,θ1,θ2), the optimal

AEP, the optimal expected power per turbine, and the execution time are displayed on table 3.220

6 Exploration method’s impact on the AEP

The optimization layout algorithm presented in this paper relies on the discrete exploration of the space of shape parameters

(r1, r2,θ1,θ2) ∈ [Dmin,Dmax]2× [−π/2,π/2]2. Despite the angles’ search-space reduction technique presented in section 4.2

and algorithm A2, exploring this space using fine discretization is numerically too demanding. Unfortunately, the performance

of the optimization depends on the size of the discretization step; the smaller this size, the higher the AEP. Therefore, there is a225

strong incentive to develop heuristic methods to explore the shape parameters space other than by using the angle search space

reduction associated with a brute force-like exploration method. In this section, we present optimization results using such a

heuristic to provide a benchmark for an aligned optimization algorithm. Unfortunately, for industrial confidentiality reasons,

we do not describe its principle and only focus on the improvement in terms of AEP. Again, we have run the optimization

procedure for wind farms of 81, 100, 150, and 250 turbines. The results in terms of optimal shape parameters, AEP, expected230

power per turbine, and wake losses are summarized in table 4, and the optimal layouts are displayed in fig. 7. The optimal

layout obtained using this heuristic exhibits the same behavior as those found in the previous section in terms of r1 and r2.

Indeed, these parameters are systemically found to be equal to the lowest possible value. On the contrary, the optimal angles

are not the same. One of the alignment directions is conserved (≈ 18°), but the other one is quite different even when taking
1For a Nt-turbines wind farm, the expected power per turbine is given by the formula AEP(MWh)/(8760×Nt) and allows for comparing wind farms

of different sizes.
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Figure 4. Expected power per turbine for 81, 100, 150, and 250 turbines wind farms as a function of the hyper-parameters Nθ , and ∆r.
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Figure 5. Execution time of algorithm A10 for 81, 100, 150, and 250 turbines wind farms as a function of the hyper-parameters Nθ , and ∆r.

All optimizations were run on a 12th Gen Intel(R) i7-12700H 2.30 GHz core.
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Figure 6. Best layouts for wind farm sizes of 81, 100, 150, 250 turbines using algorithm A10.
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into account the 180° periodicity of the angles. Concerning the AEP, using a heuristic to explore the space of shape parameters235

more efficiently allows for improvement. Interestingly, the percentage of AEP increase grows almost linearly concerning the

wind farm size and reaches 1% for the larger one. This behavior stems from the decreasing degrees of freedom in the turbine’s

optimal placing problem as the wind farm size grows. Therefore, for larger farms, the efficiency of the shape parameters

optimization algorithm is of greater importance than for smaller farms; thus, there is a more substantial improvement of AEP

for large farms when using a better exploration algorithm for the space of shape parameters. These results prove a strong240

interest in developing efficient heuristics to explore the space of shape parameters.

7 Conclusions

This work tackles the wind farm layout optimization problem with alignment constraints. We introduced a model of the corre-

sponding optimization problem and adapted the DEBO algorithm from Thomas et al. (2023) to this new problem. The proposed

method is based on an exploration heuristic for computing the grid parameters and a local-search method to place the turbines245

on the grid’s intersections optimally. We have shown that this method performs well on the benchmark of IEA Wind task 37

(Thomas (2022)) by outperforming the initial layout, even though the latter does not satisfy any alignment constraints and

is potentially less prone to significant wake losses. Using this numerical example, we have also demonstrated the benefits of

developing efficient heuristics for exploring the grid parameters. Indeed, using efficient heuristics allows for a better trade-

off between wake-losses reduction and computation time. Therefore, these heuristics can be used to find layouts with higher250

AEP or to use more precise and computationally demanding AEP models. Finally, a more efficient algorithm can enable the

introduction of other optimization parameters or constraints, such as cable routing or shared mooring for floating farms.

Data availability. Provided physics model, turbines and boundary data are available at Thomas (2022), optimal layouts, AEPs, shape con-

figurations, and intersections are available at Malisani (2024)
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Figure 7. Best layouts for wind farm sizes of 81, 100, 150, 250 turbines using an efficient shape parameters exploration method and the same

local-search algorithm.
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Wind farm
∆r Nθ (r1, r2,θ1,θ2)

AEP Expected power Exec. time

size (GWh) per turbine (MW) (s)

81 0.5 1 (5.5 turbdiam, 2 turbdiam, 73°, −87°) 2860.00 4.031 4083

81 0.5 5 (2 turbdiam, 3 turbdiam, 18°, −80°) 2862.37 4.034 9611

81 0.5 10 (2 turbdiam, 3 turbdiam, 18°, −80°) 2862.76 4.035 15 981

81 1 1 (2 turbdiam, 6 turbdiam, 90°, 70°) 2855.62 4.024 690

81 1 5 (2 turbdiam, 3 turbdiam, 18°, −80°) 2862.29 4.034 2343

81 1 10 (2 turbdiam, 3 turbdiam, 18°, −80°) 2862.29 4.034 3944

81 2 1 (2 turbdiam, 6 turbdiam, 90°, 70°) 2856.23 4.025 161

81 2 5 (2 turbdiam, 2 turbdiam, 18°, −78°) 2857.65 4.027 399

81 2 10 (2 turbdiam, 2 turbdiam, 18°, −76°) 2860.44 4.031 1211

100 0.5 1 (2 turbdiam, 2 turbdiam, 18°, −78°) 3354.24 3.829 3486

100 0.5 5 (2 turbdiam, 2 turbdiam, 18°, −76°) 3356.53 3.832 9693

100 0.5 10 (2 turbdiam, 2 turbdiam, 18°, −76°) 3356.55 3.832 14105

100 1 1 (2 turbdiam, 2 turbdiam, 19°, −78°) 3348.50 3.822 884

100 1 5 (2 turbdiam, 2 turbdiam, 18°, −82°) 3356.21 3.831 2027

100 1 10 (2 turbdiam, 2 turbdiam, 18°, −76°) 3356.55 3.832 5324

100 2 1 (2 turbdiam, 2 turbdiam, 19°, −78°) 3348.57 3.823 158

100 2 5 (2 turbdiam, 2 turbdiam, 18°, −78°) 3354.45 3.829 746

100 2 10 (2 turbdiam, 2 turbdiam, 18°, −76°) 3356.54 3.832 920

150 0.5 1 (2 turbdiam, 2 turbdiam, 18°, −78°) 4372.17 3.327 3729

150 0.5 5 (2 turbdiam, 2 turbdiam, 18°, −78°) 4372.71 3.328 12013

150 0.5 10 (2 turbdiam, 2 turbdiam, 18°, −78°) 4372.71 3.328 19188

150 1 1 (2 turbdiam, 2 turbdiam, 19°, −78°) 4357.54 3.316 966

150 1 5 (2 turbdiam, 2 turbdiam, 18°, −78°) 4372.71 3.328 4151

150 1 10 (2 turbdiam, 2 turbdiam, 18°, −78°) 4372.71 3.328 4902

150 2 1 (2 turbdiam, 2 turbdiam, 19°, −78°) 4357.48 3.316 339

150 2 5 (2 turbdiam, 2 turbdiam, 18°, −78°) 4372.71 3.328 858

150 2 10 (2 turbdiam, 2 turbdiam, 18°, −78°) 4372.71 3.328 2084

250 0.5 1 (2 turbdiam, 2 turbdiam, 90°, 14°) 5241.50 2.393 462

250 0.5 5 (2 turbdiam, 2 turbdiam, 90°, 14°) 5241.50 2.393 1203

250 0.5 10 (2 turbdiam, 2 turbdiam, 90°, 14°) 5241.50 2.393 1789

250 1 1 (2 turbdiam, 2 turbdiam, 90°, 27°) 5202.29 2.375 262

250 1 5 (2 turbdiam, 2 turbdiam, 90°, 14°) 5241.50 2.393 555

250 1 10 (2 turbdiam, 2 turbdiam, 90°, 14°) 5241.50 2.393 925

250 2 1 (2 turbdiam, 2 turbdiam, 90°, 19°) 5150.62 2.352 100

250 2 5 (2 turbdiam, 2 turbdiam, 90°, 18°) 5223.08 2.385 205

250 2 10 (2 turbdiam, 2 turbdiam, 90°, 18°) 5223.08 2.385 293
Table 2. Influence of the hyper-parameters Nθ and ∆r on the AEP and algorithm A10 execution time.
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Number of turbines AEP (GW h) Shape parameters (r1, r2,θ1,θ2) Expected power / turbine % wake losses

1 42.55 − 4.86 MW 0

81 2862.76 (2 turbdiam, 3 turbdiam, 18°, −80°) 4.03 MW 17.1%

100 3356.55 (2 turbdiam, 2 turbdiam, 18°, −76°) 3.83 MW 21.2%

150 4372.71 (2 turbdiam, 2 turbdiam, 18°, −78°) 3.33 MW 31.5%

250 5241.50 (2 turbdiam, 2 turbdiam, 90°, 14°) 2.39 MW 50.8%

Table 3. Optimal AEP, shape configuration and mean power per turbine for an increasing number of turbines.

Number of AEP Shape parameters Expected power % wake % AEP increase

turbines (GW h) (r1, r2,θ1,θ2) per turbine losses w.r.t. table 2

1 42.550 − 4.86 MW 0 0

81 2866.697 (2 turbdiam, 2 turbdiam, 88.6°, 17.9°) 4.04 MW 16.8% 0.14 %

100 3369.709 (2 turbdiam, 2 turbdiam, 88.5°, 17.9°) 3.85 MW 20.8% 0.39 %

150 4399.174 (2 turbdiam, 2 turbdiam, 88.8°, 17.78°) 3.35 MW 31.1% 0.61 %

250 5308.184 (2 turbdiam, 2 turbdiam, 87.0°, 17.4°) 2.42 MW 50.1% 1.27 %

Table 4. Optimal AEP, shape configuration and mean power per turbine for an increasing number of turbines using a fast heuristic for the

optimization of the shape’s parameters
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Appendix A: Algorithms in pseudo-code255

Algorithm A1 GenerateR1R2(∆r,Dmin,Dmax)

1: R1,2←∅
2: r1←Dmin.turbdiam

3: angles←∅
4: while r1 ≤Dmax.turbdiam do

5: r2←Dmin.turbdiam

6: while r2 ≤Dmax.turbdiam do

7: R1,2←R1,2 ∪{r1, r2)}
8: r2← r2 +∆r

9: end while

10: r1← r1 +∆r

11: end while

12: return R1,2

Algorithm A2 ReduceSearchSpace(R1,2,∆θ,Dmin,Dmax, turbdiam,Nθ)

1: Θ←∅
2: for (r1, r2) ∈R1,2 do

3: Θr1,r2 ← GetBestAngles(r1, r2,∆θ,Dmin,Dmax, turbdiam,Nθ)

4: Θ←Θ∪Θr1,r2

5: end for

6: return Θ
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Algorithm A3 GetBestAngles(r1, r2,∆θ,Dmin,Dmax, turbdiam,Nθ)

1: farms←∅
2: Θr1,r2 ←∅
3: θ1←−π

2
+∆θ

4: while θ1 ≤ π
2

do

5: θ2←−π
2

6: while θ2 ≤ θ1−∆θ do

7: dgrid←minz∈Z2∗

∥∥∥P
B(θ1,θ2,r1,r2)
B0

z
∥∥∥

8: if (dgrid ≥Dmin.turbdiam)∧ (θ1− θ2 ≤ π−∆θ) then

9: n← 1

10: for i = 0 to i = 1 do

11: for j = 0 to j = 1 do

12: F4(n)← P
B(θ1,θ2,r1,r2)
B0

i

j


13: n← n +1

14: end for

15: end for

16: aep← EW [P(F4,ws,wd)]

17: farms← farms∪{(θ1, θ2, aep)}
18: end if

19: θ2← θ2 +∆θ

20: end while

21: θ1← θ1 +∆θ

22: end while

23: sort(farms) {by decreasing order of aep}

24: for i = 1 to i = Nθ do

25: Θr1,r2 ←Θr1,r2 ∪{(farms(i).θ1, farms(i).θ2)}
26: end for

27: return Θr1,r2
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Algorithm A4 GenerateConfigs(R1,2,Θ,Dmin,Dmax, turbdiam)

1: grids←∅
2: for (r1, r2) ∈R1,2 do

3: for (θ1, θ2) ∈Θ do

4: dgrid←minz∈Z2∗

∥∥∥P
B(θ1,θ2,r1,r2)
B0

z
∥∥∥

5: if minz∈Z2∗

∥∥∥P
B(θ1,θ2,r1,r2)
B0

z
∥∥∥≥Dmin.turbdiam then

6: grids← grids∪{(r1, r2,θ1,θ2)}
7: end if

8: end for

9: end for

10: return grids

Algorithm A5 ComputeAllIntersections(grids, Dmin, Ω)

1: intersections_sets←{∅}
2: n← 1

3: while n≤ card(grids) do

4: {Compute basic shape vector}

5: r1, r2,θ1,θ2← grids(n)

6: v1← (r1 cos(θ1), r1 sin(θ1))

7: v2← (r2 cos(θ2), r2 sin(θ2))

8: {Function of the intersections}

9: Iv1,v2(∆1,∆2) := {k1v1 + k2v2 ∈R2 s.t. [k1v1 + k2v2 +(∆1,∆2)] ∈ Ω ; (k1,k2) ∈Z2}
10: {Compute offset maximising the number of admissible intersections}

11: (∆∗1,∆
∗
2)← argmax∆1,∆2∈[0,1)2 card(Iv1,v2(∆1,∆2))

12: {Add intersections to the set of intersections}

13: if card(Iv1,v2(∆
∗
1,∆

∗
2))≥Nmax then

14: intersections_sets←{(Iv1,v2(∆
∗
1,∆

∗
2),(r1, r2,θ1,θ2))}

⋃
intersections_sets

15: end if

16: n← n +1

17: end while

18: return intersections_sets
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Algorithm A6 GreedyInitialization(intersections)

1: (x0,y0)← argmaxx,y{x− y s.t. (x,y) ∈ intersections}
2: F1(1)← (x0 y0)

3: nt← 1

4: intersections← intersections\{(x0 y0)}
5: while nt < Nmax do

6: (x∗ y∗)⊤← argmax(x,y)∈intersections EW {P (Fnt ⊕ (x y),ws,wd)}
7: Fnt+1← Fnt ⊕ (x∗ y∗)

8: nt← nt +1

9: intersections← intersections \{(x∗ y∗)}
10: end while

11: return FNmax

Algorithm A7 LocalSearch(FNmax , intersections)

1: convergence←⊥
2: aep← EW {P(FNmax ,ws,wd)}
3: while ¬ convergence do

4: HNmax ← FNmax

5: random_indices← shuffle([[0, . . . ,Nmax[[)

6: for indice ∈ random_indices do

7: {compute all possible layouts by moving ith turbine}

8: children_layout← generate_children(FNmax , indice, intersections)

9: for (GNmax , intersectionsG) ∈children_layout do

10: if EW {P(GNmax ,ws,wd)}> aep then

11: FNmax ←GNmax

12: aep← EW {P(FNmax ,ws,wd)}
13: intersections← intersectionsG

14: end if

15: end for

16: end for

17: convergence← FNmax = HNmax

18: end while

19: return (FNmax ,aep)
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Algorithm A8 generate_children(FNmax , indice, intersections)

1: children_layout←∅
2: for (x y) ∈ intersections do

3: GNmax ← FNmax

4: intersectionG← intersections

5: (xnew ynew)←GNmax(indice)

6: GNmax(indice)← (x y)

7: intersectionsG← intersectionsG \ {(x y)}∪ {(xnew,ynew)}
8: children_layout← children_layout ∪{(GNmax , intersectionsG)}
9: end for

10: return children_layout

Algorithm A9 PlaceTurbines(intersections)

1: FNmax ← GreedyInitialization(intersections)

2: (FNmax ,aep)← LocalSearch(FNmax , intersections)

3: return (FNmax ,aep)

Algorithm A10 Aligned_Optimization(Ω,Nmax,Nθ,Dmin,Dmax,∆r,∆θ)

1: R1,2← GenerateR1R2(∆r,Dmin,Dmax)

2: angles← ReduceSearchSpace(R1,2,∆θ,Dmin,Dmax, turbdiam,Nθ)

3: grids← GenerateConfigs(R1,2,angles,Dmin,Dmax, turbdiam)

4: intersections_sets← ComputeAllIntersections(grids,Dmin,Ω)

5: layouts←∅
6: for (intersections,(r1, r2,θ1,θ2)) ∈ intersections_sets {Run in parallel} do

7: (FNmax ,aep)← PlaceTurbines(intersections)

8: layouts← layouts
⋃{(FNmax ,aep, intersections,(r1, r2,θ1,θ2))}

9: end for

10: layouts← sort(layouts) by aep in descending order

11: return layouts(0)
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