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Abstract. The development of large offshore wind turbines and airborne wind energy (AWE) systems requires reliable wind

speed datasets at heights far above the atmospheric surface layer. Traditional measurement approaches, primarily reliant on

met-masts, fall short of addressing the needs of modern wind turbine design and AWE systems development. In this study, we

validate three different model-based datasets, namely the 3-km Norwegian Hindcast archive (NORA3), the New European Wind

Atlas (NEWA), and ERA5 using Doppler wind lidar data from several locations in Norway and the North Sea. The validation5

focuses on altitudes from 100 to 500 m above ground, covering the operational range of large wind turbines and AWE systems.

Our findings indicate that ERA5 and NORA3 perform remarkably well in offshore locations, with ERA5 showing the closest

correlation to lidar data up to 200 m. NORA3 outperforms the other two models in two coastal and one complex terrain sites.

Finally, an increasing agreement between the models and lidar measurements with height suggests that model-based datasets

can be valuable for AWE systems research and development.10

1 Introduction

The hub height and rotor diameter of offshore wind turbines (OWTs) have been continuously increasing over the past 20 years

(Jahani et al., 2022; Jiang, 2021), reaching up to 150 m and over 200 m, respectively. This trend is driven by the need to capture

stronger and steadier winds to reduce the overall levelized cost of energy (Wiser et al., 2021). In the near future, the top tip

height of offshore wind turbines may reach almost 300 m above the surface.15

Since the 2010s, commercial airborne wind energy (AWE) systems have demonstrated notable advancements (Vermillion

et al., 2021; Fagiano et al., 2022; Eijkelhof and Schmehl, 2022). Prototypes of AWE systems with capacities exceeding 600

kW (Vermillion et al., 2021) and potentially developing into multi-megawatt have been proposed (Kruijff and Ruiterkamp,

2018). However, AWE systems remain in the early stage of development compared to offshore wind turbines. Recent efforts in

performance assessment have relied mainly on ground-generation AWE systems, which is the most mature technology at the20
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moment (Vermillion et al., 2021). Such studies used simulated wind speed profiles, with optimal operating heights for AWE

systems identified between 200 and 600 m above the surface (Sommerfeld et al., 2019b).

Traditional approaches for estimating mean wind speed profiles rely on mast-based measurements, which are primarily

applicable to studying the atmospheric surface layer (ASL). The ASL constitutes approximately the lowest 10% of the

atmospheric boundary layer (ABL). Under neutral and unstable atmospheres, the depth of the ASL ranges from 50 m to 100 m25

offshore and can extend up to 200 m onshore (Pal and Lee, 2019; Davis et al., 2020, 2022). Under a stable atmosphere, the

ASL is shallow, with a depth sometimes close to a dozen metres (Mason and Derbyshire, 1990). Traditional logarithmic and

power-law mean wind speed profiles, such as those used in IEC 61400-1 (IEC, 2005), are limited to the ASL and are likely

inadequate for wind turbine design with hub heights of 150 m or more (Tieo et al., 2020; Cheynet et al., 2024). For wind resource

assessment, the height-dependent Weibull parameters (Kelly et al., 2014) require the characterization of wind speed profiles30

above 200 m. Therefore, the development of both AWE systems and future OWTs necessitates information on the mean wind

speed at heights several hundred meters above the surface.

Tall wind profiles, as defined here, cover the entire atmospheric boundary layer (ABL) or at least the initial 500 m above the

surface. Traditional tall masts often fall short of this definition, as they are typically lower than 100 m. Only a limited number

of masts exceeding 200 m exist globally (Ramon et al., 2020), and these are exclusively onshore masts (table 1). Although35

tall-wind speed profiles can also be collected using manned aircraft (e.g. Zemba and Friehe, 1987) or drones (Egger et al.,

2002; Reuder et al., 2009; Palomaki et al., 2017; Shimura et al., 2018), this approach has not been adopted for wind resource

assessment, which requires several years of data. Therefore, the characterization of mean wind speed profiles above the marine

surface layer is a major challenge (Shaw et al., 2022; Veers et al., 2019).

Commercial Doppler wind lidar (DWL) profilers measure wind speed and direction up to approximately 300 m above the40

surface (Peña et al., 2009). They operate using fixed beams at predetermined angles with modes like Doppler beam swinging

(DBS) or velocity azimuth display, showing good performance against tall met masts (Knoop et al., 2021). Commercial DWL

profilers, both ground-based and mounted on fixed platforms, have been used in wind energy research for over a decade, both

onshore (Smith et al., 2006; Kumer et al., 2016) and offshore (Peña et al., 2009; Peña et al., 2015). In the 2010s, floating wind

lidar profilers deployed on buoys (Gottschall et al., 2017; Peña et al., 2022) and ships (Rubio et al., 2022) began to complement45

traditional met-masts, offering cost reductions (Krishnamurthy et al., 2013).

Most commercial DWL wind profilers are still limited to studying the mean wind flow in the first 300 m above the surface.

Scanning DWLs possess a more powerful laser than lidar profilers, allowing them to collect data up to 3 km under good aerosol

conditions (Kumer et al., 2014). This technology, used in atmospheric research for over two decades (Pichugina et al., 2012;

Banta et al., 2013; Dias Neto et al., 2023), saw commercial adoption mainly in the early 2010s (Vasiljevic, 2014; Kumer et al.,50

2014). Scanning DWLs with hemispherical scanning capabilities can adjust both azimuth and elevation angles and can be set

to mimic profiler modes for direct atmospheric profiling. Despite their potential, scanning lidars are often underutilized in

developing airborne wind energy systems (AWE systems) or next-generation multi-megawatt offshore wind turbines. Notable

examples of wind speed data collection with such instruments for tall wind profile analysis include Kumer et al. (2014) in coastal
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Table 1. Some of the tall met masts with top height above 200 m documented in Ramon et al. (2020) and in the scientific literature. None of

these masts are offshore. The list includes both current and former masts.

Tower name Top sensor (m) Country

Walnut Grove 488 USA

Park Falls 396 USA

West Branch 379 USA

South Carolina 329 USA

Beijing Meteorological Tower 325 China

Gartow 341 Germany

Obninsk 301 Russia

Boulder Observatory 300 USA

Boseong 300 South Korea

Hamburg 280 Germany

Steinkimmen 252 Germany

Østerild 250 Denmark

KIT 200 Germany

Cabauw 200 Netherlands

terrain, Reuder et al. (2024) at the FINO1 offshore platform, Päschke et al. (2015) and Sommerfeld et al. (2019a) in Germany or55

Mariani et al. (2020) in the Arctic.

Recently, open-source datasets from wind hindcast or reanalysis databases such as the 3-km Norwegian Hindcast archive

(NORA3) (Haakenstad et al., 2021), the New European Wind Atlas (NEWA) (Hahmann et al., 2020), and ERA5 (Hersbach

et al., 2020) have provided model-based wind speed profiles within the first 500 m above the surface. NORA3 and ERA5 appear

adequate for wind resource assessment and structural design, for which a climatological description of wind conditions over60

the first 500 m spanning at least 30 years is necessary. Note that NEWA falls slightly short of this definition, as it only covers

10 years of data. Although these databases can complement in-situ measurements, they require proper validation for wider

use in wind energy. Portions of these databases have undergone validation against near-surface measurements (e.g. Ramon

et al., 2019), mast measurements at levels below 100 m (Olauson, 2018; Jourdier, 2020; Solbrekke et al., 2021; Cheynet et al.,

2022), or tall-masts measurements up to 200 m (Knoop et al., 2020; Gualtieri, 2021). Additional validation has been conducted65

using Doppler wind lidar technology for heights up to 300 m above the surface (Pronk et al., 2022; Hallgren et al., 2024).

The comparison of lidar wind profiles with hindcast or reanalysis products at higher altitudes remains, however, limited. This

motivates our study in an attempt to bridge this identified knowledge gap.

In this study, we validate datasets from the ERA5 global reanalysis, NEWA and NORA3 against in-situ measurements from

DWL systems across diverse terrain locations in the North Sea and Norway to evaluate their accuracy in capturing tall wind70

speed profiles. We also aim to quantify the performance of these databases as a function of altitude using multiple error metrics.
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The selection of different sites offers the possibility to examine the impact of topography on local wind conditions. Thus, the

novelty of this study resides in both, the collection of wind speed data in the entire ABL, and the inter-comparison of various

hindcast or reanalysis wind databases at altitudes up to 500 m, which has yet to attract significant attention. Moreover, this study

expands the validation to include the capacity factor for modern offshore wind turbines and AWE systems. This research is75

believed to be valuable to both wind energy and wind engineering, as tall wind speed profiles can be used for both wind resource

assessment and wind loading on structures (Kent et al., 2018).

This study is organised as follows: section 2 introduces the datasets extracted from the ERA5, NORA3 and NEWA databases,

as well as the DWL data. Section 3 presents the metrics used for the error analysis and the data processing to collocate the

modelled and measured data in space and time. Section 4 studies the influence of the choice of the site and the height on80

the errors between the wind atlases and in-situ data. Our findings underscore ERA5’s reliability offshore, especially above

100 m. However, in coastal locations and complex terrains, regional model-based datasets become necessary. In some instances,

microscale wind models may even be needed to more accurately capture the local wind conditions. Section 4 presents also the

influence of the choice of the wind atlas on the estimation of the capacity factor of a modern wind turbine and an airborne wind

energy system. Finally, section 5 discusses the need for more powerful DWL profilers and the complementary role of mesoscale85

and microscale simulations for improved wind resource assessment.

2 Data collection and wind models

2.1 Model data

A state-of-the-art wind atlas is defined herein as a climate dataset that provides the mean wind speed and mean wind direction at

multiple heights above the surface. It provides a horizontal spatial resolution on the kilometre scale, a time resolution of 1 h or90

finer, and temporal coverage of at least 10 years. The definition of a wind atlas employed here relates to a hindcast or reanalysis

database that is usable for wind resource assessment or the design of wind energy systems, including extreme value analysis.

In this context, both NEWA and NORA3 qualify as state-of-the-art wind atlases. They are regional downscaling products of

the ERA5 reanalysis (Hersbach et al., 2020), covering overlapping areas in Europe (fig. 1). Consequently, ERA5 data are also

included in this analysis. Although wind atlases are sometimes defined as databases with microscale spatial resolution finer than95

1 km, we choose to adopt a broader definition that includes model-based wind data with a kilometre-scale resolution.

The ERA5 reanalysis product from the European Centre for Medium-Range Weather Forecasts (ECMWF) superseded

ERA-Interim in 2019 (Dee et al., 2011). ERA5 offers climate data with global coverage, a horizontal spatial resolution of

approximately 31 km and a hourly output, extending from 1940 onward. As a reanalysis product, ERA5 uses a 4D-Var data

assimilation scheme within a 12-hour assimilation window, incorporating both in-situ measurements and satellite observations100

(Hersbach et al., 2020). The ERA5 temporal resolution and extensive temporal coverage are valuable for wind energy research

globally (Olauson, 2018), including the analysis of annual and decadal wind variability and potential trends due to climate

change (Chen, 2024; Antonini et al., 2024; Martinez and Iglesias, 2024). Researchers and engineers in the wind energy sector

increasingly rely on ERA5 for both historical analysis and future project planning (Olauson, 2018; Gualtieri, 2021; Hayes et al.,
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Figure 1. Illustration of the regions covered by NEWA and NORA3. ERA5 has global coverage and is thus not shown here.

2021). This reliance underlines the importance of accurate, high-resolution climate reanalyses in advancing renewable energy105

technologies.

NEWA is an open-access European wind atlas released in 2019 and developed through collaboration among 30 European

academic and industrial partners (Hahmann et al., 2020; Dörenkämper et al., 2020). NEWA uses the Weather Research and

Forecasting (WRF) model and utilizes the ERA5 reanalysis as forcing, without further data assimilation. NEWA aims to provide

a detailed wind climatology of Europe with a spatial resolution of approximately 3 km and a temporal resolution of 30 min. In110

this study, data on mean wind speed and direction from NEWA were retrieved from https://map.neweuropeanwindatlas.eu/ for

eight altitudes, ranging from 10 m to 500 m above sea level (asl).

NORA3 is a regional downscaling of the ERA5 reanalysis and utilizes the HARMONIE-AROME non-hydrostatic regional

numerical weather prediction model for its production (Haakenstad et al., 2021). The downscaling consists of nine-hour short

integration runs initiated every six hours, employing the last run as the initial state for the new cycle. Surface observations in115

the CANARI-OI-Main assimilation system adjust the first-guess (Giard and Bazile, 2000; Taillefer, 2002), with ERA5 forcing

applied in the free atmosphere following the boundary relaxation method (Radnoti, 1995; Termonia et al., 2018). NORA3 is built

on NORA10’s legacy, which has been used by the offshore industry in the North Sea for over a decade (Furevik and Haakenstad,

2012) and refines the description of the wind condition provided by NORA10 (Haakenstad et al., 2021). Validations of the

NORA3 database against atmospheric data include comparisons with wind measurements from oil and gas platforms, as well as120

offshore masts in the North Sea and Norwegian Sea (Solbrekke et al., 2021). NORA3 provides wind data once per hour with a 3

km spatial resolution across 65 layers in a hybrid sigma-pressure coordinate scheme. A specific subset, released in 2021 by the

Norwegian Meteorological Institute, has been selected for this study. This subset presents mean wind speed and direction data at

seven heights, from 10 to 750 m asl. Table 2 details the metadata for the different models, illustrating the variability in spatial

and temporal resolutions, as well as available height levels above 100 m among NORA3, NEWA, and ERA5.125
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Table 2. Metadata of the wind atlas data sets. Only z-levels above 100 m are shown hereinafter. ERA5 data were collected using the 100 m

z-level with additional height levels retrieved using pressure levels and the geopotential height. ∆h is the horizontal spatial resolution and ∆t

is the temporal resolution in minutes.

∆h (km) ∆t (min) z-levels (m)

NORA3 3 60 100, 250, 500, 750

NEWA 3 30 100, 150, 200, 250, 500

ERA5 31 60 100, geopotential heights

2.2 The measurement sites

The measurement data were collected by DWL instruments within the area covered by ERA5, NORA3, and NEWA (fig. 2).

Two lidar campaigns were conducted in the marine atmospheric boundary layer at the FINO1 and FINO3 locations, two other

campaigns took place in coastal sites (Sola and Lista airports in Norway) and one in complex terrain (Bjerkreim, Norway).

Offshore sites refer here to locations situated in open waters, typically over a few dozen kilometres from the coast, while130

coastal sites refer to flat onshore locations a few kilometres from the shoreline. Complex terrain refers to areas characterized by

heterogeneous topography, such as hills or mountains. Table 3 summarises the locations and measurement periods of the five

campaigns selected for the validation of wind atlases. The diversity of locations, comprising two offshore, two coastal, and one

in complex terrain, offers additional possibilities to assess the performances of the wind atlases at higher altitudes. This study

uses lidar data as reference datasets, given their suitability for capturing wind speed data across the entire ABL. Data availability135

above 500 m decreases due to factors such as low clouds and low aerosol content, as illustrated in fig. 3. This figure defines data

availability as a function of the carrier-to-noise (CNR) ratio. More specifically, missing data or data with a CNR under -27.5 dB

for the scanning lidar instrument and under -22 dB for the DWL profiler are dismissed. The threshold value for the scanning

lidar is lower than the value of -22 dB used in Peña et al. (2015), which is usually applied to DWL profilers. However, a lower

threshold can be applied for scanning Doppler wind lidar (Cheynet et al., 2017). For simplicity, specific methods, e.g. those140

presented by Beck and Kühn (2017); Valldecabres et al. (2018); Cheynet et al. (2021) or Duscha et al. (2023) to rescue data with

even lower CNR are not considered here, as only the mean wind speed was of interest.

The measurement principle involves all lidar devices operating in DBS mode. This mode reconstructs horizontal wind speed

and direction from the radial velocities of four beams, incorporating two volume averaging effects: one over the range gate length

of each beam and another across the horizontal area over the lidar increasing with height, defined by the four beams at a given145

opening angle of typically 30 degrees. The DBS mode assumes horizontal homogeneity of the mean flow, a condition typically

met in flat and homogeneous terrain but often violated in highly complex terrain (Pauscher et al., 2016) or near obstacles, such

as in the wake of a wind turbine. As altitude increases, the flow tends to become more homogeneous and horizontal, making

DBS scanning suitable for measuring tall wind speed profiles.
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Figure 2. Location of the five measurement sites in the North Sea and along the Norwegian coast.
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Figure 3. Data availability during the five measurement campaigns as a function of the altitude, based on the Carrier-to-Noise Ratio (CNR).

The first measurement campaign was conducted in Bjerkreim, Southwest Norway, from March to May 2010. The site,150

characterized by rocky terrain and sparse vegetation, presented a complex topography. A WindCube V1 DWL (Leosphere) was

deployed to capture wind profiles at altitudes ranging from 40 m to 300 m above the surface. Approximately 799 hours of data

were collected. The mean wind speed records were subsequently validated against sodar measurements taken 300 m away from

the lidar’s location.

The second measurement campaign, known as the LIdar MEasurement Campaign Sola (LIMECS) (Kumer et al., 2014),155

was conducted at Stavanger Airport Sola, Norway, from March to June 2013. The objective was to evaluate the capability of a

long-range pulsed lidar instrument in measuring mean wind speed at altitudes beyond the reach of traditional meteorological

masts. A first-generation WindCube 100S lidar was deployed, operating in DBS scanning mode and capturing wind profiles at

a minimum height of 133 m above the surface. This campaign resulted in the collection of approximately 525 hours of data.
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Table 3. Metadata of datasets from five lidar measurement campaigns. The lidar range gate denotes the along-beam spatial resolution.

FINO1 FINO3 Lista Sola Bjerkreim

Latitude (N) 54.015 55.195 58.104 58.885 58.595

Longitude (E) 6.588 7.158 6.631 5.631 5.955

Terrain Type Offshore Offshore Coastal Coastal Complex

Device Windcube 100S WLS70 WLS70 Windcube 100S WindCube V1

Start Date 01.06.2015 10.09.2013 20.11.2020 04.03.2013 30.03.2010

End Date 05.10.2016 06.10.2014 06.09.2021 30.06.2013 06.05.2010

Hours Collected 1353 7997 6912 525 799

Min height (m) 78 125 100 133 40

Max height (m) 3528 2025 2000 2641 300

Range Gate (m) 25 50 100 75 20
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Figure 4. Comparison of 10-minute mean wind speed measurements recorded by the cup anemometer and the WindCube 100S at 100 m

above sea level, collected between June 2015 and October 2016 during the OBLEX-F1 campaign at the FINO1 platform.

The lidar measurements were compared against radiosonde data, demonstrating a strong correlation with a Pearson coefficient160

R > 0.95, which improved with increasing altitude.

The third measurement campaign took place at the FINO3 offshore platform, located at 55.195◦N, 7.158◦E in the North

Sea, approximately 80 km from the Danish coast. The platform hosted a WLS70 DWL profiler by Leosphere (Cariou et al.,

2009) from August 2013 to October 2014. The lidar operated in DBS scanning mode with a scan angle of 14.7◦, resulting in the

collection of approximately 7997 hours of data. The lowest measurement height, at 125 m above sea level (asl), ensured no165

significant mast-induced flow distortion. The collected wind speed and direction data were validated and detailed in Peña et al.

(2015).
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The fourth measurement campaign was conducted at the FINO1 offshore platform, located at 54.014◦N, 6.587◦E in the

southern North Sea, approximately 45 km north of Borkum Island, Germany. The platform hosted a Windcube 100S (Leosphere)

long-range scanning DWL from 01 June 2015 to 05 October 2016 (Reuder et al., 2024). The lidar operated in DBS scan mode170

with a fixed elevation angle of 70◦, performing scans twice every hour to collect 10-minute mean wind speed profiles. A total

of approximately 1353 hours of data were recorded, with the lowest measurement height at 78 m above the sea surface. A

preliminary comparison with a reference cup anemometer mounted at the top of the FINO1 mast (100 m above the sea surface)

showed excellent agreement, with a squared Pearson coefficient of 0.98, similar to results from a study conducted at the FINO3

platform (Peña et al., 2015). The lidar data collected at FINO1 are therefore considered reference data in this study (fig. 4).175

The fifth measurement campaign took place at Farsund Airport (Lista, Norway) from November 2020 to September 2021,

focusing on the study of the atmospheric boundary layer for airborne wind energy applications. A WindCube WLS70 lidar

was deployed and operated in DBS mode with measurement heights ranging from 100 to 2000 m above the surface. This paper

analyses nearly one year of wind speed records, resulting in approximately 6912 hours of data.

3 Methods180

3.1 Error metrics

To quantify discrepancies between mean wind speed data obtained from lidar instruments and those predicted by wind atlases,

four metrics are employed: the squared Pearson correlation coefficient (R2), the bias, the Root-Mean-Square Error (RMSE), and

the first Wasserstein distance, also known as the Earth Mover’s Distance (EMD). The squared Pearson correlation coefficient

(R2) measures the linear correlation between the measured and modelled wind speeds. The bias quantifies the average difference185

between the predicted and observed values, providing a measure of systematic error and the Root-Mean-Square Error (RMSE)

quantifies the average magnitude of the error. The EMD quantifies the dissimilarity between two probability distributions,

making it well-suited for analysing wind atlases that represent the climatology of a site in terms of the probability distribution of

mean wind speed and direction (Hahmann et al., 2020). For brevity, only the EMD equation is introduced, as the equations for

the R2 coefficient, RMSE, and bias are assumed to be familiar to the reader. For one-dimensional distributions, the EMD can be190

represented by the area between two cumulative distribution functions (CDFs), F1 and F2:

EMD =

+∞∫

−∞

|F1(x)−F2(x)| dx. (1)

3.2 Data preprocessing

The data preprocessing is similar for all campaigns: Hindcast data are initially interpolated from their original horizontal grid

to the GPS coordinates of the lidar campaign locations at each vertical height level. The interpolation scheme follows the195

method described in Amidror (2002), specifically a linear scattered data interpolation, as the data from the wind atlases are not

necessarily on a Cartesian grid.
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The datasets from NORA3 and NEWA are provided at specific height levels, whereas the ERA5 data were collected at five

pressure levels (1000, 975, 950, 925, and 900 hPa), as well as at 10 and 100 m above the surface. The pressure levels were

converted into geopotential height levels using the geopotential variable available in the ERA5 database. Although geopotential200

height slightly differs from geometric height, this study focuses on wind speed data within the first 500 m above the surface,

where the approximation of geopotential height to geometric height is expected to be sufficiently accurate.

A linear interpolation method was employed for vertical spatial collocation between model and lidar data. Alternative non-

linear interpolation schemes were also tested, such as spline, piecewise cubic Hermite interpolating polynomial methods, and

the modified Akima method (Akima, 1974), but they yielded similar results while being less robust than the linear interpolation.205

Appendix A presents the error metrics quantified at specific heights and as vertical profiles using a non-linear regression. The

non-linear regression shows minor differences in the error metrics compared to linear interpolation but does not change the

conclusions of the study. The comparison in appendix A supports our decision to use linear interpolation for additional height

levels in this study.

Following the spatial collocation, the model data were then temporally collocated with the lidar data. The lidar data consist of210

10-minute averaged time histories, while the model data are provided at 60-minute or 30-minute resolutions. The first approach

(Approach A) involves interpolating the model data to align with the 10-minute averages from the lidar. An alternative approach

(Approach B) would be to interpolate the lidar data to an hourly timestep. However, Approach B is more complex than Approach

A and did not yield significant differences. Therefore, for simplicity and to avoid overprocessing the data, Approach A was

adopted. Finally, for the lidar data, the initial outlier detection and removal method, which relied on CNR threshold values of215

-27.5 dB for the scanning DWL and -22 dB for the DWL profiler, was found to be sufficiently effective, eliminating the need for

additional outlier tests.

3.3 Power curves and capacity factor

This subsection outlines the methodology used to evaluate how different wind atlases influence the estimated capacity factors of

wind turbines and AWE systems at the five selected sites. The turbines examined include a range of models from the NREL 5220

MW with a 90 m hub height to the NREL 18 MW with a 156 m hub height, detailed in table 4. The power curves for these

turbines are defined by a rated wind speed typically between 10 and 12 m s−1, with a cut-in speed of 3 to 4 m s−1 and a cut-out

speed of approximately 25 m s−1.

The power curve for AWE systems depends on flight height and trajectory, complicating the estimation of annual energy

production and capacity factors. To address this challenge, various approaches are possible, such as clustering methods for225

faster computation of AWES production (Schelbergen et al., 2020) or simplified power curves (Eijkelhof and Schmehl, 2022;

Ranneberg et al., 2018). In this study, we opted to use simplified power curves as we focus primarily on validating tall wind

speed profiles using scanning lidar instruments, without delving into AWE systems flight trajectory optimization. Two simplified

power curves for AWE systems are considered: one developed for a 3 MW rigid body (Eijkelhof and Schmehl, 2022) and one

for a smaller 100 kW AWE system (Ranneberg et al., 2018). The power curves of the 3 MW and 100 kW systems are displayed230

in the middle and bottom panels of fig. 5, respectively. These power curves represent a balance between simpler ones, such
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Table 4. Summary of wind turbine models tested with ERA5, NORA3, and NEWA datasets, available at https://nrel.github.io/turbine-models.

Model Name Hub Height (m) Rotor Diameter (m)

NREL 5 MW 90 126

Leanwind 8 MW 110 164

NREL 10 MW 119 198

DTU 10 MW 119 178

IEA 10 MW 119 198

IEA 15 MW 150 240

NREL 18 MW 156 263

as those used in Vos et al. (2024), where the rated power remains constant above the rated wind speed, and more advanced

path-dependent approaches studied in Eijkelhof and Schmehl (2022) or Sommerfeld et al. (2023).

In the middle panel of fig. 5, we smoothed the 3 MW power curve using non-linear regression with smoothing splines, leading

to cut-in and cut-out wind speeds of 9.0 and 29.9 m s−1, respectively. These values slightly differ from those in the study235

by Eijkelhof and Schmehl (2022), which were based on ten optimized flight paths. Notably, we adopted a lower cut-in wind

speed of 9 m s−1 compared to their 10 m s−1, a distinction that may be significant in the North Sea where median wind speeds

typically range between 9 and 10 m s−1 (Cheynet et al., 2024). The smoothed power curve for the 3 MW AWE system does not

account for negative power output at the lowest wind speed of 8 m s−1 because it is assumed that the AWE system will not

operate at such wind speeds. For the 100 kW AWE system, we averaged two power curves computed at 200 m and 300 m above240

the surface based on Ranneberg et al. (2018), resulting in a cut-in wind speed of 2 m s−1, a cut-out wind speed of 20 m s−1 and

a rated wind speed of 7.5 m s−1. Unlike a wind turbine, the rated power in this curve decreases with increasing wind speed due

to the retraction phase, which leads to a loss of power (Eijkelhof and Schmehl, 2022). Note that because the two power curves

for the AWE system display significantly different rated wind speeds, they are likely to lead to large differences in capacity

factors, which is discussed in section 4.245

In this study, the wind speed values used for the power curve of the AWE systems are based on the median of mean wind

speeds recorded at altitudes between 200 and 500 m. A similar approach was adopted in Vos et al. (2024) using a single height

of 350 m above the surface. However, at sites with complex terrain, such as Bjerkreim, we limited measurements to between 200

and 300 m due to lidar profiler constraints. The choice of averaged wind speed values from altitudes between 200 and 500 m

serves a dual purpose. Firstly, these altitudes align with the operational heights of large AWE systems (Eijkelhof and Schmehl,250

2022). Secondly, this selection facilitates the approximation of capacity factors for AWE systems, avoiding the time-consuming

task of calculating an optimal flight path for each wind speed profile.
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Figure 5. Power curves of the wind turbines investigated (top panel), the 3 MW airborne wind energy system presented in Eijkelhof and

Schmehl (2022) (middle panel) and power curves for the 100kW AWES from Ranneberg et al. (2018) with averaged operating value between

200 and 300 m (bottom panel).

The capacity factor (CF) represents the ratio of the expected output power to the maximum or nominal power output Pmax.

Therefore, it can be calculated using time-averaged power output as

CF =
P (t)
Pmax

(2)255

where the overline denotes the temporal average and Pmax is the nominal power output. If enough data is collected to construct

reliable probability density functions, the capacity factor can be derived by integrating the product of the wind speed’s probability

density function fpdf(u) and the power curve P (u) across all possible wind speeds:

CF =
1

Pmax

∞∫

0

fpdf(u) ·P (u)du (3)

In this study, eq. (2) was used for simplicity but also because some of the data collected were recorded over only one month,260

which may be insufficient to construct robust probability density functions as required by eq. (3). At each site, a reference

capacity factor was calculated using lidar data. This reference was then compared to the capacity factors estimated from the

wind atlases, providing a measure of the accuracy of these models in capturing the wind energy potential.
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4 Results

4.1 Overview of data collection265

This section presents the time series data collected from lidar measurements and model databases during distinct campaigns at

the five sites: FINO1 (offshore, 2015-2016), FINO3 (offshore, 2013-2014), Bjerkreim (complex terrain, 2010), Sola (coastal

terrain, 2013) and Lista (coastal terrain, 2020-2021). Each time series, illustrated in fig. 6, corresponds to wind speed data

collected at the height nearest to the hub height of a 15 MW offshore wind turbine at approximately 150 m. We remind that

NEWA does not cover the period during which the lidar data were collected at Lista. Due to occasional data loss, lidar data270

series are discontinuous, and comparative analysis with model databases (NORA3, ERA5, NEWA) is restricted to periods where

lidar data are available.

A qualitative analysis of the time series shows that the agreement between the lidar measurements and wind atlases is generally

good, with the best match observed at the offshore sites FINO1 and FINO3 but also the coastal site Lista. At the coastal site Sola

and the complex terrain Bjerkeim, NORA3 seems to perform better than NEWA and ERA5, partly because it was specifically275

designed for applications in Northern Europe. This direct comparison underscores the need for careful selection of wind atlases

in wind resource assessment.

4.2 Error metrics across sites

Figure 7 compares four error metrics describing the discrepancies between in-situ measurements and modelled mean wind speed

data across five sites: FINO1, FINO3, Sola, Bjerkreim and Lista at a single height, corresponding to the range gate of the lidar280

nearest to 150 m. In terms of bias, ERA5 tends to underperform in coastal and complex terrains, while NORA3, specifically

developed for Norway, consistently shows the lowest bias across all the sites except at FINO1. This contrasts with earlier studies,

such as those by Solbrekke et al. (2021), which reported a smaller bias with a value of 0.14 m s−1 at the same site. A similar

bias of 0.11 m s−1 was obtained by Cheynet et al. (2022) for 2009 alone, both at the same site and altitude. The positive high

bias observed at FINO1 during the campaign is also found when replacing the lidar data with the cup anemometer data at285

100 m above sea level. This larger-than-expected bias may be attributed to the local depletion of wind resources caused by the

construction of multiple wind farms around the mast since 2009. This finding is consistent with the study by Podein et al. (2022),

which identified an increased wind speed bias between geostrophic wind speeds and in-situ measurements at FINO1 after 2009,

coinciding with the start of wind farm development in the area.

NORA3 and ERA5 demonstrate good performance metrics for offshore sites, achieving R2 coefficients close to 0.9, consistent290

with findings from Cheynet et al. (2022). In complex terrain, NORA3 surpasses NEWA and ERA5, providing the most accurate

wind speed estimates as indicated by the highest R2 coefficients, which range from 0.7 to 0.8 for NEWA and ERA5. NORA3

also provides, on average, one of the lowest RMSE across different types of terrains. Interestingly, for the two offshore sites,

ERA5 marginally outperforms NORA3 in terms of RMSE. Thus, NORA3’s performance is fairly consistent across diverse

topographies, whereas ERA5 may be reliably applied at far offshore sites, particularly where region-specific wind atlases are not295

available.
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Figure 6. Time series of mean wind speed data recorded at the five reference sites (FINO1, FINO3, Bjerkreim, Sola and Lista) at the range

gate nearest to 150 m. These are superposed with the corresponding time series from the ERA5, NEWA, and NORA3 databases, highlighting

periods where lidar data are available.

The fourth column of fig. 7 analyses the EMD. Offshore, NEWA exhibits the lowest EMD at FINO1 and the highest at FINO3.

Although NEWA was specifically engineered with this error metric in mind (Hahmann et al., 2020), the inconsistent EMD values

at these two offshore sites may be attributed to the presence of multiple offshore wind farms around FINO1 at the time of data

collection. At the coastal sites, the EMD values are comparable across all models, indicating similar performance among them.300

At the complex terrain Bjerkeim, NORA3 achieves the lowest EMD, underscoring its potential in heterogeneous topographies.
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Figure 7. Comparative analysis of error metrics for in-situ measurements versus modelled mean wind speed data across the five sites (FINO1,

FINO3, Sola, Bjerkreim and Lista). Each row represents one of the sites and each column represents a different error metric, arranged from

left to right: Bias, R2 Coefficient, RMSE (Root Mean Square Error), and EMD (Earth Mover’s Distance).

As expected, ERA5 shows significantly higher EMD values than the other two models onshore, which is attributable to its lower

horizontal spatial resolution.

The choice of the best model database is not straightforward as it depends on the specific error metrics and the location

being analysed (fig. 7). Furthermore, these error metrics are influenced by the height at which measurements are taken, further305

challenging the selection of an optimal database for specific applications (fig. 8).

Figure 8 displays the vertical profiles or Bias, R2 Coefficient, RMSE and EMD of the wind speed for the five sites (FINO1,

FINO3, Sola, Bjerkreim and Lista) using the three model databases (NEWA, NORA3 and ERA5) at heights up to 500 m. It is

reminded that the data collection was limited to up to 300 m at the complex terrain site Bjerkreim and that data from NEWA

were not available during the lidar campaign at Lista. Bias profiles show generally a decrease with increasing height across the310

different sites, except at Bjerkreim where the results are more nuanced; NORA3’s bias decreases significantly, nearing zero

at higher elevations, whereas NEWA’s bias increases. In contrast, ERA5’s bias is strongly dependent on height. For the R2

and RMSE metrics, NORA3 and ERA5 demonstrate closely matched results at the offshore sites FINO1 and FINO3 across all

heights, likely due to NORA3’s utilization of ERA5 inputs as forcing. At the coastal site Sola, NORA3 consistently surpasses
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Figure 8. Comparative analysis of vertical profiles of Bias, R2 Coefficient, RMSE (Root Mean Square Error), and EMD (Earth Mover’s

Distance) across the five sites: FINO1, FINO3, Sola, Bjerkreim and Lista. Each row represents one site and each column represents one error

metric.

NEWA and ERA5 in R2 values at every height. In the complex terrain of Bjerkreim, NORA3 generally exhibits the lowest315

RMSE. Meanwhile, NEWA and ERA5 show varying RMSE results based on height, complicating the choice of the most

appropriate wind atlases for wind resource assessment.

The analysis of EMD further challenges the selection process. Offshore, ERA5 appears to be the preferred option, especially for

taller wind turbines with hub heights around 150 m. In contrast, in complex terrains like Bjerkreim, NEWA performs best below

100 m but is outperformed by NORA3 at higher altitudes. The Taylor diagram shown in fig. 9 summarizes another performance320

assessment of the models with respect to the lidar data. This diagram visualizes the standard deviation and correlation coefficient

of modelled mean wind speed data versus in-situ measurements at the five sites: FINO1, FINO3, Bjerkreim, Sola and Lista.

In this figure, NORA3 usually has the best match with the measurements, especially in complex terrain and coastal areas. It

performs well across various tests but ERA5 performs equally well offshore.

The selection of the most suitable wind atlases is highly contextual, depending on specific site conditions, measurement325

heights, and desired error metrics. ERA5 might be considered for broader applications for offshore wind energy and NEWA may
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Figure 9. Taylor’s diagram across the five sites: FINO1, FINO3, Bjerkreim, Sola and Lista, at a height of 150 m above the surface.

be appropriate when focusing on specific error metrics like EMD while NORA3 may deliver consistent high performance in

the Norwegian onshore and offshore sites. It should also be noted that the variability in model performance across the sites

may partly be attributable to the different lidar instruments used. The DWL profiler deployed in Bjerkreim in 2010 was a

now-discontinued WindCube V1, whereas a scanning lidar WindCube 100S was used at the coastal site Sola and the FINO1330

platform, and a discontinued WindCube WLS70 was deployed at the offshore site FINO3 and the coastal site Lista. Furthermore,

each lidar’s performance is inherently unique due to the fine-tuning of the hardware during the manufacturing and calibration

process, the discussion of which is beyond the scope of this study.

4.3 Capacity factor estimates

This section analyses the CFs for different turbine models at the five sites. These estimates are based on the use of the time series335

of the wind speed measured by lidars and provided by the three wind atlases. For the case of wind turbines, each row of fig. 10

represents a specific location, while each column refers to a different turbine type. The CFs presented are not indicative of the

sites’ climatology, as the measurement campaigns were significantly shorter than the standard 30-year period. Also, lidars tend

to have low data availability under weak wind conditions, resulting in a higher estimated CF compared to long-term, continuous

measurements. Consequently, the CF here should serve solely for comparison between the model and the measurement data, and340

not for evaluating the wind energy potential at these sites.

The offshore site FINO3 demonstrates the best agreement between model datasets and lidar measurements in terms of CF.

However, the NREL 5 MW and the IEA 15 MW wind turbines exhibit substantial differences in CF, largely due to variations

in hub heights. Higher hubs capture stronger winds, which could also explain the smaller discrepancies between measured
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Figure 10. Estimated capacity factors for different turbine models at five sites, using lidar and three model datasets as wind inputs.

and modelled data at these altitudes. For the 15 MW wind turbines at FINO3, the estimated CFs differ by a maximum of 0.03345

between measurements and ERA5. At FINO1, the discrepancies between the model and measurements are greater than at

FINO3, which might be due to the presence of wind farms around the mast. These findings align with those from Figure 10,

which shows decreasing discrepancies at higher altitudes in terms of bias, EMD, and correlation coefficient.

At the coastal sites Sola and Lista, the NORA3 database provides nearly identical CFs to the lidar data. In contrast, ERA5

significantly overestimates the CF by approximately 40% for the NREL 5 MW wind turbine and 38% for the IEA 15 MW wind350

turbine. The NEWA hindcast also overestimates the CF at Sola, though to a lesser extent: around 16% for the NREL 5 MW

turbine and 14% for the IEA 15 MW turbine.

At the complex terrain site Bjerkreim, the NORA3 and ERA5 datasets slightly underestimate the CFs for the NREL 5 MW

wind turbine. However, the NEWA dataset provides CFs that are closest to those measured by lidar. This finding is supported by

fig. 8, which indicates that the Earth Mover’s Distance (EMD), a good metric for wind resource assessment, is lower for NEWA355

than that for ERA5 and NORA3 below 100 m at Bjerkreim.
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Figure 11. Estimated capacity factors for the 3 MW AWE system from Eijkelhof and Schmehl (2022) at five sites, using lidar and three wind

atlases as wind inputs.
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Figure 12. Estimated capacity factors for the 100 kW AWE system from Ranneberg et al. (2018) at five sites, using lidar and three wind

atlases as wind inputs.

Figure 11 presents the CFs for the 3 MW AWE system, which range from 0.15 to 0.22 offshore. In contrast, fig. 12 shows CF

values between 0.64 and 0.72 for the 100 kW AWE system. This significant difference is primarily due to the varying cut-in wind

speeds and rated wind speeds. The 100 kW system has a cut-in wind speed of 2 m s−1 and a rated wind speed of approximately

7 m s−1, while the 3 MW system has a cut-in wind speed of 9 m s−1 and a rated wind speed of 22 m s−1. A less conservative360

power curve was used in Trevisi et al. (2021) for a 3 MW AWE system with a cut-in wind speed of 2 m s−1 and a rated wind

speed between 7 and 8 m s−1, which led to a CF = 0.64. Although the 3 MW system used in our study displays a higher cut-out

wind speed than the 100 kW system, it does not sufficiently compensate for the lower CF. Thus, the economic success of larger

AWE systems depends on incorporating lower cut-in and rated wind speeds.

Regardless of the performance differences between the two AWE systems, the CFs at the offshore sites FINO1 and FINO3365

are similar when using reanalysis and lidar datasets. As noted in the previous section, NEWA slightly underestimates the CF

at FINO1 and FINO3 compared to NORA3 and ERA5. The small discrepancies between simulated and lidar data at FINO1

indicate that the data are collected at sufficient altitudes to minimise the influence of local wind resource depletion due to

wind farm clusters at altitudes above 200 m. For the coastal sites (Sola and Lista) and the complex terrain site (Bjerkreim),

the discrepancies in CF for the 3 MW AWE system are also minor. This is likely because wind speeds below 9 m s−1, which370

fall below the system’s cut-in speed, are not included in the CF calculation. Wind atlases thus capture moderate winds more

accurately than weak winds. However, deviations between the model and measurements are also documented at wind speeds

above 20 m s−1, either near the surface (Bentamy et al., 2021; Gandoin and Garza, 2024) or within the first 100 m above the
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surface (Solbrekke et al., 2021). The underperformance of wind atlases under strong wind conditions may, however, have a

limited impact on the CF of wind energy systems with a relatively low cut-out speed of around 20 to 25 m s−1.375

While this subsection primarily examined the CF, which is directly related to the levelized cost of energy, it represents just one

of several metrics used to assess the performance of intermittent renewable energy systems (Simpson et al., 2020). Alternative

metrics, such as the Gini coefficient (Malz et al., 2020) and the correlation coefficient between different renewable energy

sources (Malz et al., 2020; Jurasz et al., 2020), also provide valuable insights into the variability of power output in AWE

systems and wind turbines. Although the tall wind speed profiles established in this study could assess the complementarity of380

AWE systems with other energy sources like wind and solar, such discussions fall outside the scope of this study.

5 Discussions

5.1 A need for more powerful wind profilers?

When commercial DWL profilers became available in the 2000s, wind turbines had a nominal capacity of about 5 MW, with tip

heights around 150 m. This made the typical lidar scanning range of 200–300 m sufficient at the time. However, wind turbine385

sizes have grown significantly since then. For instance, in 2023, Mingyang Smart Energy proposed a 20 MW turbine with a

tip height potentially reaching 300 m. The increasing interest in AWE systems further highlights the technical limitations of

traditional lidar profilers. While scanning lidars can extend profiling range, they are often heavier, more expensive, and less

reliable, as they contain more moving parts and are not specifically designed for wind profiling.

This raises concerns that the development of DWL profilers is not keeping pace with the growing size of wind turbines and390

AWE systems. There is a clear need for a new generation of DWL instruments capable of reliably profiling winds up to 500

m above the surface or even higher. Such instruments remain uncommon among commercial lidar producers. One notable

exception is Halo Photonics by Lumibird, which has developed the BEAM 6X series, capable of measuring wind speeds up to

500 m. However, up to date we cannot find studies demonstrating the validity of measurements from this lidar.

5.2 Mesoscale limitations and microscale needs395

This study primarily focuses on wind speed data derived from mesoscale models, which have certain limitations, particularly for

applications in complex terrain. In offshore sites, such as FINO1 and FINO3, microscale effects may be negligible. However, in

coastal sites like Sola and Lista, microscale models could improve the agreement between modelled and measured wind speeds.

In complex terrain, such as at Bjerkreim, computational fluid dynamics models may be necessary to account for phenomena like

flow recirculation and detached downslope flow, which are common in the mountainous terrain of Southeastern Norway. Future400

research should explore the potential benefits of coupling mesoscale and microscale models to improve performance metrics at

the coastal and complex sites. We expect this coupling might cause the near-zero bias of NORA3 to shift toward a negative or

positive value, while possibly reducing the current bias of NEWA and ERA5 toward zero. However, such an investigation falls

outside the scope of this study.

20

https://doi.org/10.5194/wes-2024-119
Preprint. Discussion started: 2 October 2024
c© Author(s) 2024. CC BY 4.0 License.



The comparison conducted in this study remains valuable because microscale models, while potentially more precise than405

mesoscale models in complex terrain, depend on accurate initial and boundary conditions that can be provided by the mesoscale

models. Finally, it should be noted that the discrepancy between the modelled wind speed data and lidar-based measurements

in the complex site Bjerkeim or the coastal sites Sola and Lista is not solely attributable to the lower grid resolution of the

mesoscale wind model. It is also influenced by the higher occurrence of non-homogeneous flow fields at onshore sites compared

to offshore, particularly within the first 300 m above the surface, which can exacerbate the measurement uncertainties of lidar410

retrievals using DBS or velocity-azimuth display scanning.

6 Conclusions

This study examines the capability of three state-of-the-art wind atlases, NORA3, NEWA, and ERA5, in accurately modelling

wind speed profiles up to 500 m above the surface for wind energy applications. Reference wind speed profiles were obtained

from Doppler wind lidar (DWL) measurements conducted at five distinct sites in Northern Europe. These sites encompass415

diverse topographies such as flat coastal terrain, mountainous regions, and offshore environments. The objective of the study is

to broaden the validation scope to altitudes critical for large wind turbines and airborne wind energy (AWE) systems. This study

addresses a significant challenge in wind energy as there has been relatively limited investigation into tall wind speed profiles

using scanning DWL in profiler modes for wind resource assessment at heights up to 500 m above the surface.

The study found that all three wind atlas datasets (NORA3, NEWA, and ERA5) exhibit high quality in offshore locations,420

with ERA5 showing the closest correlation to lidar data up to 200 m. From 200 m to 500 m, NORA3 and ERA5 perform equally

well in terms of correlation coefficient and root mean square error (RMSE), though NORA3 has a lower bias and lower earth

mover’s distance (EMD) above 200 m. Onshore, NORA3 outperforms ERA5 and NEWA at all heights for most error metrics. In

terms of the capacity factor (CF) for large wind turbines, all datasets show good agreement with CF derived from lidar data

offshore, particularly for the largest turbines. However, at the FINO1 site, CF is overestimated by all models, likely due to local425

wind resource depletion from surrounding offshore wind farms. In coastal terrain, NORA3 provides excellent CF agreement

with lidar data, NEWA performs reasonably well, but ERA5 overestimates the CF. In complex terrain, NEWA and NORA3 both

perform well, while ERA5 substantially underestimates the CF. For AWE systems, the CF was fairly consistent across all the

wind atlases but showed considerable dependency on the power curve. In particular, the efficiency of the larger 3 MW AWE

system considered in this study is penalized by a high cut-in and rated wind speed compared to the smaller 100 kW system.430

It should be noted that this study was conducted using relatively limited datasets, which do not cover a climatology timescale

and include measurements from a few locations in Norway and the North Sea. Although the sites selected in this study provide a

diverse range of topographies, having more locations from additional countries would enhance the robustness of the findings.

Additionally, the limited temporal resolution of the dataset may not fully capture short-term variability in wind speed profiles,

which needs to be considered in regions where non-stationary boundary layers are prevalent.435

The general conclusion is that NORA3 excels onshore, while ERA5, with its global coverage, performs equally well offshore.

Onshore data quality is slightly lower across all datasets due to the complexity of wind patterns over land, with ERA5 showing
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significant height-dependent errors, possibly due to inaccuracies in geopotential height and pressure level data over mountainous

terrain. These findings underscore the importance of selecting the appropriate wind atlas for specific sites and altitudes to

enhance wind speed predictions and wind energy estimates. Performance variations across different locations and heights440

highlight the need for tailored wind resource assessments, especially in complex terrains. Smaller AWE systems with lower

cut-in and rated wind speeds achieve higher CFs and efficiency compared to multi-megawatt systems. Therefore, designing

larger AWE systems with low cut-in wind speeds is crucial for broader adoption. Finally, the development of DWL profiler

technology must keep pace with the growing size of wind turbines, requiring more powerful profilers to avoid the higher costs

associated with the use of scanning lidar instruments for tall wind profiles.445

Appendix A: Error metrics with non-linear wind speed regression

A non-linear regression was also tested instead of an interpolation for smoothing the vertical wind speed profiles up to 500 m

above the surface for NEWA and NORA3 and for the first six height levels for ERA5. The regression relies on fitting a

modification of the wind profile model by Deaves and Harris (1982). This modified analytical function combines a classic

logarithmic profile with a third-order polynomial function and is expressed as450

u(z) =
u∗
κ

log
(

z

z0

)
+ p(z) , with (A1)

p(z) = a1 (z) + a2 (z)2 + a3 (z)3 , (A2)

where z is the height above the surface; κ≈ 0.4 is the von Kármán constant and z0 is the roughness length. The coefficients ai,

where i = {1,2,3}, are determined empirically by least-squares fit (Cheynet et al., 2024). For the coastal and complex terrain

sites, the roughness length is approximated by the values 0.01 m and 0.1 m, respectively, following the traditional roughness455

length classification onshore (Wieringa, 1980, 1986). These values are realistic enough to ensure a reasonable fit in the lower

part of the atmospheric boundary layer. Above the ocean, the roughness length is estimated using Charnock’s relationship, which

quantifies the dependency of the roughness length on the sea state (Charnock, 1955):

z0 =
a

g
u2
∗ (A3)

where g = 9.81ms−2 is the gravitational acceleration, and a≈ 0.014 is an empirical coefficient (Kraus and Businger, 1994).460

Equation (A3) is combined with the neutral logarithmic wind speed profile into a new equation:

z0−
a

g

[
κu(zr)

ln(zr/z0)

]2

= 0, (A4)

which is solved for zr = 10 m and provides an estimate of the roughness length in the marine atmospheric boundary layer.

Figure A1 and fig. A2 present the error metrics used to assess the performance of the wind atlases compared to lidar

measurements, based on wind speed data, at a specific height and up to 500 m across the five investigated sites, respectively.465

The non-linear regression produces profiles of error metrics that show less variance around their mean but does not necessarily
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Figure A1. Comparative analysis of error metrics for in-situ measurements versus modelled mean wind speed data across the five sites (FINO1,

FINO3, Sola, Bjerkreim and Lista). Each row represents one site and each column represents a different error metric, arranged from left to

right: Bias, R2 Coefficient, RMSE (Root Mean Square Error), and EMD (Earth Mover’s Distance). The spatial collocation was obtained by

non-linear regression instead of linear interpolation.

reduce the error metrics themselves. Several hundreds or thousands of samples are used to compute these ensemble-averaged

error metrics, which tend to smooth out possible discrepancies due to linear interpolation. Therefore, when sufficiently large

datasets are available, linear interpolation of the vertical wind speed profiles at additional height levels produces good results

and was found to be the most reliable approach in this study.470
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Figure A2. Comparative analysis of vertical profiles based on non-linear regression for Bias, R2 Coefficient, RMSE (Root Mean Square

Error), and EMD (Earth Mover’s Distance) across the five sites: FINO1, FINO3, Sola, Bjerkreim and Lista. Each row represents one site and

each column represents one error metric.
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