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Abstract. It is well-known that wakes caused by the wind turbines within a wind farm negatively impact the power generation

and mechanical load of downstream turbines. This is already partially considered in the farm layout. Nevertheless, the strong

interactions between individual turbines provide further opportunities to mitigate adverse effects during operation, e.g., by

repeatedly adjusting axial induction or yaw offsets to wind conditions. We propose a mathematical approach, that covers the

farm by patterns based on a smaller, precomputable so-called upstream section, in the form of integer programming for faster5

globally optimal yaw control (under some mild assumptions like discretized yaw offsets, chosen size of upstream section,

and homogeneous layout structure). While we prove the wind farm yaw problem to be strongly NP-hard in general, we

demonstrate through numerical experiments that our method enables optimal yaw control under real-world control update

periods. In particular, the approach remains efficient if turbines are deactivated and scales well with increasing farm width.

Keywords. Wind farm, optimization, yaw-based control, integer programming.10

1 Introduction

Wind turbines are considered one of the most important electric power plants of the future energy grid, since they can generate

electricity cheaply and with low greenhouse gas emissions, see, e.g., Kost et al. (2018). Naturally, they are placed in wind farms

at locations with desirable year-round wind conditions (on- or offshore), to ensure a high energy yield in general. To increase

efficiency during operation, turbines are controlled, i.e., parts of it are periodically adjusted (e.g., nacelle direction relative to15

the wind, i.e., the so-called yaw-based control, generator torque or blade pitch angles) to the most beneficial positions with

respect to the wind speed and direction. The conventional control consists of a greedy strategy in which a turbine maximizes

its own power output under certain durability considerations, see, e.g., Hau (2013). In a farm, such greedy control can lead to

suboptimal total power output (as well as to increased maintenance effort for the turbines) as the turbines influence one another

due to their spatial proximity: each turbine causes a wake, which is characterized by decreased wind speed and increased20

turbulence, and impacts downstream turbines regarding both power output and mechanical load (wear and tear). The control

of a turbine affects the length and the spatial distribution of its wake. This opens the possibility for a global control that

incorporates turbine interactions within the entire farm. In general, such a farm flow control is state of the art, see, e.g., Meyers

et al. (2022). We focus on the optimization of the yaw offsets, which deflect and deform wakes, see, e.g., Annoni et al. (2018),

as in Fig. 1, to maximize the farm’s total power, which is a primary objective, see, e.g., van Wingerden et al. (2020).25
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Figure 1. Simulation of the local wind speed (in ms−1) with 6 turbines (of type NREL 5-MW) arranged in a 2× 3 grid layout; axes give

on-ground distances (in m). The wind blows from west to east with a speed of 11m s−1 with a turbulence intensity of 6%. It is decreased by

the turbines and, additionally, the wakes are deflected by the turbines in the first and second column because of their yaw offset of 15◦. (The

downstream-most turbines have a yaw offset of 0◦.) This figure was produced using the software WinFaST, see Sect. 3.1 for a description.

In the following, we discuss the wake models, farm layouts and operations to motivate the wind farm yaw problem and

paraphrase our approach along with contributions and limitations; an outline of the remaining paper concludes this introduction.

The remaining paper is structured as follows: in Sect. 2, we formulate the wind farm yaw problem (WFYP) mathematically,

we motivate and develop our covering approach (CA) and the corresponding integer program (IP). The details on precompu-

tations, i.e., on the simulation and the resulting performance indicators are described in Sect. 3. We explain and discuss the30

results of our computational experiments in Sect. 4 and finally, conclude in Sect. 5. The theoretical complexity of the WFYP is

examined in Appendix A. We abbreviate farm for wind farm, turbine or WT for wind turbine, and TI for turbulence intensity.

1.1 Related work

Wake models in the literature are often parameterized to NREL 5-MW turbines, see Jonkman et al. (2009) for details, in usual

atmospheric conditions for onshore wind farms, see Sect. 3.1 for details. The following brief survey refers to this turbine type;35

for a detailed overview of the complex topic of wind farm flow control, we refer to, e.g., Meyers et al. (2022). High-fidelity

simulations of wind farms in 3D like the Simulator fOr Wind Farm Application (SOWFA), see Churchfield et al. (2012a, b);

Fleming et al. (2013), are time-consuming and, hence, impractical for use in control. An overview of the most important

control-oriented models in 2D is given in (Annoni et al., 2018, Sect. 2.1): first, the Jensen model, see Jensen (1983); Katic

et al. (1987) (also for a further developed model); second, the multi-zone model FLORIS, see Gebraad et al. (2014), which40

has the dynamic extension FLORIDyn, see Gebraad and van Wingerden (2014); and third, the Gaussian model, see, e.g.,

Bastankhah and Porté-Agel (2016). These models are continuously being developed further. In the present work, we use a

simulation software which utilizes a wake model based on FLORIDyn, cf. Sect. 3. State-of-the-art static wake models are the

Gauss-Curl-Hybrid model, which incorporates secondary effects of wake steering, see King et al. (2021), and the cumulative-

curl wake model if there are more than a few wake interactions, see Bay et al. (2023). Both are implemented in the rapidly45

evolving software FLORIS (not to be confused with the original model), incorporating several steady-state control-oriented
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wake models, see NREL (2024). These control-oriented wake models have limitations: for a comparison between FLORIDyn

and SOWFA we refer to Gebraad and van Wingerden (2014). In any case, the mathematical approach we will propose utilizes

a superordinate model in which the underlying wake model is interchangeable.

A profitable wind farm needs a suitable location and careful planning of turbine numbers and placement. Wind farm layout50

optimization relies on yearly wind frequency data (wind direction and speed). It has been known for decades that it is useful

to avoid wake-induced yield reductions of downstream turbines by setting them far enough apart, see, e.g., Katic et al. (1987).

While first attempts to account for such effects merely simulated the annual average output of a specific farm layout, see Katic

et al. (1987), in recent years, the layout problem was optimized globally by mixed-integer and constraint programming, see,

e.g., Zhang et al. (2014); Fischetti (2017, 2021). In addition to the annual energy output, noise propagation is a concern in case55

of onshore farms that can also be considered, see Zhang et al. (2014). For offshore farms, aspects of cable routing and jacket

foundations are worth taking into account, see Fischetti (2017); Fischetti and Pisinger (2019).

For a given wind farm (i.e., a fixed layout), it is conventional to run greedy control for each individual turbine, see, e.g.,

Hau (2013). As mentioned earlier, adopting a global control for the whole farm instead of local control of separate turbines

can potentially improve the overall power output and relieve physical strain on the turbines. In general, there are two common60

global control concepts, cf., e.g., Gebraad et al. (2015); Annoni et al. (2016); Meyers et al. (2022): axial induction-based control

(of generator torque and/or the collective blade pitch angle) and yaw-based control (of the turbine yaw offsets), which is also

known as wake steering control, see, e.g., Howland et al. (2019). Both control concepts effectively reduce power generation of

upstream turbines by adjusting torque/pitch or yaw, respectively, which in turn leads to increased wind speeds (relative to those

under greedy control) in their respective wakes and, consequently, higher power yield of the affected downstream turbines. The65

main aim of these concepts is to achieve a net gain, and even small improvements are deemed promising, see, e.g., the wake

steering study by Howland et al. (2022) with average power increases of 0.3 to 2.7% for a commercial wind farm.

In general, it depends on the allocation of the turbines, their characteristics, and the wind conditions whether a control

different from the greedy one can indeed yield the desired gains. For example, it may happen that wind speeds are so high

that all turbines operate at maximal capacity anyway; nevertheless, some control could then still be meaningful to reduce70

mechanical loads. Furthermore, there are cases in which axial induction control shows no positive effect on total power output

while yaw control yields significant improvements, see the high-fidelity computational fluid dynamics simulations in Gebraad

et al. (2015). Thus, we will focus on yaw control in this paper, where changing the yaw offset of a turbine deflects its wake.

There is already a lot of research on yaw-based control. We follow the literature distribution in Stanley et al. (2022), which

divides it into two parts to tackle the optimization problem, i.e., using continuous yaw offsets between lower and upper bounds,75

see Gebraad et al. (2014); Fleming et al. (2016); Gebraad et al. (2017), and using discretized yaw offsets, see Dar et al. (2017);

Dou et al. (2020). In Gebraad et al. (2014) a slow game-theoretic approach is used, which does not necessarily deliver a global

optimum as desired. This is also not delivered in Fleming et al. (2016); Gebraad et al. (2017) as their optimization method

is based on sequential quadratic programming (SQP). However, a combination of yaw control and farm layout optimization

has been considered in both references, which is an interesting application but out of scope of the present paper. In Dar et al.80
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(2017), the authors modified the Jensen model (cf. Jensen (1983)) to include the effect of yaw offset adjustments and developed

a dynamic programming formulation (DPF) to pass the wind speed downstream from turbine to turbine, which results in a very

efficient method for turbines in a single row. However, the nonlinearity of the equation to compute the wind speed for a turbine

located in several turbine wakes prevents transferring this concept to a 2D farm layout. Nevertheless, Dar et al. (2017) showed

that optimizing each row separately with DPF, i.e., ignoring effects in adjacent rows, reduces the gap between its so-called85

wind farm efficiency and its globally optimal quantity (obtained by full enumeration) to up to 1%. This idea to split the farm

into disjoint subsets of turbines has already been presented in Spudić and Baotić (2013), which tackles distributed systems, and

is also used in Siniscalchi-Minna et al. (2020); Bernardoni et al. (2021); Dong and Zhao (2023). The latter one even allows at

least one turbine per subset to be in several subsets, which can lead to conflicting yaw offsets: while they describe a helping

logic to handle this, we inherently ensure the yaw offset compatibility for any number of turbines. Our goal is to determine the90

global optimum—under some mild assumptions, see Sect. 1.2.1 for details—without resorting to full enumeration; for this, our

superordinate model takes dependencies of adjacent subsets of turbines into account and can integrate any kind of wake effect

simulation. In fact, we will consider the farm as a network. This general point of view has already been used in Annoni et al.

(2019) for a different application, namely to share information among nearby turbines to improve wind direction estimation; the

underlying method, which allows simultaneous clustering and optimization on graphs, was developed in Hallac et al. (2015). In95

Dou et al. (2020), the covariance matrix adaptation evolution strategy is employed, which is a heuristic algorithm for black-box

functions. In contrast, our focus is to exploit the structure of the optimization problem. In Stanley et al. (2022), the structure

of the problem is used in the new so-called Boolean approach. This considers which turbines have downstream ones in their

wake, starts at the upstream-most turbine, and fixes a yaw offset to either 0◦ or 20◦ if it increases the power of the farm; the

simulations used the software FLORIS (cf. NREL (2024)) with the Gauss-Curl-Hybrid wake model (cf. King et al. (2021)).100

In the adaption—called serial-refine method—, see Fleming et al. (2022), each turbine is run through twice (in a serial and a

refine pass), which allows several yaw offsets. This method is fast as well as successful and suitable for a comparison even if it

generally does not guarantee a globally optimal solution. In contrast, our approach optimizes yaw offset settings simultaneously

for the whole farm. (From the view of blade load, which we do not take into account, a slightly positive yaw offset is best,

whereas the exact location depends on level of wind shear, see the field study Ennis et al. (2018).)105

1.2 Contributions and limitations

We provide a method of globally optimal yaw control (under some mild assumptions) that also includes the possibility to

deactivate wind turbines, e.g., for maintenance reasons. To that end, we propose a novel superordinate model which exploits

the coupled nature of wind turbines in a wind farm and can be based on any wake model.

We refer to the determination of a globally optimal combination of yaw offsets for a given wind farm layout and given wind110

conditions (i.e., subject to arbitrary but fixed wind speed and direction) as a WFYP; see Sect. 2 for details and a mathematical

problem definition. In this context, global optimality refers to an objective function, which takes the total power output of the

farm into account—our main goal—and can include other quantities representing mechanical loads; in fact, we include the

important tower load and the pitch angle changes (causing some wear) as so-called tower activity and pitch activity, see Sect. 3
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for a definition; we do not consider the blade load as the used simulation software, described in Sect. 3.1, does not provide a115

suitable output quantity.

The complex nonlinearities of wake flow dynamics and turbulence are typically only available through simulation, which

makes a direct integration into an optimization model almost impossible. A naive approach to solve the WFYP is to run

simulations for every possible yaw offset combination, i.e., full enumeration, but is already impractical for small farms. The

crucial observation is that the wake interactions of turbines adhere to certain patterns with respect to the farm layout that occur120

repeatedly, and with overlaps, across the entire farm. We exploit these redundancies to greatly reduce the number of required

combinations: our superordinate model constructs the farm on the basis of these patterns of depending turbines and ensures the

consistency of selected yaw offsets in regions of overlapping patterns; we formulate a corresponding IP to receive the desired

yaw offsets as solution.

Our numerical experiments are intended as proof of concept as we use error-free simulation data. They will show that state-125

of-the-art solver software for this problem class—e.g., Gurobi, see Gurobi Optimization, LLC (2022), or SCIP, see Bestuzheva

et al. (2021)—can solve these WFYP problems within reasonable time, demonstrating the practicality of our approach.

The use of our superordinate model enables deactivating any turbines and a large scaling of the wind farm size orthogonal to

the wind direction, whereas a scaling in wind direction significantly increases the computational effort due to a stronger growth

of relevant patterns—while beyond the scope of this paper, scaling in wind direction is possible by the following idea: split130

the patterns in segments in wind direction (rows of turbines so to speak), compute the upstream-most segment with specific

yaw offsets, run the simulation, save the resulting wind field, use it to simulate all yaw offset combinations in the next segment

and so on. Moreover, the weighting flexibility of the objective function terms (power output and mechanical loads) allows

additional objectives to be considered, e.g., putting selected turbines in a low-load operating mode.

1.2.1 Assumptions135

We consider the setting in which all turbines in the wind farm are of the same type and arranged on an underlying irregular grid.

These assumptions are not particularly restrictive in practice since, on the one hand, turbines within one farm are typically of

the same type—although layout optimization can result in different turbine heights, see, e.g., Stanley et al. (2017)—and on the

other hand, we can, in principle, choose the grid resolution as fine as needed to allow representing any layout (by leaving some

grid points unused); e.g., the results of layout optimization in Thomas et al. (2015); Gebraad et al. (2017) are not arranged on a140

simple grid. However, an irregular grid with, e.g., three and five rotor diameters distance between the turbines is quite common,

see, e.g., Gebraad et al. (2014); Gebraad and van Wingerden (2014); Boersma et al. (2018, 2019b).

Moreover, our model of the WFYP problem relies on two operational assumptions, which can also be realized with arbitrary

fine resolution and should therefore not be restrictive in applications: the admissible yaw offsets are bounded—to prevent

overly strong mechanical loads, cf., e.g., Boersma et al. (2019a)—as well as discretized, and we impose a threshold below145

which the influence of wakes on downstream turbines is deemed negligible.

In particular, Fleming et al. (2016) limit the yaw offset to [−45◦,+45◦] and [−25◦,+25◦], Boersma et al. (2019a) to

[−25◦,+25◦], Stanley et al. (2022) to [0◦,30◦], and our industry partner suggests [−15◦,+15◦] to protect the turbines. In
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our computational experiments, e.g., we choose yaw offsets from [−15◦,+15◦] at 5◦ increments and set the downstream-most

turbines to 0◦ (to reduce the number of options, see Sect. 2.1)—we always state yaw offsets relative to the (fixed) wind di-150

rection, i.e., as yaw offsets with respect to the mathematically positive sense of rotation—and disregard wake influence if the

wake-induced wind speed reduction (relative to the given speed) at the downstream turbine is 5% or less. We will also refer

to this exemplary setup for illustrative purposes when we formally define the WFYP and our solution approach in Sect. 2.

Nevertheless, our method admits arbitrary other settings, e.g., discretized yaw offsets for the downstream-most turbines.

Our choice is not unrealistic: Quick et al. (2020) describe the problem of uncertainty of incident wind conditions for metro-155

logical reasons and for real-world causes; in fact, the inflow of a wind farm can consist of several wind directions, speeds, TIs

and shears (e.g., caused by a mountain). Stanley et al. (2022) deduce that it is unrealistic to solve the WFYP with continuous

or finely discretized yaw offsets and choose their Boolean optimization approach only deciding whether a turbine is yawed

or not, i.e., set 0◦ or 20◦ (which is a result of power simulations of turbines with a yaw offset discretization of 5◦); they also

compared their approach with a common continuous yaw optimization (based on gradients) and mostly achieve the same power160

improvement. Against this background, our choice of 5◦ increments is reasonable.

In general, wind turbulence depends on a number of meteorological and topographical factors, whereas the power output

essentially depends on long-term fluctuations and loads are caused by short-term fluctuations, see Hau (2013). We will fix the

TI, see Sect. 3.1 for a definition, throughout this paper; for an impression of the locally strong speed fluctuations in the wind

field, see Fig. 1. For general effects we refer to Talavera and Shu (2017): first, there is a correlation between the increase of165

TI and faster wake recovery (as wind speed recovers faster for turbulent shear flow in comparison to laminar shear flow) and

second, turbulent inflow increases the power output of a wind turbine (because of suppressed flow separation).

The correlation between important weather characteristics like temperature, relative humidity, wind speed and wind gusts

are investigated in (Vladislavleva et al., 2013, Fig. 2): as expected, wind speed and gusts have a strong positive correlation with

the power output while the pressure has a slightly negative one. Finally, the spectrum of possible influences is wide. We focus170

here on the most influential factors, i.e., wind speed and direction, and fix the others like TI and air density for simplicity.

1.2.2 Complexity theory point of view and computation time

In fact, while the described homogeneous turbine type as well as layout structure, and the yaw offset discretization, may

seem to simplify the problem, this is not the case from the viewpoint of computational complexity theory: as we will prove

in Appendix A, the WFYP is generally NP-hard, which means that an efficient solution algorithm—i.e., one with run time175

polynomially bounded by the input size—is highly unlikely to exist, cf. Garey and Johnson (1979). This computational in-

tractability result, along with discretization-related aspects, motivates and justifies tackling the WFYP by IP techniques; see,

e.g., Schrijver (1986) for a thorough introduction to IPs.

Thus, the only remaining potentially limiting aspect is the computation time, which naturally increases with growing problem

size and complexity. The assessment of Fleming et al. (2022) for a real-time control scale is of seconds to minutes. Nevertheless,180

in general, we can exploit two mitigating facts: first, it is useful to avoid continuous small yaw movements in order to not unduly

increase mechanical loads, and second, the yawing rate must be slow (approximately 0.5◦ s−1) to avoid gyroscopic moments,
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see (Hau, 2013, Sects. 6.3.1 and 11.3). As a consequence, we assume that a computation time of less than 1min is sufficient; in

addition, a light detection and ranging (LIDAR) system could provide wind information at an early stage. As our IP approach is

capable of determining globally optimal yaw offset combinations for entire farms of considerable size at most under one minute185

(after required precomputations), e.g., 27 wind turbines in 11s, it is suitable for real-world application. However, the practical

realization of a short real-time control scale would require a time-delayed yaw offset adaption of each turbine (depending on

the propagation time). In our computational experiments, we will not consider this transient phase in the but the effects over a

longer period of time instead, namely 10min, see Sect. 3.2 for details.

2 The wind farm yaw problem190

Recall that our WFYP aims to find a set of yaw offsets that maximizes the total power output of the farm, optionally along with

other quantities, under a given wind scenario, i.e., fixed wind direction and speed. We will formalize this optimization task in

Sect. 2.1, develop our CA in Sect. 2.2, and derive the corresponding IP in Sect. 2.3.

2.1 Notation, basic WFYP formulation as IP with black-box objective, and the curse of dimensionality

We consider a farm with nWT turbines, each identified by an index from the set T := {1,2, . . . ,nWT}. Later, in Example 2.2,195

we will use our ultimate assumption that turbines are located on an irregular grid with certain spacing in both dimensions.

We assign to each turbine i ∈ T a set Γi of admissible yaw offsets, see Sect. 1.2.1, with respective size nΓ,i := |Γi|<∞. For

every turbine i, we associate an index set NΓ,i := {1, . . . ,nΓ,i} with its admissible yaw offsets. This general notation allows

for turbines of different types, but even when working with identical ones, for which the yaw offset sets usually coincide,

difference may arise, e.g., if maintenance reasons limit the options for specific turbines.200

Recalling that the turbines can influence each other, the overall power output of the farm and load-related other quantities

depend on the global yaw configuration, i.e., the collection of the set yaw offsets of all individual turbines, as well as the

considered wind conditions (in particular, direction and speed). Since the precise relation of these aspects has no known

analytical form, the objective function of the WFYP must generally be considered a black-box whose values for a specific

combination of input parameters can be determined, or estimated, by running a simulation of the corresponding farm scenario.205

To specify a basic mathematical formulation of the WFYP, we introduce binary decision variables xi,j for all i ∈ T , j ∈NΓ,i;

if turbine i is set to the yaw offset (from Γi) indexed by j, then xi,j = 1, and otherwise xi,j = 0. As any turbine can only operate

with one yaw offset at a time, these decision variables must adhere to
∑

j∈Γi
xi,j = 1 for all i ∈ T . The black-box objective can

then be described by a function fω : {0,1}nΓ,1+···+nΓ,nWT → RnWT , where we omit the dependency on the (here, fixed) wind

direction and speed as well as farm layout for notational convenience and where the vector ω consists of two weighting factors,210

which we will discuss later. This function is comprised of the objective contribution of every turbine, which is impacted by its

own yaw offset as well as the yaw configuration of the remaining farm (in fact, not all other turbines influence any given one,

but for now, we do not utilize this). In particular, the function fω(x) = (fω,1,j1(x), . . . ,fω,nWT,jnWT
(x))⊤, where fω,i,j(x)

denotes the objective contribution of turbine i when set to yaw offset index j from its admissible set Γi (as per xi,j = 1). Here,
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the yaw configuration of all turbines (in particular those that influence i) is fixed as prescribed by the decision variables x. To215

find the optimal yaw configuration of all turbines, i.e., a solution x ∈ {0,1}nΓ,1+···+nΓ,nWT , our objective function sums up

contributions of individual turbines:

fΣ
ω (x) :=

nWT∑
i=1

nΓ,i∑
j=1

fω,i,j(x)xi,j with black-box simulation function fω,i,j(x) := Pi,j(x)−ω(T) a
(T)
i,j (x)−ω(P) a

(P)
i,j (x), (1)

where Pi,j , a(T)
i,j and a

(P)
i,j are the average power output, the tower activity, and the pitch activity—all over a certain (fixed)

period of time—of turbine i ∈ T with yaw offset index j ∈ Γi (and the remaining yaw offsets corresponding to the selections220

encoded in x). To evaluate the black-box for a specific x, one needs to resort to simulation to obtain the power and mechanical

load values for each turbine in the considered farm (under the given wind scenario)—the details, including definitions of the

notions of tower and pitch activity, will be described in Sect. 3. The (nonnegative) weighting factors ω(T) and ω(P) are set a

priori and determine the relative importance of the respective quantities in the optimization objective; in particular, both weights

can be set to zero to take only the power into account; in addition, we could choose individual weights for each turbine.225

Thus, we formulate the WFYP as an IP with black-box objective:

max
x

nWT∑
i=1

nΓ,i∑
j=1

fω,i,j(x)xi,j (2)

s.t.
nΓ,i∑
j=1

xi,j = 1 for i= 1, . . . ,nWT (3)

xi,j ∈ {0,1} for i= 1, . . . ,nWT and j = 1, . . . ,nΓ,i. (4)

Due to the black-box nature of the objective function, the above formulation cannot simply be handled by off-the-shelf IP230

solvers. Indeed, we call it the “basic” formulation because it essentially requires computing all fω,i,j(x) to obtain a standard

(non-black-box) IP, and hence corresponds to the naive brute-force full enumeration. Clearly, this approach is only viable for

very small WFYP instances—i.e., few turbines with a small set of admissible yaw offsets—due to the exponential growth

of yaw offset combinations; see also Remark 2.3 given below. Moreover, each simulation run incurs a certain run time that

itself increases with the farm size. Thus, the WFYP suffers from the typical “curse of dimensionality” often encountered in235

combinatorial problems. In fact, our following result establishes that an efficient (polynomial-time) solution method for the

WFYP very likely does not exist; the proof is deferred to Appendix A.

Proposition 2.1 (Theorem A.3 and Corollary A.4 from Appendix A). The WFYP is strongly NP-hard and cannot be approx-

imated within any factor α≤ 1 in polynomial time (unless P =NP).

Example 2.2 (A 3× 2 farm). We consider nWT = 6 turbines, arranged in a 3× 2 farm, see Fig. 2; we assume the wind blows240

from west to east and we identify the turbines with the index set T = {1, . . . ,6}. The turbines may be homogeneous of type

NREL 5-MW turbines with a rating value of 5MW and a rotor diameter of D = 126m, cf. (Jonkman et al., 2009, Table 1-

1). We set the turbine spacing to 3D× 5D, i.e., turbines are on an irregular grid with three and five rotor diameters distance
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Figure 2. Illustration of the 3×2 farm layout from Example 2.2; the wind direction is indicated by small arrows. The drawing is true to scale

for NREL 5-MW turbines, which have a rotor diameter of D = 126m, and for a turbine spacing of 3D× 5D.

between turbines in the width (“column”) and depth (“row”) direction, respectively. We choose the notation analogous to

matrices; in the literature, our example would usually be referred to as 2× 3 with 5D× 3D. However, the spacing choice is245

common, see, e.g., farms in Gebraad et al. (2014); Gebraad and van Wingerden (2014); Boersma et al. (2018, 2019b) (also,

Katic et al. (1987) mentions 5D as row value but no column value). We restrict the permissible yaw offsets to γi ∈ Γi = Γ :=

{−15◦,−10◦, . . . ,+15◦} and nΓ,i = nΓ := 7 for every i ∈ T (cf. Sect. 1.2.1).

Remark 2.3 (Total number of possible yaw configurations of a 3× 2 farm). Example 2.2 yields a total number of nΓ
nWT =

76 = 117649 possible yaw configurations. Consequently, this number of farm simulations would be required to solve the WFYP250

with the basic approach for one wind scenario. Therefore, we need a different approach to reduce the number of simulations.

A coarser yaw offset discretization is not an option as it would sacrifice the level of exercisable control. Indeed, our approach

achieves this by reducing the number of yaw offset combinations to consider and by reusing simulation results where possible.

A turbine has the highest power output with a yaw offset of 0◦ (i.e., it runs greedily), see, e.g., Dar et al. (2017). So, an initial

approach that most likely preserves the most power output but reduces the number of options is to let the downstream-most255

ones run greedily. (We verified by an experiment that the wake of a yawed turbine has no influence on this approach at distance

of 3D.) The number of possible yaw configurations in Example 2.2 would then reduce to 73 = 343; however, such an approach

does not scale—a 3× 3 farm again results in 76 configurations. This emphasizes the need for an altogether different approach.

2.2 Covering approach for WFYP solution

The assumed homogeneous turbine type and layout structure gives rise to recurring patterns, that can be exploited to equiva-260

lently reformulate the WFYP in a way that reduces the number of black-box evaluations (i.e., simulation runs).

2.2.1 Upstream sections

To that end, we take a closer look at the turbines that influence a specific turbine, i.e., affect the latter by the downstream

wind wake; we call the set of turbines that influence a specific one as an upstream section (including the specific one). The size

depends on the wind conditions (in particular, the wind direction) and the yaw offset(s) of the influencing turbine(s). It includes265

all turbines that could influence as upstream section, the specific turbine in focus, i.e., the upstream section is based on the

admissible yaw offset ranges. Moreover, we remind the reader that one assumption is to disregard wake influence if the wake-
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(a) Upstream section for 0◦.
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(b) Upstream section for 5◦.
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(c) Upstream section for 10◦.

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

Rotated Grid Layout in m (section for all three yaws)

(d) Upstream section for 20◦.

Figure 3. Upstream sections (blue trapezoids) with included turbines (marked as points; asterisks are downstream-most turbine in upstream

section) in a grid of turbines (red crosses). The grid represents a farm with infinite expansion.

induced wind speed reduction (relative to the free stream) at the downstream turbine is at a threshold or below—throughout

this paper, 5%, see Sect. 1.2.1. The concrete chosen area is a trapezoid (for visualization we sometimes use triangles) based

on this threshold (without guaranteeing it): for this, we simply use the wind speeds at the so-called observation points (from270

simulations with 0◦ and extreme yaw offsets, e.g., ±15◦) in the wake, see Sect. 3.1, and set the absolute value of the slope of

the trapezoid to at least 0.15, which corresponds to an angle of approximately 8.5◦, see Fig. 3. (For a rough comparison, Dar

et al. (2017) neglect the deficit in velocity for yaw offsets beyond 20◦ from the center of the turbine based on Jensen (1983).)

Finally, the depth of the trapezoid constructed as described above is usually truncated (or, rarely, extended) to match the depth

of the farm—in fact, we use the effective depth of the farm, which we define in Sect. 2.2.3; it coincides with the depth of the275

farm if the wind direction is 0◦ and can be smaller otherwise.

To illustrate upstream sections, reconsider Example 2.2 and its farm in Fig. 2. Under these fixed wind conditions, WTs 1, 2,

and 3 influence WT 5 depending on the yaw offsets in [−15◦,+15◦], i.e., the upstream section at WT 5 is given by {1,2,3,5}.

The chosen upstream section is useful to explain the concept; in fact, with the selected experimental setup for our results in

Sect. 4 the corresponding upstream section would only include WTs 2 and 5, see Fig. 3(a) for a corresponding farm with three280

turbines in depth; and Fig. 3 for an overview with wind directions of 0◦, 5◦, 10◦ and 20◦.

2.2.2 Section configurations

Depending on the positions of subsets of turbines within the farm (keeping all other aspects fixed), upstream sections can take

on different patterns, which can be identified based solely on the grid layout of the farm, see, e.g., Fig. 4. In particular, we can

omit (or deactivate) turbines within any upstream section, thereby obtaining what we call section configurations as structural285

subsets of the complete section configuration, i.e., the upstream section itself. Crucially, if all turbines are of the same type,

only a single upstream section is needed as a “template” from which to extract the appropriate “patterns” with which the farm

can be represented—i.e., we can cover the entire farm using (overlapping) section configurations—and simulations can focus

on the area of upstream section (reusing simulation results of the section configurations) rather than the whole farm directly.

After the following example, we will formalize and explain this CA.290

We can cover the 3× 2 farm from Example 2.2 (cf. Fig. 2) by those section configurations shown in Fig. 4: we anchor the

configuration from (b) at WT 5 and the ones from (a) and (c) at WTs 4 and 6 (as the respective downstream-most turbine

instead of 5), respectively, since the corresponding parts of the farm exhibit the same structural pattern, see also Fig. 5(a). A

change of the farm layout would require other section configurations; e.g., without WT 2 we would need the configuration
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(d) Section configuration with

inactive WT 2.

Figure 4. Example of some section configurations of the upstream section with nWT,u = 4 turbines. We kept the numbering from Fig. 2, but

the depicted patterns may and do occur in other parts of the farm as well.

depicted in Fig. 4(d) for WT 5, and the one with just two turbines directly behind each other (not depicted) for WTs 4 and 6.295

In total, for the upstream section, we have 16 possible section configurations, including the complete one and the empty one.

In general, if an upstream section encompasses nWT,u turbines, there is a total of 2nWT,u possible section configurations.

As in the example, we only need a small number of the possible section configurations to cover the farm during normal

operation. However, we take into account all possible section configurations: it increases the precomputation time but preserves

flexibility, i.e., we are prepared for deactivated turbines and can enlarge the farm orthogonal to the wind direction.300

2.2.3 Covering sections to reduce the computational burden

To formalize the notion of section configurations that are suitable for covering the farm, it suffices to focus on the downstream-

most turbines, whose number we denote by ns, and determine so-called covering sections anchored at them.

Definition 2.4 (Covering sections). A covering section is a set Sk ⊆ T of turbines in a farm that influence each other with

respect to (wake) disturbances. We denote the set of covering sections in a farm by S := {S1, . . . ,Sns
}. Furthermore, we305

denote the set of those covering sections that contain a specific turbine i by S(i) := {Sk ∈ S : i ∈ Sk}.

To cover the farm, we must assign one covering section to each downstream-most turbine, as illustrated in Fig. 5, but as

different covering sections can have the same pattern, a section configuration can be used several times, e.g., in Fig. 5(b).

The core advantage of this CA is the significantly reduced number of simulations required to find the best WFYP solution

(in comparison to full enumeration) as we only need to precompute the yaw configurations within every (distinct) section310

configuration and, accordingly, obtain the simulation results for all covering sections.

We already mentioned that wind directions deviating from 0◦ require to define the effective depth of the farm. For illustration,

we use a 3× 2 farm with a wind direction of 0◦ and 20◦, see Figs. 5(a)/(c). In the case of 0◦, the farm and the corresponding

upstream section both have a depth of 5D. For other directions, e.g. as in Fig. 5(c), this depth changes. The depth of the

farm is the distance in x-direction between the upstream- and downstream-most turbines inside the farm, i.e., in our example315

between WTs 3 and 4. The depth of the upstream section is analogously defined inside the upstream section—in our example,

WTs 2 and 4. As this depth is sufficient to finally cover the farm we also call it effective depth of the farm. Usually, our use

of terms “upstream-” and “downstream-most” turbines refers to these covering sections, e.g., in our example, WTs 4 to 6
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(a) In a 3× 2 farm: S1 (anchored at WT 4)

uses the SC from Fig. 4(a) to cover WTs

{1,2,4}, S2 (at WT 5) employs the SC from

Fig. 4(b) for {1,2,3,5}, and S3 (at WT 6)

uses the SC in Fig. 4(c) for {2,3,6}.
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(b) In a 4× 2 farm: S1 (anchored at WT 5)

uses the SC from Fig. 4(a) to cover WTs

{1,2,5}, both S2 and S3 (at WTs 6 and

7, resp.) use the SC from Fig. 4(b) for

{1,2,3,6} and {2,3,4,7}, resp., and S4 (at

WT 8) for {3,4,8} by the SC from Fig. 4(c).

S1

S2

S3

1

2

3

4

5

6

farm depth
effective farm depth

(c) In a 3× 2 farm with a wind direction of

20◦: S1 to S3 are sufficient to cover the farm

although their depth coincides with that of

the upstream section, which is smaller than

that of the farm.

Figure 5. Covering sections S1, . . . ,S3 in a 3× 2 farm and S1, . . . ,S4 in a 4× 2 farm, respectively, where S1 is outlined by the solid blue,

S2 by the dashed red, S3 by the dotted orange, and S4 by the dash-dotted green line. Subfigure captions specify which section configuration

(SC) is used by the covering section at a turbine and which turbines are covered by that.

are the downstream-most ones and serve as anchors for the covering sections. If an anchor turbine is missing, say WT 4, we

relocate the covering section, i.e., in our example, we attach S1 at WT 1 (where S1 uses the section configuration with only one320

active turbine). Then we can assume without loss of generality that the downstream-most turbine inside a section configuration

is always active, thus circumventing the half of all combinations in which the downstream-most turbine could be inactive.

(Alternatively to this relocation, one could have anchored the covering section at a deactivated “virtual” WT 4.)

2.2.4 The required number of simulations

Before we turn to the WFYP model based on the CA, we take a closer look at the required number of simulations to solve it.325

For simplicity, we assume the same set of admissible yaw offsets, say, Γ with nΓ := |Γ| for the (identical) turbines. In the basic

approach for the whole farm with nWT turbines, we saw below Remark 2.3 that the total number of distinct yaw configurations,

which coincides with the required number of simulations, amounts to nΓ
nWT−ns if the ns downstream-most turbines run

greedily. Analogously, again running the downstream-most turbine greedily, an upstream section with nWT,u turbines admits

nΓ
nWT,u−1 possible yaw configurations and a covering section Sk with nWT,k turbines admits n∆,k := nΓ

nWT,k−1.330

To solve a single WFYP instance, we perform precomputations, i.e., simulation runs for all yaw configurations on all possible

section configurations; recall that we include all possible ones (not only those that occur as covering sections) to preserve
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flexibility, see Sect. 2.2.2, and thus, we derive the worst-case number of simulations. In addition, remembering that farm layout

and wind conditions (in particular, direction and speed) are fixed for a single WFYP instance. Consequently, while for each

scenario, the number of simulations is much lower than in the basic approach, preparing our approach for application in a335

variety of wind scenarios for a given farm will still result in a large precomputation time to run all required simulations.

However, we propose to store these precomputed simulation results in a database so that data corresponding to any currently

encountered scenario can be retrieved efficiently to solve the corresponding WFYP instance in order to update the yaw control.

In the following, we derive the number of combinations (section configurations and corresponding yaw configurations)

and the required number of simulation runs. As there are different ways to avoid further redundant computations in specific340

situations, these numbers are upper bounds and might be further reduced; we will mention some examples of this aspect.

An upstream section (i.e., complete section configuration) with nWT,u turbines has 2nWT,u − 1 non-empty section configu-

rations. All other section configurations have fewer active turbines than nWT,u, and, consequently, admit fewer possible yaw

configurations (than the complete one), i.e, the number of required simulation runs is smaller than (2nWT,u − 1)nΓ
nWT,u−1.

We derive the exact worst-case number of simulations needed, i.e., the total count of all yaw configurations for all possible345

section configurations (for nWT,u turbines) that are non-empty and have an active downstream-most turbine running greed-

ily (cf. Sect. 2.2.3). The remaining ones can then either be inactive or active with one of nΓ yaw offsets. Thus, to select

n ∈ {0,1, . . . ,nWT,u − 1} active turbines among these, there are
(
nWT,u−1

n

)
distinct possibilities and, for any selection of n

active turbines, nΓ
n possible yaw configurations. Thus, the total number of simulations amounts to

nsim :=

nWT,u−1∑
n=0

nΓ
n

(
nWT,u − 1

n

)
. (5)350

In case of our Example 2.2 (3× 2 farm), see Fig. 5(a), with nWT,u = 4 turbines in the upstream section, the formula yields

70
(
3
0

)
+71

(
3
1

)
+72

(
3
2

)
+73

(
3
3

)
= 512 combinations (i.e., simulation runs); this also applies to the 4× 2 farm, see Fig. 5(b),

and all enlargements orthogonal to wind direction as they build on the same upstream section. In comparison, if all turbines

are active (and the downstream-most ones still run greedily), the basic approach (full enumeration) leads to nΓ
3 = 73 = 343

required simulations (for 3×2) and to 74 = 2401 (for 4×2), which seems to be a better choice for the 3×2 farm. However, the355

CA already includes the possibility to deactivate any turbines, see Sect. 2.2.3. If this were included in the basic approach, we

would end up with (nΓ+1)3 ·23 = 83 ·23 = 4096 combinations (for 3×2) and 84 ·24 = 65536 (for 4×2). Thus, we expect that

the CA provides a significantly higher efficiency than the basic approach for most real-world farm layouts and wind directions.

Recall that we need these precomputations for each wind condition, in particular, we focus on direction and speed, see

Sect. 1.2.1. Usually, these are also discretized in a wind rose, see, e.g., the figures in Zhang et al. (2014); Fleming et al. (2016),360

whereas extreme speeds are summarized separately, see Gebraad et al. (2017). Analogously to the yaw offset discretization, a

finer discretization is possible but questionable due to the uncertainty of incident wind conditions as discussed in Sect. 1.2.1.

2.3 Formulation of the covering approach as an IP

It remains to formalize how we can use the covering sections to solve the WFYP globally optimal. So, recall the idea to

represent the farm as a set of overlapping covering sections (cf. Def. 2.4) rather than of single turbines. Instead of deciding365
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directly on the yaw offset of each turbine, decision variables assign a specific yaw configuration to each covering section. For

the consistency of the farm covering, we require that each turbine in intersecting parts of different covering sections consistently

has the same yaw offset in these. This, together with the requirement that each covering section is assigned exactly one yaw

configuration, mirrors the constraint of the basic approach that each turbine can only be set at one yaw offset, cf. Eqs. (2) to (4).

2.3.1 Contributions of wind turbines located at overlaps of covering sections370

Recall that in the basic WFYP approach, the objective function has coefficients (from simulations) for each turbine and yaw

offset configuration. Now, we have contributions related to assigning yaw configurations (with respect to the underlying section

configuration) to covering sections. To avoid multiple counting of the individual contributions of turbines located at overlaps

of covering sections, which are available from the simulation results (see vector-valued function fω in Sect. 2.1), we consider

the covering sections in order of their indices (S1,S2, . . . ,Sns
) and construct the objective by only adding contributions of375

turbines in a current covering section Sk if they were not already contained in the previous covering sections S1, . . . ,Sk−1.

Let Tk := Sk \ (∪k−1
m=1Sm) denote the set of new turbines in covering section Sk; e.g., in the example from Fig. 5(a), it holds

that T1 = {1,2,4}, T2 = {3,5}, and T3 = {6}. Then, we can express the WFYP objective value of a given yaw configuration

assignment (one ℓk for each respective covering section Sk) with our previously-used black-box function as

ns∑
k=1

∑
i∈Tk

fω,i,j(ℓk)(x(ℓk)), (6)380

where x(ℓk) stands for the individual-turbine yaw offset settings across covering section Sk, which now depend on the yaw

configuration ℓk given for each section Sk, and j(ℓk) is the corresponding yaw offset index of turbine i.

2.3.2 Compatibility of yaw configurations in covering sections

We will discuss the consistency of the farm covering, whereby we describe the details of the CA and lead up to the IP (8) to (11).

Again, for simplicity, we assume the same set of admissible yaw offsets, say, Γ with nΓ := |Γ| for the WTs. The appropriate385

covering sections (and required underlying configuration sections) are defined before IP model building, recall Sect. 2.2.3.

To specify the IP model, we need additional notation. For a covering section Sk ⊆ T (k = 1, . . . ,ns) with nWT,k turbines, we

identify the yaw configurations inside Sk by indices ℓk = 1,2, . . . ,n∆,k with n∆,k := nΓ
nWT,k−1 (as defined in Sect. 2.2.4).

Let γi(ℓk) denote the yaw offset assigned to turbine i ∈ Sk under yaw configuration ℓk. For consistency of the global yaw

configuration as a composition of sectional yaw configurations, the yaw configurations of overlapping covering sections must390

match on the yaw offsets of turbines located in the respective intersection. To that end, if the yaw configuration ℓk was selected

for Sk, then, for any Sk̂ with Sk̂∩Sk ̸= ∅ for k̂ ̸= k, only a subset of yaw configurations is compatible with this selection, namely

those ℓk̂ ∈ {1,2, . . . ,n∆,k̂} for which the yaw offsets γi(ℓk̂) = γi(ℓk) for all WTs i ∈ Sk̂∩Sk. In fact, it suffices to enforce these

conditions explicitly for directly adjacent pairs of covering sections (which explicitly excludes an arbitrary order), if they are

numbered in ascending sequence in accordance with the downstream-most turbines (say, 1, . . . ,ns from left to right from395

behind the farm looking against the wind direction). Then, establishing consistency of the respective overlaps of Sk and Sk+1
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Table 1. Lexicographic indexing for the n∆,1 = 32 = 9 yaw configurations for the underlying section configuration to covering section

S1 = {1,2,4} in the 3× 2 farm Example 2.2, cf. Fig. 5(a), with simplified Γ = {−15◦,0◦,+15◦} (and WT 4 fixed to 0◦).

ℓ1 1 2 3 4 5 6 7 8 9

WT 1 −15◦ −15◦ −15◦ 0◦ 0◦ 0◦ +15◦ +15◦ +15◦

WT 2 −15◦ 0◦ +15◦ −15◦ 0◦ +15◦ −15◦ 0◦ +15◦

WT 4 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦

Table 2. Valid yaw configurations L̃k+1,ℓk of covering section Sk+1 (depending on yaw configuration ℓk of the previous one Sk) compared

to all possible yaw configurations Lk+1 of Sk+1 for the 3× 2 farm from Example 2.2, Fig. 5(a), assuming admissible yaw offset offsets

{−15◦,0◦,+15◦} (simplified for the example) for every turbine, fixed yaw offset 0◦ for downstream-most turbines and yaw configurations

being indexed in lexicographical order. For S1, all possible yaw configurations L1 = {1,2, . . . ,9} are also valid by design, i.e., L̃1 = L1.

k 1 1 1 . . . 1 2 2 2 . . . 2

ℓk 1 2 3 . . . 9 1, 4, 7 2, 5, 8 3, 6, 9 . . . 21, 24, 27

Lk+1 {1, . . . ,27} {1, . . . ,27} {1, . . . ,27} . . . {1, . . . ,27} {1, . . . ,9} {1, . . . ,9} {1, . . . ,9} . . . {1, . . . ,9}
L̃k+1,ℓk {1,2,3} {4,5,6} {7,8,9} . . . {25,26,27} {1} {2} {3} . . . {9}

by resorting to valid yaw configurations for Sk+1 (defined relative to Sk and each ℓk), for k = 1, . . . ,ns − 1, is indeed enough

to guarantee global consistency, which has to overcome the sequential order and is realized in Eq. (10), as by construction,

for any WT i ∈ Sk̂ ∩Sk with k̂ ≥ k+2, necessarily also WT i ∈ Sk+1. In addition to Lk := {1,2, . . . ,n∆,k}, the index set of

all possible yaw configurations for Sk, we therefore also need the set of valid (or compatible) yaw configurations for Sk+1400

relative to Sk with ℓk ∈ Lk, which we denote as L̃k+1,ℓk := {ℓk+1 ∈ Lk+1 : γi(ℓk+1) = γi(ℓk) for all i ∈ Sk+1 ∩Sk}. For S1,

all possible yaw configurations in L1 are already valid, i.e., L̃1 = L1, as S1 has no “preceding” covering section. Tables with

these dependencies, i.e., the set of valid yaw configurations L̃k+1,ℓk for the current covering section (numbered as k+1) in

dependence of the previous one (numbered as k) and its chosen yaw configuration ℓk, can be computed straightforwardly.

To illustrate the notions, we use Example 2.2 (3× 2 farm) again. For each covering section, marked in Fig. 5(a), we need405

to uniquely identify every possible yaw configuration with an index, e.g., by sorting them lexicographically with respect to

the yaw offsets (in increasing order of the turbine indices); Table 1 shows an example for covering section S1, assuming for

simplicity {−15◦,0◦,+15◦} as admissible yaw offsets—downstream-most turbines (4, 5, and 6) are fixed to 0◦, cf. Sect. 1.2.1.

Assuming the same lexicographic indexing to the yaw configurations for each section configuration (and thus for the covering

sections), we can determine the sets of valid yaw configurations; Table 2 shows the sets L̃k+1,ℓk for our simplified example.410

For instance, if yaw configuration ℓ1 = 3 was used for S1, then only those yaw configurations for S2 in which turbines 1 and 2

also have yaw offsets −15◦ and +15◦, respectively, are valid for S2; with the used indexing, this amounts to L̃2,3 = {7,8,9}.

For ℓ2 = 7, only yaw configuration ℓ3 = 1 is valid; indeed, L̃3,7 = L̃3,1 = L̃3,4 = {1}, as these yaw configurations for S2 set

both turbines 2 and 3 to −15◦, for which the only compatible (and hence, valid) yaw configuration for S3 is precisely ℓ3 = 1.
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2.3.3 WFYP formulation as regular IP415

Now, we introduce binary decision variables yk,ℓk that encode whether covering section Sk is assigned yaw configuration ℓk

(yk,ℓk = 1) or not (yk,ℓk = 0). Using these variables, the black-box objective function, cf. Eq. (2), can be replaced by a fully

linear one once we have precomputed the simulation results for the section configurations. Indeed, the simulation results allow

us to specify cost coefficients ck,ℓk for every pair of a covering section Sk and any one of its associated yaw configurations ℓk;

in order to avoid counting the objective contributions of turbines within intersecting parts of different covering sections multiple420

times, we again use a summation that only considers contributions of new turbines in a covering section, cf. Eq. (6):

ck,ℓk :=
∑
i∈Tk

fω,i,j(ℓk)(x(ℓk)). (7)

To achieve a globally optimal yaw configuration for the whole farm, we now have to optimize over all compatible combinations,

see Sect. 2.3.2, of covering section and yaw configuration assignments (each of which has one associated coefficient ck,ℓk and

one decision variable yk,ℓk ). This yields the following integer linear program to solve the WFYP:425

max
y

ns∑
k=1

n∆,k∑
ℓk=1

ck,ℓk yk,ℓk (8)

s.t.
n∆,k∑
ℓk=1

yk,ℓk = 1 for k = 1, . . . ,ns, (9)

0≤
∑

ℓk+1∈L̃k+1,ℓk

yk+1,ℓk+1
− yk,ℓk ≤ 1 for k = 1, . . . ,ns − 1 and ℓk = 1, . . . ,n∆,k, (10)

yk,ℓk ∈ {0,1} for k = 1, . . . ,ns and ℓk = 1, . . . ,n∆,k. (11)

Constraints (9) ensure that exactly one yaw configuration is selected for each covering section, analogously to Eq. (3). Con-430

straints (10) ensure compatibility as they enforce the selected yaw configuration for a covering section Sk+1 to be valid

with respect to the yaw configuration chosen for its preceding one Sk, as described in Sect. 2.3.2: if yk,ℓk = 1, i.e., Sk uses

yaw configuration ℓk, then for Sk+1, a yaw configuration from L̃k+1,ℓk must be selected, i.e., one of the associated binary

variables—and hence, their sum—must be one. If yk,ℓk = 0, the constraint imposes no restriction1 with respect to L̃k+1,ℓk .

Finally, we emphasize that both the black-box IP (2) to (4) and the regular IP (8) to (11) are different formulations of the435

same problem, i.e., the WFYP; as such, they are equivalent—strictly speaking, this is only true if we take into account even

the smallest wake-induced wind speed reduction to determine the upstream section instead of our practical assumption in

Sect. 1.2.1; an example in Sect. 4 illustrates this small model inaccuracy. Nevertheless, the CA exploits the problem structure

in a way that can significantly reduce the required number of simulations and enables the utilization of modern IP solvers to

perform efficient implicit enumeration by branch and bound, thereby avoiding full enumeration.440

1The upper bound in Eq. (10) is redundant: we investigated the effects for 6×3 to 9×3 farms as in series 2, see Table 6; the redundant conditions slightly

increase the solving time of the IPs if Gurobi is used as solver, namely (in s) 0.25 (instead of 0.22), 1.17 (1.09), 3.79 (3.50), 10.77 (10.48), but decrease it

in three out of four cases with SCIP, namely (in s) 18.57 (21.45), 154.28 (156.47), 436.67 (446.62), 3278.30 (1781.71).
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3 Simulation

We obtain the simulation function output from simulation software which is interchangeable in our approach. Moreover, recall

that our WFYP IPs (2) to (4) or (8) to (11) need simulation function values for different yaw offset configurations. As we

control the yaw offsets, we only denote the corresponding decision variables x as simulation function arguments; the other

inputs (farm layout, wind direction and speed) will be made clear in our experiments. In the following, we also introduce other445

conditions (and used fixed values) on which the simulation also depends.

3.1 Simulation software and parameter setup

For the farm simulations, we used the software package WinFaST2. This simulation framework requires a fixed farm layout.

Axial induction and yaw offsets can be set time-dependent. As our focus lies on optimal yaw offsets, we leave the greedy

control with respect to axial induction to the local controller. The dynamic wake model of WinFaST is based on FLORIDyn, see450

Gebraad and van Wingerden (2014). As FLORIDyn, it uses so-called observation points to compute local wake characteristics

and wake interaction is based on Katic et al. (1987). The turbine controller in WinFaST is inspired by Jonkman et al. (2009),

which is widely used for NREL 5-MW turbines, extended by the options (not used by us) to reduce the power and damp tower

oscillations, each with respect to its own respective turbine. Moreover, WinFaST uses a modified version (to include yaw

control and effects) of the dynamic wind turbine model by Ritter et al. (2016, 2018). The wind field in WinFaST is simulated455

by Veers method, see Veers (1988).

We denote the average wind speed value of the (horizontal) ambient wind field by Uave. The TI is defined as I = σ/Uave,

where σ is the associated standard deviation; it depends on the average wind speed, the roughness of the surface, the atmo-

spheric stability, and the topography, see, e.g., (Hau, 2013, Sect. 13.4). The software WinFaST uses the same parametric model

parameters for turbine and wake as in (Gebraad and van Wingerden, 2014, Table 1), that were adjusted for 8m s−1 with a TI460

of 6%, with the exception of the air density, which is set to 1.225kgm−3 as in (Jonkman et al., 2009, Appendix B.1). In our

exemplary experiments, we fix the TI to 6%.

3.2 Performance indicators and simulation function

It takes a while for the wake of the upstream-most turbine(s) to reach the downstream-most one within the upstream section.

Thus, we need to choose a sufficiently long simulation time interval [ts1 , ts2 ], depending on the wind speed, the TI, and465

upstream section layout. Moreover, for data analysis and as yaw offsets are adjusted at a fairly low rate, we are only interested

in the simulation part in which the wake already influences the downstream-most turbine. Also, the wind field is equipped with

turbulence and the turbines produce some, so we analyze data over an observation time interval [to1 , to2 ]; we use it to compute

the performance indicators and to define our simulation function. In practice, we round the minimal wind speed in the wind

field down to 0.5m s−1 (namely, 4.5, 9, and 10m s−1 for speeds of 6, 11, and 12 with a TI of 6%) and simulate with this speed470

2The MATLAB package WinFaST (Wind Farm Simulation Tool), written by Bastian Ritter and Thorsten Schlicht, is proprietary software for company-

internal use at our industry partner IAV GmbH, who provided it to us for experimentation within the joint MOReNet project.
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and a TI of 0% to round up the resulting propagation time in minutes to finally set a robust value for to1 , see Table 3 in Sect. 4

for examples. As we choose a duration of 10min (to obtain roughly the specified wind speed on a mean at WT 3, cf. Table 3),

we end up with to2 = to1 +10min and [ts1 , ts2 ] = [0, to2 ].

The performance indicators (cf. Eq. (13) later) consist of the following three outputs of WinFaST: The power generated by

each turbine is given in the unit W as function px : [ts1 , ts2 ]→ RnWT

≥0 . To compute loads we use the velocity of the nacelle in475

unit ms−1 in wind direction, vx : [ts1 , ts2 ]→ RnWT , and the blade pitch angle in the unit degree, βx : [ts1 , ts2 ]→ RnWT .

Now, we define the three performance indicators for each turbine i as averages over the observation time interval [to1 , to2 ],

namely the power (output) Pi (in MW), the tower activity a
(T)
i , and the pitch activity a

(P)
i . The tower load is high when the

nacelle is oscillating; therefore, we use the absolute value of the nacelle velocity v to estimate the tower load by the so-called

tower activity. The pitch rate should be kept within limits because of the load of the pitch actuators; therefore, similarly, we480

use the absolute value of the velocity of the blade pitch angle β to estimate the load of the pitch actuators by the so-called pitch

activity. The performance indicators are defined as follows:

Pi(x) :=
1

to2 − to1

to2∫
to1

10−6 (px(t))idt, a
(T)
i (x) :=

1

to2 − to1

to2∫
to1

|(vx(t))i| dt, a
(P)
i (x) :=

1

to2 − to1

to2∫
to1

∣∣∣∣ ddt (βx(t))i

∣∣∣∣ dt. (12)

The respective units of tower and pitch activity are ms−1 and ◦ s−1 but have no physical meaning.

Finally, we define the weighted sum of these three performance indicators as the simulation function depending on the485

control input, i.e., the decision variables x. Recall that the dependence on yaw configurations also includes that of a turbine

i ∈ T on its own yaw offset, which can be expressed using the yaw offset index j ∈ nΓ,i. Therefore, following the notation

introduced in Sect. 2.1, we write Pi,j(x), a
(T)
i,j (x) and a

(P)
i,j (x). With weights ω = (ω(T),ω(P)) ∈ R2

≥0 for the activity terms the

entries of the simulation function, which yields the black-box function to maximize, are:

fω,i,j(x) := Pi,j(x)−ω(T) a
(T)
i,j (x)−ω(P) a

(P)
i,j (x). (13)490

It represents our two main objectives when controlling the farm: maximizing the total power output and minimizing the tur-

bines’ mechanical load; the weights balance these typically conflicting objectives. In fact, they could even do this individually

for each turbine. Moreover, for simplicity, we focus on the power output, i.e., usually ω(T) = ω(P) = 0 in Sect. 4. In practice,

one “simulation run” consists of evaluating the (vector-valued) simulation function fω : {0,1}nΓ,1+···+nΓ,nWT → RnWT (with

entries of the form fω,i,j(x)) once for the associated section and assignment of decision variables x.495

4 Computational results

In order to obtain computational results, we show the overall process in Fig. 6 as it is a combination of CA, see Sect. 2.2, its

formulation as IP, see Sect. 2.3, and simulation, see Sect. 3.

All computations were carried out on a Linux workstation with an Intel(R) Core(TM) i7-6700 CPU with 3.40GHz (4

cores, 8 threads) and 32GB memory. The precomputations (simulation runs) were done using MATLAB R2024b, utilizing500
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1. Setup: set a wind direction, speed, and TI, e.g., 6%; choose a farm layout (e.g., 6× 3) and admissible yaw offsets.

2. Preparation and precomputation:

(a) Determine the size of the upstream section (for a TI of 0% with 0◦ and the extremes as yaw offsets), see Sect. 2.2.1.

(b) Set the observation and simulation time intervals with respect to the propagation time and the TI, see Sect. 3.2 and Table 3.

(c) Determine the section configurations, i.e., all patterns of the upstream section, see Sect. 2.2.2.

(d) Precomputation: run simulations for all yaw configurations on all possible section configurations, see Sect. 2.2.4.

(e) Evaluate the precomputations in the observation time interval to set up the simulation function, see Sect. 3.2.

3. Determine the covering sections, i.e., the required section configurations to cover the farm, see Sect. 2.2.3.

4. Formulate the CA as an IP, see Sect. 2.3.

5. Solve the IP (e.g., with Gurobi in less than 1min); for comparison, simulate the entire farm with baseline and optimized yaw offsets.

Figure 6. Overall process to obtain computational results (as combination of CA, IP formulation, and simulation).

parallelization of 4 workers. The IPs resulting from our CA were solved with state-of-the-art IP solvers, namely the open-

sourced academic solver SCIP 8.0.3, utilizing the LP solver SoPlex 6.0.3, which only supports single-thread, see Bestuzheva

et al. (2021), as well as the proprietary Gurobi 10.0.0, which can employ all threads, see Gurobi Optimization, LLC (2022).

Before we discuss the results, we briefly summarize the most important parts of the overall experimental setup. As admis-

sible yaw offsets we choose γ ∈ Γ = {−15◦,−10◦, . . . ,15◦} for NREL 5-MW turbines with a rotor diameter of D = 126m,505

see (Jonkman et al., 2009, Table 1-1), in different farm layouts from 6× 3 to 9× 3 with a turbine spacing of 3D× 5D. As

wind directions we use 0◦, 5◦, 10◦ or 20◦, where 0◦ represents wind blowing from west to east. In all figures, we indicate the

wind direction by a vector. As average wind speeds we consider 6, 11, and 12m s−1. Deviations from this setup are made clear

where they occur. Finally, we frequently compare the optimized yaw offsets against the baseline, i.e., yaw offsets of 0◦.

The main computational experiments in a farm with our CA are in Sections 4.1 to 4.4: for different wind directions, for reused510

precomputed simulations to demonstrate flexibility, for different wind speeds, and for different yaw offset discretizations.

However, we begin with some experiments to compare the WinFaST simulation with the software FLORIS, see NREL (2024),

and continue with a validation of our CA on the basis of the simulation software FLORIS by comparison with serial-refine

(available in FLORIS), see Fleming et al. (2022), and full enumeration (as assumptions and discretizations were employed to

arrive at our IP model for the WFYP via the CA).515

To that end, we consider a 3× 3 farm with different TIs, wind speeds and directions and compare the baseline simulations

of WinFaST and FLORIS in Table 3; see Fig. 7(a) for a visualization of part c). In detail, we use the available file gch.yaml as

input in FLORIS, i.e., the Gauss-Curl-Hybrid model for wakes but set the wind shear to 0. While the results are similar at WT 3,

they differ significantly at WTs 5, and 7 as WinFaST generates a wind field and uses dynamic models for turbines and wakes

whereas FLORIS generates no wind field and is restricted to static models, whereby the wake model is sophisticated. Simulation520

is a complex topic, e.g., WinFaST simulates that WT 3 sometimes reaches 5MW during observation due to turbulence in parts

c) to f). A comprehensive comparison of the simulations (and which one is preferable) is out of scope of the present paper.
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For the mentioned CA validation with FLORIS software simulation, we consider a 3×3 farm with a wind speed of 11m s−1

and a wind direction of 20◦, i.e., the controlled WTs are 2, 3, 5, and 6, cf. the assumptions in Sect. 1.2.1. For the results we

refer to Table 4 a) to c) and Fig. 7. The full enumeration takes 9.1min and results in four solutions with an optimized total525

power output of 38.66MW. The serial-refine method also results in 38.66MW. In particular, we allow seven yaw offsets in

the first phase, i.e., our usual choice of 5◦ steps, and two yaw offsets in the second phase, which practically corresponds to

2.5◦ steps, which is actually used for WT 2. This method takes only 1.07s. Our CA predicts a power of 38.69MW, but the full

farm simulation with the optimal yaw offsets also results in 38.66MW. The CA takes 1.9min for precomputation and 0.12s

for the IP solver SCIP, which is not directly comparable to serial-refine as we designed the CA with flexibility in mind, see530

Sect. 2.2.2. All in all, both serial-refine and CA have found a global solution.

The deviations of the predicted power by CA and full farm simulation (in baseline and/or optimization) are limited and

are due to the size of the upstream section, which influences the accuracy of the discretized, section-based WFYP model and

therefore is a compromise in terms of accuracy and run time. For example, the covering section (based on upstream section

Fig. 3(d)) anchored at WT 4 includes WT 2, but WT 1 is marginally outside. An increase in size of the upstream section535

would ameliorate the small model inaccuracy, but also significantly increase the precomputation time. Therefore, we accept

small inaccuracies in the predicted power output by CA (and run full simulation with optimized yaw offsets at the end). As the

improvements over the baseline are significantly larger than the deviations from full farm simulation, the optimal solutions of

our CA will likely still be optimal for a model using increased upstream sections, though suboptimality is technically possible.

The IP solver run times themselves will indicate that handling larger upstream sections should not pose an issue.540

We would like to present a case where our CA method is more advantageous in terms of accuracy than the fascinatingly

fast serial-refine method. In theory, there could be such a case as our CA is equivalent to full enumeration for sufficiently large

upstream sections, see Sect. 2.3.3. However, we have not yet found such an example.

For the remaining paper we show results of our CA approach using WinFaST simulation for computations and visualizing

the results with software FLORIS. For the example above, we receive other optimized yaw offsets, see Table 4 d) and Fig. 7(b),545

where the precomputation takes 4.5h and the IP solver SCIP 0.11s. These yaw offsets as input in FLORIS result in 38.27MW,

which is below the baseline with FLORIS, and demonstrates the dependency of the solution on the selected simulation. In

addition, we use the introduced weights ω = (ω(T),ω(P)) = (100,10) once to take into account the tower activity and pitch

activity in optimization, cf. Eq. (13), see Table 4 e). A detailed comparison to d) with our default ω = (0,0) shows that both

tower and pitch activity are decreased, namely to 0.1105 (from 0.1108) and 0.3865 (0.4070) for the price that the power is also550

decreased (to 33.03 from 33.05MW). (To complete the impression, the activities in baseline are 0.1128 and 0.5347.)

4.1 Wind farm yaw offset optimization under different wind directions

In series 1, we consider a 6×3 farm with a wind speed of 11m s−1 and wind directions of 0◦, 5◦, 10◦ and 20◦. The respective

results are presented in Table 5, see also Fig. 9(b) for case 4. In all cases, the improvement of the total power output is between

2% and 17%. In most of these cases, the optimal yaw offsets exhaust the given limits of ±15◦. In case 4 (i.e., wind direction555
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Table 3. Data and results for baseline simulations of a 3× 3 farm to compare WinFaST and FLORIS (series 0, case 0). Both observation

time interval [to1 , to2 ] and mean wind speed at WT 3 are related to WinFaST; we set to1 and to2 = to1 +10min as discussed in Sect. 3.2.

wind farm obs. time mean speed power output with WinFaST power output with FLORIS

TI speed direction begin to1 at WT 3 WT 3 WT 5 WT 7 WT 3 WT 5 WT 7

part (in %) (in ms−1) (in ◦) (in min) (in ms−1) (in MW) (in MW) (in MW) (in MW) (in MW) (in MW)

a) 0 11 0 7 11.00 4.5409 0.9110 0.3466 4.5625 0.8336 0.3157

b) 0 11 20 5 11.00 4.5409 3.3658 1.9163 4.5625 4.4762 3.1604

c) 6 11 20 6 11.01 4.4374 3.4029 1.9241 4.5625 4.4232 3.3763

d) 6 11 0 9 10.89 4.3617 1.0105 0.3704 4.5625 1.2536 1.4189

e) 6 11 5 7 11.13 4.4890 1.8419 1.1378 4.5625 2.4564 2.6977

f) 6 11 10 6 11.34 4.6021 3.3156 2.2861 4.5625 4.0900 3.9583

g) 6 6 20 12 6.07 0.7706 0.5335 0.2698 0.7376 0.7076 0.5150

h) 6 12 20 5 12.57 4.9922 4.8839 3.9316 5.0000 5.0000 4.7465

Table 4. Data and results for a 3×3 farm, a wind speed of 11m s−1 (TI of 6%), and direction of 20◦ (series 0, case 1) to compare optimization

methods and simulations. In cases of CA we add the run times of precomputations and IP solver SCIP. In part e) we take into account the

tower activity (weighted by 100) and the pitch activity (weighted by 10), cf. Eq. 13, (marked with “(w)”).

optimal yaw offsets (in ◦) total power output

(of controlled WTs) baseline optimized improvement

part simulation opt. method run time WT 2 WT 3 WT 5 WT 6 (in MW) (in MW) rel. (in %)

a) FLORIS full enumeration 9.1min 5 or 10 10 −5 0 or −5 38.42 38.66 0.62

b) FLORIS serial-refine 1.07s 7.5 10 −5 −5 38.42 38.66 0.62

c) FLORIS covering approach 1.9min+0.12s 10 10 −5 −5 38.42 38.66 0.62

d) WinFaST covering approach 4.5h+0.11s 15 15 −15 −10 32.64 33.05 1.25

e) WinFaST covering approach (w) reuse +0.12s 15 15 −15 −15 32.64 33.03 1.19

of 20◦), the distances between the turbines in the downstream direction are already comparatively high and consequently, the

wake influence comparatively low; therefore, the improvement is 2% here, but larger in the other cases.

The main part of the overall run time is the precomputation time, e.g., in series 1 about 1 to 5h. The IPs in our CA then are all

solved in well below 1s by Gurobi, and still within at most 19s by SCIP. We remind the reader that the precomputations were

designed with flexibility in mind, see Sect. 2.2.2, i.e., they can be reused for many cases, see our series 2 for a demonstration.560

Hence, for the actual optimization process used for control updates, only the IP solving times are relevant, which turned out to

be so small that we can speak of real-time capable optimization (cf. Sect. 1.2.2). Finally, we see that the suggested database of

precomputated simulation results, see Sect. 2.2.4, is time-consuming to build but enables significant gains through optimization.

The main influence on the precomputation time is the turbines’ number in the upstream section; the impact of the allowed

number of yaw offsets is smaller, cf. Sect. 4.4. The specific upstream sections in series 1 are depicted in Fig. 3; those of cases 1565
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(a) Baseline: 32.64MW with WinFaST,

38.42MW with FLORIS.

 WT 1

 WT 2

 WT 3

 WT 4

 WT 5

 WT 6

 WT 7

 WT 8

 WT 9

(b) Optimized with covering approach with

WinFaST: 33.05MW.

 WT 1

 WT 2

 WT 3

 WT 4

 WT 5

 WT 6

 WT 7

 WT 8

 WT 9

(c) Optimized with covering approach with

FLORIS: 38.66MW.

Figure 7. Baseline and optimization results for comparison (visualized with FLORIS). Subfigure captions specify the farm’s power output.

Table 5. Data and results for a 6× 3 farm, wind speed of 11m s−1 and wind directions of 0◦, 5◦, 10◦ and 20◦ (series 1). In all cases, the IP

optimality gap is 0.00%, i.e., all instances were solved to global optimality. Detailed results of case 4 are in Fig. 9(b).

wind farm IP solver total power output

wind direc- # covering precomputa- # vari- # con- solving time (in s) baseline optimized improvement

case tion (in ◦) sections tion time (in h) ables straints SCIP Gurobi (in MW) (in MW) rel. (in %)

1 0 6 0.7 294 496 0.04 0.01 35.84 38.66 7.85

2 5 6 0.7 294 496 0.04 0.01 42.14 49.49 17.45

3 10 6 4.6 1764 3436 0.54 0.23 58.07 63.68 9.67

4 20 8 4.5 1430 2866 18.57 0.25 69.04 70.26 1.76

and 2 (i.e., wind directions 0◦ and 5◦) include three turbines and yield precomputation times of about an hour (cf. Table 5),

whereas those of cases 3 and 4 (i.e., 10◦ and 20◦) include four turbines and take about 5h. Four turbines (with seven possible

yaw offsets) result in 512 yaw configurations (i.e., simulations), see the example in Sect. 2.2 and Eq. (5).

4.2 Scalability and flexibility of the covering approach to solve the WFYP

In series 2, we demonstrate that reusing precomputed simulation results (for section configurations, see Sect. 2.2), namely570

series 1, case 4 (case 1.4), see Table 5, enables our CA to enlarge farms orthogonal to the wind direction (cases 2.1 to 2.4)

and to handle cases with deactivated turbines (case 2.5). In particular, we use a wind direction of 20◦ and a speed of 11m s−1

to reuse case 1.4 precomputations (originally for a 6× 3 farm) for 7× 3 to 9× 3 and monitor the IP solvers’ workload, see

Table 6. The optimization consistently improves the farm’s total power output by roughly 2%. The impact of the farm size on

the IP solving time reflects the theoretical complexity of the WFYP (see Prop. 2.1) in practice: the solver SCIP quickly takes575

a long time—it could be stopped earlier if a duality gap was accepted; Gurobi is faster by orders of magnitude remaining well

below one minute in all cases considered here, despite an (apparently exponential) increase in run time with the farm size.

This illustrates the practical scalability of our CA and, in light of the low yaw sampling rate, its suitability for real-time WFYP
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Table 6. Data and results to illustrate scalability and complexity of the WFYP (series 2). All cases have a wind direction of 20◦ and a speed

of 11m s−1. In all cases, the IP optimality gap is 0.00%. (Case 2.1 repeats case 1.4.) We estimate the predicted run time of full enumeration

by nΓ
nWT−ns ·τ · 1

4
, where τ is the run time of one simulation and 1

4
is for parallelization effect, see Sect. 2.2.4 for number of combinations.

wind farm predicted run time IP solver total power output

# covering of full enumeration # vari- # con- solving time (in s) baseline optimized improvement

case layout sections (in min) (in y) ables straints SCIP Gurobi (in MW) (in MW) rel. (in %)

1 6× 3 8 718−8 · 6.7 · 1
4

9.0 · 102 1430 2866 18.57 0.25 69.04 70.26 1.76

2 7× 3 9 721−9 · 7.7 · 1
4

5.1 · 104 1773 3553 154.28 1.17 73.29 74.48 1.63

3 8× 3 10 724−10 · 9.1 · 1
4

2.7 · 106 2216 4240 436.67 3.79 86.94 88.58 1.89

4 9× 3 11 727−11 · 10.3 · 1
4

1.6 · 108 2459 4927 3278.30 10.77 98.15 100.15 2.04

 WT 1

 WT 2

 WT 3

 WT 4

 WT 5

 WT 6

 WT 7

 WT 8

 WT 9

 WT 10

 WT 11

 WT 12

 WT 13

(a) Baseline: 54.51MW.

 WT 1

 WT 2

 WT 3

 WT 4

 WT 5

 WT 6

 WT 7

 WT 8

 WT 9

 WT 10

 WT 11

 WT 12

 WT 13

(b) Optimized: 55.57MW.

Figure 8. Detailed results for a 6× 3 farm in which some turbines are inactive (case 2.5 with wind speed of 11m s−1 and direction of 20◦).

Subfigure captions specify yaw control (baseline or optimized) and the resulting total power output of the farm.

optimization even for farms with more turbines than explored here. Moreover, we demonstrate the curse of dimensionality of

full enumeration via predicted run times, namely in the order of 102 to 108 y, instead of the 4.5h precomputation (cf. Table 5).580

Furthermore, we handle the case 2.5 with a mix of active and inactive (or not existing) turbines to show our method’s

practical flexibility, e.g., to react to a shutdown for maintenance. Again, we reuse precomputations of case 1.4, cf. Table 5,

but now in the setting depicted in Fig. 8, i.e., WTs {2,5,6,9,12} are inactive. The WFYP optimization still yields about 2%

improvement in generated power, namely 1.95%, while the “thinning out” of the farm leads to notably shorter IP solving times:

0.02s (instead of 18.57s) with SCIP and below 0.01s (0.25s) using Gurobi.585

4.3 Impact of different wind speeds

In series 3, we again consider a 6×3 farm and a wind direction of 20◦, and evaluate WFYP solutions for different wind speeds.

The baseline and optimization results of 6, 11 and 12m s−1 are reported in Table 7 (11m s−1 repeats case 1.4) and Fig. 9: the
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Table 7. Data and results to illustrate the impact of wind speeds (series 3). All cases have a 6× 3 farm layout and a wind direction of 20◦ in

common. In all cases, the IP optimality gap is 0.00%. Detailed results are in Fig. 9. (Case 3.2 repeats case 1.4.)

wind farm IP solver total power output

wind speed precomputa- solving time (in s) baseline optimized improvement

case Uave (in ms−1) tion time (in h) SCIP Gurobi (in MW) (in MW) rel. (in %)

1 6 4.6 46.28 0.24 10.16 10.37 2.07

2 11 4.5 18.57 0.25 69.04 70.26 1.76

3 12 4.5 8.10 0.22 82.75 84.52 2.14

optimization increases the farm’s total power output by about 2%; the maximum of the precomputation time is about 5h and of

the IP solving time about 46s (SCIP) or under 1s (Gurobi). Finally, further experiments provide speeds of {6,7, . . . ,15}ms−1:590

the improvement of the total power is between 0.90% and 2.54% for 6 to 13m s−1, 0.06% for 14m s−1, and 0.00% for 15m s−1

(as the baseline already reaches the maximum of 90MW). For 6 to 14m s−1 we obtain yaw offsets of the controlled WTs with

a similar power output effect, namely ±15◦ for WTs 2 to 6 and −10◦ or −15◦ for 8 to 12. This suggests several approaches: the

avoidance of many precomputations by identifying the wind speeds’ “tipping points” for each wind direction, i.e., speeds that

change the optimal yaw offsets (significantly with regard to the total power), the restricting of admissible yaw offsets around595

the found values, or the refinement of yaw offsets around the found values (similar to the serial-refine method, see Fleming

et al. (2022)). Further, we observe that turbines in a row (apart from those at the farm borders) appear to typically have identical

optimal yaw offsets (in the same experiment), which is likely due to the grid layout, whereby on the one hand we also have to

acknowledge that our number of admissible yaw offsets is not large, on the other hand we refer to Sect. 4.4 for the effect and

question of usefulness of a finer discretization. In addition, the optimal yaw offsets of all controlled WTs differ from 0◦: on the600

one hand this may provide opportunities to reduce the running times of both precomputations and IP solving, on the other hand

it might be different for other wind directions, although there are already relatively few wake interactions for the wind direction

of 20◦ (which is reflected in the relatively small potential for total power improvement). Finally, the speed of 15m s−1 is the

end of interest from total power optimization perspective for the present example as the improvement is 0.00%. Nevertheless,

optimization can still be meaningful if mechanical loads are included: in a further experiment, we weight the tower activity by605

ω(T) = 100 and the pitch activity by ω(P), cf. Eq. (13). This results in similar optimal yaw offsets as for 6 to 14m s−1, namely

±15◦ for WTs {2, . . . ,5,8, . . . ,12} and 10◦ for WT 6. The total power remains at 90MW, whereas the tower activity decreases

to 0.4017 (from 0.4096 in baseline) but the less heavily weighted pitch activity increases to 4.2175 (from 4.1707).

4.4 Modifying the yaw offset discretization in terms of range and fineness

In series 4, we deviate from the yaw offset discretization ([−15◦,15◦] in 5◦ steps, i.e., seven offsets) used so far, see Table 8 for610

the results. In case 4.1, we use [−40◦,40◦] in 5◦ steps, i.e., 17 offsets, for the setup as in case 1.2 (with which we compare, cf.

Table 5). This increases the precomputation time to 2.6h (compared to 0.7h). As optimal result, all controlled turbines are set
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(a) 6m s−1, optimized: 10.37MW.
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(b) 11m s−1, optimized: 70.26MW.
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(c) 12m s−1, optimized: 84.52MW.

Figure 9. Optimization results for series 3 as shown in Table 7. Subfigure captions specify the wind speed and the farm’s total power output.

Table 8. Data and results if yaw offset range or discretization are changed (series 4). All cases consider a 6× 3 farm with a wind speed of

11m s−1. In all cases, the IP optimality gap is 0.00%.

wind farm IP solver total power output

wind allowed yaw offsets precomputa- # vari- # con- solving time baseline optimized improvement

case direction range steps tion time ables straints SCIP Gurobi (in MW) (in MW) rel. (in %)

1 5◦ [−40◦,40◦] 5.0◦ 2.6h 1734 2896 0.82s 0.76s 42.14 53.81 27.68

2 20◦ [−15◦,15◦] 2.5◦ 23.0h 8972 17950 8.32h 29.56s 69.04 70.29 1.80

to 30◦, which enables a significantly increased power output of the downstream-most turbines (with 0◦), i.e., 2.9 to 3.1MW

(from 1.7 to 1.9MW). The total farm output is increased to 53.81MW (from 49.49MW). The non-use of the new limits of

±40◦ shows that at the extreme yaw offset settings, the power loss at a turbine would exceed the gain at turbines downstream.615

In case 4.2, we reconsider [−15◦,15◦] but with 2.5◦ steps, i.e., 13 offsets, for the setup as in case 1.4 (with which we

compare, cf. Table 5), which is particularly interesting for finer discretization as not all turbines attain extreme yaw offsets

±15◦. Indeed, optimal yaw offsets of WTs 8 to 12 are set to −12.5◦ (from −15◦ or −10◦ for WT 12), whereas WTs 2 to 6

remain at 15◦ (and others at 0◦). The longer precomputation time of 23.0h (4.5h) is theoretically worthwhile as the total power

output is increased further to 70.29MW (from 70.26MW). In practice, it is unnecessary to use arbitrarily fine discretizations620

due to the uncertainty of incident wind conditions, see Stanley et al. (2022) (referenced in Sect. 1.2.1).

5 Concluding remarks

We formulated the wind farm yaw problem mathematically, established its computational complexity and developed a covering

approach, which exploits that the farm can be covered by patterns based on a smaller, precomputable so-called upstream section,

in the form of integer programming to solve it faster. Building on a number of simulation results that can be precomputed at any625
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time before the need for yaw control arises, the method is efficient in practice in spite of the problem’s strong NP-hardness

and inapproximability. In particular, we fully expect even very long precomputation times (e.g., months) to be acceptable

as the simulations can easily be run for various wind scenarios while the farm is not yet operational. Given the envisioned

database, our CA efficiently delivers optimal yaw control using a state-of-the-art IP solver like Gurobi. The solution is even

globally optimal under some mild assumptions as discussed in Sect. 1.2.1, like discretized yaw offsets, chosen size of so-630

called upstream section, and homogeneous layout structure. In addition, it enables tackling even farms with many turbines.

We demonstrated the performance of our approach with several proof-of-concept examples that illustrate its effectiveness,

flexibility and scalability, particularly through the reuse of precomputations if we enlarge the farm orthogonally to the wind

direction or deactivate turbines. On the other hand, the enlargement in wind direction increases the upstream section and

therefore the number of turbines inside, which mainly increases the precomputation time. As our CA is a superordinate model,635

the simulation is interchangeable, e.g., to use FLORIS simulation as shown that does not utilize dynamic models (for wakes and

turbines). Finally, it might be helpful to solve the WFYP for the associated farms by our CA for a variety of wind directions and

speeds to recognize structures whose exploitation reduces the computational effort in precomputation or simplifies the WFYP

itself. Solving the WFYP for the associated farms by CA in all considered wind scenarios should provide knowledge to reduce

the computational effort.640

Code and data availability. For simulation, we used the MATLAB software package WinFaST. This company-internal software is not pub-

licly available, but based on known methods, as described in Sect. 3.1. As our own optimization framework is presently entwined with

WinFaST and hence not a stand-alone program, we have not made it publicly available at this time. Nevertheless, in Sect. 2, we provide a

detailed description of the problem, the novel CA, integration/utilization of simulation results and the WFYP formulation as an IP. As data to

supplement the article, we provide the IPs (lp-files) and corresponding solver log files for each case of our series of experiments. The data645

is available at Zenodo: https://doi.org/10.5281/zenodo.14900916.

Appendix A: Complexity of the wind farm yaw problem

This section addresses the computational complexity of the wind farm yaw problem from a theoretical viewpoint; we assume a

basic knowledge of mathematical complexity theory and refer to Garey and Johnson (1979) for a detailed introduction. Using

the basic black-box IP formulation (2) to (4) of the WFYP (cf. Sect. 2.1), we show that the WFYP is strongly NP-hard650

(Theorem A.3) and even hard to approximate (Corollary A.4). These two results together yield Proposition 2.1 as stated in

Sect. 2.1. We use the well-known strongly NP-complete Hamiltonian Circuit (HC) problem, see, e.g., (Garey and Johnson,

1979, problem GT37), for our proof.

Definition A.1 (Hamiltonian Circuit Problem (HCP)). Let an undirected graph G= (V,E) on n vertices, V := {v1, . . . ,vn}, be

given. Does G contain a Hamiltonian circuit, i.e., a subset of edges H=
{
{vπ(1),vπ(2)},{vπ(2),vπ(3)}, . . . ,{vπ(n−1),vπ(n)},655

{vπ(n),vπ(1)}
}
⊂ E for a permutation ⟨vπ(1),vπ(2), . . . ,vπ(n)⟩ of V ?
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For clarity, we also explicitly state the decision version of the WFYP problem.

Definition A.2 (WFYP decision version (WFYP-DEC)). Let the index set T of wind turbines in a farm, its layout L, the index

set Γi := {1, . . . ,nΓ,i} of admissible yaw offsets for each turbine i ∈ T , the WFYP objective function fΣ
ω as defined for its

(black-box) IP formulation, and a number F ∈ R be given. Does there exist a feasible yaw configuration for the given farm660

(i.e., exactly one yaw offset per turbine) such that, for the associated binary yaw offset assignment vector x, fΣ
ω (x)≥ F ?

Recall that the assignment vector x ∈ {0,1}nΓ1+···+nΓnWT , with the entry in position
∑i−1

ℓ=1nΓℓ + j being denoted by xi,j

and having value 1 if and only if the i-th turbine is set to the j-th yaw offset from among the respective admissible set Γi. In

the following, we will also use some additional notation: we denote the so-called triangular numbers by ∆n :=
(
n+1
2

)
= n2+n

2 ,

abbreviate the set of the first N triangular numbers as ∆(N) := {∆1,∆2, . . . ,∆N}, and write [n] := {1,2, . . . ,n} for n ∈ N.665

We are now prepared to prove the NP-hardness and inapproximability of the WFYP(-DEC).

Theorem A.3. The WFYP is strongly NP-hard.

Proof. We show hardness for the decision version WFYP-DEC, which directly implies hardness for the optimization version

(WFYP, as defined in Sect. 2), cf. Garey and Johnson (1979). To that end, we reduce from the strongly NP-complete HCP.

Let G= (V,E) be an arbitrary HCP instance, and denote n= |V |. We can assume w.l.o.g. that n≥ 2, every vertex has670

degree at least 2, and that G consists of a single connected component (otherwise, the answer to the HCP is trivially “no”). We

construct an instance (T,L,{Γi}i∈T ,f
Σ
ω ,F ) of the WFYP-DEC as follows:

We set the number of turbines to nWT := ∆n +1 and identify the turbines by their index, i.e., T := [∆n +1]. The turbines

are arranged in a triangle-like layout L (on a regular grid)3 defined by the following “row” sets:

R1 := {∆1}= {1}, R2 := {∆2,2}, R3 := {∆3,5,4},675

. . . , Rn := {∆n,∆n − 1, . . . ,∆n−1 +1}, Rn+1 := {∆n +1}.

Furthermore, each turbine i ∈ T is given the same set of admissible yaw offsets Γi := Γ := [n], so nΓ,i = |Γi|= n for all i ∈
T . Finally, we set F := n, and define the terms fω,i,j(x) of the simulation function fΣ

ω (x) :=
∑nWT

i=1

∑nΓ,i

j=1 fω,i,j(x)xi,j =∑∆n+1
i=1

∑n
j=1 fω,i,j(x)xi,j as

fω,i,j(x) :=



0 if i= 1(= ∆1) and j ∈ [n],

1 if, for some k ∈ [n], i=∆k > 1, x∆k−1,ℓ = 1 for some ℓ such that {vℓ,vj} ∈ E,

and j ∈ [n] \
{
q ∈ [n] :

∑
s∈Rk−1

xs,q > 0
}

0 if, for some k ∈ [n], i ∈Rk \
(
∆(n)∪{∆n +1}

)
and xi−k+1,j = 1,

1 if i=∆n +1, x∆n−1+1,j = 1, and {vj ,vℓ} ∈ E for j such that x∆n,ℓ = 1,

1−n otherwise.

(A1)680

3In fact, the precise layout does not matter, since all implications regarding the resulting wake influences are “hidden” in the black-box function (i.e., in

the practical application, handled within the simulation framework); the same holds for the exogenously given (arbitrary but fixed) wind speed and direction.
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Figure A1. Visualization of black-box function dependencies in the reduction from HCP to WFYP-DEC, exemplified for graph with n= 5

nodes. Arcs in (a) represent the dependencies in the constructed farm (i.e., which turbines bear influence on which others) for the first two

cases in Eq. (A1), while arcs in (b) represent those for the remaining cases in Eq. (A1). Note that actual function values depend on input x.

For a (feasible) overall yaw configuration of the farm as determined by x, the components fω,i,j(x) of fΣ
ω (x) specify the

objective contribution (or profit, for short) incurred by turbine i using the yaw offset (indexed by) j. Specifically, the first case

in Eq. (A1) defines a zero profit for any arbitrary yaw offset assignment to the first turbine. The second case then yields a profit

of 1 if a turbine that corresponds to a triangular number ∆k > 1 has been assigned (according to the input yaw configuration x)

a yaw offset j that was not chosen for any turbine in the previous row (set Rk−1) and is such that for the yaw offset ℓ chosen for685

turbine ∆k−1, the edge {vℓ,vj} exists in G. (For example, supposing turbines ∆1 and ∆3 are assigned yaw offsets ℓ ∈ [n] and

j, respectively, then the setting for turbine ∆3 yields a profit of 1 only if {vℓ,vj} ∈ E and the j-th yaw offset was not selected

for any turbine in the previous row, which in this case translates to j ̸= ℓ.) The third case means that using yaw offset j for

any turbine i ∈Rk \(∆(n)∪{∆n+1}) = {∆k−1+1, . . . ,∆k−1} (with respect to some k ∈ [n]) incurs zero profit if this yaw

offset j was used at turbine i− k+1 (which belongs to row set Rk−1, since ∆k−2 +1≤ i− k+1≤∆k−1). The penultimate690

case yields a unit profit in the special case that the turbine is i=∆n +1 and the assigned yaw offset j is also used by turbine

∆n−1+1, provided that the edge {vj ,vℓ} ∈ E for ℓ being the yaw offset assigned to turbine ∆n. Finally, the last case sets the

function value to 1−n for all other configurations. Fig. A1 illustrates the dependency structure of the function.

This completes the construction of a WFYP-DEC instance (T,L,{Γi}i∈T ,f
Σ
ω ,F ) from the input HCP instance G. Note

that the reduction (dimensions, all arithmetic operations and constructed numbers) clearly requires only polynomial time and695

space with respect to the size of the input; in particular, the objective function can be evaluated in O(n3), since |T |= nWT =

∆n +1≤ n2 and nΓi = n for all i ∈ T . (In fact, it can easily be seen that our reduction allows the “strongly” part of NP-

hardness to carry over from the HCP, cf. Garey and Johnson (1979).)

It remains to show that the given graph contains a Hamiltonian circuit R if and only if the constructed WFYP-DEC in-

stance (T,L,{Γi}i∈T ,f
Σ
ω ,F ) admits a solution x with objective value fΣ

ω (x)≥ F = n. To that end, first assume that x̂ ∈700

{0,1}(∆n+1)n is a feasible solution for WFYP-DEC (so every turbine is assigned exactly one yaw offset) with objective value

fΣ
ω (x̂)≥ F . Since by construction, only n turbine yaw settings can possibly incur a profit of 1 each (and all others at most

zero), fΣ
ω (x̂) = F = n does in fact hold, which also implies that the last case in the function definition (A1) never occurs (since
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otherwise, fΣ
ω (x̂)≤ 1−n+n= 1< n would hold—a contradiction). In particular, tracing the functional dependencies with

regard to which yaw offset assignments incur which costs for subsequent turbines (in the “cascading” row sets), we can con-705

clude that no yaw offset is chosen twice among the turbines 1,∆2,∆3, . . . ,∆n. Moreover, due to the first two cases in Eq. (A1)

(and since x̂ represents a feasible yaw configuration), and because every turbine has the same set of n admissible yaw offsets,

it holds that each yaw offset is chosen exactly once for this set {1,∆2,∆3, . . . ,∆n} of turbines. Furthermore, note that by defi-

nition, any yaw setting j for turbines i=∆k−1+1, k = 2, . . . ,n, incurs a profit of either 1−n or 0, but that since fΣ
ω (x̂) = n,

the respective settings prescribed by x̂ in fact all yield zero profit. Thus, these costs necessarily arise from the third case in710

Eq. (A1), which means that turbines ∆1+1,∆2+1, . . . ,∆n−1+1 all have the same yaw offset as turbine 1. Consequently, by

the fourth case in the definition, the yaw configurations chosen for turbines ∆1 = 1 and ∆n +1 are also identical.

We can now construct a Hamiltonian circuit in G from this WFYP solution x̂: starting at vertex vp1 ∈ V , where p1 ∈
[n] is the yaw offset chosen for turbine ∆1 = 1, we visit the other n− 1 nodes in the order prescribed by the yaw offsets

selected for the turbines ∆1, . . . ,∆n, and finally moving from the last node back to vp1
. Indeed, this traversal produces the tour715

R̂= {{vp1
,vp2

},{vp2
,vp3

}, . . . ,{vpn−1
,vpn

},{vpn
,vp1

}}, which shows that a “yes” answer for the constructed WFYP-DEC

instance yields a “yes” answer for the original HCP instance.

For the converse direction, let a circuit R̂= {{vπ(1),vπ(2)}, . . . ,{vπ(n−1),vπ(n)},{vπ(n),vπ(1)}} be a “yes” certificate for

the given HCP instance G. Then, we can derive a solution x̂ with cost fΣ
ω (x̂) = n= F for the constructed WFYP-DEC instance

from R̂ as follows: for turbines 1, ∆2, ∆3, . . . , ∆n, ∆n+1, we respectively select the yaw offsets corresponding to the indices of720

the vertices in the order prescribed by the tour R̂, starting (and ending) at vp1
= vπ(q) for some q ∈ [n], i.e., we set x̂1,π(q+1) =

x̂∆2,π(q+2) = · · ·= x̂∆n,π(q+n) = x̂∆n+1,π(q) = 1 (yielding total profit 0+n · 1 = n) while the entries corresponding to these

turbines and the respective remaining yaw offsets are all set to zero. For the remaining turbines, we pick yaw offsets that

incur no negative profits, i.e., for any k = 2, . . . ,n, turbine i ∈Rk \ (∆(n)∪{∆n +1}) is assigned the same yaw offset as

turbine i− k+1, respectively, all with profit 0. Since this way, every turbine is assigned exactly one yaw offset, x̂ indeed725

describes a feasible yaw configuration and by construction, its objective function value corresponds to fΣ
ω (x̂) = n= F . This

shows that the constructed WFYP-DEC instance also has a “yes” answer, which completes the proof.

We remark that the above construction could easily be adapted so that only non-negative terms can occur in the objective4,

as would be the case in our application when focusing solely on power generation. Note also that, due to the generality of the

black-box function fΣ
ω in WFYP-DEC it is unclear whether one could always find a rational certificate of an arbitrary “yes”730

instance, so containment in the complexity class NP (and thus, NP-completeness) remains open. However, more importantly,

we can slightly modify the proof of Theorem A.3 to obtain the following inapproximability result.

Corollary A.4. There is no polynomial-time α-approximation algorithm for WFYP, for any α≤ 1, unless P =NP .

Proof. Revisiting the construction from the proof of Theorem A.3 we modify the function values in Eq. (A1) to 0, δ, δ, δ and

−ε for the five cases, respectively, which then establishes the existence of a Hamiltonian circuit in G if and only if there is a735

4To that end, we can replace the profit for the third and fifth case in Eq. (A1) by ε > 0 and 0, respectively. Then, the construction instance has a solution

of value n+ ε(n2 −n− 2)/2 if and only if G is Hamiltonian.
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feasible WFYP solution with value 1
2 (n

2+n− 2)δ. Let ε := 1
2 (n

2+n− 4) and δ := 4(∆n+1)ε= n4− 3n2+6n− 8. Then,

if the original HCP instance was a “yes”-instance, any non-optimal solution of the constructed WFYP instance has solution

value at most 1
2 (n

2+n−4)δ−ε.5 Now suppose there exists a polynomial-time α-approximation algorithm for some arbitrary

1/(n2 +n− 1)< α≤ 1. Since any non-optimal solution (for a WFYP instance constructed from a HCP “yes”-instance) has

value at most 1
2 (n

2+n−4)δ−ε, but the α-approximation algorithm outputs a solution with value at least α · (n2+n−2)δ/2,740

it can only be the case that the solution computed by the algorithm is non-optimal if

α

(
n2 +n− 2

2

)
δ ≤

(
n2 +n− 4

2

)
δ−ε ⇔ α≤ n2 +n− 4

n2 +n− 2
− 2ε

n2 +n− 2
= 1− 2

n2 +n− 2
−
(
1− 2

n2 +n− 2

)
= 0,

which contradicts the prerequisite α > 1/(n2+n−2)> 0. Thus, the α-approximation algorithm does, in fact, always yield an

(optimal) solution of value α(n2 +n− 2)δ/2 if and only if the input HCP instance was a “yes”-instance. It could therefore be

used to decide the existence of a Hamiltonian circuit in polynomial time, contradicting NP-hardness of the HCP. To see that745

this implies that no polynomial-time α-approximation can exist (provided P ̸=NP) for any 0< α≤ 1, it suffices to observe

that 1/(n2 +n− 2)→ 0 as n→∞.
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