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Abstract. It is well-known that wakes caused by the wind turbines within a wind farm negatively impact the power generation

and mechanical load of downstream turbines. This is already partially considered in the farm layout. Nevertheless, the strong

interactions between individual turbines provide further opportunities to mitigate adverse effects during operation, e.g., by

repeatedly adjusting axial induction or yaw angles to current wind conditions. We propose a mathematical approach in form

of integer programming for globally optimal yaw control (under some mild assumptions). While we prove the wind farm yaw5

problem to be strongly NP-hard in general, we demonstrate through numerical experiments that our method is efficient in

practice and enables optimal yaw control under real-world requirements on control update periods. In particular, the approach

remains efficient if turbines are deactivated and scales reasonably well with increasing farm width.
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1 Introduction10

Wind turbines are considered one of the most important electric power plants of the future energy grid, since they can generate

electricity cheaply and with low green house gas emissions, see, e.g., Kost et al. (2018). Naturally, they are placed in wind

farms at locations with desirable year-round wind conditions (onshore or offshore), to ensure a high energy yield in general.

To further increase efficiency, during operation, one exerts a control on a turbine, i.e., periodically adjusts parts of it (e.g.,

nacelle orientation towards the wind, generator torque or blade pitch angles) to positions that are most beneficial with respect15

to the current wind speed and direction. The conventional control consists of a greedy strategy in which a turbine maximizes

its own power output under certain durability considerations, see, e.g., Hau (2013). In a farm, such greedy control can lead

to suboptimal total power output of the farm as a whole (as well as to increased maintenance requirements for the turbines)

because the turbines influence one another due to their spatial proximity: Each turbine causes a wake, which is characterized

by decreased wind speed and increased turbulence, and naturally impacts downstream turbines regarding both power output20

and mechanical load (wear and tear). The local control of a (single) turbine affects the length and the spatial distribution of

its wake. This opens the possibility for a global control that incorporates turbine interactions within the entire wind farm. In

general, such a wind farm flow control is state of the art, see, e.g., Meyers et al. (2022) for an overview. In this paper we will

focus on the optimization of the nacelle orientation towards the wind, i.e., the so-called yaw-based control, to maximize the

total power of the wind farm, which is the most important objective, see, e.g., van Wingerden et al. (2020). The effect of yaw25

angles on wakes is shown in Fig. 1.

1

https://doi.org/10.5194/wes-2024-120
Preprint. Discussion started: 8 October 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 1. Simulation of the local wind speed (in ms−1) with 6 turbines (of type NREL 5-MW) arranged in a 2× 3 grid layout; axes give

on-ground distances (in m). The wind blows from the left side with a speed of 11m s−1 with a turbulence intensity of 6%. It is decreased by

the turbines and, additionally, the wakes are deflected by the turbines in the first and second column because of their yaw angle of 15◦. (The

downstream-most turbines have a yaw angle of 0◦.) This figure was produced using the software WinFaST, see Sect. 3.1 for a description.

In the following, we discuss the wake models, farm layouts and operations to motivate the wind farm yaw problem and

paraphrase our approach along with contributions and limitations; an outline of the remaining paper concludes this introduction.

1.1 Related work

Wake models in the literature are often parameterized to NREL 5-MW turbines, see Jonkman et al. (2009) for details, in usual30

atmospheric conditions for onshore wind farms, see Sect. 3.1 for details. The following brief survey refers to this turbine type;

for a detailed overview of the complex topic of wind farm flow control, we refer to, e.g., Meyers et al. (2022). High-fidelity

simulations of wind farms in 3D like the Simulator fOr Wind Farm Application (SOWFA), see Churchfield et al. (2012a, b);

Fleming et al. (2013), are time-consuming and, hence, impractical for use in control. An overview of the most important

control-oriented models in 2D is given in (Annoni et al., 2018, Sect. 2.1): first, the Jensen model, see Jensen (1983); Katic et al.35

(1987) (also for a further developed model); second, the multi-zone model FLORIS, see Gebraad et al. (2014), which has the

dynamic extension FLORIDyn, see Gebraad and van Wingerden (2014); and third, the Gaussian model, see, e.g., Bastankhah

and Porté-Agel (2016). These models are continuously being developed further. In the present work, we use a simulation

software which utilizes a wake model based on FLORIDyn, cf. Sect. 3. If the focus were only on power, i.e., disregarding

loads, a static model would suffice. In that case, the state-of-the-art Gauss-Curl-Hybrid model, which incorporates secondary40

effects of wake steering, see King et al. (2021), is recommended, or the cumulative-curl wake model if there are more than

a few wake interactions, see Bay et al. (2023). Both are implemented in the rapidly evolving software FLORIS (not to be

confused with the original model), incorporating several steady-state control-oriented wake models, see NREL (2023).

These control-oriented wake models have limitations: For a comparison between FLORIDyn and SOWFA we refer to Ge-

braad and van Wingerden (2014); in particular, Fig. 5 there illustrates locally strong speed fluctuations in the wind field.45

In general, wind turbulence depends on a number of meteorological and topographical factors, see (Hau, 2013, Sect. 13.4).

However, the power output essentially depends on long-term fluctuations whereas loads are caused by short-term fluctuations,
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see Hau (2013). Furthermore, in the case of specific atmospheric conditions, real-world wakes of offshore wind farms can have

a length of 45km, see Platis et al. (2018), which cannot be predicted by control-oriented models. In any case, the mathematical

approach we will propose utilizes a superordinate model in which the underlying wake model is, in principle, interchangeable.50

A profitable wind farm needs a suitable location and careful planning of turbine numbers and placement. Wind farm layout

optimization relies on yearly wind frequency data (wind direction and speed). It has been known for decades that it is useful

to avoid wake-induced yield reductions of downstream turbines by setting them far enough apart, see, e.g., Katic et al. (1987).

While first attempts to account for such effects merely simulated the annual average output of a specific farm layout, see Katic

et al. (1987), in recent years, the layout problem was optimized globally by mixed-integer and constraint programming, see,55

e.g., Zhang et al. (2014); Fischetti (2017, 2021). In addition to the annual energy output, noise propagation is a concern in case

of onshore farms that can also be considered, see Zhang et al. (2014). For offshore farms, aspects of cable routing and jacket

foundations are worth taking into account, see Fischetti (2017); Fischetti and Pisinger (2019).

For a given wind farm (i.e., a fixed layout), it is conventional to run greedy control for each individual turbine, see, e.g.,

Hau (2013). As mentioned earlier, adopting a global control for the whole farm instead of local control of separate turbines60

can potentially improve the overall power output and relieve physical strain on the turbines. In general, there are two common

global control concepts, cf., e.g., Gebraad et al. (2015); Annoni et al. (2016); Meyers et al. (2022): axial induction-based control

(of generator torque and/or the collective blade pitch angle) and yaw-based control (of the turbine yaw angles), which is also

known as wake steering control, see, e.g., Howland et al. (2019). Both control concepts effectively reduce power generation of

upstream turbines by adjusting torque/pitch or yaw, respectively, which in turn leads to increased wind speeds (relative to those65

under greedy control) in their respective wakes and, consequently, higher power yield of the affected downstream turbines. The

main aim of these concepts is to achieve a net gain, and even small improvements are deemed promising, see, e.g., the wake

steering study by Howland et al. (2022) with average power increases of 0.3 to 2.7% for a commercial wind farm.

In general, it depends on the allocation of the turbines, their characteristics, and the wind conditions whether a control

different from the greedy one can indeed yield the desired gains. For example, it may happen that wind speeds are so high70

that all turbines operate at maximal capacity anyway; nevertheless, some control could then still be meaningful to reduce

mechanical loads. Furthermore, there are cases in which axial induction control shows no positive effect on total power output

while yaw control yields significant improvements, see the high-fidelity computational fluid dynamics simulations in Gebraad

et al. (2015). Thus, we will focus on yaw control in this paper, where changing the yaw angle of a turbine deflects its wake.

There is already a lot of research on yaw-based control. We follow the literature distribution in Stanley et al. (2022), which75

divides it into two parts to tackle the optimization problem, i.e., using continuous yaw angles between lower and upper bounds,

see Gebraad et al. (2014); Fleming et al. (2016); Gebraad et al. (2017), and using discretized yaw angles, see Dar et al. (2017);

Dou et al. (2020). In Gebraad et al. (2014) a slow game-theoretic approach is used, which does not necessarily deliver a global

optimum as desired. This is also not delivered in Fleming et al. (2016); Gebraad et al. (2017) as their optimization method

is based on sequential quadratic programming (SQP). However, a combination of yaw control and farm layout optimization80

has been considered in both references, which is an interesting application but out of scope of the present paper. In Dar et al.
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(2017), the authors modified the Jensen model (cf. Jensen (1983)) to include the effect of yaw angle adjustments and developed

a dynamic programming formulation (DPF) to pass the wind speed downstream from turbine to turbine, which results in a very

efficient method for turbines in a single row. However, the nonlinearity of the equation to compute the wind speed for a turbine

located in several turbine wakes prevents transferring this concept to a 2D farm layout. Nevertheless, Dar et al. (2017) showed85

that optimizing each row separately with DPF, i.e., ignoring effects in adjacent rows, yields an accuracy of 1% compared to the

global optimum (obtained by full enumeration). Our goal is to determine the global optimum—under some mild assumptions,

see Sect. 1.2.1 for details—without resorting to full enumeration; for this, our superordinate model takes dependencies of

adjacent rows into account and can integrate any kind of wake effect simulation. In Dou et al. (2020), the covariance matrix

adaptation evolution strategy is employed, which is a heuristic algorithm for black-box functions. In contrast, our focus is90

to exploit the structure of the optimization problem. In Stanley et al. (2022), the structure of the problem is used in the new

so-called Boolean approach. This considers which wind turbines have downstream ones in their wake, starts at the upstream-

most turbine, and fixes a yaw angle to either 0◦ or 20◦ if it increases the power of the farm; the simulations used the software

FLORIS (NREL (2023)) with the Gauss-Curl-Hybrid wake model (cf. King et al. (2021)). This greedy approach is efficient,

but generally does not result in a globally optimal solution as it fixes angles sequentially and only allows two yaw angles95

(although 20◦ was selected thoughtfully). In contrast, our approach uses a finer discretization and optimizes yaw angle settings

simultaneously for the whole farm. (From the view of blade load, which we do not take into account, a slightly positive yaw

offset is best, whereas the exact location depends on level of wind shear, see the field study Ennis et al. (2018).)

Another general idea is to divide the farm into partitions, see Siniscalchi-Minna et al. (2020). This idea goes back to Spudić

and Baotić (2013), which tackles distributed systems. We will also consider subsets of turbines but in contrast we allow that100

a turbine is in several subsets, i.e., the subsets are coupled to exploit their structural connection. In fact, we will consider the

wind farm as a network. This general point of view has already been used in Annoni et al. (2019) for a different application,

namely to share information among nearby turbines to improve wind direction estimation; the underlying method, which allows

simultaneous clustering and optimization on graphs, was developed in Hallac et al. (2015).

1.2 Contributions and limitations105

We provide a method of globally optimal yaw control (under some mild assumptions) that also includes the possibility to

deactivate wind turbines, e.g., for maintenance reasons. To that end, we propose a novel superordinate model which exploits

the coupled nature of wind turbines in a wind farm and can be based on any wake model.

We refer to the determination of a globally optimal combination of yaw angles for a given wind farm layout and given wind

conditions (i.e., subject to arbitrary but fixed wind speed and direction) as wind farm yaw problem (WFYP); see Sect. 2 for110

details and a mathematical problem definition. In this context, global optimality refers to an objective function, which takes

the total power output of the farm into account—our main goal—and can include other quantities representing mechanical

loads; in fact, we provide to include the important tower load and the pitch angle changes (causing some wear) as so-called

tower activity and pitch activity, see Sect. 3 for a definition; we do not consider the blade load as the used simulation software,

described in Sect. 3.1, does not provide a suitable output quantity.115
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In the following, we paraphrase our problem solving approach after emphasizing what we exploit for this. The complex

nonlinearities of wake flow dynamics and turbulence are typically only available through simulation, which makes a direct

integration into an optimization model almost impossible. A naive approach to solve the WFYP would amount to simulating

the behavior for every possible combination of the yaw angles, i.e., full enumeration, but is already impractical for small farms.

The crucial observation is that the wake interactions of turbines adhere to certain patterns with respect to the farm layout120

that occur repeatedly, and with overlaps, across the entire farm. We exploit these redundancies to greatly reduce the number

of required combinations: Our superordinate model constructs the farm on the basis of these patterns of depending turbines

and ensures the consistency of selected yaw angles in regions of overlapping patterns; we formulate a corresponding integer

program to receive the desired yaw angles as solution.

Our numerical experiments are intended as proof of concept as we use error-free simulation data. They will show that state-125

of-the-art solver software for this problem class—e.g., Gurobi, see Gurobi Optimization, LLC (2022), or SCIP, see Bestuzheva

et al. (2021)—can solve these WFYP problems within reasonable time, demonstrating the practicality of our approach.

The use of our superordinate model enables deactivating any turbines and a large scaling of the wind farm size orthogonal to

the wind direction, whereas a scaling in wind direction significantly increases the computational effort due to a stronger growth

of relevant patterns—while beyond the scope of this paper, our model could, in principle, be extended to mitigate the effort130

required for scaling in wind direction. Moreover, the weighting flexibility of the objective function terms (power output and

mechanical loads) allows additional objectives to be considered, e.g., putting selected turbines in a low-load operating mode.

1.2.1 Assumptions

We consider the setting in which all turbines in the wind farm are of the same type and arranged on an underlying irregular grid.

These assumptions are not particularly restrictive in practice since, on the one hand, turbines within one farm are typically of135

the same type—although layout optimization can result in different turbine heights, see, e.g., Stanley et al. (2017)—and on the

other hand, we can, in principle, choose the grid resolution as fine as needed to allow representing any layout (by leaving some

grid points unused); e.g., the results of layout optimization in Thomas et al. (2015); Gebraad et al. (2017) are not arranged on

a simple grid. However, an irregular grid with, e.g., three and five rotor diameters distance between the turbines, respectively,

is quite common, see, e.g., Gebraad et al. (2014); Gebraad and van Wingerden (2014); Boersma et al. (2018a, b).140

Moreover, our model of the WFYP problem relies on two operational assumptions, which can also be realized with arbitrary

fine resolution and should therefore not be restrictive in applications: The admissible yaw angles are bounded—to prevent

overly strong mechanical loads, cf., e.g., Boersma et al. (2019)—as well as discretized, and we impose a threshold below

which the influence of wakes on downstream turbines is deemed negligible.

In particular, Fleming et al. (2016) limit the yaw offset to [−45◦,+45◦] and [−25◦,+25◦], Boersma et al. (2019) to145

[−25◦,+25◦], Stanley et al. (2022) to [0◦,30◦], and our industry partner suggests [−15◦,+15◦] to protect the turbines. In

our computational experiments, e.g., we choose yaw angles from [−15◦,+15◦] at 5◦ increments and set the downstream-most

turbines to 0◦ (to reduce the number of options, see Sect. 2.1.2)—we always state yaw angles relative to the (fixed) wind

direction, i.e., as yaw offsets with respect to the mathematically positive sense of rotation—and disregard wake influence if
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the wake-induced wind speed reduction (relative to the given speed) at the downstream turbine is at most 5%. We will also150

refer to this exemplary setup for illustrative purposes when we formally define the WFYP and our solution approach in Sect. 2.

Nevertheless, our method admits arbitrary other settings, e.g., discretized yaw angles for the downstream-most turbines.

Our choice is not unrealistic: Quick et al. (2020) describe the problem of uncertainty of incident wind conditions for metro-

logical reasons and for real-world causes; in fact, the inflow of a wind farm can consist of several wind directions, speeds,

turbulence intensities and shears (e.g., caused by a mountain). Stanley et al. (2022) deduce that it is unrealistic to solve the155

wind farm yaw problem with continuous or finely discretized yaw angles and choose their Boolean optimization approach only

deciding whether a turbine is yawed or not, i.e., set 0◦ or 20◦ (which is a result of power simulations of turbines with a yaw an-

gle discretization of 5◦); they also compared their approach with a common continuous yaw optimization (based on gradients)

and mostly achieve the same power improvement. Against this background, our choice of 5◦ increments is reasonable.

We will fix the turbulence intensity (see Sect. 3.1 for a definition) throughout this paper; a deeper investigation is out of160

scope. For general effects we refer to the study in Talavera and Shu (2017): first, there is a correlation between the increase of

turbulence intensity and faster wake recovery (as wind speed recovers faster for turbulent shear flow in comparison to laminar

shear flow) and second, turbulent inflow increases the power output of a wind turbine (because of suppressed flow separation).

The correlation between important weather characteristics like temperature, relative humidity, wind speed and wind gusts

are investigated in (Vladislavleva et al., 2013, Fig. 2): as expected, wind speed and gusts have a strong positive correlation with165

the power output while the pressure has a slightly negative correlation. Finally, the spectrum of possible influences is wide. We

focus on the most influential factors in this paper, i.e., wind speed and direction, and fix the others like turbulence intensity and

air density for simplicity.

1.2.2 Complexity theory point of view and computation time

In fact, while the above-described homogenization of turbines as well as layout structure, and the yaw angle discretization, may170

seem to simplify the problem, this is not the case from the viewpoint of computational complexity theory: As we will prove

in Appendix A, the WFYP is generally NP-hard, which means that an efficient solution algorithm—i.e., one with runtime

polynomially bounded by the input size—is highly unlikely to exist, cf. Garey and Johnson (1979). This computational in-

tractability result, along with discretization-related aspects, motivates and justifies tackling the WFYP by integer programming

techniques; see, e.g., Schrijver (1986) for a thorough introduction to integer programming.175

Thus, the only remaining potentially limiting aspect is the computation time, which naturally increases with growing prob-

lem size and complexity. Nevertheless, in general, we can exploit several mitigating facts: First, it is useful to avoid continuous

small yaw movements in order to not unduly increase mechanical loads, and second, the yawing rate must be slow (approx-

imately 0.5◦ s−1) to avoid gyroscopic moments, see (Hau, 2013, Sects. 6.3.1 and 11.3). As a consequence, yaw angles are

usually only adjusted at a fairly low rate, e.g., every 15min, which provides time for solving the WFYP instance. As our180

integer programming approach is capable of determining globally optimal yaw angle combinations for entire wind farms of

considerable size at most under one minute (after required precomputations), e.g., 27 wind turbines in 6s, it is suitable for

real-world application.
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1.3 Paper outline

The paper is structured as follows: In Sect. 2, we formulate the wind farm yaw problem (WFYP) mathematically, we motivate185

and develop our covering approach and the integer program (IP for short). The details on precomputations, i.e., on the simula-

tion and the resulting performance indicators are described in Sect. 3. We explain and discuss the results of our computational

experiments in Sect. 4 and finally, conclude the paper in Sect. 5. The theoretical complexity of the WFYP is examined in

Appendix A. We abbreviate farm for wind farm and turbine or WT for wind turbine.

2 The wind farm yaw problem190

Recall that our wind farm yaw problem (WFYP) aims to find a set of yaw angles—choosing one of a set of admissible angles

for each turbine—that maximizes the total power output of the farm, optionally along with other quantities, under a given wind

scenario, i.e., fixed wind direction and speed. We will formalize this optimization task in the following Sect. 2.1; to that end,

we will introduce some notation and an illustrative example that will accompany us throughout the present section. In Sect. 2.2,

we develop our covering approach and derive the corresponding integer program in Sect. 2.3.195

2.1 Notation and basic WFYP formulation

We consider a farm with nWT turbines, each identified by an index from the set T := {1,2, . . . ,nWT}. Later, in Example 2.2,

we will use our ultimate assumption that turbines are located on an irregular grid with certain spacing in both dimensions.

We assign to each turbine i ∈ T a set Γi of admissible yaw angles, see Sect. 1.2.1, with respective size nΓ,i := |Γi|<∞. For

every turbine i, we associate an index set NΓ,i := {1, . . . ,nΓ,i} with its admissible yaw angles. This general notation allows200

for turbines of different types, but even when working with identical ones, for which the yaw angle sets usually coincide,

difference may arise, e.g., if maintenance reasons limit the options for specific turbines.

2.1.1 WFYP formulation as integer program with black-box objective

Recalling that the turbines can influence each other, the overall power output of the farm and load-related other quantities

depend on the global yaw configuration, i.e., the collection of the set yaw angles of all individual turbines, as well as the205

considered wind conditions (in particular, direction and speed). Since the precise relation of these aspects has no known

analytical form, the objective function of the WFYP must generally be considered a black-box whose values for a specific

combination of input parameters can be determined, or estimated, by running a simulation of the corresponding farm scenario.

To specify a basic mathematical formulation of the WFYP, we introduce binary decision variables xi,j for all i ∈ T , j ∈NΓ,i;

if turbine i is set to the yaw angle (from Γi) indexed by j, then xi,j = 1, and otherwise xi,j = 0. As any turbine can only operate210

with one yaw angle at a time, these decision variables must adhere to
∑

j∈Γi
xi,j = 1 for all i ∈ T . The black-box objective can

then be described by a function fω : {0,1}nΓ,1+···+nΓ,nWT → RnWT , where we omit the dependency on the (here, fixed) wind

direction and speed as well as farm layout for notational convenience and where the vector ω consists of two weighting factors,
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which we will discuss later. This function is comprised of the objective contribution of every turbine, which is impacted by its

own yaw angle as well as the yaw configuration of the remaining farm (in fact, not all other turbines influence any given one,215

but for now, we do not utilize this). In particular, the function fω(x) = (fω,1,j1(x), . . . ,fω,nWT,jnWT
(x))⊤, where fω,i,j(x)

denotes the objective contribution of turbine i when set to yaw angle index j from its admissible set Γi (as per xi,j = 1). Here,

the yaw configuration of all turbines (in particular those that influence i) is fixed as prescribed by the decision variables x. To

find the optimal yaw configuration of all turbines, i.e., a solution x ∈ {0,1}nΓ,1+···+nΓ,nWT , our objective function sums up

contributions of individual turbines:220

fΣ
ω (x) :=

nWT∑

i=1

nΓ,i∑

j=1

fω,i,j(x)xi,j with black-box simulation function fω,i,j(x) := Pi,j(x)−ω(T) a
(T)
i,j (x)−ω(P) a

(P)
i,j (x),

where Pi,j , a
(T)
i,j and a

(P)
i,j are the average power output, the tower activity, and the pitch activity—all over a certain (fixed)

period of time—of turbine i ∈ T with yaw angle index j ∈ Γi (and the remaining yaw angles corresponding to the selections

encoded in x). To evaluate the black-box for a specific x, one needs to resort to simulation to obtain the power and mechanical

load values for each turbine in the considered farm (under the given wind scenario)—the details, including definitions of the225

notions of tower and pitch activity, will be described in Sect. 3. The (nonnegative) weighting factors ω(T) and ω(P) are set a

priori and determine the relative importance of the respective quantities in the optimization objective; in particular, both weights

can be set to zero to take only the power into account; in addition, we could choose individual weights for each turbine.

Thus, we formulate the wind farm yaw problem (WFYP) as an integer program (IP) with black-box objective:

max
x

nWT∑

i=1

nΓ,i∑

j=1

fω,i,j(x)xi,j (1)230

s.t.
nΓ,i∑

j=1

xi,j = 1 for i = 1, . . . ,nWT (2)

xi,j ∈ {0,1} for i = 1, . . . ,nWT and j = 1, . . . ,nΓ,i. (3)

2.1.2 The curse of dimensionality

Due to the black-box nature of the objective function, the above formulation cannot simply be handled by off-the-shelf IP

solvers. Indeed, we call it the “basic” formulation because it essentially requires computing all fω,i,j(x) to obtain a standard235

(non-black-box) IP, and hence corresponds to the naive brute-force full enumeration. Clearly, this approach is only viable

for very small WFYP instances—i.e., few turbines with a small set of admissible yaw angles—but is expensive for larger

instances due to the exponential growth of yaw angle combinations; see also the Example 2.2 given below. Moreover, each

simulation run incurs a certain run time that itself increases with the farm size. Thus, the WFYP suffers from the typical “curse

of dimensionality” often encountered in combinatorial problems. In fact, our following result establishes that an efficient240

(polynomial-time) solution method for the WFYP very likely does not exist; the proof is deferred to Appendix A.

Proposition 2.1 (Theorem A.3 and Corollary A.4 from Appendix A). The wind farm yaw problem is strongly NP-hard and

cannot be approximated within any factor α≤ 1 in polynomial time (unless P =NP).
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Figure 2. Illustration of the 3×2 farm layout from Example 2.2; the wind direction is indicated by small arrows. The drawing is true to scale

for NREL 5-MW turbines, which have a rotor diameter of D = 126m, and for a turbine spacing of 3D× 5D.

The following example illustrates the WFYP and its “combinatorial explosion”, and motivates the circumvention of some

complexity issues by the covering approach we will introduce next, in Sect. 2.2. This example, along with some others, will245

also be used for our computational experiments in Sect. 4.

Example 2.2 (A 3× 2 farm). We consider nWT = 6 turbines, arranged in a 3× 2 farm, see Fig. 2; we assume the wind blows

from the left side and we identify the turbines with the index set T = {1, . . . ,6} as depicted. The turbines may be homogeneous

of type NREL 5-MW turbines with a rating value of 5MW and a rotor diameter of D = 126m, cf. (Jonkman et al., 2009,

Table 1-1). We set the turbine spacing to 3D× 5D, i.e., turbines are on an irregular grid with three and five rotor diameters250

distance between turbines in the width (“column”) and depth (“row”) direction, respectively. We choose the notation analogous

to matrices; in the literature, our example would usually be referred to as 2×3 with 5D×3D. However, the 3D×5D choice is

common, see, e.g., example farms in Gebraad et al. (2014); Gebraad and van Wingerden (2014); Boersma et al. (2018a, b) (also,

Katic et al. (1987) mentions 5D as row value but no column value). We restrict the permissible yaw angles to γ ∈ [−15◦,+15◦]

at 5◦ increments (cf. Sect. 1.2.1), i.e., Γi = Γ := {−15◦,−10◦, . . . ,+15◦} and nΓ,i = nΓ := 7 for every i ∈ T .255

Remark 2.3 (Total number of possible yaw configurations of a 3× 2 farm). Example 2.2 yields a total number of nΓ
nWT =

76 = 117649 possible yaw configurations. Consequently, this number of farm simulations would be required to solve the WFYP

with the basic approach for one wind scenario. Therefore, we need a different approach to reduce the number of simulations.

A coarser yaw angle discretization is not an option as it would sacrifice the level of exercisable control. Indeed, our approach

achieves this by reducing the number of yaw angle combinations to consider and by reusing simulation results where possible.260

A turbine has the highest power output with a yaw offset of 0◦ (i.e., it runs greedily), see, e.g., Dar et al. (2017). So, an initial

approach that most likely preservers the most power output but reduces the number of options is to let the downstream-most

ones run greedily. (We verified by an experiment that the wake of a yawed turbine has no influence on this approach at distance

of 3D.) The number of possible yaw configurations in Example 2.2 would then reduce to 73 = 343; however, such an approach

does not scale—a 3× 3 farm again results in 76 configurations. This emphasizes the need for an altogether different approach.265

In the following subsection, we propose a method that exploits certain structural redundancies with respect to wind wake

interactions to significantly alleviate the number of required simulation runs while retaining the global optimality of the WFYP.
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2.2 Section covering approach for WFYP solution

The assumed homogeneous farm layout and composition—i.e., using identical turbines, placed on nodes of an irregular grid—

gives rise to certain structural similarities, or reoccurring patterns, that can be exploited to equivalently reformulate the WFYP270

in a way that reduces the number of black-box evaluations (i.e., simulation runs).

2.2.1 Downstream and upstream sections

To that end, we take a closer look at the turbines that are influenced by a specific turbine, i.e., affected by the downstream wind

wake of the latter; we call the set of influenced turbines together with the specific one a downstream section. Similarly, we

refer to the set of turbines that influence a specific one as an upstream section (including the specific one). Both depend on the275

wind conditions (in particular, the wind direction) and the yaw angle(s) of the influencing turbine(s). They include all turbines

that could be influenced by (as downstream section), or could influence (as upstream section), the specific turbine in focus,

i.e., sections are based on the admissible yaw angle ranges. Moreover, we remind that one assumption is to disregard wake

influence if the wake-induced wind speed reduction (relative to the free stream) at the downstream turbine is at most a specific

threshold—throughout this paper, 5%, see Sect. 1.2.1. The concrete chosen area is a trapezoid (for visualization we sometimes280

use triangles) based on this threshold: For this, we simply use the wind speeds at the so-called observation points (from the

simulation) in the wake, see Sect. 3.1, and set the absolute value of the slope of the trapezoid to at least 0.15, which corresponds

to an angle of approximately 8.5◦, see Fig. 3. (For a rough comparison, Dar et al. (2017) neglect the deficit in velocity for angles

beyond 20◦ from the center of the turbine based on Jensen (1983).) Finally, the depth of the trapezoid constructed as described

above is usually truncated (or, rarely, extended) to match the depth of the farm—in fact, we use the effective depth of the wind285

farm, which we define in Sect. 2.2.3; it coincides with the depth of the wind farm if the wind direction is 0◦ and can be smaller

otherwise.

To illustrate down- and upstream sections, reconsider Example 2.2 and its farm in Fig. 2. Under these fixed wind conditions,

WTs 4, 5 and 6 are influenced by WT 2, depending on the yaw angle γ2 ∈ [−15◦, +15◦], i.e., the downstream section at WT 2

is given by {2,4,5,6}. Similarly, the upstream section at, e.g., WT 5 is {1,2,3,5}. The chosen sections are useful to explain the290

concept; in fact, with the selected experimental setup for our results in Sect. 4 the corresponding down- and upstream sections

both would only include WTs 2 and 5, see Figs. 3(a)/(e) for a corresponding farm with three turbines in depth; and Fig. 3 for

an overview with wind directions of 0◦, 5◦, 10◦ and 20◦. In fact, we only consider the downstream section to determine the

upstream one, whose pattern is the point reflection of the downstream one on the upstream-most turbine (marked by asterisk).

2.2.2 Section configurations295

Depending on the positions of subsets of turbines within the farm (keeping all other aspects fixed), upstream sections can take

on different patterns, which can be identified based solely on the grid layout of the farm, see, e.g., Fig. 4. In particular, we can

omit (or deactivate) turbines within any upstream section, thereby obtaining what we call section configurations as structural

subsets of the complete section configuration, i.e., the upstream section itself. Crucially, if all turbines are of the same type,
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(a) Downstream section for 0◦.
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(b) Downstream section for 5◦.
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(c) Downstream section for 10◦.
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(d) Downstream section for 20◦.
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(e) Upstream section for 0◦.
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(f) Upstream section for 5◦.
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(g) Upstream section for 10◦.
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(h) Upstream section for 20◦.

Figure 3. Down- and upstream sections (blue trapezoids) with included turbines (marked as points; asterisks are upstream-most (downstream-

most) turbine in downstream (upstream) section) in a grid of turbines (red crosses). The grid represents a farm with infinite expansion.
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(a) Section configuration with

inactive WT 1.
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5

(b) Complete section configura-

tion (i.e., upstream section).

1
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(c) Section configuration with

inactive WT 3.

1
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5

(d) Section configuration with

inactive WT 2.

Figure 4. Example of some section configurations of the upstream section with nWT,u = 4 turbines. We kept the numbering from Fig. 2, but

the depicted patterns may and do occur in other parts of the farm as well.

only a single upstream section is needed as a “template” from which to extract the appropriate “patterns” with which the farm300

can be represented—i.e., we can cover the entire farm using (overlapping) section configurations—and simulations can focus

on the area of upstream section (reusing simulation results of the section configurations) rather than the whole farm directly.

After the following example, we will formalize and explain this covering approach.

We can cover the 3× 2 farm from Example 2.2 (cf. Fig. 2) by those section configurations shown in Fig. 4: we anchor the

configuration from (b) at WT 5 and the ones from (a) and (c) at WTs 4 and 6 (as the respective downstream-most turbine305

instead of 5), respectively, since the corresponding parts of the farm exhibit the same structural pattern, see also Fig. 5(a). A

change of the farm layout would require other section configurations; e.g., without WT 2 we would need the configuration

depicted in Fig. 4(d) for WT 5, and the one with just two turbines directly behind each other (not depicted) for WTs 4 and 6.

In total, for the upstream section, we have 16 possible section configurations, including the complete one and the empty one.

In general, if an upstream section encompasses nWT,u turbines, there is a total of nWT,u
2 possible section configurations.310

As in the example, we only need a small number of the possible section configurations to cover the farm during normal

operation. However, we take into account all possible section configurations: it increases the precomputation time but preserves

flexibility, i.e., we are prepared for deactivated turbines and can enlarge the farm orthogonal to the wind direction.
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(a) In a 3× 2 farm: S1 (anchored at WT 4)

uses the SC from Fig. 4(a) to cover WTs

{1,2,4}, S2 (at WT 5) employs the SC from

Fig. 4(b) for {1,2,3,5}, and S3 (at WT 6)

uses the SC in Fig. 4(c) for {2,3,6}.
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(b) In a 4× 2 farm: S1 (anchored at WT 5)

uses the SC from Fig. 4(a) to cover WTs

{1,2,5}, both S2 and S3 (at WTs 6 and

7, resp.) use the SC from Fig. 4(b) for

{1,2,3,6} and {2,3,4,7}, resp., and S4 (at

WT 8) for {3,4,8} by the SC from Fig. 4(c).
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(c) In a 3× 2 farm with a wind direction of

20◦: S1 to S3 are sufficient to cover the farm

although their depth coincides with that of

the upstream section, which is smaller than

that of the farm. (As we rotated the complete

farm, the figure shows a yaw offset of 20◦.)

Figure 5. Covering sections S1, . . . ,S3 in a 3× 2 farm and S1, . . . ,S4 in a 4× 2 farm, respectively, where S1 is outlined by the solid blue,

S2 by the dashed red, S3 by the dotted orange, and S4 by the dash-dotted green line. Subfigure captions specify which section configuration

(SC for short) is used by the covering section at a turbine and which turbines are covered by that.

2.2.3 Covering sections to reduce the computational burden

To formalize the notion of section configurations that are suitable for covering the farm, it suffices to focus on the downstream-315

most turbines, whose number we denote by ns, and determine so-called covering sections anchored at them.

Definition 2.4 (Covering sections). A covering section is a set Sk ⊆ T of turbines in a farm that influence each other with

respect to (wake) disturbances. We denote the set of covering sections in a farm by S := {S1, . . . ,Sns}. Furthermore, we

denote the set of those covering sections that contain a specific turbine i by S(i) := {Sk ∈ S : i ∈ Sk}.

To cover the farm, we must assign one covering section to each downstream-most turbine, as illustrated in Fig. 5, but as320

different covering sections can have the same pattern, a section configuration can be used several times, e.g., in Fig. 5(b). The

core advantage of this covering approach is the significantly reduced number of simulations required to find the best WFYP

solution (in comparison to full enumeration) as we only need to precompute the yaw configurations within every (distinct)

section configuration and, accordingly, obtain the simulation results for all covering sections.

We already mentioned that wind directions deviating from 0◦ require to define the effective depth of the wind farm. For325

illustration, we use a 3× 2 farm with a wind direction of 0◦ and 20◦, see Figs. 5(a)/(c). In the case of 0◦, the farm and the

corresponding upstream section both have a depth of 5D. For other directions, e.g. as in Fig. 5(c), this depth changes. The depth

of the wind farm is the distance in x-direction between the upstream- and downstream-most turbines inside the wind farm, i.e.,
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in our example between WTs 3 and 4. The depth of the upstream section is analogously defined inside the upstream section—in

our example, WTs 2 and 4. As this depth is sufficient to finally cover the farm we also call it effective depth of the wind farm.330

Usually, our use of terms “upstream-” and “downstream-most” turbines refers to these covering sections, e.g., in our example,

WTs 4 to 6 are the downstream-most ones and serve as anchors for the covering sections. If an anchor turbine is missing, say

WT 4, we relocate the covering section, i.e., in our example, we attach S1 at WT 1 (where S1 uses the section configuration

with only one active turbine). Then we can assume without loss of generality that the downstream-most turbine inside a section

configuration is always active, thus circumventing the half of all combinations in which the downstream-most turbine could be335

inactive. (Alternatively to this relocation, one could have anchored the covering section at a deactivated “virtual” WT 4.)

2.2.4 The required number of simulations

Before we turn to the WFYP model based on the covering approach, we take a closer look at the required number of simulations

to solve it. For simplicity, we assume the same set of admissible yaw angles, say, Γ with nΓ := |Γ| for the (identical) turbines.

In the basic approach for the whole farm with nWT turbines, we saw below Remark 2.3 that the total number of distinct yaw340

configurations, which coincides with the required number of simulations, amounts to nΓ
nWT−ns if the ns downstream-most tur-

bines run greedily. Analogously, again running the downstream-most turbine greedily, an upstream section with nWT,u turbines

admits nΓ
nWT,u−1 possible yaw configurations and a covering section Sk with nWT,k turbines admits n∆,k := nΓ

nWT,k−1.

To solve a single WFYP instance, we perform precomputations, i.e., simulation runs for all yaw configurations on all possible

section configurations; recall that we include all possible ones (not only those that occur as covering sections) to preserve345

flexibility, see Sect. 2.2.2, and thus, we derive the worst-case number of simulations. In addition, we remind that farm layout

and wind conditions (in particular, direction and speed) are fixed for a single WFYP instance. Consequently, while for each

scenario, the number of simulations is much lower than in the basic approach, preparing our approach for application in a

variety of wind scenarios for a given farm will still result in a large precomputation time to run all required simulations.

However, we propose to store these precomputed simulation results in a database so that data corresponding to any currently350

encountered scenario can be retrieved efficiently to solve the corresponding WFYP instance in order to update the yaw control.

In the following, we derive the number of combinations (section configurations and corresponding yaw configurations)

and the required number of simulation runs. As there are different ways to avoid further redundant computations in specific

situations, these numbers are upper bounds and might be further reduced; we will mention some examples of this aspect.

An upstream section (i.e., complete section configuration) with nWT,u turbines has nWT,u
2− 1 non-empty section config-355

urations. All other section configurations have fewer active turbines than nWT,u, and, consequently, admit fewer possible yaw

configurations (than the complete one), i.e, the number of required simulation runs is smaller than (nWT,u
2− 1)nΓ

nWT,u−1.

We derive the exact worst-case number of simulations needed, i.e., the total count of all yaw configurations for all possible

section configurations (for nWT,u turbines) that are non-empty and have an active downstream-most turbine running greed-

ily (cf. Sect. 2.2.3). The remaining ones can then either be inactive or active with one of nΓ yaw angles. Thus, to select360

n ∈ {0,1, . . . ,nWT,u− 1} active turbines among these, there are
(
nWT,u−1

n

)
distinct possibilities and, for any selection of n

13

https://doi.org/10.5194/wes-2024-120
Preprint. Discussion started: 8 October 2024
c© Author(s) 2024. CC BY 4.0 License.



active turbines, nΓ
n possible yaw configurations. Thus, the total number of simulations amounts to

nsim :=
nWT,u−1∑

n=0

nΓ
n

(
nWT,u− 1

n

)
. (4)

In case of our Example 2.2 (3× 2 farm), see Fig. 5(a), with nWT,u = 4 turbines in the upstream section, the formula yields

70
(
3
0

)
+71

(
3
1

)
+72

(
3
2

)
+73

(
3
3

)
= 1+21+147+343 = 512 combinations (i.e., number of simulations); this also applies to the365

4× 2 farm, see Fig. 5(b), and all enlargements orthogonal to wind direction as they build on the same upstream section. In

comparison, if all turbines are active (and the downstream-most ones still run greedily), the basic approach (full enumeration)

leads to nΓ
3 = 73 = 343 required simulations (for 3× 2) and to 74 = 2401 (for 4× 2), which seems to be a better choice for

the 3× 2 farm. However, the covering approach already includes the possibility to deactivate any turbines, see Sect. 2.2.3. If

this were included in the basic approach, we would end up with (nΓ + 1)3 · 23 = 83 · 23 = 4096 combinations (for 3× 2) and370

84 ·24 = 65536 (for 4×2). Thus, we expect that the covering approach provides a significantly higher efficiency than the basic

approach for most real-world farm layouts and wind directions.

Recall that we need these precomputations for each wind condition, in particular, we focus on direction and speed, see

Sect. 1.2.1. Usually, these are also discretized in a wind rose, see, e.g., the figures in Zhang et al. (2014); Fleming et al. (2016),

which is a circular histogram with the distribution of directions and speeds (e.g., in 5◦ and 1m s−1 steps from 3 to 20m s−1;375

lower/higher speeds are summarized separately, see Gebraad et al. (2017)). Analogously to the yaw angle discretization, a finer

discretization is possible but questionable because of the uncertainty of incident wind conditions as discussed in Sect. 1.2.1.

2.3 Formulation of the covering approach as an integer program

It remains to formalize how we can use the covering sections to solve the WFYP globally optimal. So, recall the idea to

represent the farm as a set of overlapping covering sections (cf. Def. 2.4) rather than of single turbines. Instead of deciding380

directly on the yaw angle of each turbine, decision variables assign a specific yaw configuration to each covering section. For

the consistency of the farm covering, we require that each turbine in intersecting parts of different covering sections consistently

has the same yaw angle in these. This, together with the requirement that each covering section is assigned exactly one yaw

configuration, mirrors the constraint of the basic approach that each turbine can only be set at one yaw angle, cf. Eqs. (1) to (3).

2.3.1 Contributions of wind turbines located at overlaps of covering sections385

Recall that in the basic WFYP approach, the objective function has coefficients (from simulations) for each turbine and yaw

angle configuration. Now, we have contributions related to assigning yaw configurations (with respect to the underlying section

configuration) to covering sections. To avoid multiple counting of the individual contributions of turbines located at overlaps

of covering sections, which are available from the simulation results (see vector-valued function fω in Sect. 2.1.1), we consider

the covering sections in order of their indices (S1,S2, . . . ,Sns ) and construct the objective by only adding contributions of390

turbines in a current covering section Sk if they were not already contained in the previous covering sections S1, . . . ,Sk−1.

Let Tk := Sk \ (∪k−1
m=1Sm) denote the set of new turbines in covering section Sk; e.g., in the example from Fig. 5(a), it holds
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that T1 = {1,2,4}, T2 = {3,5}, and T3 = {6}. Then, we can express the WFYP objective value of a given yaw configuration

assignment (one ℓk for each respective covering section Sk) with our previously-used black-box function as
ns∑

k=1

∑

i∈Tk

fω,i,j(ℓk)(x(ℓk)), (5)395

where x(ℓk) stands for the individual-turbine yaw angle settings across covering section Sk, which now depend on the yaw

configuration ℓk given for each section Sk, and j(ℓk) is the corresponding yaw angle index of turbine i.

2.3.2 Compatibility of yaw configurations in covering sections

The following paragraphs discuss the consistency of the farm covering. In doing so, we will describe the details of the covering

approach outlined above and lead up to the integer program (7) to (10). Again, for simplicity, we assume the same set of400

admissible yaw angles, say, Γ with nΓ := |Γ| for the (identical) turbines. The appropriate covering sections (and required

underlying configuration sections) are defined before building the integer programming model, recall Sect. 2.2.3.

To specify the IP model, we need additional notation. For a covering section Sk ⊆ T (k = 1, . . . ,ns) with nWT,k turbines, we

identify the yaw configurations inside Sk by indices ℓk = 1,2, . . . ,n∆,k with n∆,k := nΓ
nWT,k−1 (as defined in Sect. 2.2.4).

Let γi(ℓk) denote the yaw angle assigned to turbine i ∈ Sk under yaw configuration ℓk. For consistency of the global yaw405

configuration as a composition of sectional yaw configurations, the yaw configurations of overlapping covering sections must

match on the yaw angles of turbines located in the respective intersection. To that end, if the yaw configuration ℓk was selected

for Sk, then, for any Sk̂ with Sk̂∩Sk ̸= ∅ for k̂ ̸= k, only a subset of yaw configurations is compatible with this selection, namely

those ℓk̂ ∈ {1,2, . . . ,n∆,k̂} for which the yaw angles γi(ℓk̂) = γi(ℓk) for all WTs i ∈ Sk̂∩Sk. In fact, it suffices to enforce these

conditions explicitly for directly adjacent pairs of covering sections, if they are numbered in ascending sequence in accordance410

with the downstream-most turbines (say, 1, . . . ,ns from left to right from behind the farm looking against the wind direction).

Then, establishing consistency of the respective overlaps of Sk and Sk+1 by resorting to valid yaw configurations for Sk+1

(defined relative to Sk and each ℓk), for k = 1, . . . ,ns−1, is indeed enough to guarantee global consistency, as by construction,

for any WT i ∈ Sk̂ ∩Sk with k̂ ≥ k + 2, necessarily also WT i ∈ Sk+1. In addition to Lk := {1,2, . . . ,n∆,k}, the index set of

all possible yaw configurations for Sk, we therefore also need the set of valid (or compatible) yaw configurations for Sk+1415

relative to Sk with ℓk ∈ Lk, which we denote as L̃k+1,ℓk
:= {ℓk+1 ∈ Lk+1 : γi(ℓk+1) = γi(ℓk) for all i ∈ Sk+1 ∩Sk}. For S1,

all possible yaw configurations in L1 are already valid, i.e., L̃1 = L1, as S1 has no “preceding” covering section. Tables with

these dependencies, i.e., the set of valid yaw configurations L̃k+1,ℓk
for the current covering section (numbered as k + 1) in

dependence of the previous one (numbered as k) and its chosen yaw configuration ℓk, can be computed straightforwardly.

To illustrate the notions, we use Example 2.2 (3× 2 farm) again. For each covering section, marked in Fig. 5(a), we need420

to uniquely identify every possible yaw configuration with an index, e.g., by sorting them lexicographically with respect to

the yaw angles (in increasing order of the turbine indices); Table 1 shows an example for covering section S1, assuming for

simplicity {−15◦,0◦,+15◦} as admissible yaw angles—downstream-most turbines (4, 5, and 6) are fixed to 0◦, cf. Sect. 1.2.1.

Assuming the same lexicographic indexing to the yaw configurations for each section configuration (and thus for the covering

sections), we can determine the sets of valid yaw configurations; Table 2 shows the sets L̃k+1,ℓk
for our simplified example.425
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Table 1. Lexicographic indexing for the n∆,1 = 32 = 9 yaw configurations for the underlying section configuration to covering section

S1 = {1,2,4} in the 3× 2 farm Example 2.2, cf. Fig. 5(a), with simplified Γ = {−15◦,0◦,+15◦} (and WT 4 fixed to 0◦).

ℓ1 1 2 3 4 5 6 7 8 9

WT 1 −15◦ −15◦ −15◦ 0◦ 0◦ 0◦ +15◦ +15◦ +15◦

WT 2 −15◦ 0◦ +15◦ −15◦ 0◦ +15◦ −15◦ 0◦ +15◦

WT 4 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦

Table 2. Valid yaw configurations L̃k+1,ℓk of covering section Sk+1 (depending on yaw configuration ℓk of the previous one Sk) compared

to all possible yaw configurations Lk+1 of Sk+1 for the 3× 2 farm from Example 2.2, Fig. 5(a), assuming admissible yaw angle offsets

{−15◦,0◦,+15◦} (simplified for the example) for every turbine, fixed angle 0◦ for downstream-most turbines and yaw configurations being

indexed in lexicographical order. For S1, all possible yaw configurations L1 = {1,2, . . . ,9} are also valid by design, i.e., L̃1 = L1.

k 1 1 1 . . . 1 2 2 2 . . . 2

ℓk 1 2 3 . . . 9 1, 4, 7 2, 5, 8 3, 6, 9 . . . 21, 24, 27

Lk+1 {1, . . . ,27} {1, . . . ,27} {1, . . . ,27} . . . {1, . . . ,27} {1, . . . ,9} {1, . . . ,9} {1, . . . ,9} . . . {1, . . . ,9}
L̃k+1,ℓk

{1,2,3} {4,5,6} {7,8,9} . . . {25,26,27} {1} {2} {3} . . . {9}

For instance, if yaw configuration ℓ1 = 3 was used for S1, then only those yaw configurations for S2 in which turbines 1 and 2

also have yaw angles −15◦ and +15◦, respectively, are valid for S2; with the used indexing, this amounts to L̃2,3 = {7,8,9}.

For ℓ2 = 7, only yaw configuration ℓ3 = 1 is valid; indeed, L̃3,7 = L̃3,1 = L̃3,4 = {1}, as these yaw configurations for S2 set

both turbines 2 and 3 to −15◦, for which the only compatible (and hence, valid) yaw configuration for S3 is precisely ℓ3 = 1.

2.3.3 WFYP formulation as regular integer program430

Now, we introduce binary decision variables yk,ℓk
that encode whether covering section Sk is assigned yaw configuration ℓk

(yk,ℓk
= 1) or not (yk,ℓk

= 0). Using these variables, the black-box objective function, cf. Eq. (1), can be replaced by a fully

linear one once we have precomputed the simulation results for the section configurations. Indeed, the simulation results allow

us to specify cost coefficients ck,ℓk
for every pair of a covering section Sk and any one of its associated yaw configurations ℓk;

in order to avoid counting the objective contributions of turbines within intersecting parts of different covering sections multiple435

times, we again use a summation that only considers contributions of new turbines in a covering section, cf. Eq. (5):

ck,ℓk
:=

∑

i∈Tk

fω,i,j(ℓk)(x(ℓk)). (6)

To achieve a globally optimal yaw configuration for the whole farm, we now have to optimize over all compatible combinations,

see Sect. 2.3.2, of covering section and yaw configuration assignments (each of which has one associated coefficient ck,ℓk
and
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one decision variable yk,ℓk
). This yields the following integer linear program to solve the WFYP:440

max
y

ns∑

k=1

n∆,k∑

ℓk=1

ck,ℓk
yk,ℓk

(7)

s.t.
n∆,k∑

ℓk=1

yk,ℓk
= 1 for k = 1, . . . ,ns, (8)

0≤
∑

ℓk+1∈L̃k+1,ℓk

yk+1,ℓk+1 − yk,ℓk
≤ 1 for k = 1, . . . ,ns− 1 and ℓk = 1, . . . ,n∆,k, (9)

yk,ℓk
∈ {0,1} for k = 1, . . . ,ns and ℓk = 1, . . . ,n∆,k. (10)

Constraints (8) ensure that exactly one yaw configuration is selected for each covering section, analogously to Eq. (2). Con-445

straints (9) ensure compatibility as they enforce the selected yaw configuration for a covering section Sk+1 to be valid with

respect to the yaw configuration chosen for its preceding one Sk, as described in Sect. 2.3.2: If yk,ℓk
= 1, i.e., Sk uses yaw con-

figuration ℓk, then for Sk+1, a yaw configuration from L̃k+1,ℓk
must be selected, i.e., one of the associated binary variables—

and hence, their sum—must be one. If yk,ℓk
= 0, the constraint imposes no restriction1 with respect to L̃k+1,ℓk

.

Finally, we emphasize that both the black-box IP (1) to (3) and the regular IP (7) to (10) are different formulations of the450

same problem, i.e., the WFYP; as such, they are equivalent. Nevertheless, the covering approach exploits the problem structure

in a way that can significantly reduce the required number of simulations and enables the utilization of modern IP solvers to

perform efficient implicit enumeration by branch and bound, thereby avoiding total enumeration.

3 Simulation

We obtain the simulation function output from simulation software; in principle, our approach allows to employ any suitable455

simulation. Moreover, recall that our WFYP integer programs (Eqs. (1) to (3) or (7) to (10)) need simulation function values

for different yaw angle configurations. As we control the yaw angles, we only denote the corresponding decision variables x as

simulation function arguments; the other inputs (farm layout, wind direction and speed) will be made clear in our experiments.

In the following, we introduce other conditions on which the simulation also depends, along with the corresponding fixed

values we used. We describe the simulation software and our parameter setup in Sect. 3.1. Then, in Sect. 3.2, we specify460

relevant simulation outputs and define performance indicators based on them, which are combined to form the simulation

function.
1The upper bound in Eq. (9) is redundant: we investigated the effects for 6× 3 to 9× 3 farms as in series 2, see Table 5; the redundant conditions slightly

increase or decrease (in two out of four cases each) the solving time of the IPs if Gurobi is used as solver, e.g., for 9× 3, 11.25s instead of 14.69s, but

significantly decrease it for this case with SCIP (9071.55s instead of 20812.22s); in the other cases SCIP is slower with the redundant conditions (e.g., for

8× 3, 1760.04s instead of 838.63s).
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3.1 Simulation software and parameter setup

For the wind farm simulations, we used the software package WinFaST2. This simulation framework requires a fixed farm

layout, yet setting individual parameters for axial induction and yaw angles is generally possible. As our focus lies on optimal465

yaw angles, we leave the greedy control with respect to axial induction to the local controller. The dynamic wake model of

WinFaST is based on FLORIDyn, see Gebraad and van Wingerden (2014). As FLORIDyn, it uses so-called observation points

to compute local wake characteristics and wake interaction is based on Katic et al. (1987). The turbine controller in WinFaST

is inspired by Jonkman et al. (2009), which is widely used for NREL 5-MW turbines, extended by the options (not used by

us) to reduce the power and damp tower oscillations, each with respect to its own respective turbine. Moreover, WinFaST uses470

a modified version (to include yaw control and effects) of the dynamic wind turbine model by Ritter et al. (2016, 2018). The

wind field in WinFaST is simulated by Veers method, see Veers (1988).

We denote the average wind speed value of the (horizontal) ambient wind field by Uave. The turbulence intensity (TI) is

defined as I = σ/Uave, where σ is the associated standard deviation; it depends on the average wind speed, the roughness of

the surface, the atmospheric stability, and the topography, see, e.g., (Hau, 2013, Sect. 13.4). The software WinFaST uses the475

same parametric model parameters for turbine and wake as in (Gebraad and van Wingerden, 2014, Table 1), that were adjusted

for 8m s−1 with a TI of 6%, with the exception of the air density, which is set to 1.225kg m−3 as in (Jonkman et al., 2009,

Appendix B.1). In our exemplary experiments, we fix the TI to 6%.

3.2 Performance indicators and simulation function

It takes a while for the wake of the upstream-most turbine(s) to reach the downstream-most one. Thus, we need to choose480

a sufficiently long simulation time interval [ts1 , ts2 ], depending on the wind speed and farm layout; here, we used 9min.

Moreover, for data analysis and as yaw angles are adjusted at a fairly low rate, we are only interested in the simulation part

in which the wake already influences the downstream-most turbine. Also, the wind field is equipped with turbulence and the

turbines produce some, so we analyze data over an observation time interval [to1 , to2 ]. In our case, this includes the middle

5min of our simulation time interval; we use it to compute the performance indicators and to define our simulation function.485

The performance indicators (cf. Eq. (11) later) consist of the following three outputs of WinFaST: The power generated by

each turbine is given in the unit W as function px : [ts1 , ts2 ]→ RnWT
≥0 . To compute loads we use the velocity of the nacelle in

unit m s−1 in wind direction, vx : [ts1 , ts2 ]→ RnWT , and the blade pitch angle in the unit degree, βx : [ts1 , ts2 ]→ RnWT .

Now, we define the three performance indicators for each turbine i as averages over the observation time interval [to1 , to2 ],

namely the power (output) Pi (in MW), the tower activity a
(T)
i , and the pitch activity a

(P)
i . The tower load is high when the490

nacelle is oscillating; therefore, we use the absolute value of the nacelle velocity v to estimate the tower load by the so-called

tower activity. The pitch rate should be kept within limits because of the load of the pitch actuators; therefore, similarly, we

use the absolute value of the velocity of the blade pitch angle β to estimate the load of the pitch actuators by the so-called pitch

2The MATLAB package WinFaST (Wind Farm Simulation Tool), written by Bastian Ritter and Thorsten Schlicht, is proprietary software for company-

internal use at our industry partner IAV GmbH, who provided it to us for experimentation within the joint MOReNet project.
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activity. The performance indicators are defined as follows:

Pi(x) :=
1

to2 − to1

to2∫

to1

10−6 (px(t))i dt, a
(T)
i (x) :=

1
to2 − to1

to2∫

to1

|(vx(t))i| dt, a
(P)
i (x) :=

1
to2 − to1

to2∫

to1

∣∣∣∣
d
dt

(βx(t))i

∣∣∣∣ dt.495

The respective units of tower and pitch activity are m s−1 and ◦ s−1 but have no physical meaning.

Finally, we define the weighted sum of these three performance indicators as the simulation function depending on the

control input, i.e., the decision variables x. Recall that the dependence on yaw configurations also includes that of a turbine

i ∈ T on its own yaw angle, which can be expressed using the yaw angle index j ∈ nΓ,i. Therefore, following the notation

introduced in Sect. 2.1, we write Pi,j(x), a
(T)
i,j (x) and a

(P)
i,j (x). With weights ω = (ω(T),ω(P)) ∈ R2

≥0 for the activity terms the500

entries of the simulation function, which yields the black-box function to maximize, are:

fω,i,j(x) := Pi,j(x)−ω(T) a
(T)
i,j (x)−ω(P) a

(P)
i,j (x). (11)

It represents our two main objectives when controlling the farm: maximizing the total power output and minimizing the tur-

bines’ mechanical load; the weights balance these typically conflicting objectives. For clarity of notation, we omitted individ-

ually weighting the turbines. Moreover, for simplicity, we focus on the power output, i.e., we set ω(T) = ω(P) = 0 in Sect. 4.505

In practice, one “simulation run” consists of evaluating the (vector-valued) simulation function fω : {0,1}nΓ,1+···+nΓ,nWT →
RnWT (with entries of the form fω,i,j(x)) once for the associated section and assignment of decision variables x.

4 Computational results

This section presents four series of computational experiments in a farm for our covering approach: In Sect. 4.1, we consider

optimizing yaw angles for different wind directions (series 1). In Sect. 4.2, we demonstrate that reusing some precomputed510

simulation results of series 1 enables our covering approach to enlarge farms orthogonal to the wind direction and to handle

cases with deactivated turbines (series 2). In this context, we also investigate the influence of the farm size on the solving time

to assess how the theoretical complexity of the WFYP is reflected in practice. In series 3, we consider different wind speeds,

see Sect. 4.3, and finally, in series 4 we experiment with a wider range of yaw angles and a finer discretization, see Sect. 4.4.

Before we discuss the results, we briefly summarize the most important parts of the overall experimental setup. As admis-515

sible yaw angles we choose γ ∈ Γ = {−15◦,−10◦, . . . ,15◦} for NREL 5-MW turbines with a rotor diameter of D = 126m,

see (Jonkman et al., 2009, Table 1-1), in different farm layouts from 6× 3 to 9× 3 with a turbine spacing of 3D× 5D. In all

figures, we display wind direction as blowing from left to right; the actual wind direction is then reflected as a “rotation” of the

relative layout placement of a farm by a corresponding amount of 0◦, 5◦, 10◦ or 20◦, respectively. As average wind speeds we

consider 6, 11, and 12m s−1. Deviations from this setup are made clear where they occur. Finally, we frequently compare the520

optimized yaw offsets against the baseline, i.e., yaw offsets of 0◦.

All computations were carried out on a Linux workstation with an Intel(R) Core(TM) i7-6700 CPU with 3.40GHz (4

cores, 8 threads) and 32GB memory. The precomputations (simulation runs) were done using MATLAB R2023a, utilizing
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Table 3. Data and results for a 6×3 farm, wind speed of 11m s−1 and wind directions of 0◦, 5◦, 10◦ and 20◦ (series 1). Detailed results are

in Table 4 (cases 1 to 3) and Fig. 6 (case 4). In all cases, the IP optimality gap is 0.00%, i.e., all instances were solved to global optimality.

wind farm IP solver total power output

wind direc- # covering precomputa- # vari- # con- solving time (in s) baseline optimized improvement

case tion (in ◦) sections tion time (in h) ables straints SCIP Gurobi (in MW) (in MW) rel. (in %)

1 0 6 0.5 294 496 0.04 0.12 43.09 46.01 6.78

2 5 6 0.5 294 496 0.04 0.01 43.84 51.41 17.27

3 10 6 2.9 1764 3436 0.82 0.27 52.33 57.40 9.69

4 20 8 2.9 1430 2866 86.85 0.35 62.05 62.98 1.50

Table 4. Detailed results of series 1, cases 1 to 3 (see Fig. 6 for case 4) as shown in Table 3. For both yaw controls (baseline or optimized)

the power output of each individual turbine is sorted by rows, i.e., WTs 1 to 6 in row 1, WTs 7 to 12 in row 2 and WTs 13 to 18 in row 3,

as they often coincide in these examples; exceptions are indicated in brackets, e.g., in case 3, WT 1 outputs 4.15MW. Further, optimal yaw

angles are given sorted by rows (without row 3, as all yaw angles are fixed to 0◦ there).

wind farm baseline turbines’ power output optimized turbines’ power output opt. yaw angles

wind direc- row 1 row 2 row 3 row 1 row 2 row 3 row 1 row 2

case tion (in ◦) (in MW) (in MW) (in MW) (in MW) (in MW) (in MW) (in ◦) (in ◦)

1 0 4.87 1.79 0.52 4.79 1.97 0.91 15.0 15.0

2 5 4.37 1.83 1.11 4.14 2.45 1.97 15.0 15.0

3 10 (1: 4.15) 4.13 (12: 2.74) 2.60 (18: 2.32) 1.90 (1: 3.92) 3.88 (12: 3.20) 3.02 (18: 3.09) 2.53 15.0 15.0

parallelization. The IPs resulting from our covering approach were solved with state-of-the-art IP solvers, namely the open-

sourced academic solver SCIP 8.0.3, utilizing the LP solver SoPlex 6.0.3, which only supports single-thread, see Bestuzheva525

et al. (2021), as well as the proprietary Gurobi 10.0.0, which can employ all threads, see Gurobi Optimization, LLC (2022).

4.1 Wind farm yaw angle optimization under different wind directions

In series 1, we consider a 6×3 farm with a wind speed of 11m s−1 and wind directions of 0◦, 5◦, 10◦ and 20◦. The respective

results are presented in Tables 3 and 4 (cases 1 to 3) and Fig. 6 (case 4). In all cases, the improvement of the total power

output is between 2% and 17%. In most of these cases, the optimal yaw angles exhaust the given limits of ±15◦. In case 4530

(i.e., wind direction of 20◦), the distances between the turbines in the downstream direction are already comparatively high

and consequently, the wake influence comparatively low; therefore, the improvement is 2% here, but larger in the other cases.

The main part of the overall run time is the precomputation time, e.g., in series 1 between half an hour and 3h. The IPs in

our covering approach then are all solved in well below 1s by Gurobi, and still within at most 87s by SCIP. We remind that the

precomputations were designed with flexibility in mind, see Sect. 2.2.2, i.e., they can be reused for many cases, see our series 2535

for a demonstration. Hence, for the actual optimization process used for control updates, only the solving times of the IPs are
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(a) 20◦, baseline: 62.05MW.
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(b) 20◦, optimized: 62.98MW.

Figure 6. Detailed results for a 6× 3 farm, wind speed of 11m s−1 and wind direction 20◦ (series 1, case 4) as shown in Table 3. Subfigure

captions specify the wind direction, yaw control (baseline or optimized), and the resulting total power output of the farm.

relevant, which turned out to be so small that we can speak of real-time capable optimization (recall that yaw angles are only

updated every 15min or so in practice, see Sect. 1). Finally, we see that the suggested database of precomputated simulation

results, see Sect. 2.2.4, is time-consuming to build but enables significant gains through optimization.

The main influence on the precomputation time is the turbines’ number in the upstream section; the impact of the allowed540

number of yaw angles is smaller, cf. Sect. 4.4. The specific upstream sections in series 1 are depicted in Fig. 3; those of cases 1

and 2 (i.e., wind directions 0◦ and 5◦) include three turbines and yield precomputation times of about half an hour (cf. Table 3),

whereas those of cases 3 and 4 (i.e., 10◦ and 20◦) include four turbines and take about 3h. Four turbines (with seven possible

yaw angles) result in 512 yaw configurations (i.e., simulations), see the example in Sect. 2.2 and Eq. (4).

As assumptions and discretizations were employed to arrive at our IP model for the WFYP via the covering approach (CA),545

we validate it by comparing the computed power outputs with those obtained from a direct farm simulation with the baseline

and optimized yaw configurations. To that end, we examine case 4, but with a TI of 0%, see Fig. 6(a) for the layout: In the

baseline setup, the maximal deviation of any single turbine is 0.02MW, and 0.05MW in the optimized one. For the farm’s

total power in the baseline, our CA results in 63.52MW (instead of 63.44MW) and in 64.54MW (instead of 64.37MW)

for the optimal setting; it indicates that the CA may slightly overestimate the achievable improvement over the baseline setup550

(1.61% instead of 1.45%). The deviations are limited (in baseline and/or optimization) to WTs {7,12,14,15, . . . ,18} and are

due to the size (or shape) of the upstream section, which influences the accuracy of the discretized, section-based WFYP model

and therefore is a compromise in terms of accuracy and run time. For example, the covering section (based on upstream section

Fig. 3(h)) anchored at WT 7 includes WT 2, but WT 1 is marginally outside, i.e., its influence on WT 7 is not considered; other

deviations can be explained analogously. An increase in size of the upstream section would ameliorate the small model inac-555

curacy, but also significantly increase the precomputation time. Therefore, we accept small inaccuracies in the power output.
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As the improvements over the baseline are significantly larger than the deviations from full simulation, the optimal solutions

of our covering approach will likely still be optimal for a model using increased upstream sections, though suboptimality is

technically possible. The IP solver run times themselves indicate that handling larger sections should not pose an issue.

4.2 Flexibility and scalability of the covering approach to solve the WFYP560

In series 2, we examine the influence of the farm size on the solving time of the WFYP, illustrating the practical scalability of our

covering approach vis-à-vis the theoretical hardness of the problem (cf. Prop. 2.1). Furthermore, we also conduct an experiment

with a mix of active and inactive turbines to show our method’s practical flexibility. These experiments also demonstrate the

reusability of precomputed simulation results for section configurations, see Sect. 2.2. In particular, the experimental design

for series 2 (i.e., wind direction of 20◦ and speed of 11m s−1) is the same as in case 4 of series 1 (case 1.4, for short), see565

Table 3, i.e., we reuse case 1.4 precomputations (originally for a 6× 3 farm) for 7× 3, 8× 3 and so on.

For the first experiments, we only change the size of the farm (i.e., 7 to 9× 3) and monitor the workload of the IP solvers,

see Table 5. The optimization consistently improves the farm’s total power output by roughly 2%. The impact of the farm size

on the IP solving time emphasizes the complexity of the WFYP (see Prop. 2.1): the solver SCIP quickly takes an impractically

long time—it could be stopped after 5min resulting in a duality gap of, e.g., 1.06% for 9× 3; Gurobi is faster by orders of570

magnitude remaining well below one minute in all cases considered here, despite an (apparently exponential) increase in run

time with the farm size. Thus, in light of the low yaw sampling rate of, e.g., 15min (see Sect. 1), our covering approach enables

real-time WFYP optimization even for farms with more turbines than explored here.

As mentioned before, our covering approach also supports the reuse of precomputed data if some turbines become inactive

(or do not exist at all), i.e., it allows a flexible reaction to a shutdown for maintenance or an unexpected reason. Case 2.5575

illustrates the influence of deactivated turbines on the IP solver behavior and the achievable power gains. Again, we reuse

case 1.4, cf. Table 3, but now in the setting depicted in Fig. 7, i.e., WTs {2,5,6,9,12} are inactive in comparison to Fig. 6(a)/(b).

The “thinning out” of the farm reduces the solving time of the IP from 86.85s to 0.02s with SCIP, and from 0.35s to below

0.01s using Gurobi. The absolute (relative) improvement of the total power output over the baseline is 0.92MW (1.77%).

Thus, the WFYP optimization still yields about 2% gain in generated power, while a lower farm density in terms of active580

turbines leads to notably shorter IP solving times.

4.3 Impact of different wind speeds

In series 3, we again consider a 6×3 farm and a wind direction of 20◦, and evaluate WFYP solutions for different wind speeds.

The baseline and optimization results of 6, 11 and 12m s−1 are reported in Table 6 (11m s−1 repeats case 1.4) and Fig. 8. In

all cases, the optimization increases the farm’s total power output by about 2%. The maximum of the precomputation time is585

about 3h and of the IP solving time about 87s with SCIP, or under 1s with Gurobi.

Additional experiments with 14m s−1 and 15m s−1 show the limit of interesting speeds from power output optimization

perspective for the present example: for the 15m s−1 (14m s−1) case, all turbines output (almost) their maximum power already

in the baseline yaw setting—nevertheless, optimization could still be meaningful if mechanical loads were actually included in
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Table 5. Data and results to illustrate scalability and complexity of the WFYP (series 2). All cases have a wind direction of 20◦ and a speed

of 11m s−1 in common. In all cases, the IP optimality gap is 0.00%. (Case 2.1 repeats case 1.4.)

wind farm IP solver total power output

# covering # vari- # con- solving time (in s) baseline optimized improvement

case layout sections ables straints SCIP Gurobi (in MW) (in MW) rel. (in %)

1 6× 3 8 1430 2866 86.85 0.35 62.05 62.98 1.50

2 7× 3 9 1773 3553 364.94 1.26 71.89 73.01 1.56

3 8× 3 10 2216 4240 1760.04 3.62 81.73 83.04 1.60

4 9× 3 11 2459 4927 9071.55 11.25 91.56 93.07 1.77
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(b) Optimized: 52.95MW.

Figure 7. Detailed results for a 6× 3 farm in which some turbines are inactive (case 2.5 with wind speed of 11m s−1 and direction of 20◦).

Subfigure captions specify yaw control (baseline or optimized) and the resulting total power output of the farm.

the optimization objective. Identifying the corresponding maximum-output wind speed threshold (w.r.t. the baseline) for each590

wind direction can avoid unnecessary precomputations associated with wind speeds beyond the levels at which optimization can

have an effect. Moving on, in an analysis together with additional experiments, i.e., for wind speeds {6,8,10,11, . . . ,14}m s−1,

we observe that turbines in a row (apart from those at the farm borders) appear to typically have identical optimal yaw angles

(in the same experiment), i.e., the optimal yaw angles for WTs 2 to 5 are the same (except for WT 2 at 8 and 11m s−1), as are

those for WTs 8 to 11 (except for WT 11 at 8m s−1). This is likely due to the grid layout. In addition, the optimal yaw angles595

in the first and second row always differ from 0, except for WTs 1 and 7. So, the result would be the same if we had computed

the complete section configuration (i.e., upstream section) without the possibility of 0 in the first and second row; probably,

we only need 0 to detect the greedy wind speed threshold. This may provide opportunities to reduce the running times of both

precomputations and the resulting IP solution process.
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Table 6. Data and results to illustrate the impact of wind speeds (series 3). All cases have a 6× 3 farm layout and a wind direction of 20◦ in

common. In all cases, the IP optimality gap is 0.00%. Detailed results are in Fig. 8. (Case 3.2 repeats case 1.4.)

wind farm IP solver total power output

wind speed precomputa- solving time (in s) baseline optimized improvement

case Uave (in ms−1) tion time (in h) SCIP Gurobi (in MW) (in MW) rel. (in %)

1 6 2.4 27.61 0.42 12.31 12.57 2.11

2 11 2.9 86.85 0.35 62.05 62.98 1.50

3 12 3.1 8.06 0.19 76.99 78.73 2.26

-500 0 500 1000 1500 2000 2500

-1000

-500

0

500

1000

1500

2000

Rotated Layout of Active Wind Farm (distances in m)

No. 1,

 0.0 deg,

 0.87 MW

No. 2,

 -15.0 deg,

 0.59 MW

No. 3,

 -15.0 deg,

 0.82 MW

No. 4,

 -15.0 deg,

 0.82 MW

No. 5,

 -15.0 deg,

 0.82 MW

No. 6,

 -10.0 deg,

 0.85 MW

No. 7,

 0.0 deg,

 0.57 MW

No. 8,

 -10.0 deg,

 0.75 MW

No. 9,

 -10.0 deg,

 0.75 MW

No. 10,

 -10.0 deg,

 0.75 MW

No. 11,

 -10.0 deg,

 0.72 MW

No. 12,

 -10.0 deg,

 0.73 MW

No. 13,

 0.0 deg,

 0.56 MW

No. 14,

 0.0 deg,

 0.56 MW

No. 15,

 0.0 deg,

 0.56 MW

No. 16,

 0.0 deg,

 0.56 MW

No. 17,

 0.0 deg,

 0.44 MW

No. 18,

 0.0 deg,

 0.87 MW

total: 12.57 MW
(a) 6m s−1, optimized: 12.57MW.
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(b) 11m s−1, optimized: 62.98MW.
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(c) 12m s−1, optimized: 78.73MW.

Figure 8. Detailed optimization results for series 3 as shown in Table 6. Subfigure captions specify the wind speed and the farm’s total power

output. Baseline turbines’ power output (in MW) is sorted by rows: case 1, row 1 (WTs 1: 0.87; 2: 0.63; 3–6: 0.87), row 2 (7: 0.50; 8–11:

0.68; 12: 0.76), row 3 (13–16: 0.52; 17: 0.41; 18: 0.87)—case 2, row 1 (1: 4.38; 2: 4.40; 3–6: 4.27), row 2 (7: 3.34; 8–11: 3.46; 12: 4.16),

row 3 (13–16: 2.10; 17: 2.04; 18: 4.38)—case 3, row 1 (1: 4.91; 2: 4.93; 3–6: 4.94), row 2 (7: 4.55; 8–11: 4.52; 12: 4.84), row 3 (13–16:

2.95; 17: 3.19; 18: 4.91).

4.4 Modifying the yaw angle range or discretization600

In series 4, we deviate from the yaw angle discretization ([−15◦,15◦] in 5◦ steps, i.e., seven yaw angles) used so far: first

(case 4.1), we expand the range and use [−40◦,40◦], again in 5◦ steps (giving 17 yaw angles), and second (case 4.2), we

reconsider [−15◦,15◦] but with a finer discretization of 2.5◦ (yielding 13 yaw angles). To this end, we consider a 6× 3 farm

with a wind speed of 11m s−1 and a direction of 5◦ in case 4.1 and 20◦ in case 4.2, i.e., we compare to cases 1.2 and 1.4,

respectively.605

The extension of allowed yaw angles in case 4.1 increases the precomputation time from 0.5h (cf. Table 3, case 2) to 1.7h,

while the number of turbines in the upstream section is unaffected, i.e., three. The IP consists of 1734 variables and 2896
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constraints; SCIP needs 0.82s and Gurobi 0.80s to solve it. As optimal result, all turbines in the first row are set to 30◦ and

each output 3.37MW, which is significantly lower than in case 1.2 (4.14MW) due to their higher yaw offset. This enables a

similar power output of the second row despite the larger yaw offsets of 35◦ there, i.e., 2.40MW (in comparison to 2.45MW at610

case 1.2). Finally, this enables a significantly increased power output of the downstream-most turbines (with 0◦), i.e., 3.49MW

(instead of 1.97MW). The total farm output is 55.57MW (instead of 51.41MW in case 1.2), i.e., compared to the baseline,

the total power output is increased by 26.76% (instead of 17.27%). The non-use of the new limits of ±40◦ shows that at the

extreme yaw angle settings, the power loss at a turbine would exceed the gain at turbines downstream.

Case 1.4 is particularly interesting for finer discretization (case 4.2) as not all turbines attain extremal yaw angles ±15◦.615

However, all optimal yaw angles in case 4.2 in fact remain the same as in case 1.4, though the finer discretization increases

the precomputation time from 2.9h (cf. Table 3, case 4) to 14.6h (of course, still with four turbines in the upstream section).

The IP in case 4.2 consists of 8972 variables and 17950 constraints, for which SCIP needs 58.28h to solve while Gurobi takes

only 34.13s. In any case, it is unnecessary to solve the WFYP with arbitrarily finely discretized yaw angles because of the

uncertainty of incident wind conditions, see Stanley et al. (2022) (referenced in Sect. 1.2.1).620

5 Concluding remarks

We formulated the wind farm yaw problem mathematically, established its computational complexity and developed a covering

approach to solve it with integer programming. Building on a number of simulation results that can be precomputed at any time

before the need for yaw control arises, the method is efficient in practice in spite of the problem’s strong NP-hardness and

inapproximability. In particular, we fully expect even very long precomputation times (e.g., months) to be acceptable as the625

simulations can easily be run for various wind scenarios while the farm is not yet operational. Given the envisioned database,

our covering approach efficiently delivers optimal yaw control using a state-of-the-art IP solver like Gurobi. The solution is

even globally optimal under some mild assumptions as discussed in Sect. 1.2.1. In addition, it enables tackling even farms with

many turbines. We demonstrated the performance of our approach with several proof-of-concept examples that illustrate its

effectiveness, flexibility and scalability, particularly through the reuse of precomputations if we enlarge the farm orthogonally630

to the wind direction or deactivate turbines. On the other hand, the enlargement in wind direction increases the upstream section

and therefore the number of turbines inside, which mainly increases the precomputation time. As our covering approach is a

superordinate model, the simulation is interchangeable. The utilized dynamic models (for wakes and turbines) possibly made

the precomputation more expensive than necessary when only focusing on the power output. Presuming that the influence of

a substitution on the resulting optimal yaw angles is small, the precomputation time would decrease considerably. Finally, it635

might be helpful to solve the WFYP for the associated farms by our covering approach for a variety of wind directions and

speeds to recognize structures whose exploitation reduces the computational effort in precomputation or simplifies the WFYP

itself. Solving the WFYP for the associated farms by covering approach in all considered wind scenarios should provide

knowledge to reduce the computational effort.
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Code and data availability. For simulation, we used the MATLAB software package WinFaST. This company-internal software is not pub-640

licly available, but based on known methods, as described in Sect. 3.1. As our own optimization framework is presently entwined with

WinFaST and hence not a stand-alone program, we have not made it publicly available at this time. Nevertheless, in Sect. 2, we provide a

detailed description of the problem, the novel covering approach, integration/utilization of simulation results and the WFYP formulation as

an integer program. As data to supplement the article, we provide the integer programs (lp-files) and corresponding solver log files for each

case of our series of experiments. The data is available at Zenodo: https://doi.org/10.5281/zenodo.13837557.645

Appendix A: Complexity of the wind farm yaw problem

This section addresses the computational complexity of the wind farm yaw problem from a theoretical viewpoint; we assume

a basic knowledge of mathematical complexity theory and refer to Garey and Johnson (1979) for a detailed introduction.

Using the basic black-box IP formulation (1) to (3) of the wind farm yaw problem (WFYP; cf. Sect. 2.1.1), we show that the

WFYP is strongly NP-hard (Theorem A.3) and even hard to approximate (Corollary A.4). These two results together yield650

Proposition 2.1 as stated in Sect. 2.1.2.

We use the well-known strongly NP-complete Hamiltonian Circuit (HC) problem, see, e.g., (Garey and Johnson, 1979,

problem GT37), for our proof.

Definition A.1 (Hamiltonian Circuit Problem (HCP)). Let an undirected graph G = (V,E) on n vertices, V := {v1, . . . ,vn}, be

given. Does G contain a Hamiltonian circuit, i.e., a subset of edges H=
{
{vπ(1),vπ(2)},{vπ(2),vπ(3)}, . . . ,{vπ(n−1),vπ(n)},655

{vπ(n),vπ(1)}
}
⊂ E for a permutation ⟨vπ(1),vπ(2), . . . ,vπ(n)⟩ of V ?

For clarity, we also explicitly state the decision version of the WFYP problem.

Definition A.2 (WFYP, decision version (WFYP-DEC)). Let the index set T of wind turbines in a wind farm, its layout L, the

index set Γi := {1, . . . ,nΓ,i} of admissible yaw angles for each turbine i ∈ T , the WFYP objective function fΣ
ω as defined for

(the (black-box) IP formulation of) the WFYP, and a number F ∈ R be given. Does there exist a feasible yaw configuration660

for the given farm (i.e., exactly one yaw angle per turbine) such that, for the associated binary yaw angle assignment vector x,

fΣ
ω (x)≥ F ?

Recall that the assignment vector x ∈ {0,1}nΓ1+···+nΓnWT , with the entry in position
∑i−1

ℓ=1 nΓℓ + j being denoted by xi,j

and having value 1 if and only if the i-th turbine is set to the j-th yaw angle from among the respective admissible set Γi. In the

following, we will also use some additional notation: We denote the so-called triangular numbers by ∆n :=
(
n+1

2

)
= n2+n

2 and665

abbreviate the set of the first N triangular numbers as ∆(N) := {∆1,∆2, . . . ,∆N}. Also, for a natural number n ∈ N = Z>0,

we denote [n] := {1,2, . . . ,n}.

We are now prepared to prove the NP-hardness and inapproximability of the WFYP(-DEC).

Theorem A.3. The wind farm yaw problem is strongly NP-hard.

Proof. We show hardness for the decision version WFYP-DEC, which directly implies hardness for the optimization version670

(WFYP, as defined in Sect. 2), cf. Garey and Johnson (1979). To that end, we reduce from the strongly NP-complete HCP.
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Let G = (V,E) be an arbitrary HCP instance, and denote n = |V |. We can assume w.l.o.g. that n≥ 2, every vertex has

degree at least 2, and that G consists of a single connected component (otherwise, the answer to the HCP is trivially “no”). We

construct an instance (T,L,{Γi}i∈T ,fΣ
ω ,F ) of the WFYP-DEC as follows:

We set the number of turbines to nWT := ∆n + 1 and identify the turbines by their index, i.e., T := [∆n + 1]. The turbines675

are arranged in a triangle-like layout L (on a regular grid)3 defined by the following “row” sets:

R1 := {∆1}= {1},

R2 := {∆2,2},

R3 := {∆3,5,4},
...680

Rn := {∆n,∆n− 1, . . . ,∆n−1 + 1},

Rn+1 := {∆n + 1}.

Furthermore, each turbine i ∈ T is given the same set of admissible yaw angles Γi := Γ := [n], so nΓ,i = |Γi|= n for all i ∈
T . Finally, we set F := n, and define the terms fω,i,j(x) of the simulation function fΣ

ω (x) :=
∑nWT

i=1

∑nΓ,i

j=1 fω,i,j(x)xi,j =
∑∆n+1

i=1

∑n
j=1 fω,i,j(x)xi,j as685

fω,i,j(x) :=





0 if i = 1(= ∆1) and j ∈ [n],

1 if, for some k ∈ [n], i = ∆k > 1, x∆k−1,ℓ = 1 for some ℓ such that {vℓ,vj} ∈ E,

and j ∈ [n] \
{
q ∈ [n] :

∑
s∈Rk−1

xs,q > 0
}

0 if, for some k ∈ [n], i ∈Rk \
(
∆(n)∪{∆n + 1}

)
and xi−k+1,j = 1,

1 if i = ∆n + 1, x∆n−1+1,j = 1, and {vj ,vℓ} ∈ E for j such that x∆n,ℓ = 1,

1−n otherwise.

(A1)

For a (feasible) overall yaw configuration of the farm as determined by x, the components fω,i,j(x) of fΣ
ω (x) specify the

objective contribution (or profit, for short) incurred by turbine i using the yaw angle (indexed by) j. Specifically, the first case

in Eq. (A1) defines a zero profit for any arbitrary yaw angle assignment to the first turbine. The second case then yields a profit

of 1 if a turbine that corresponds to a triangular number ∆k > 1 has been assigned (according to the input yaw configuration x)690

a yaw angle j that was not chosen for any turbine in the previous row (set Rk−1) and is such that for the yaw angle ℓ chosen

for turbine ∆k−1, the edge {vℓ,vj} exists in G. (For example, supposing turbines ∆1 and ∆3 are assigned yaw angles ℓ ∈ [n]

and j, respectively, then the setting for turbine ∆3 yields a profit of 1 only if {vℓ,vj} ∈ E and the j-th angle was not selected

for any turbine in the previous row, which in this case translates to j ̸= ℓ.) The third case means that using yaw angle j for

3In fact, the precise layout does not matter, since all implications regarding the resulting wake influences are “hidden” in the black-box function (i.e., in

the practical application, handled within the simulation framework); the same holds for the exogenously given (arbitrary but fixed) wind speed and direction.
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Figure A1. Visualization of black-box function dependencies in the reduction from HCP to WFYP-DEC, exemplified for graph with n = 5

nodes. Arcs in (a) represent the dependencies in the constructed farm (i.e., which turbines bear influence on which others) for the first two

cases in Eq. (A1), while arcs in (b) represent those for the remaining cases in Eq. (A1). Note that actual function values depend on input x.

any turbine i ∈Rk \(∆(n)∪{∆n +1}) = {∆k−1 +1, . . . ,∆k−1} (with respect to some k ∈ [n]) incurs zero profit if this yaw695

angle j was used at turbine i− k + 1 (which belongs to row set Rk−1, since ∆k−2 + 1≤ i− k + 1≤∆k−1). The penultimate

case yields a unit profit in the special case that the turbine is i = ∆n + 1 and the assigned yaw angle j is also used by turbine

∆n−1 + 1, provided that the edge {vj ,vℓ} ∈ E for ℓ being the yaw angle assigned to turbine ∆n. Finally, the last case sets the

function value to 1−n for all other configurations. Fig. A1 illustrates the dependency structure of the function.

This completes the construction of a WFYP-DEC instance (T,L,{Γi}i∈T ,fΣ
ω ,F ) from the input HCP instance G. Note700

that the reduction (dimensions, all arithmetic operations and constructed numbers) clearly requires only polynomial time and

space with respect to the size of the input; in particular, the objective function can be evaluated in O(n3), since |T |= nWT =

∆n + 1≤ n2 and nΓi = n for all i ∈ T . (In fact, it can easily be seen that our reduction allows the “strongly” part of NP-

hardness to carry over from the HCP, cf. Garey and Johnson (1979).)

It remains to show that the given graph contains a Hamiltonian circuitR if and only if the constructed WFYP-DEC instance705

(T,L,{Γi}i∈T ,fΣ
ω ,F ) admits a solution x with objective value fΣ

ω (x)≥ F = n.

To that end, first assume that x̂ ∈ {0,1}(∆n+1)n is a feasible solution for WFYP-DEC (so every turbine is assigned exactly

one yaw angle) with objective value fΣ
ω (x̂)≥ F . Since by construction, only n turbine yaw settings can possibly incur a profit

of 1 each (and all others at most zero), fΣ
ω (x̂) = F = n does in fact hold, which also implies that the last case in the function

definition (A1) never occurs (since otherwise, fΣ
ω (x̂)≤ 1−n+n = 1 < n would hold—a contradiction). In particular, tracing710

the functional dependencies with regard to which yaw angle assignments incur which costs for subsequent turbines (in the

“cascading” row sets), we can conclude that no yaw angle is chosen twice among the turbines 1,∆2,∆3, . . . ,∆n. Moreover,

due to the first two cases in Eq. (A1) (and since x̂ represents a feasible yaw configuration), and because every turbine has
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the same set of n admissible yaw angles, it holds that each yaw angle is chosen exactly once for this set {1,∆2,∆3, . . . ,∆n}
of turbines. Furthermore, note that by definition, any yaw setting j for turbines i = ∆k−1 + 1, k = 2, . . . ,n, incurs a profit of715

either 1−n or 0, but that since fΣ
ω (x̂) = n, the respective settings prescribed by x̂ in fact all yield zero profit. Thus, these costs

necessarily arise from the third case in Eq. (A1), which means that turbines ∆1 + 1,∆2 + 1, . . . ,∆n−1 + 1 all have the same

yaw angle as turbine 1. Consequently, by the fourth case in the definition, the yaw configurations chosen for turbines ∆1 = 1

and ∆n + 1 are also identical.

We can now construct a Hamiltonian circuit in G from this WFYP solution x̂: Starting at vertex vp1 ∈ V , where p1 ∈720

[n] is the yaw angle chosen for turbine ∆1 = 1, we visit the other n− 1 nodes in the order prescribed by the yaw angles

selected for the turbines ∆1, . . . ,∆n, and finally moving from the last node back to vp1 . Indeed, this traversal produces the tour

R̂= {{vp1 ,vp2},{vp2 ,vp3}, . . . ,{vpn−1 ,vpn},{vpn ,vp1}}, which shows that a “yes” answer for the constructed WFYP-DEC

instance yields a “yes” answer for the original HCP instance.

For the converse direction, let a circuit R̂= {{vπ(1),vπ(2)}, . . . ,{vπ(n−1),vπ(n)},{vπ(n),vπ(1)}} be a “yes” certificate for725

the given HCP instance G. Then, we can derive a solution x̂ with cost fΣ
ω (x̂) = n = F for the constructed WFYP-DEC in-

stance from R̂ as follows: For turbines 1, ∆2, ∆3, . . . , ∆n, ∆n + 1, we respectively select the yaw angles corresponding to

the indices of the vertices in the order prescribed by the tour R̂, starting (and ending) at vp1 = vπ(q) for some q ∈ [n], i.e., we

set x̂1,π(q+1) = x̂∆2,π(q+2) = · · ·= x̂∆n,π(q+n) = x̂∆n+1,π(q) = 1 (yielding total profit 0 +n · 1 = n) while the entries corre-

sponding to these turbines and the respective remaining yaw angles are all set to zero. For the remaining turbines, we pick yaw730

angles that incur no negative profits, i.e., for any k = 2, . . . ,n, turbine i ∈Rk \ (∆(n)∪{∆n + 1}) is assigned the same yaw

angle as turbine i− k + 1, respectively, all with profit 0. Since this way, every turbine is assigned exactly one yaw angle, x̂

indeed describes a feasible yaw configuration and by construction, its objective function value corresponds to fΣ
ω (x̂) = n = F .

This shows that the constructed WFYP-DEC instance also has a “yes” answer, which completes the proof.

We remark that the above construction could easily be adapted so that only non-negative terms can occur in the objective4,735

as would be the case in our application when focusing solely on power generation. Note also that, due to the generality of the

black-box function fΣ
ω in WFYP-DEC it is unclear whether one could always find a rational certificate of an arbitrary “yes”

instance, so containment in the complexity classNP (and thus,NP-completeness) remains open. However, more importantly,

we can slightly modify the proof of Theorem A.3 to obtain the following inapproximability result.

Corollary A.4. There is no polynomial-time α-approximation algorithm for WFYP, for any α≤ 1, unless P =NP .740

Proof. Revisiting the construction from the proof of Theorem A.3 we modify the function values in Eq. (A1) to 0, δ, δ, δ and

−ε for the five cases, respectively, which then establishes the existence of a Hamiltonian circuit in G if and only if there is a

feasible WFYP solution with value 1
2 (n2 +n− 2)δ. Let ε := 1

2 (n2 +n− 4) and δ := 4(∆n +1)ε = n4− 3n2 +6n− 8. Then,

if the original HCP instance was a “yes”-instance, any non-optimal solution of the constructed WFYP instance has solution

4To that end, we can replace the profit for the third and fifth case in Eq. (A1) by ε > 0 and 0, respectively. Then, the construction instance has a solution

of value n + ε(n2−n− 2)/2 if and only if G is Hamiltonian.
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value at most 1
2 (n2 +n−4)δ−ε.5 Now suppose there exists a polynomial-time α-approximation algorithm for some arbitrary745

1/(n2 + n− 1) < α≤ 1. Since any non-optimal solution (for a WFYP instance constructed from a HCP “yes”-instance) has

value at most 1
2 (n2 +n−4)δ−ε, but the α-approximation algorithm outputs a solution with value at least α · (n2 +n−2)δ/2,

it can only be the case that the solution computed by the algorithm is non-optimal if

α

(
n2 + n− 2

2

)
δ ≤

(
n2 + n− 4

2

)
δ−ε ⇔ α≤ n2 + n− 4

n2 + n− 2
− 2ε

n2 + n− 2
= 1− 2

n2 + n− 2
−

(
1− 2

n2 + n− 2

)
= 0,

which contradicts the prerequisite α > 1/(n2 +n−2) > 0. Thus, the α-approximation algorithm does, in fact, always yield an750

(optimal) solution of value α(n2 + n− 2)δ/2 if and only if the input HCP instance was a “yes”-instance. It could therefore be

used to decide the existence of a Hamiltonian circuit in polynomial time, contradicting NP-hardness of the HCP. To see that

this implies no polynomial-time α-approximation can exists (provided P ̸=NP) for any 0 < α≤ 1, it suffices to observe that

1/(n2 + n− 2)→ 0 as n→∞.
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