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Abstract. This study investigates the relationship between sound quality metrics (SQMs) and noise annoyance caused by
airborne wind energy systems (AWESSs). In a controlled listening experiment, 75 participants rated their annoyance on the
International Commission on Biological Effects of Noise (ICBEN) scale in response to recordings from in-field measurements
of two fixed-wing and one soft-wing ground-generation AWES. All recordings were normalized to an equivalent A-weighted
sound pressure level of 45 dBA. The results revealed that sharpness was the only SQM predicting participants’ annoyance.
Fixed-wing Kites, characterized by sharper and more tonal and narrowband sound profiles, were rated as more annoying than
the soft-wing kite, characterized by higher loudness values. In addition, the effect of some SQMs on annoyance depended on
participant characteristics, with loudness having a weaker impact on annoyance for participants familiar with AWESs and
tonality having a weaker effect on annoyance for older participants. These findings emphasize the importance of considering

psychoacoustic factors in the design and operation of AWESSs to reduce noise annoyance.

1 Introduction

Wind energy is one of the most widely available renewable energy sources, and its capacity must increase by 320 GW by 2030
to meet the climate goals of the Paris Agreement (IEA, 2023; UNFCCC, 2016). A promising yet unexploited novel renewable
energy technology is airborne wind energy (AWE) (BVG Associates, 2022; Vos et al., 2024). AWE uses tethered flying
devices, called Kites, to harness higher-altitude winds. AWE can complement conventional wind energy by accessing stronger,
more consistent wind resources above 200 meters and providing power in remote or temporarily used locations, such as in the
aftermath of natural disasters. With its substantially lower mass compared to conventional wind turbines, AWE also has a

smaller environmental footprint (Hagen et al., 2023). While AWE is regarded as a potential game-changer for the energy
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transition because it can harness higher-altitude winds, requires fewer materials compared to wind turbines, and can be
deployed in remote or distant offshore locations (IRENA, 2021), the technology has not yet converged towards a single
standard configuration.

The existing prototypes can be divided into two main configurations: ground-generation and fly-generation concepts,
as shown in Fig. 1 (Cherubini et al., 2015). The former concept alternates between energy-generating reel-out and energy-
consuming reel-in phases. During the reel-out phases, the kite is flown in a loop or figure of eight maneuvers, generating more
energy than is used during the reel-in phases, resulting in a positive net power output (Vermillion et al., 2021). Ground-
generation AWE systems (AWESs) commonly use soft-wing kites based on flexible membrane wings or fixed-wing Kites
typically made from carbon fiber-reinforced polymers. The latter concept employs small wind turbines onboard a fixed-wing

kite to generate electricity directly while airborne.

Ground-Gen Ground-Gen
Soft Wing Fixed Wing

Wind

/Fraction

phase

Retraction
phase

Figure 1: Schematic representation of ground-generation airborne wind energy systems employing a soft-wing and a

fixed-wing kite, respectively (based on Fagiano et al., 2022).

AWESs, like all wind energy technologies, must comply with environmental regulations on sound emissions to limit
the impact on surrounding residents (van Kamp and van den Berg, 2021). Noise is a primary source of public opposition to
wind turbines and a central aspect of debates on their social acceptance (Bednarek-Szczepanska, 2023; Kirkegaard et al., 2024;
Taylor and Klenk, 2019). While the health effects of noise remain contentious, even within the scientific community
(Kirkegaard et al., 2024; Taylor and Klenk, 2019), substantial evidence indicates that individuals living near wind farms may
frequently report noise annoyance, often accompanied by complaints such as sleep disturbances, psychological distress, and
general functional impairments (Bakker et al., 2012; Godono et al., 2023; Haac et al., 2019; Hibner et al., 2019; Ki et al.,
2022; Michaud et al., 2016a; Muller et al., 2023; Pawlaczyk-Luszczyniska et al., 2014; Pedersen and Persson Waye, 2004,
2007; Pohl et al., 2018; Radun et al., 2019; Turunen et al., 2021). Noise annoyance is typically defined as a negative evaluation
of wind turbine sound emissions (Pohl et al., 2018) and is influenced by factors such as expected health impacts, perceived

fairness in the planning process, individual sensitivity to noise, and the visual and landscape impact of the turbines (Haac et
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al., 2019; Hibner et al., 2019; Michaud et al., 2016b; Muller et al., 2023; Pawlaczyk-Luszczynska et al., 2018; Schéffer et al.,
2019; Tonin et al., 2016).

Although AWESs are often assumed to be quieter due to their higher operational altitudes (for a review, see Schmidt
et al., 2022), this assumption disregards several factors that influence noise perception. These factors include individual
dispositions (e.g., noise sensitivity, especially to low-frequency sounds) (Haac et al., 2019; Michaud et al., 2016b; Pedersen et
al., 2010; Pedersen and Persson Waye, 2007; Schutte et al., 2007), perceptions (e.g., the aesthetics of the technology or fairness
of the planning process) (Haac et al., 2019; Hibner et al., 2019; Pedersen and Larsman, 2008), and attitudes towards wind
energy projects or the technology itself (Hoen et al., 2019; Hiibner et al., 2019; Ki et al., 2022; Pawlaczyk-Luszczynska et al.,
2018; Pedersen and Persson Waye, 2007; Schéffer et al., 2019). Technological aspects also play a role, including tethers,
onboard rotating components, and the relatively high speeds at which kites operate, which enhance tonal components and
modulation of the sound emitted (Hansen et al., 2021; Lee et al., 2011; Schéffer et al., 2018; Torija et al., 2019; Yokoyama
and Tachibana, 2016; Yonemura et al., 2021).

Although research on AWES sounds is still limited, a preliminary study by Bouman (2023) revealed differences in
the noise profiles of fixed-wing and soft-wing kites: The fixed-wing Kite had a narrowband spectral distribution of the emitted
noise, enhanced by laminar flow regimes on the suction side of the wing with a relatively short chord. The larger soft-wing
kite produced a broadband distribution largely determined by turbulent boundary-layer trailing-edge noise. However, how
these noise sources relate to noise annoyance has not been investigated to date. Schmidt et al. (2024) conducted the only field
study so far on AWES sound emissions, finding that 35.2% of respondents living on average 2 km from the soft-wing AWES
could hear its sounds at home, with 13.1% being annoyed (score of at least 2 on a scale from 0 to 4) and 7.5% highly annoyed
(score of at least 3 on the same scale). However, the study did not investigate the relationship between the AWES’s sound
emissions and the reported annoyance, leaving a critical gap in understanding the impact of AWES noise on communities.

The AWE industry has primarily focused on improving system reliability and scalability, with less emphasis on noise
mitigation. However, developers are increasingly recognizing the challenges posed by noise (Junge et al., 2023) and are
beginning to develop measurement methods and gather insights to mitigate its effects. Early acoustical research, like the present
study, plays a crucial role in identifying factors that contribute to noise annoyance for AWESs. This knowledge can guide the
design and implementation of mitigation measures before the technology becomes constrained by fixed design choices.

Existing research on wind turbines has typically relied on conventional sound indicators, such as the equivalent sound
pressure level Leq or its A-weighted version Lp,A,eq (Kephalopoulos et al., 2014; Pieren et al., 2019). The Lp,A,eq metric
adjusts sound measurements to the sensitivity of the human ear, particularly to frequencies between 500 Hz and 6 kHz.
However, these metrics do not adequately reflect the sound properties that explain annoyance (Bockstael et al., 2011; Pedersen
and Persson Waye, 2004; Persson Waye and Ohrstrém, 2002; Pieren et al., 2019), such as the tonal and high-frequency content
of turbine noise that has been linked to stronger annoyance (Oliva et al., 2017; Persson Waye and Agge, 2000; Yokoyama and
Tachibana, 2016). Similarly, while the effective perceived noise level (EPNL), developed for aircraft noise (U.S. Department

of Transportation, 2017), accounts for sound magnitude, spectral content, duration of the sound signal, and tonal components,
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it may not be well-suited for evaluating AWES noise (Kryter, 1960). Sound quality metrics (SQMs), such as loudness, tonality,
sharpness, roughness, and fluctuation strength, offer an alternative approach by focusing on perceptual aspects of sound (Greco
et al., 2023). Research on wind turbines (Merino-Martinez et al., 2019a; Persson Waye and Ohrstrom, 2002; Pockelé and
Merino Martinez, 2024) and aircraft noise (Merino-Martinez et al., 2019b; More, 2010; Pereda Albarrén et al., 2018, 2017;
Sahai, 2016; Vieira et al., 2019) has begun to explore how useful SQMs are for understanding annoyance.

The present study aims to investigate how well SQMs predict noise annoyance caused by AWESs. It was not assumed
that participants were knowledgeable about specific SQMs, nor were they informed of these metrics during the experiment.
Instead, these metrics were objectively derived from acoustic analyses of the recordings. The study also explores
Psychoacoustic Annoyance (PA) metrics, which combine multiple SQMs into a single predictor of annoyance, comparing the
PA metrics’ performance with the conventional metric EPNL. The benefit of PA metrics is that they provide a quick estimate
of the noise annoyance perceived for a given sound without measuring respondents’ annoyance levels. Using recordings from
both soft-wing and fixed-wing Kites, this study conducts a controlled listening experiment to assess annoyance ratings for
AWESs.

Section 2 describes the study design, procedure, and materials. Section 3 presents the results from the acoustical
analyses of the sound recordings and the statistical analyses of the reported annoyance. Finally, Section 4 summarizes the key

findings and their implications.

2 Methodology

In the following, the methodologies employed to record the sound samples and the laboratory listening experiment are
explained in detail, including characteristics of the sound samples and participants, annoyance ratings, and laboratory

procedures.
2.1 Sound recordings

Nine sound recordings from three different AWESs (i.e., three recordings from each prototype) were used for the listening
experiment. A total signal length of 25 s per recording was extracted from longer, more complex audio footage that included
additional non-relevant preparation phases for the three AWESs. All three AWESs implement ground-based electricity
generation (see Section 1). One is a soft-wing kite (AWES A), and the other two are fixed-wing kites (AWESs B and C). Table
1 provides more information about the AWESs and the sound measurement campaigns.

The three recordings for each AWES were chosen to represent typical sound emissions during the reel-out phase of
their respective systems. During this phase, the kite operates in crosswind maneuvers at high flight speeds while the reel-out
speed is kept relatively low to maximize the energy production period. This operational setup implies that sound emissions

from the kite, including contributions from onboard ram-air turbines, wing flutter, and tether vibrations, are the most
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significant. In contrast, sound emissions from the ground station (e.g., the generator) are comparatively minor due to the low
reeling speed. Due to AWES C being towed by a truck, its recordings exhibited greater variability compared to the more
consistent sound profiles of kites A and B.

Given that there are currently no specific sound regulations for AWESs, the sound pressure levels of the recordings
were normalized to an equivalent A-weighted sound pressure level value of 45 dBA to align with European regulations for
wind turbines, which commonly range between 35 dBA and 55 dBA during the day (Solman and Mattijs, 2021). Normalization
refers to adjusting the sound pressure levels of recordings to a common reference value, ensuring comparability. A-weighting
is a standard method to adjust sound measurements to reflect the human ear's sensitivity (approximately between 2 and 5 kHz).
Additionally, normalizing the sound pressure levels helps to evaluate aspects of sound quality other than loudness (Boucher et
al., 2024).

Table 1 Overview of the investigated airborne wind energy systems (AWESSs) and the corresponding sound measurement

campaigns.

AWES A AWES B AWES C

Kite type Soft-wing Fixed-wing Fixed-wing

VTOL propellers None Present, inactive during Present, inactive during

the measurements the measurements

Ram-air turbine Present, tied down during  None Present, active during the
the measurements to measurements
prevent free-spinning

Flight pattern Figure of eight Circle Circle

Wind speed (m/s) 5-10 9 8-92

Max relative flying 38 42 43

airspeed (m/s)

Max Kite altitude during 253 231 150

experiment (m)



Distance to microphone

(m)

Test location and type

Recording

instrumentation

428 — 620

Field; standard flight test

Briel & Kjer 4189
microphone at 1 m height
and 650 m downwind
from the winch of the
ground station;

Briel & Kjer UA-650
windscreen over the
microphone to reduce
wind sounds;

Briel & Kjer sound level
meter 2250

305 - 689

Inoperative airfield;
standard flight test

Briel & Kjeer 4189
microphone at 1 m height
and 679 m downwind
from the winch of the
ground station;

Briel & Kjer UA-1650
windscreen over the
microphone to reduce
wind sounds;

Briel & Kjer sound level
meter 2250

Approximately 100 — 700

Inoperative airfield; tow
test (i.e., the ground
station was on the back of
a truck driving straight to
create an artificial wind
field while the kite was
flying crosswind loops of
about 60 — 70 m

diameter)

Three Briel & Kjeer 4189
microphones were
positioned at equal
distances along the
driving route;

The vehicle sounds were
mainly emitted at the
ground level and
absorbed by padded

microphone covers

Note. VTOL.: vertical take-off and landing. @The values refer to the ambient wind speed, but the towing speed was higher.

2.2 Listening experiment

2.2.1 Psychoacoustic Listening Laboratory

The listening experiment was conducted in the Psychoacoustic Listening Laboratory (PALILA) at the Faculty of Aerospace
135 Engineering of Delft University of Technology. PALILA is a soundproof booth inside a separate room specifically designed
to research the human perception of aeroacoustics sound sources, including aircraft, drones, and wind turbines. The booth is
2.32 m long, 2.32 m wide, and 2.04 m tall inside. The background noise level inside the room is 13.4 dBA. Merino-Martinez

et al. (2023) describe the design and acoustic characterization in detail. PALILA’s audio reproduction system is a Dell Latitude
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7420 laptop (with an Intel® CoreTM i5-1145G7 vPro® processor and 16 GB of RAM) connected through a universal audio
jack connector to a set of Sony WH-1000XM4 over-ear, closed-back headphones. The headphones allow for binaural hearing
and have a 40 mm diameter dome-type driver unit, a frequency response between 4 Hz and 40 kHz, and a sensitivity of 105
dB/mW at 1 kHz. The audio reproduction system had been calibrated with a G.R.A.S. 45BB-14 KEMAR head and torso

simulator. Participants are seated in the booth’s center, and the laptop is placed on a table in front of them, as shown in Fig. 2.

1

Figure 2: Laboratory setup used for the listening experiment (source: authors’ own).

2.2.2 Participant recruitment and procedure

Participants were recruited using convenience and snowball sampling (Passer, 2014), mainly targeting students and employees.
Participants were eligible to participate if they reported no hearing impairment and felt physically well on the day of the
experiment. The study was conducted between June and September 2023. A trained experimenter instructed each participant
individually, after which they completed the experiment independently.

In the first part of the questionnaire, participants were asked to self-report their hearing ability, hearing-affecting
incidents (e.g., ear diseases, accidents, loud work environments), and well-being to establish their eligibility for participation.
The second part of the questionnaire, the listening experiment, started with a practice round to get familiar with the process
and the scales. It was followed by two counterbalanced blocks separated by an automatic and mandatory one-minute break:
one block on AWES sounds and another on wind turbine sounds (the latter are not reported here). The sequence of the sound
recordings within each block was randomized to minimize order and learning effects on participants’ annoyance ratings
(Passer, 2014). Participants listened to and evaluated one recording at a time. The recordings could not be replayed. The final

part of the questionnaire asked about participants’ noise sensitivity, familiarity with AWE, and demographic information. At
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the end of the experiment, the experimenter debriefed the participant and handed over a 20-euro voucher as a participation

reward. Participants took 22 minutes on average to complete the experiment, excluding the experimenter’s briefings.

2.2.3 Annoyance ratings and questionnaire

Noise annoyance was defined in accordance with the ISO 15666 standard as an individual’s adverse reaction to noise, which
may include feelings of dissatisfaction, bother, or disturbance caused by noise exposure (International Organization for
Standardization, 2021). In line with the definition and recommended practice for psychoacoustic research (Alamir et al., 2019),
annoyance levels were measured using the International Commission on Biological Effects of Noise (ICBEN) scale. For each
sound recording, participants were asked to rate their experienced annoyance on both the verbal and numerical scale, and the
average was calculated to increase measurement reliability (International Organization for Standardization, 2021). The 5-point
verbal scale, ranging from “not at all” (0) to “extremely” (4), asked: “Imagine you are at home and hearing the noise at home;
how much does the noise bother, disturb, or annoy you?” The 11-point numerical scale, ranging from 0 (“not at all”’) through
10 (“extremely”), asked: “Imagine you are at home and hearing the noise at home; what number from 0 to 10 best shows how
much you are bothered, disturbed, or annoyed by the noise?”. The wording of the scales was slightly adapted to acknowledge
the laboratory setting.

To establish whether participants were eligible to partake in the study, their hearing ability was self-reported using a
5-point scale (from “poor” to “excellent”). Self-evaluations have been shown to provide a valid measure of individual hearing
ability in the absence of audiometric testing (Hong et al., 2011). The occurrence of hearing-affecting conditions and incidents
was also self-reported (e.g., hearing aid usage, ear diseases, accidents, tinnitus, loud work environments), and participants’
well-being was queried (e.g., common cold, fatigue).

Noise sensitivity was assessed using the condensed 12-item version of the NoiSeQ scale. Participants rated their
agreement with statements related to noise sensitivity in various contexts on a 4-point scale, ranging from “strongly disagree”
(0) to “strongly agree” (3) (Griefahn, 2008). Sample items are “When I am at home, I quickly get used to noise” (reverse
coded) and “When people around me are noisy, I find it hard to do my work”. This scale has been shown to have high internal
consistency (a = 0.87) (ibid.).

Furthermore, whether participants were familiar with AWESs and had ever listened to one before was also assessed.
Finally, the participants’ age, gender, and education level were gathered. A graphical user interface (GUI) that guided
participants through the entire questionnaire, including the listening experiment, was specifically developed for this experiment

using MATLAB R2021b (see supplementary materials).

2.3 Participant characteristics

Of the 75 participants, 73.3% were male, 24% female, and 2.7% non-binary. The proportion of men was higher because

participants were mainly recruited from a technical university. The age ranged from 18 to 66 years, with an average of 28 years
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and a standard deviation of 9.57 years. The sample was overall highly educated, with 74.7% holding a Bachelor’s or Master’s
degree, 16% currently or previously enrolled in university, and 8% having a doctoral degree. The average reported hearing
ability was very good [Mean (M) = 4.07, standard deviation (SD) = 0.64, scale: 1-5], and the mean noise sensitivity was
medium (M = 1.56, SD = 0.38, scale: 0-3). About half of the participants reported being familiar with AWE (n = 37), but only
17.3% (n = 13) had listened to an AWES prior to the experiment. The high familiarity in the sample stems from the presence
of a renowned research group on AWE at the faculty, exposing students and employees to the technology through institutional
activities and research dissemination. However, this familiarity was largely theoretical, as most participants had not heard
AWES sounds before the experiment. Therefore, the subsequent analyses did not consider experience with AWES sounds as
a confounding factor.

2.4 Post-processing of the results
2.4.1 Acoustic analyses

The EPNL metric (Kephalopoulos et al., 2014; Pieren et al., 2019) was used to explore how well conventional acoustic metrics
can predict annoyance for AWESs. Furthermore, the following five SQMs (Merino-Martinez et al., 2021) were calculated for

each considered sound wave of every recording:

o Loudness (N): the perception of the sound magnitude corresponding to the overall sound intensity. Based on
Zwicker’s method, loudness was calculated using the ISO norm 532—1 (ISO/TC 43, 2017).

o Tonality (K): the perceived strength of unmasked tonal energy within a complex sound. Tonality was computed using
Aures’ method (Aures, 1985).

e Sharpness (S): the high-frequency sound content. The DIN 45692:2009’s (Deutsches Institut fir Normung, 2009)
method was used here.

e Roughness (R): the hearing sensation caused by modulation frequencies between 15 Hz and 300 Hz. Roughness was
calculated according to Daniel and Weber (1997).

e  Fluctuation strength (FS): assessment of slow fluctuations in loudness with modulation frequencies up to 20 Hz, with

maximum sensitivity for modulation frequencies around 4 Hz. The method by Osses Vecchi et al. (2016) was used.

The five SQMs were evaluated over time using a subset of the full sound recordings to assess the repeatability of the
metrics in the 25-second full-time span. To evaluate the sound quality through single quantities, the 5th percentile values were
used, which represent the level of each SQM exceeded during 5% of the total recording time (indicated henceforth by the
subindex 5). From the SQMs, the PA metrics were calculated according to the models by Zwicker and Fastl (1999), More
(2010), and Di et al. (2016). The general expression for the PA metric is
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PA=N (1 +/Co + CLaZ + G0 + Cow?), 1)

where the term ws contains the sharpness S (and loudness N) contribution:

g = {0.25(5 - 1.75)Ologw(N + 10), for S 175,
for S< 1.75. (2)
The term orr contains the contributions of the roughness R and fluctuation strength FS (and loudness N),
2.18
wpg = 55 (0.4FS + 0.6R), ©))
and the term ot contains the tonality K (and loudness N) contribution,
O!
Wy (1 _ e—0.29N)(1 _ e—5.49K)
6.41
NO.52 70

for the model by Zwicker and Fastl (1999) (4)
for the model by More (2010)
for the model by Di et al. (2016).

Lastly, the coefficients C, to C5 of Eq. (1) for each PA model are listed in Table 2. The conventional sound metrics,
SQMs, and PA metrics were computed using the open-source MATLAB toolbox SQAT (Sound Quality Analysis Toolbox)
v1.1 (Greco et al., 2023). Importantly, descriptive terms, such as “harsh,” “beating,” and “tonal,” are later used to interpret the

SQM results of the acoustic analysis. Participants did not provide these terms during the experiment.

Table 2 Coefficients for Eq.(1) for each considered psychoacoustic (PA) model.

PA model Co C: C, Cs

Zwicker and Fastl

1 1 0
(1999)
More (2010) -0.16 11.48 0.84 1.25
Di et al. (2016) 0 1 1 1

2.4.2 Annoyance ratings and percentage of highly annoyed respondents

Following Brink and colleagues’ approach (2016), verbal and numerical scale responses were linearly transformed to a 0-100

scale and averaged to obtain a total annoyance score per participant for each recording. The verbal and numerical scales were
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strongly correlated in the present data, justifying calculating average scores (Tau-b item correlations were between 0.75 and
0.88). The average scores were used to determine the percentage of highly annoyed (%HA) participants for each recording.
Following Miedema and Vos (1998) and the 1SO standard (International Organization for Standardization, 2021), the top 28%
of the scale were considered highly annoyed. That is, participants whose score was 72 or higher on the 100-point scale were
classified as highly annoyed.

2.4.3 Linear-mixed effects models

Linear-mixed effects models were applied to identify significant predictors and to examine whether significant differences
existed in the annoyance ratings across the three AWESs. Linear-mixed effects models can separate fixed effects (in this case,
the acoustic predictors) from random effects (the participants with their individual characteristics). This type of hierarchical
analysis has been successfully employed in past research on wind turbine noise annoyance (Merino-Martinez et al., 2021;
Schéffer et al., 2016, 2019).

In this study, the sound recordings were nested within AWES types as each participant rated every recording that
belonged to one of the three AWES types. Additionally, participants served as another level of nesting, as each participant
contributed multiple ratings across the different AWESs. Following Judd et al. (2017), the nested structure was addressed by
employing linear mixed-effects models with random effects for participants and AWES types. The conditions were contrast-
coded to aid interpretation and included as random effects (ibid.). This approach allowed modeling the variability in annoyance
ratings attributable to individual participants and differences between AWES types.

Following Aguinis and colleagues’ step-wise approach (2013), participant characteristics were first included as fixed
effects to determine their predictive value on annoyance ratings. Second, the SQMs were added as fixed effects, assessing each
characteristic in separate models to avoid multicollinearity. Third, the impact of the SQMs was randomized to examine whether
these effects varied between individuals. Fourth, interaction terms were included between participant characteristics and SQMs
to explore whether the participant characteristics could explain individual differences in the impact of SQMs on annoyance
ratings.

Finally, using the -2-log likelihood ratio, the goodness-of-fit for the final linear mixed-effects models was assessed
to quantify the variance explained by the fixed factors alone and by both fixed and random factors. Separate linear-mixed
effects models, including EPNL or the PA models as predictors, evaluated how effectively these (psycho)acoustic metrics
could predict the annoyance ratings. All statistical analyses were performed using the software R version 4.4.0 (R Core Team,

2023), and linear mixed-effects models were fitted using the ‘lme4’ package (Bates et al., 2024).

11



275

280

285

3. Results

3.1 Acoustic results

The time-frequency sound levels were represented as spectrograms (see Fig. 3). The spectrograms were calculated with a
sampling frequency of 48000 Hz for every audio sample using 4800 samples per time block (i.e., 0.1s) with Hanning
windowing and 50% data overlap. These parameters provided a frequency resolution (Af) of 10 Hz.

For AWES A, the lower frequencies (0-1 kHz) exhibited higher sound levels, which decreased as the frequency
increased. The spectrograms confirmed that the recordings were representative. For AWES B, the highest sound levels were
found at extremely low frequencies, up to approximately 200 Hz. Sound levels decreased between 200 Hz and 1 kHz but
increased again in the frequency range between 1 and 3 kHz. AWES B exhibited a periodic sound pattern over time, likely due
to its circular flight trajectory. A periodic sound pattern was observed for recordings corresponding to AWES C, characterized
by a significant absence of sound levels in the frequency range between 200 Hz and 1.2 kHz (C1 and C2) and between 200 Hz
and 2 kHz (C3). These periodic behaviors are again attributed to the circular flight trajectory. For C1, the acoustic energy was
predominantly concentrated between 15-25 s and in the frequency range between 1.2 and 4 kHz. C2 showed consistent sound

levels, peaking between 1.2 and 5 kHz. Conversely, C3 displayed higher levels within the first 8 s at 2-5 kHz.

6 6
5 5 5
W 4f w 4 w 4
Z 3 < 3 T 3
= 2 = 2 = 2f
1 1 4 1
O il | 0.1 e W O il |
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
t [s] t [s] t [s]
(a) Soft-wing kite (Al) (b) Soft-wing kite (A2) (c) Soft-wing kite (A3)
6 50 50 50
5 40 40 5 40
N 4 30 5 N 30 5 N 4 30 5
= 2 & = 20 & o, 3 20 &
4= 2 e G A 4 2 <23
) 10 10 ) 10
0.1 Sl 1B 0 0.1 ‘Hy
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
t[s] t[s] t[s]
(d) Fixed-wing kite (B1) (e) Fixed-wing kite (B2) (f) Fixed -wing kite (B3)

12



290

295

300

305

s = =
=, =, =,
AR 0 0.1 % 0 0.1°
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
t[s] t[s] t[s]
(9) Fixed-wing kite (C1) (h) Fixed-wing kite (C2) (i) Fixed-wing kite (C3)

Figure 3: Spectrograms corresponding to each recording.

Time-averaged sound pressure levels (SPL) were computed, as shown in Fig. 4, to compare the sound levels produced
by each type of AWES. For AWES A, AWES B, and the second recording of AWES C (C2), SPLs were averaged over the
whole 25 s recording duration. In contrast, for the first and third recordings of AWES C (i.e., C1 and C3), the averages
considered the last 10 s and first 8 s, respectively, when the kite noise was perceivable. In the listening experiment, the full
recordings were used. Only slight variations were observed when considering the entire recording.

SPLs were virtually the same across the entire frequency range for AWES A, displaying a bump in the 200 Hz to 2
kHz range. AWES B showed similar trends and sound levels across the recordings, although there was a difference of
approximately 4 dB between B1, B2, and B3 for frequencies up to 1 kHz. For frequencies higher than 1 kHz, the SPLs were
nearly identical across all B-recordings. Regarding AWES C, time-averaged SPLs showed more significant differences for
frequencies below 1.6 kHz, with C3 having the highest sound levels, followed by C1 and C2. Additionally, C3 elucidates peaks
that suggest tonal behavior within this frequency range. On the other hand, the frequencies above 1.6 kHz were similar among
the recordings, though C3 exhibited higher sound levels than C1 and C2 in the 3 to 5 kHz range. It was also observed that
AWES A and AWES B had higher sound levels than AWES C, particularly for frequencies below 100 Hz, see Fig. 5. The
SPLs in C1 and C3 exhibited a tonal behavior in the frequency range of 60 to 1300 Hz, which is believed to be related to the
ram-air turbine. The flight patterns for both AWESs B and C are circular, which may induce specific turbulent flow
characteristics around the kite’s surfaces and structures for frequencies higher than 1 kHz. In contrast, AWES A, which follows

a figure eight flight pattern, did not show this acoustic behavior.
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Figure 4: Time-averaged sound pressure levels for each airborne wind energy system (AWES).

Fig. 5 shows the comparison of time-averaged SPLs between each AWES. For this purpose, one representative case
of each AWES configuration (i.e., A2, B3, and C3) has been selected. The soft-wing (A2) and fixed-wing (B3 and C3) kites
exhibited a broadband acoustic trait. However, the fixed-wing kites showed an acoustic bump at high frequencies (950 to 3420
Hz for B3 and 1910 to 5180 Hz for C3) that the spectrum of the soft-wing kite did not. Additionally, the spectrum of C3
revealed narrowband peaks around 300 Hz, 600 Hz, and 1200 Hz, which could be related to the ram-air turbine. The 600 Hz
and 1200 Hz peaks also seem to be harmonics of the rotations of the ram-air turbine (300 Hz), as they were equally spaced.

The broadband acoustic nature of the soft-wing kite is believed to arise from its flexible, deformable structure and
complex, turbulent aerodynamic interactions. This acoustic component was also higher than the broadband acoustic signature
found in fixed-wing kites (i.e., 180 to 1000 Hz for B3 and 100 to 1900 Hz for C3). This may be related to the soft-wing kites’
fabric-based material, which promotes constant deformation and fluttering, creating turbulence that produces a stronger
broadband noise component than fixed-wing Kites. This turbulence-induced acoustic trait was spread over a broad frequency
range, contributing to the broadband nature of the noise. For B3, the noise bump in the 1-2 kHz range might be due to vortex-
shedding frequencies around the Kite's body or edges. For C3, the additional components introduced by the ram-air turbine

could shift these frequencies upwards to the 2-3 kHz range.

10° 10° 6x10°
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Figure 5: Comparison of time-averaged sound pressure levels of one representative recording for each

airborne wind energy system (AWES).

3.2 Psychoacoustic sound quality metrics of AWESs and their relation to annoyance

An analysis of the SQMs (Table 3) revealed differences across the three AWESs, as illustrated in the violin plots in Fig. 6.
Regarding loudness (Fig. 6a), AWES A recordings exhibited nearly identical values, consistent with the spectra shown in Fig.
4a. AWES B recordings showed slight variations, with B3 displaying higher loudness levels than B1 and B2. This difference
can be attributed to higher noise levels in the 100 to 1000 Hz range for B3 (Fig. 4b), likely due to its closer proximity to the
microphone. For AWES C, C3 exhibited higher loudness values than C1, and C1 had higher values than C2. This pattern aligns
with the spectra depicted in Fig. 4c.

Although the spectra for C1 and C3 appear similar, a noticeable difference in sound pressure levels (Lp) is observed
for frequencies below 1.6 kHz, particularly for C2, which exhibits lower Lp compared to C1 and C3. Additionally, C3
elucidates peaks that suggest tonal behavior within this frequency range. Human hearing is most sensitive to frequencies
between 2 and 5 kHz, as illustrated by the equal-loudness contours (ISO 226). Observing Figure 4c, it can be noted that C3
displays higher Lp values in the frequency range of 3-5 kHz. Among all the recordings, C3 showed the highest 5% percentile
loudness values, potentially related to the sudden increase in sound levels around 1200 Hz. This sudden sound increase could
be attributed to the vibration of the rigid structure of the fixed-wing kite compared to the soft-wing kite (i.e., inflatable kite
made from fabric) or to the ram-air turbine on the fixed-wing Kite.

Regarding tonality (Fig. 6b), both AWES A and AWES B showed relatively low values compared to AWES C. This
behavior can be explained by the narrowband peaks in the sound spectra observed in C1 and C3, as shown in Fig. 4c. The soft-
wing kite generally exhibited the lowest tonality values, which can be explained by its tendency to produce more broadband
and less tonal sound. Most noise from soft-wing Kites is due to fabric flutter and aerodynamic noise.

Regarding sharpness (Fig. 6¢), AWES C notably showed higher values than AWES A and B, consistent with the
sound spectra (Fig. 4) since the sharpness calculation emphasizes frequencies for critical bands above 15 Bark (corresponding
to approximately f = 2700 Hz). Additionally, C3 presented the sharpest sound, which aligns with the definition of sharpness
since this kite reported higher sound values than the other Kites for frequencies above 2700 Hz (Fig. 5). Roughness (Fig. 6d)
and fluctuation strength (Fig. 6e) quantify the perception of modulated sounds with a modulation frequency between 15 Hz
and 300 Hz and below 20 Hz, respectively.

Regarding roughness, B3 was perceived as the 'harshest' compared to all other recordings, while the AWES C
recordings were the 'least harsh." Regarding fluctuation strength, AWES B was observed to have the 'strongest beating' effect,

whereas AWES C was 'less pulsating.'
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Figure 6: Violin plots of sound quality metrics for all recordings. Plot widths represent the probability
density at given values in the y-axis. Diamond markers indicate the 5th percentile values (i.e., the values
exceeded 5% of the signal time, as explained in section 2.4.1). In each boxplot, the central horizontal line

denotes the median values, and the edges of the white box plot represent the 25th and the 75th percentiles.
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Table 3 The 5th percentile values of the five sound quality metrics per recording.

Recording L5 (sone) K5 (tu) S5 (acum) R5 (vacil) FS5 (asper)
Al 5.75 0.011 1.32 0.18 0.19
A2 5.99 0.011 1.42 0.13 0.26
A3 6.90 0.010 1.34 0.13 0.19
Bl 4.55 0.033 1.22 0.17 0.34
B2 4.71 0.028 1.21 0.17 0.44
B3 5.62 0.018 1.22 0.58 0.39
C1 4.57 0.102 1.57 0.05 0.10
C2 4.57 0.071 1.79 0.02 0.05
C3 6.53 0.121 1.70 0.03 0.10

360 3.2.1 Analysis of annoyance ratings

The mean annoyance ratings for the different AWES types ranged from approximately 34 for AWES A to 54 for AWES C
(Fig. 7). In comparison, Merino-Martinez et al. (2021) reported average annoyance ratings of about 61-72 (converted from the
ICBEN 11-point scale to a 0-100 scale) for wind turbine sound in a laboratory experiment. However, the Lp,A,eq values in
their study were lower, at around 38 dBA, than those used here.

365 The percentage of highly annoyed participants (%HA) per AWES type varied between approximately 1% and 23%
(Table 4), with AWES C showing the highest %HA, followed by AWES B and then A. This trend aligns with the previously
reported higher tonality and sharpness values for AWES C compared to B and A. The observed %HA range is slightly narrower
than the 2 to 34% predicted by Schéffer et al. (2016) for wind turbine sound exposure in laboratory settings with an Lp,A,eq
range of 35 to 45 dBA.
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Figure 7: Distribution of annoyance ratings per recording. In each boxplot, the diamond marker denotes the mean
value; the central horizontal line denotes the median values; the edges of the box are the 25th and the 75th percentiles;

and the whiskers extend to the most extreme data points.

Table 4 Percentage and frequency of highly annoyed participants (%oHA) per airborne wind energy system (AWES).

AWES %HA

A (soft-wing) 1.3(2)

B (fixed-wing) 6.7 (5)

C (fixed-wing) 22.7 (17)

Pairwise comparisons between AWESs were conducted using the linear mixed-effects model. The model revealed
significant differences across all three AWESs (all p-values < 0.05). In line with the previous results on the percentage of
highly annoyed participants, fixed-wing kite C was, on average, rated as the most annoying [Mean (M) = 54.39, standard
deviation (SD) = 22.91], followed by fixed-wing kite B (M = 39.78, SD = 22.04) and soft-wing kite A (M = 33.98, SD =
20.47).

A separate linear mixed-effects model was calculated to examine whether noise annoyance depended on participant
characteristics. Noise sensitivity was significantly related to annoyance [t-statistic (t) = 2.035, p < 0.050], indicating that
individuals more sensitive to noise generally rated the recordings as more annoying. Age (t = 1.332, p = 0.187) and familiarity
with AWE (t = 0.056, p = 0.956) were not significantly related to annoyance ratings.

A linear mixed-effects model of the relation between annoyance ratings and SQMs showed that sharpness
significantly predicted annoyance (t = 2.285, p = 0.023), while tonality (t = 0.933, p = 0.393), loudness (t = 0.416, p = 0.695),
roughness (t = -0.601, p = 0.574), and fluctuation strength (t = 0.676, p = 0.529) did not. Fig. 8 displays a significant and strong
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relationship between sharpness and annoyance (r = 0.863, p = 0.002). The results align with the finding that the annoyance
ratings were significantly higher for AWES C, which exhibited higher sharpness values than AWESs A and B.

To evaluate whether the impact of the SQMs on annoyance ratings varied across participants, models incorporating
SQMs as fixed effects were compared with those treating them as random effects, computing the -2-log likelihood ratio
between these models. The models treating all SQMs except fluctuation strength as random effects—Iloudness (}2(1) = 18.725,
p <0.001), sharpness (33(1) = 9.121, p = 0.003), tonality (x*(1) = 7.146, p = 0.008), and roughness (3*(1) = 8.723, p=0.003)—
showed a significantly improved fit compared to the models treating them as fixed effects. This suggests that all tested SQMs,
except for fluctuation strength, influenced annoyance ratings differently across individuals. These variations may reflect
individual differences in factors such as noise sensitivity, age, or familiarity with AWES, which can shape how participants
perceive and react to specific sound qualities.

To explore whether these individual characteristics could account for the observed differences, interaction effects
between the SQMs and participant characteristics (i.e., age, AWE familiarity, and noise sensitivity) were included in the
models with the random SQM effects. The results revealed that the interaction effect of participant characteristics and loudness
was significant for AWE familiarity (t = -2.902, p = 0.005) but not for age (t = 0.988, p = 0.327) nor noise sensitivity (t =
0.699, p = 0.049). That is, the effect of loudness on annoyance was weaker for those more familiar with AWE. This familiarity
may be intertwined with more positive attitudes toward AWE, potentially explaining the lower levels of noise annoyance
observed—a pattern reported in studies on wind turbines (Déallenbach and Wiistenhagen, 2022; Hoen et al., 2019; Hibner et
al., 2019). Furthermore, the interaction effect of participant characteristics and tonality was significant for age (t = -2.233, p =
0.028) but not for AWE familiarity (t = -0.452, p = 0.652) nor noise sensitivity (t = 0.045, p = 0.964). This suggests that the
effect of tonality on annoyance was weaker for older individuals, also independent of participants’ self-reported hearing ability.

The interaction effects of participant characteristics and sharpness, roughness, and fluctuation strength were not
significant for any of the included participant characteristics (with p-values ranging from 0.139 to 0.915). The full model,
including all interactions between participant characteristics and SQMs, explained 19% of the variance in annoyance scores
due to the fixed effects alone and 82% of the variance when both fixed and random effects were considered.
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415 Figure 8: Linear correlation between the average annoyance rating per recording and sharpness across the airborne

wind energy systems (AWESS).

3.2.2 Validity of conventional and psychoacoustic metrics in predicting annoyance ratings for AWESs

It was explored with linear mixed-effects models to what extent EPNL as a conventional metric and the Psychoacoustic

420 Annoyance (PA) (i.e., Zwicker and Fastl, 1999; More, 2010; Di et al., 2016) models predict the annoyance ratings reported in
the experiment. Table 5 presents the values used to perform these analyses. EPNL (t = 0.700, p = 0.515) did not significantly
predict the annoyance ratings. Linear mixed-effects models comparing the annoyance ratings with the estimated annoyance
scores (5th percentile values) for each PA metric separately (Zwicker and Fastl, 1999; More, 2010; Di et al., 2016) showed
that the PA metrics did not significantly predict the annoyance ratings: Zwicker and Fastl (t = 0.117, p = 0.911), More (t =

425 0.541, p = 0.612), and Di et al. (t = 0.466, p = 0.661). Because PA metrics heavily depend on loudness, the aforementioned
normalization of all recordings might explain why the PA metrics were not significant predictors.

Table 5 EPNL and 5th percentile values of the three psychoacoustic (PA) models per recording.

Conventional metric PA models
Recording EPNL (EPNLdB) £wicker and More Di et al.
Fastl
Al 61.2146 6.6344 6.2142 6.6352
A2 60.3708 6.6663 6.3786 6.6832
A3 59.7796 6.9043 6.5423 6.9138
Bl 59.2138 5.1527 4.9296 5.2142
B2 58.8830 5.2055 4.6478 5.2324
B3 60.8026 7.5308 6.5923 7.5316
C1 61.6614 4.8561 4.9263 5.3365
C2 61.9017 4.7786 4.8967 5.1501
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C3 63.7321 7.0838 7.4605 8.2037

4 Discussion

Through a controlled listening experiment, this study explored the relationship between sound quality metrics (SQMs) and
noise annoyance for airborne wind energy systems (AWESSs). Sharpness emerged as the sole SQM that significantly predicted
annoyance. Fixed-wing systems were perceived as more annoying than the soft-wing kite, likely due to their sharper and more
tonal sound profiles. The higher loudness values found for the soft-wing kite can be explained by its aerodynamic
characteristics that produce more broadband and less tonal sound. In contrast, the higher tonal sound signature of fixed-wing
kite C is attributable to its ram-air turbine. Participant characteristics moderated the effects of certain SQMs: Participants
familiar with AWESs were less annoyed by louder recordings than unfamiliar participants, and older individuals were less
annoyed by more tonal sounds than younger individuals. These moderation effects should be cautiously interpreted because
they could be random due to the non-probability sampling and the lack of representativeness of the sample in this study.
Contrary to prior research on wind turbines and drones(Kawai et al., 2024; Merino-Martinez et al., 2021) , conventional noise
metrics like the effective perceived noise level (EPNL) and Psychoacoustic Annoyance (PA) models did not predict annoyance
effectively, likely due to the normalization of sound pressure levels across recordings in this study.

This study builds on findings from related research on wind turbines and drones, which share acoustic and operational
parallels with AWESs. Research on wind turbines often focuses on sound pressure levels, while studies on SQMs remain
scarce. However, some work suggests that tonality and loudness predict annoyance (Merino-Martinez et al., 2021; Yonemura
et al., 2021). Drone research, by contrast, has more thoroughly explored SQMs, with loudness, tonality, and sharpness
consistently identified as key predictors of annoyance (Casagrande Hirono et al., 2024; Green et al., 2024; Kawai et al., 2024;
Konig et al., 2024; Torija and Nicholls, 2022). These systems are operationally similar to AWESs, particularly in their dynamic
flight stages and use of propeller-like mechanisms. For drones, annoyance peaks during take-offs and landings, which could
also be the case for AWESs and should be investigated in future studies. While the current study confirmed sharpness as a
critical predictor of annoyance, tonality, and loudness were significant only in interaction with participant characteristics (i.e.,
age and familiarity, respectively).

The findings should be interpreted in light of several limitations. First, the study used a convenience sample, primarily
recruiting students and employees from a technical university. This introduces potential selection bias and limits the
generalizability of the results to the broader population, especially residents in areas where AWESs might be deployed. The
sample was rather young, predominantly male, and highly educated, which may not accurately represent the diversity of
individuals who might encounter AWES noise in real-world settings. Second, the controlled laboratory setting ensured

consistency but did not replicate real-world listening conditions. Participants rated annoyance without contextual factors like
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visual exposure to AWESs, other environmental sounds, or social and psychological influences (e.g., fairness perception of
the planning process) that typically influence noise annoyance in the field. Third, participants’ short-term annoyance ratings
do not capture the potential cumulative effects of prolonged or repeated exposure. Fourth, although 75 participants are on the
high end of sample sizes used in listening studies (Alamir et al., 2019), the statistical power to detect subtle effects or
interactions, particularly those involving individual differences (e.g., age, familiarity, noise sensitivity) was limited. Fifth, the
study investigated only three AWES prototypes (one soft-wing and two fixed-wing systems). The results may not generalize
to other AWES designs or operational configurations. Sixth, the study's methodology faced several challenges related to sound
recordings, particularly concerning the varying distances to the microphone (100—700 m) and the moving nature of the Kites.
While normalization to 45 dBA mitigated some inconsistencies, the dynamic sound signatures created by the kites’ flight
patterns introduced additional variability compared to the noise emissions of stationary wind turbines. Additionally, the
location of the observer or microphone significantly influences noise perception because the acoustic prominence of different
system components varies depending on the vantage point. For example, certain components, such as the kite, may dominate
acoustically when the observer is positioned directly below or in line with the kite’s trajectory. In contrast, noise from the
generator or tether vibrations may become more prominent at close distances to the ground station. Furthermore, environmental
factors such as wind noise and ground reflections may have influenced the recordings despite mitigation efforts using
windscreens. These limitations underscore that the results have only restricted applicability to the field. Schéaffer et al. (2016)
highlighted these challenges, emphasizing that laboratory and field studies should be viewed as complementary rather than
directly comparable.

To address these limitations and advance the understanding of AWES acoustics, future research should explore
annoyance during different phases of the AWES pumping cycle to identify the stages that cause the most impact and guide the
development of targeted mitigation strategies. Research should also be expanded to include a wider variety of AWES
prototypes, capturing these systems' diverse noise profiles and operational characteristics. Conducting field studies that account
for environmental and contextual factors, such as background noise, visual exposure, and long-term sound patterns, would
provide more ecologically valid insights into real-world annoyance. Additionally, studies should examine the effects of
extended exposure and repeated noise events on annoyance, focusing on potential consequences like sleep disturbances and
stress. It is equally important to engage a broader range of demographic groups, particularly those living near current or
proposed AWES installations, to ensure that findings are representative of affected populations. Finally, developing noise
prediction models specifically tailored to AWES should be prioritized. These models should incorporate the dynamic
operational characteristics of AWESSs, such as variations in speed and trajectory, to improve their accuracy and relevance for
mitigating noise annoyance.

The design flexibility of AWESSs provides unique opportunities to mitigate annoyance through targeted optimizations:

e Tunable system parameters: Unlike wind turbines, AWESs allow adjustments to size, speed, altitude, and flight
patterns. For example, larger kites flying higher could reduce sharpness and modulation effects, while faster, lower-

altitude configurations might be suitable where loudness is less critical.
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e Rame-air turbine optimization: The onboard ram-air turbine supplies power to the kite control unit and sensors and
can be designed for minimal noise emissions without significantly affecting the system’s energy output or economic
performance.

e Flight path design: Optimizing flight paths, such as larger figure-eight loops, could reduce modulation effects while
adjusting reel-in and reel-out speeds may help minimize tonal noise.

e Customized configurations: AWESs can be tailored to site-specific conditions, balancing energy output with
acoustic considerations. For example, quieter configurations may be prioritized in residential areas, while efficiency-
driven designs might be more suitable for remote locations.

e Proactive engagement: Industry stakeholders should involve communities early in the planning process, using
psychoacoustic data to communicate potential impacts and suggest mitigation strategies transparently.

By leveraging these design possibilities, the AWE industry could effectively address noise concerns, promoting broader

technology acceptance.

5 Conclusion

This study identified sharpness as a key predictor of noise annoyance for AWESs, with fixed-wing Kites eliciting higher
annoyance than soft-wing designs. Fixed-wing kites had sharper and more tonal sound profiles, while the soft-wing kite had
higher loudness values. Participant characteristics influenced the impact of loudness and tonality on annoyance, highlighting
the complexity of subjective noise perception. The findings further emphasize the limitations of conventional noise metrics in
assessing AWES noise, suggesting the need for tailored acoustic models. The industry can address noise challenges by
integrating psychoacoustic considerations into the design and operation of AWESSs, such as optimizing system parameters and
flight patterns. Future research should expand on these findings by incorporating field studies, long-term exposure assessments,

and analyses of diverse prototypes.
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