
Response to Referee 1
The authors would like to thank the reviewer for taking the time and effort necessary to review the first
version of the manuscript. We sincerely appreciate all valuable comments and suggestions, which helped us
to improve the quality of the manuscript. Our responses to the reviewer’s comments are described below
in a point-to-point manner. Appropriated changes, suggested by the reviewers, have been introduced into
the manuscript (they are highlighted in yellow in the revised version). When the line numbers are provided
in this response, they refer to the revisions made in the new manuscript. Please note that the reviewer’s
comments are repeated in italics and our responses are provided in the bulleted sections of text.

General comments

The paper addresses two topics, namely participation in the reserve market, and layout optimisation for the
same. The introduction mentions a third contribution, but since that refers to a case study of the previous
two topics, I consider that to be inherent to those two contributions.

As the title of the paper implies, the layout optimisation is the main topic, and the contribution to participa-
tion in the reserve market is subservient to that. However, in the introduction and the conclusions that part
of the study is given an almost equal status. The authors could consider repositioning that part of the study
as a means for the layout-optimisation study, rather than as a research subject in itself. This would change
the evaluation of the participation in the reserve market (in section 4.1) into a validation of the suitability
of the formulation for the purpose of layout optimisation. The exploratory nature of these results could then
be a spin-off. However, as a dedicated study into the potential of participation in the reserve market, the
formulations may be insufficiently accurate and the validation may be too limited.

Having said that, the modelling of participation in the reserve market is convincing for the purpose of layout
optimisation. The layout optimisation itself is also convincing, although I have some doubt about the use of
expected values for the yearly profit and energy supplied (which may be either an issue of clarification or of
method). The authors have chosen useful experiments for comparisons. The comparisons of the experiments
could be arranged in a more logical structure, and the interpretation of results seems to be somewhat biased
by a presumption of the authors about the benevolence of considering participation in the reserve market
in layout optimisation. This is also reflected in one of the main conclusions (“layouts optimized for profit
maximization with reserve markets lead to better yearly profits than when considering day-ahead market only
in the objective function”), which in my opinion is not supported by the results.

In my opinion the four issues that require some more consideration are the role of the study on participation in
the reserve market, the use of expected values for profit and supply, the order of comparison of the experiments
and the interpretation of results that leads to the main conclusions. Besides these four issues, I think the paper
should spend a bit more attention on the size of the reserve capacity market, and the consequential relevance
of this study. Having said that, most of my detailed comments are merely suggestions and corrections for
readability of the paper. Apart from the potential methodical flaw in the use of expected value for profit and
energy supplied, I agree with the entire setup and execution of the body of the research. Although I think
that the considerations that I give below can have a major impact on the presentation and conclusions of the
research, I think that the actual changes that need to be made are not as major, thanks to the high quality of
the modelling, optimisation and experiments.

• We agree with the reviewer that the main contribution of the paper is the layout optimization problem
for a new wind farm, for which we formulate an improved objective function. The latter allows to take
into account the participation of future wind farms to reserve markets during the design process of the
park. The test case shows interesting findings when we apply our objective function, but it is not a
contribution per se.

• The section about the contributions of the paper has therefore been modified and now focuses on the
main contribution (P3L71-79)
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• We also agree with the reviewer that our work is not a dedicated study into the potential of participa-
tion in the reserve market. We are fully aware that our formulation to compute expected revenues with
reserve provision includes several simplifications, but it is really a first attempt at including reserve
markets in the design of future wind farms, and to estimate the impact on the resulting yearly revenues.

• The authors fully acknowledge that the short-term operation of the wind farm used in the study is a
simplified representation of reality. As a reminder, we aim at having a long term investment decision:
developing a detailed operational formulation for reserve participation of offshore wind farms was not
the goal of this paper. In a long-term investment optimization problem, it is very hard to fully include
all the complexity and uncertainty related to the short-term operation. In that regard, our study tried
to capture the main features of the short-term operation to have a representative, yet simplified, vision
of the short-term perspective to properly inform the long-term investment decisions.

• Based on the reviewer’s suggestions, in the revised paper, we have included a new subsection (‘Sum-
mary of assumptions’) to clearly state the hypotheses that we make regarding participa-
tion to reserve markets. We also give a short explanation on how we could address some of these
limitations in future work.

• We agree with the reviewer that the order of experiments could be improved in a more logical structure.
Therefore, we followed the proposed order: comparison of AEP-optimized with base layout, then
AEP-optimized with DAEM-optimized, and finally JERM-optimized with DAEM-optimized. While
doing so, we have also reinterpreted some the results.

• The conclusions have been modified to lower the strength of our claims, focusing on the practical
relevance and robustness of JERM-based layout optimization, rather than affirming strict superiority.

• We will address in details the four issues mentioned by the reviewer in the next section about specific
comments.
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Specific comments

Significance of the reserve capacity market

The reserve capacity market is small compared to the day-ahead market. The maximum required capacity of
117 MW at any instant during 2023 is indicative of this. The authors justly argue that this market will grow.
However, there is insufficient understanding of how much wind farms will be able to contribute to this market
in the future, considering the correlation between their causing the problem (in the day-ahead market) and
their ability to provide the solution (in the reserve market). Either way, the conclusion “Future wind farms
should therefore be designed for that purpose” (line 460) does certainly not apply to all wind farms, due to the
limited size of the market. Although the quoted statement is given in an introductory part of the conclusion,
the authors should be careful with such a statement in the conclusions chapter, since this is not sufficiently
supported by the outcomes of this research. I think the issue of the size of the current and anticipated future
market needs some attention in the introduction and careful formulation of the conclusions.

• Considering the uncertainties related to the future contribution of wind farms to reserve markets, we
agree that we should be more cautious with our affirmation. Therefore, we modified the sentence on
P27L550-P28L552 to state the following. If reserve markets grow and the contribution to wind farms
to reserve provision becomes important, then future farms should account for those flexibility require-
ments in their design procedure, even though the limited size of the reserve market might not allow
every wind farm to fully participate.

• Regarding the issue of the size of the current and anticipated future market needs, we did a short
literature review of the situation in other European countries [1]. In France, the TSO (RTE) has
prescribed daily an average of 709 MW of aFRR to the French stakeholders. In the Netherlands, the
determined dimensioning minimum of aFRR up was 324 MW in 2023. The Nordic aFRR up capacity
market (which covers Eastern Denmark, Sweden, Finland and Norway) has a volume need of 300 MW.
However, those needs are expected to increase in the future. For example, in Denmark, for the west
bidding zone DK1, the current aFRR up need is 100 MW, but it is expected to reach up to 194 MW
in 2035, and 298 MW by 2040 [2], according to the Danish TSO.

• We have added this information in the introduction on P2L37-43.

• The question of how much wind farms will be able to contribute to the reserve market in the future is
highly complex. While there could be some moments with a correlation between their contribution to
imbalance (in the day-ahead market) and their ability to provide the solution (in the reserve market),
other sources of electricity are also a cause for imbalance. Solar energy, sudden changes in load,
unavailability of imports from neighbouring countries, ... could also create an imbalance between
generation and consumption. Moreover, the contribution of wind farms to imbalance also depends on
their penetration in the electricity mix of the considered power system.

• In our test case, we have set a maximum value for reserve bid to 50 MW, which is quite a high value.
We argue that it allows us to have an upper level quantification regarding the expected revenues from
the reserve markets and the impact on the design. It should be kept in mind that even if the wind
farm bid is set to its maximum value, it does not mean that the full bid will be activated, as it depends
on the system imbalance and the other flexibility providers in the system.

• For further information, we computed the expected revenues for the base layout of Northwind in 2023
for increasing values (ranging from 2 MW to 50 MW) of Rmax, the maximum value for reserve bid. As
represented in Figure 1 below, we can see a linear relationship between expected revenues and Rmax,
which shows the high value of flexibility in modern power systems.

Role of study on participation in reserve market

To perform layout optimisation that considers participation in the reserve market, the performance of this
participation under a reasonable bidding strategy has been modelled. Several simplifications are made for
this. Forecast errors of all forecasted parameters are modelled with independent, gaussian distributions. The
paper already mentions several aspects that might be violated by this assumption. E.g., the authors observe
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Figure 1: Expected yearly revenues for the base layout in 2023 for increasing values of Rmax

that “Reserve and regulation prices are characterized by higher volatility, lower mean, more frequent price
spikes and a more skewed distribution compared to electric energy prices. Thus modelling their behavior is
potentially more challenging” (line 184-185). However, what concerns me most is the neglect of correlations.
For instance, “a small prediction error in wind speed can lead to a tremendous need of reserve” (line 291).
This indicates a potentially significant correlation between wind speed forecast errors around cut-out wind
speed with reserve activation. It is also noted that the optimiser could base bidding on the ratio between
day-ahead prices and imbalance fees (line 315-317). However, imbalance fees may be correlated with forecast
errors, especially if multiple bidders of wind energy have a systematic error in said forecast, since they use
the same or similar weather forecasts.

• The relationship between forecast errors in wind speed and forecast errors on day-ahead prices and
imbalance fees is not straightforward. Indeed, if other market players make forecasting errors, but
in the opposite direction, errors could compensate and imbalance is not worsened. Hence, it is not
certain that there will be a strong correlation between our own forecast mistake (e.g., in wind speed)
and the subsequent electricity prices. Moreover, the influence of wind farm forecast errors on the
balancing needs also depends on the uncertain penetration of wind energy in the future electricity mix.
Overall, we agree that our assumption may potentially be improved, but the solution is clearly not
straightforward, especially considering that current available data may not properly reflect the future
system conditions.

• Also, we do not believe that all wind parks will all use the same forecasting model (from the same
provider) in the future. Indeed, there is a trend to internalize forecast skills within companies, com-
bining in-house capabilities with specialized third-party services to enhance forecasting accuracy and
operational efficiency. For example, Iberdrola, a leading wind-power producer, uses advanced machine
learning techniques for wind power forecasting. They have collaborated with an AI consulting com-
pany for the development of a model able to predict the energy production of wind farms and thus to
accurately anticipate wind power production capacity [3]. Vestas’ Scipher.Fx uses ensemble forecast-
ing methodology, combines Numerical Weather Prediction data with measurement data, and employs
advanced machine learning models to generate accurate power forecasts [4]. Ørsted have developed the
wind industry’s first uncrewed survey vessel, which uses onboard lidar to accurately predict offshore
wind generation [5].

• Therefore, although we are aware of the simplifications we make on forecast errors, we believe that
it is still suitable for our application. However, for the sake of transparency, we have added our
simplification to the section ‘Summary of assumptions’ on P10L249 in the revised manuscript.

Another simplification is the replacement of the penalty regulations by a penalty price. The current for-
mulation allows the optimiser to exploit the penalty system, if it just comes at a (monetary) price. The
result for the reserve penalty in table 2 shows that this is substantial, compared to the reserve profits. This
might indicate that in reality the TSO might already have imposed restrictions on participation to this BSP.
(Whether the conditions of the actual regulation are met could be checked from the results a posteriori.) The
reserve penalty is implied to be much more substantial for the cases with higher bid limits, thus expectedly
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having a higher number of bid periods with failure to deliver. One can expect that this will only increase in
future, weather-dominated systems. As argued above for the potential correlation between imbalance fees and
power forecast errors, it can be argued that reserve activation becomes more and more correlated with times
of over-forecasting wind power. Since these will also be times where the ability to meet reserve capacity acti-
vation is at risk, even if it is prioritised, the risk of failing to meet the capacity test may be underestimated
in this study. Furthermore, consistent failure to deliver by wind farms operating in the reserve market may
lead to changes in the penalty regulations.

• We have added this simplification (that the regulations to meet reserve capacity is modelled by a
penalty price) in the section ‘Summary of assumptions’ on P10L250.

• There is a trade-off between having a penalty of infinite value (to represent the expulsion of the market
in case of failed availability tests, and in general not being able to provide bidded reserve capacities),
and penalties that do not discourage deviations. Penalties that are too low would lead to a bad design,
but penalties that are too high would as well. In our case, as stated by the reviewer, reserve penalties
are high, which was deliberate to have a trade-off.

• Having a highly detailed operational model was not the objective of this work. Here, we focus on an
investment model, which includes making some assumptions for the market formulation. However, the
optimized design is “aware” of reserve penalties.

• In the future, if many farms provide reserve services, market and technical constraints might change
to account for uncertainties in wind generation. If all wind farms are kicked out of the reserve market,
then there might be problems for the provision of reserve. Moreover, we might also expect wind farms
to invest in a small battery to avoid penalties for failing to provide the reserve capacity.

• Even though this is not the focus of the paper, we can suggest potential ways to improve on this.
For example, Lagrange coefficients can help finding a trade-off for the value of the penalty coefficient.
Such coefficient govern how much weight we give to one objective (maximizing revenues on the reserve
markets) versus another (avoiding reserve penalties).

A third simplification is that reserve capacity and reserve activation are aggregated over the bid period.
Although there is some inconsistency in the use of power and energy in the paper (see the later technical
corrections), the formulations that are used are effectively energy based, aggregating power variations during
the bid period to a single value. Although the secondary reserve market allows delayed response, variations
of available power of the wind farm and timing of reserve activation within the bid period do matter. An
episode of lower power availability could be compensated for the day-ahead market by an episode of higher
power in the same bid period. However, it could negatively affect the ability to deliver reserve capacity during
this episode of low power in a timely manner. This increases the potential reduced ability to deliver reserve
capacity that was discussed above.

• First, we have corrected the inconsistency in the use of power and energy in the revised paper, we
thank the reviewer for noticing this error.

• Second, we agree that there is simplification in our formulation regarding the provision of reserves
within a bidding period: we aggregate power variations over a bidding period into a single averaged
value. We have added this to our section ‘Summary of assumptions’ on P10L251-252.

• This simplification is acceptable if power variations within the bidding period are not too severe with
respect to the single value. Indeed, Elia, the Belgian TSO, computes the aFRR energy discrepancy
with a tolerance band, thus permitting small deviations (15%) from the sent aFRR signal [6].

The report also refers to the relevance of the study to future, weather-dominated systems, where reserve
markets will play a bigger role. I concur with the latter, but the modelling of the reserve market might
require significant modifications for such a future system. As argued above, the role and performance of wind
farms in the reserve market might change significantly when wind farms become a more important factor in
the problems that need to be solved by this market. In the very least, the prices will change (dramatically)
for such future systems, possibly accounting for the drawback of decreased reliability of the reserve bids.

5



Because of the doubts that this raises on the accuracy and (untested) validity of the simplified model, I
suggest that this aspect of the study is not presented as an inherent contribution (in the introduction) with
separate conclusions. Presenting it as a means for the research on layout optimisation, with the associated
lower burden of accuracy, seems more appropriate and matches better with the expectations set by the title of
the paper. Otherwise, more validation would be required, especially to support the conclusion “results show
that yearly profits are expected to increase in a significant way when accounting for participation to reserve
markets, while exhibiting a lower supplied energy. This profit augmentation is amplified when the maximum
value for reserve bids is increased” (line 4655-467).

• We agree with the reviewer that considering the involved simplifications, it might be better to present
our model for participation to reserve markets as a means for the research on layout optimisation rather
than a contribution as such. We have modified our statement of contributions in the introduction
to focus on our main contribution: developing a new objective function for the wind farm layout
optimization problem that allows, to some extent, to take into account the participation of future wind
farms to reserve markets during the design process.

• Also the authors would like to acknowledge that the paper is focused on a long term investment
decision (which is informed by the short-term operation of wind parks in energy and reserve markets):
developing a detailed operational formulation for reserve participation of offshore wind farms was not
the goal of this paper. In a long-term investment optimization relying on short-term operation, it is
very hard to fully include all the complexity and uncertainty. This has been clarified in the revised
manuscript on P9L240-243.

Use of expected values for yearly profit and energy supplied

On p.4 the use of forecast uncertainty and Monte-Carlo sampling of a set of S forecast errors is explained. Eq.
(11) on p.8 articulates how these forecasts are used to optimise bidding. It is clear that this is a probabilistic
formulation to deal with the forecast uncertainty. However, it is unclear why and how uncertainty comes into
the picture in the yearly profit and energy supplied. The data of realised wind speeds, wind directions, prices,
fees, etc. is available, so one would expect the profit and energy supplied to be deterministic, once the bidding
is known. In other words, in e.g. Eq. (10) on p.7, the profit can be calculated directly from the realised
conditions and operation, rather than determining an expected value for a set of forecast conditions. It is
not clear why and how the authors use this stochastic formulation of profit (and energy supplied), leading to
values for mean and standard deviation in the tables. Associated places that added to my confusion about
this are:

• The authors understand the confusion and would like to clarify that Problem (11), subject to constraints
(12)-(13), mimics the short-term operational optimization of a wind park under forecast uncertainty,
using Monte Carlo sampling to account for possible realizations of wind production and prices. The
expected profit in Eq. (11) thus corresponds to the “ex-ante evaluation” of the bidding strategy.

• While realized data (wind, prices, etc.) is available in hindsight, we do not recompute an ex-post profit.
Therefore, in the training and evaluation of the bidding strategy, we rely on the expected revenue, not
the deterministic ex-post value.

• The authors argue that this assumption is reasonable, and enables to simplify the training framework.
This has been clearly mentioned in the revised paper on P9L234-238.

• Indeed, the computation of realized revenues is not the goal here, as one would need a
very detailed operational model to do that.

p.5, line 134: Perfect forecasts are used to get revenue from the day-ahead market with Eq. (4). For the
optimisation of bidding the equivalent of this equation is used with imperfect forecasting, while for the actual
revenue one would expect to use the realised situation, rather than a ‘perfect forecast’.

• We apologize for the confusion. Eq. (4) is given with perfect forecasts to simply illustrate how to
compute the revenues from the day-ahead market.

6



• In our framework, we use the equivalent of this equation with imperfect forecasting to emulate the
decision-making of a wind park facing operational uncertainties. The resulting ex-ante profit is used
as ‘loss function’ in the gradient-based learning procedure.

P.7, Eq. (6): The supplied activated reserve uses the wind power forecast, where one would expect the use
of the realised wind power, based on the realised wind conditions.

• This is a consequence of our assumption to use an ‘ex-ante operational profit’ in the loss function.

p.9, Eq(14): Here the objective function for layout optimisation is expressed as an expected value, using the
samples of forecast errors that where generated for the optimisation of the bidding strategy. Nevertheless, on
line 222 it is stated that the objective is to maximise profit, and not the expected value of profit.

• This is a text mistake, as the objective is to maximize expected revenues. We have corrected the
typo.

p.9, line 239: This mentions that results are computed as expected yearly profits and supplied energy, instead
of deterministic yearly profits and supplied energy.

p.14, caption of table 1 (and later tabulated results): This table shows the expected values and explains in the
caption how the mean and certainty interval are associated with the sample set S of forecast errors. Again,
this association is understandable for the profits and available power used in the optimisation of bidding
(related to p.8, Eq. (11)), but is not what one expects to use for the realised profits and energy supplied.

The use of these expected values should be better argued and explained, or (more likely) these parameters
should be treated as deterministic parameters.

• We would like to clarify that we merely use historical data to have realistic (and somehow correlated)
values of wind and electricity prices. They are only meant to be leveraged to provide base values for
our simplified forecast approach.

• The computation of realized revenues is not the goal here, as one would need a very detailed operational
model to do that. When we refer to revenues in 2023, what we really mean is the expected revenues if
wind and prices behaved in a similar way than they did during that year.

• As a summary, we want to study many possible different futures, which is why we used expected profits
(several possible realizations of the future). Computing a realized profit (using historical data) could
be done but the signification would be different for the obtained revenues. Doing so would imply that if
we look back, this is the profit that we would have got if we had chosen this specific path of realization.

Order of comparisons of experiments

In section 4.2 the performance of a layout optimised for JERM is compared to that of the base layout. The risk
of this approach is that improved performance of the JERM-optimised layout is assigned disproportionately to
JERM-optimisation, whereas a majority of the improvement could have been reached with other optimisations
as well. Indeed, the discussion of the results immediately zooms in on the 3.10% improvement on JERM,
while the significance of the 3.58% increase for the simplest participation on DAEM only is ignored. That
increase indicates that much of the improved performance could be assigned to AEP improvement of the
farm, rather than to JERM optimisation specifically. The AEP improvement is mentioned and analysed,
but without consideration of the meaning of that for the association of JERM-optimisation with the total
improvement of 3.10%.

The authors later compare JERM optimisation with AEP and DAEM optimisation. Indeed, the expected
logical order of performance on JERM is recognised to be: base layout, AEP-optimised, DAEM-optimised,
JERM-optimised. However, by first making the jump from base to JERM-optimised and then do a backward
analysis to the intermediate optimisation options, the perception and interpretation of the results is biased
by the first indications. In my opinion, the contribution to JERM (and DAEM) performance of different
types of optimisation would have been much clearer when the experiments were done and shown in the order
of expected optimality, comparing the improvements one step at the time: base layout to AEP-optimised,
AEP-optimised to DAEM-optimised, DAEM-optimised to JERM-optimised.
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As an extension of the chosen approach, the performance to the unseen 2024 data in section 4.5 focused
on a comparison of the base layout with the JERM-optimised layout. Also here the robustness of JERM
optimisation is obscured by the large improvement in AEP (visible in the large improvement of performance
on simple DAEM-only operation). I think the specific merits of JERM optimisation would become clearer in
a comparison of DAEM- and JERM-optimised layouts operating in 2023 and 2024 markets. Comparison of
AEP- and DAEM-optimised layouts for the same could serve as a baseline, to assess which differences can
be attributed to robustness to market conditions (DAEM- versus JERM-optimised) and which to robustness
to wind conditions (AEP- versus DAEM-optimised).

• The authors understand the point of view of the reviewer. In the first version of the paper, we decided
to start by our most meaningful contribution, then we added benchmarks and comparisons with other
methodologies. In this way, the added value of the methodology was discussed at the start of the case
study.

• To avoid any misleading into the benefits of JERM (with respect to simply participating to DAEM),
we have modified the structure of the case study. We explain the order of experiments at the
end of the Test case section, on P13L298-302.

• Hence, the specific merits of JERM optimisation are clearly nuanced, by firstly showing the benefits
of going from the base layout to AEP-optimised, then the AEP-optimized to DAEM-optimized, and
finally from DAEM-optimized to JERM-optimized.

• For the performance on unseen 2024 data, we have also modified the comparisons to follow the same
logical structure than mentioned above.

Conclusions and interpretation of results

I will first reflect on some interpretations of the results and then give my own interpretation. Subsequently,
I’ll address how this might affect the conclusions.

I already addressed the bias caused by the interpretation of results in section 4.2. Therefore, I continue
with the analysis of figure 8 on p.19. I will continue to use ‘DAEM-optimised’ for what is called ‘Optimized
without reserve’ in the figure, and ‘JERM-optimised’ for what is called ‘Optimized with reserve’. Each point
in the graph is an optimised layout. The scatter indicates the stochastic nature of the optimisation. The
width of the scatter, when compared to the difference between the DAEM-optimised and JERM-optimised
points indicates that no direct comparison can be made between any best performing layouts. That would put
more emphasis on ‘luck’ of drawing a good sample from the layouts, rather than on the difference between
the two optimisation types. Somewhat in line with the discussion of the authors of figure 9 on p.20, the
fairest comparison in performance on JERM seems to be to draw a diagonal fit through all DAEM-optimised
layouts and a fit through all JERM-optimised layouts, and to compare those. These two fits would be almost
the same. If JERM-optimised layouts would consistently perform better on JERM than DAEM-optimised
layouts, one would expect the fit to JERM-optimised layouts to lie higher than that of DAEM-optimised
layouts: Any layout that achieves a certain performance on DAEM, irrespective of how they were optimised,
should achieve a better performance on JERM if it was JERM-optimised. A similar argument is applied
by the authors in the discussion of figure 9 on p.20, based on the observation that the scatter of circles lies
upward of the scatter of triangles. On p.20, the authors associate the downward shift of the AEP-optimised
layouts compared to the JERM-optimised layouts with the performance characteristics of AEP optimisation.
It seems inconsistent to then not associate the lack of a downward/upward shift with equal performance for
DAEM and JERM optimisation. In my opinion the only conclusion that is supported by the results in figure
8 is therefore that JERM-optimised layouts do not perform better than DAEM-optimised layouts, neither on
DAEM, nor on JERM.

Although the authors discuss the general shift between the points in figure 9, the magnitude and significance
of this shift is not addressed. Two diagonal fits between the two sets of points would have a vertical shift of
about 0.1 MEuro, which corresponds with less than 0.15%. Even between the highest JERM-optimised and
highest AEP-optimised points the difference is only about 0.2 MEuro: less than 0.3%. Figure 12 indicates an
upward shift of about 0.08 MEuro for unseen data of 2024, corresponding to about 0.3%. These percentages
are most indicative of the performance of DAEM optimisation over AEP optimisation.
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In the discussion of figure 8 the authors zoom in on the performance of the two two right-most points for
JERM-optimised farms. Liekwise, on p.20 they focus on the right-most point in figure 9, addressing that it
performs better on AEP than the (best) AEP optimisation. As argued above about the scatter of the results,
these results seem inconclusive as to the inherent superiority of the two right-most points in figure 8 and
the one right-most point in figure 9, as opposed to their ‘lucky sampling’. The authors argue that JERM
optimisation might be slightly more likely to find solutions with high optimality (for AEP, DAEM, as well as
JERM performance), due to better gradients (line 396-398 and line 412-413). However, this doesn’t confirm
the significance of using JERM as an objective over using AEP or DAEM, but rather the significance of
how either objective is formalised and how the problem is solved. In other words, it doesn’t mean that these
layouts are better optimised for JERM per se.

• The authors do not fully agree with the statement that“results seem inconclusive as to the inherent
superiority of the two right-most points in figure 8 and the one right-most point in figure 9.” Indeed,
not only those points show that, over several runs of the training algorithm, the maximum profits can
be reaped by the JERM-optimized layout, the outcomes also reveal that these optimized layouts for
JERM are better in average. The whole distribution of profits (over experiments) is improved, not
only extreme points.

• We fully agree with the reviewer that the stochastic nature of the layout optimization introduces
variability in the results. As such, we focus on the performance trends across diverse runs. We argue
that our analysis includes both the best cases (which is, as such, very important) and the average
performance.

• Our intent in discussing the shifts in Figures 8 and 9 was to highlight general tendencies rather than
absolute gains from JERM optimization. While we agree with the reviewer that the observed shifts
(0.1–0.3%) are small in magnitude, they are consistent across multiple optimization runs. This suggests
that JERM-optimized layouts are at least as effective as DAEM-optimized layouts, and even offer slight
improvements.

• We appreciate the reviewer’s observation regarding the role of gradient quality in optimization con-
vergence. Indeed, our statement that JERM formulations can lead to more navigable optimization
landscapes reflects that the structure of the objective function may help guide the search toward
better-performing regions. However, we agree that this should not be interpreted as inherent superi-
ority of the objective.

• We also would like to inform the reviewer that there was a mistake in Table 4 for the results of the
layout optimized on JERM. Indeed, the values were too low, and did not correspond with the results
seen in Fig. 8 and 9. This has been corrected in the revised version.

Considering the above, I propose a re-interpretation of the results along the lines of the proposed reordering
of the experiments. Since I don’t have all (intermediate) results, my interpretation will be rough and based
on ball-park figures:

- From base layout to AEP-optimised: Improvement of performance on DAEM and JERM of about 3%.
This is based on the results in Table 4, and the subsequent minimal contributions that I identify for the other
optimisation improvements.

- From AEP-optimised to DAEM-optimised: Improvement on DAEM and JERM of about 0.15-0.3%. For
the improvement on JERM, I base this directly on figures 9 and 12, as discussed above. The improvement
on DAEM would be similar, due to the absence of improvement between JERM and DAEM optimisation.

- From DAEM-optimised to JERM-optimised: No observable improvement. This is based on my discussion
of figure 8 above.

This interpretation of the results identifies the improvement attained by layout optimisation for AEP as the
main cause of the improvements seen in JERM optimisation, with a small contribution of optimisation for
DAEM. It identifies no improvement of JERM optimisation over DAEM optimisation. I fully agree with
the underlying mechanism that the authors discuss for AEP optimisation, as well as for the mechanism of
changing weights for wind-direction sectors in case of DAEM optimisation. However, I don’t think the results
support any conclusion about the significance of and need for JERM optimisation, such as “this highlights
the importance of accounting for participation of wind farms to reserve markets in the layout optimization
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process” (line 393-394) and “layouts optimized for profit maximization with reserve markets lead to better
yearly profits than when considering day-ahead market only in the objective function” (line 467-468). I think
the authors should reflect on such conclusions and suggestions of mechanisms to support them considering
the previous discussion.

• We thank the reviewer for this detailed re-interpretation. We agree that the major performance gains
are partly due to the initial AEP-based optimization, with smaller but consistent improvements from
DAEM optimization. Then, while the incremental gain from JERM over DAEM appears modest, we
emphasize that:

– The inclusion of reserves in the objective better reflects real-world market conditions, and ensures
that layouts are evaluated under more comprehensive profitability criteria—not just energy yield.

– Even small profit differences (∼0.1–0.3%) are economically meaningful at scale, and JERM-
optimized layouts consistently perform at least as well as, and occasionally better than, DAEM-
optimized ones.

– We have revised the wording of our conclusions to lower the strength of our claims, focusing on
the practical relevance and robustness of JERM-based layout optimization, rather than affirming
strict superiority.
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Technical and textual suggestions and corrections

• Syntax and grammar errors have been corrected, and minor text improvements have been integrated
in the revised paper.

Please be more precise with the distinction between power and energy. Where needed, add ‘*delta t’ for the
duration of the time step, to get from power to energy. As an example, revenues in equation 4 are derived
from power times price, where prices are given e.g. in figure 4 in Euro/MWh. Figure 4 also gives price
for reserve capacity in Euro/MWh (instead of Euro/MW), for which it is not clear whether or not that is
consistent. Please also take this into account for reserve activation R*ka, which should be in terms of energy
and not power (see also figure 1). The true implementation of power and energy in the model seems correct,
since the revenues for DAEM only correspond with an estimate of them with a reasonable capacity factor for
the wind farm.

• Indeed, all prices are given in e/MWh and should be used with energy, and not power (if power is
used, it should be multiplied by the duration of the timestep ∆t). We have corrected this mistake in
Eq. 4 and throughout the revised manuscript (equations 7, 8, 9, 10, 11, 14).

Please be more precise with the use of the term profit. In many places, such as in table 1, ‘profit’ is used,
where ‘(net) revenue’ is meant, since costs for the wind farm are not accounted for. For convenience, I
copied the use of ‘profit’ in my comments above, also where this is not correct.

• We agree with the reviewer that since we do not account for wind farm costs, we compute net revenues
with our formulation, and not profits. We have replaced the term ’profits’ with ’revenues’ throughout
the revised version of the paper.

• We have also added a short sentence on P8L208-209 emphasizing that net revenues are computed with
our new objective function.

It could be helpful if chapter 2 already stated for which parameters data is used. That closes the set of
equations. (So, for wind speed and direction, day-ahead prices, reserve market capacity and activation prices,
imbalance fees, reserve market activation level, other bids in the reserve market, . . . ?) As specified in a few
comments below, for some of these parameters the text causes confusion as to whether these parameters are
modelled, or whether (only) their forecast errors are modelled.

• Forecasts of wind speed, wind direction, day-ahead prices, reserve capacity and activation prices, and
activated reserve volumes are all modelled, based on historical data to which we add a forecast error
that we model using a normal distribution.

• We added that information on P10L246-248.

2, line 23: Please rephrase for readability.

• We replaced that sentence on P2L22-25 by the following.

• Moreover, it has been proven that modern wind turbines with variable rotation speed have intrinsic fast
ramping down and ramping up capabilities, which can be effectively used to provide ancillary services.
Ramping down is virtually done at no cost (if prices for down reserve are negative), and ramping up
is subject to the availability of wind power.

4, line 115-116: I propose to scratch ‘(normally not known by the wind farm operator)’. This is never known,
by anyone.

• Indeed, forecast is by definition an estimation of the future and is not know before the actual realization.
We removed that part of the sentence on P5L125-126.

Forecast error modelling:
Eq. (3): The modelling error associated with the wind farm model is not explained, nor are the values for
its mean and standard deviation given.
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• The modelling error for wind farm power depends on the wind farm model that is used to convert wind
speed and wind direction to wind power production.

• In this paper, PyWake is the wind farm model, and we use modelling errors found in the literature
where the analytical models of Pywake are compared with SCADA data [7]. The mean error is zero
(as PyWake is shown to underestimate or surestimate the power production depending on the wind
farm), and the standard deviation is set to 3%.

• We have added this information in the test case section where we present PyWake as our wind farm
model, on P13L310-312.

Line 138: Can this sentence please be corrected or clarified. It seems that the distribution of forecast error
is meant, but it states ‘of day-ahead electricity prices’ (for which a zero mean makes no sense). Can be
articulated of what the percentage is taken?

• Indeed, we meant a zero-mean for the distribution of forecast errors of day-ahead prices, not for
the distribution of day-ahead prices. We have corrected this mistake on P6L151.

• It should be noted that we use a zero-mean for the distribution of forecast errors since when a forecast
model is trained for mean square error minimization, we “force” MSE towards zero.

Line 184-186: It is unclear whether these sentences are about modelling of prices, or (as would be expected)
modelling of their forecast errors. Could that be clarified? Does ‘regulation prices’ mean ‘imbalances fees’,
for which the (forecast) model has not been addressed elsewhere? Can the mean and standard deviations
used for forecast errors of reserve capacity prices, reserve activation prices and imbalance fees be given? The
current last sentence of this paragraph is open-ended.

• These sentences refer to forecasting reserve prices, as we do not model these values in our work. We
have clarified this sentence on P8L200.

• We still set a zero mean value for the distribution of forecast errors. For the standard deviation, no
clear value can be found in the literature. However, we assume that the forecast inaccuracy is expected
to be higher than for day-ahead prices, so we set a higher value of 10%. We have added this information
on P8L201-203.

• Yes, the regulation fees are what me called elsewhere the imbalance prices. To avoid confusion, we
have replaced the former by the latter in the text.

6, line 149: Could be specified to which assumption is referred here? The previous text only describes certain
mechanisms and the choice of only providing upward reserve regulation; it gives no assumption.

• The assumption refers to the fact that prices for downward reserve are usually negative (the BSP pays
the TSO), and positive prices (the TSO pays the BSP) only occur in specific conditions. We have
clarified this in the text on P6L161-162.

6, line 158-160: Could you clarify how the distribution of reserve activation amongst multiple bidders is
modelled? Is data about bids in 2023 available and used? Furthermore, could be clarified how is determined
if or how much of the reserve capacity bid is won, in case of multiple players and/or limited reserve need?
The current formulation (Eq. (14)) implies that any bid is always won in full.

• Since reserve capacity bids are awarded based on the bidded price, determining how many MWh are
awarded to our wind farm would involve knowing the behaviour of other market players.

• In future work, what could be done is to simulate several wind farms, make them all participle in the
reserve market, then award reserve quantities based on the bidded price. This is a rather complex
process, possibly involving game theory since the market players might behave differently based on the
bidded price of other players. Moreover, other players operating different technologies (e.g., batteries,
demand side response, ...) could behave in a different way than wind farm owners.
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• Considering the high complexities involved in the modelling of distribution of reserve activation, we
made some simplifications: historical data regarding the total activated reserve is used, and is divided
by the required volume of aFRR reserves in Belgium (117 MW in 2023 and 2024). This gives us
scenarios of reserve activation, denoted by κa

k,t in equations. We then apply this pro-rata to determine
how many MWh are awarded to the wind farm. Therefore, in our formulation, we do not assume that
any bid is always won in full: the quantity awarded by the TSO depends on the system needs.

• We have added this information on P10L253-257.

7, line 171-172: It is unclear how the availability tests for reserve capacity is implemented. In Eq. (10) and
(11) the penalty of this test (= Eq. (8)) appears at every time step. Does this mean that the test is effectively
done every time step, or is deltaR set equal to zero at all but 12 (random) time steps? Does the algorithm
for optimising operation (Eq. (11)) in any way account for a probability that this test is performed in that
time step, or is it assumed that the test will be performed in that particular time step with 100% certainty?

• We assumed that the test will be performed in each timestep with 100% certainty. Indeed, since the
technical penalty (reduction of the bid upper limit in reserve markets) incurred by the wind farm for
failing consecutive tests is not directly modelled, adding a probability to the availability tests led to
unrealistic reserve bids and expected revenues.

• We have added this assumption on P10L258-260.

7, Eq. (9), (10), and several other related equations: Consider not to replace gammaa by 1.3, since other
values are also not substituted. The superscript c has been incidentally dropped from gamma in Eq. (10) and
several other equations.

• We have modified equations (9), (10), and following equations to make gammaa appear instead of its
value. We have also added the superscript c where needed in equations (10), (11) and (14).

8, line 200-201: Please formulate more clearly what is meant by the 117 MW. Is that the highest needed
reserve capacity in that year?

• The 117 MW correspond to the volume of aFRR to procure at all times by Elia in 2023. This value
is updated every year and results from an optimisation based on costs, using a probabilistic method
based on a time series of two years of expected variations between quarter-hours of system imbalances.
It should be noted that this corresponds to the total volume of reserve capacity bids that the TSO
should award for every timestep. The actual activation of reserve depends on the system imbalance.
This has been specified on P12L290-292.

• Article 32(1) of Commission Regulation (EU)2017/2195 of 23 November 2017 establishing a guideline
on electricity balancing states that “all TSOs of the LFC (load-frequency control) block shall regularly
and at least once a year review and define the reserve capacity requirements for the LFC block or
scheduling areas of the LFC block pursuant to dimensioning rules as referred in Articles 127, 157 and
160 of Regulation (EU) 2017/1485. Each TSO shall perform an analysis on optimal provision of reserve
capacity aiming at minimisation of costs associated with the provision of reserve capacity.

8, line 207: Can you clarify to which approach ‘this approach’ refers? This could be the approach of Soares
et al., or it could be the approach that is presented in the current manuscript. If it is the latter, then the last
sentence about submission steps of 1 MW doesn’t seem to correspond with the given formulation.

• In that sentence, we refer to the approach of Soares et al., in which the energy and reserve share
can be adjusted at each stage. It means that the allocation of energy and reserve during the first
stage (day-ahead bidding) can be different from the allocation of the second stage (the actual delivery
of power). For example, for a given timestep, let us consider that a wind farm operator forecasts a
production of wind power of 40 MW, and allocates 30 MW to the day-ahead energy market (i.e., 3/4
of the wind generation), and 10 MW (1/4) for reserve. If the actual production of wind at delivery
time is 35 MW and reserve penalties are high, the wind farm owner does not have to keep the 3/4-1/4
ratio, and can decide to provide 10 MW for reserve activation and 25 MW for the energy market (and
thus incur imbalance fees for the day-ahead market).
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• We have clarified this on P9L228-229.

• The steps of 1 MW are merely a practical consideration set by the TSO Elia in terms and conditions
of a balancing service provider contract.

9, line 217: smaller than or equal to > larger than or equal to.

• We corrected the typo.

9, line 218-221: Eq. (15) keeps the turbines within the boundaries of a square wind farm area. This is not
what is used in the case study. Could this be made consistent?

• Indeed, the constraint of Eq. (15) is not applicable in our test case where the farm boundaries are a
polygon. We rectified Eq. (15) on P10L265 with the following:

xxx,yyy ⊂ B (1)

where B ⊂ ℜ2 is a closed region in which to place turbines (its edges are the farm boundaries).

11, line 254-255: Consider making explicit that the data is nevertheless used to optimise bidding for that
year.

• We have added this information on P13L304-305 with the following sentence.

• “Those data were not seen during the layout optimization process but are nevertheless used to optimize
bidding for that year.”

11, line 264: Can be clarified what is meant by this sentence? This seems more like an explanation of a
multi-start optimisation to improve optimality than an improvement of statistical significance. That also
aligns with later statements about results being given for the best performing layout (p.16, line 354-355). In
case statistically significant is indeed meant: of which stochastic output?

• Indeed, since we later focus on the best performing layout, we do not use several initial random
conditions for statistical significance. The reason for those different conditions is to avoid lucky/unlucky
sampling pitfalls during the SGD optimization.

• We have corrected the mistake in the text on P13L316.

16, Table 3: Much of this table is a repetition of table 2. Consider whether table 2 can be removed, by using
table 3 differently.

• We have merged the two tables to avoid repetitions.

24, line 472: Please rephrase ‘periods of electricity shortage’. Belgium rarely (if ever) has electricity short-
age.

• Indeed, Belgium does not face periods of electricity shortage. However, periods of low electricity
production can genuinely happen. We rephrased ‘periods of electricity shortage’ by ‘periods of low
electricity production’ in P28L568 of the revised version.
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