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Abstract. Incorporating more renewable energy into the electric grid is an important part of the strategy to mitigate climate 

change. To make the incorporation of renewable energy into the grid more efficient and reliable, numerical weather prediction 15 

models need to be able to predict the intrinsic nature of weather-dependent renewable energy resources. This allows grid 

operators to plan accurately the amount of energy they will need from each source (e.g., wind, solar, fossil fuel, etc.). For this 

reason, wind ramp events (rapid changes in wind speed over short periods of time) are important to forecast accurately. This 

is because one of their consequences is that wind energy could quickly be available in abundance or temporarily cease to exist. 

In this study, the ability of the operational High Resolution Rapid Refresh numerical weather prediction model to forecast 20 

wind ramp events is assessed in its two most recent versions: version 3 (HRRRv3, operational from August 2018 to December 

2020) and version 4 (HRRRv4, operational from December 2020 onward). The datasets used in this analysis were collected in 

the United States Great Plains, an area with a large amount of installed electricity generation from wind. The results are 

investigated from both annual and seasonal perspectives and show that the HRRRv4 is more accurate at forecasting wind ramp 

events compared to HRRRv3. Specifically, the HRRRv4 shows increased correlation coefficient and reduced root mean square 25 

error relative to the change in wind power capacity factor found in the observations, and in the skill of forecasting both up and 

down wind ramp events, with a marked increase in the HRRRv4’s skill at detecting up ramps during the summer (the HRRRv4 

is nearly 50% more skillful than the HRRRv3). This demonstrates that the HRRR’s continuing evolution will better support 

the integration of wind energy into the electric grid.  

 30 
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1 Introduction 

Many nations are making more investments in renewable energy sources (e.g., hydro, solar, and wind power). This is both to 

mitigate the effects of fossil fuel production on climate change and for economic reasons, given that renewable energy 

generation does not require the purchase of fuel. According to the International Energy Agency (IEA; Renewables, 2023) more 

than 500 GW of renewable electricity were added to grids around the world in 2023. This was the largest jump (nearly 50% 35 

from the year 2022) in the last two decades. Solar power is taking the lead in this new generation, followed by onshore and 

offshore wind energy (IEA; Renewables, 2023). Adding into consideration the decreasing costs for wind and solar photovoltaic 

systems, the IEA report estimates that wind and solar together will account for over 90% of the renewable power capacity that 

is added over the next five years (to 2028). 

Due to the inherent variability of weather-dependent renewable energy resources, numerical weather prediction (NWP) model 40 

developers are also investing resources to improve forecasting of the meteorological variables of interest for grid operators, 

who rely on NWP model forecasts to plan for energy source allocation. Indeed, NWP forecasts of wind speed have been used 

for over a decade in the decision making associated with integrating wind-generated power into the electrical grid (e.g., Yu et 

al. 2014; Dong et al. 2016; Jacondino et al. 2021). In this perspective, a series of Wind Forecast Improvement Projects (WFIP) 

have taken place in the United States (US). These projects have been sponsored by the US Department of Energy (DOE) and 45 

the National Oceanic and Atmospheric Administration (NOAA) and included partners from public and private institutions. 

The first WFIP (WFIP1; Wilczak et al., 2014, 2015) focused on measuring the impact of including additional meteorological 

information to the initialization of operational weather prediction models. WFIP1 conducted a 12-month field campaign in 

2011-2012 in the US Great Plains, an area of large wind energy production. The second WFIP (WFIP2; Shaw et al. 2019, 

Wilczak et al. 2019a, and Olson et al. 2019a) focused on an 18-month field campaign that took place in 2015-2017 in the US 50 

Pacific Northwest, also an area of large wind energy production. The goal of WFIP2 was to improve physical parameterizations 

within operational weather prediction models in complex terrain, where the wind flow is modulated by terrain features that are 

more difficult to simulate. The third WFIP (WFIP3) includes an 18-month field campaign off the coast of New England in the 

Eastern US, where many offshore wind plants are currently being erected. This ongoing effort, which started in February 2024, 

aims at supporting offshore wind generation through better forecasting for existing, new, and planned wind farms placed 55 

offshore of this area.  

All the findings from the WFIP efforts have been transferred to operational versions of the High Resolution Rapid Refresh 

(HRRR) model. The HRRR is a regional, rapid-refresh, convective-allowing (3 km horizontal grid) NWP model run 

operationally by the National Weather Service (NWS). The HRRR utilises the Weather Research and Forecasting (WRF) 

model (Skamarock and Klemp, 2008), wherein the development focused on improving the suite of physical parameterizations 60 

and data assimilation scheme to work well with each other for a range of operational forecasting applications. The HRRR first 

became operational in 2014, and remains as a key forecasting tool used by the NWS and other groups due to its hourly update 

and high resolution. Details on the HRRR’s configuration, data assimilation system, physical parameterizations, and evaluation 
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can be found in Dowell et al. (2022) and James et al. (2022). This paper will focus on two versions of the HRRR: version 3 

(which was operational in the NWS from 12 July 2018 to 1 Dec 2020) and version 4 (which became operational in the NWS 65 

on 2 Dec 2020).  The primary differences between these two versions are (a) the improved horizontal resolution of the data 

assimilation system, (b) improved treatment of clouds that are smaller than the resolution of the model, (c) the introduction of 

wildfire smoke into the model, including its impact on solar radiation, (d) the improvement of the vertical advection scheme, 

and (e) the reduction in the strength of the numerical diffusion used within the model (Dowell et al., 2022). 

The intrinsic variability of the wind is amplified when the wind speed is converted into power, due to the relationship between 70 

wind speed and wind power capacity factor. In the range of wind speed values between the cut-in (minimum wind speed below 

which no power production is obtained by the wind turbines) and cut-off (maximum wind speed above which wind turbines 

have to be shut down to avoid strain on the rotor) thresholds, a change of a few m s-1 in wind speed can result in a change in 

wind power production of more than 50%. When these large power production changes happen over a short period of time 

(i.e., less than a couple hours), they are referred to as wind ramps. The accurate forecast of wind ramps is very important for 75 

wind energy operators and has potentially large economic impacts, as they need to plan in advance what source of energy will 

be available to the grid (Jeon et al., 2022), as well as outside of the United States (Jin et al., 2024). Turner et al. (2022) and 

Jeon et al. (2022) already demonstrated that improvements in the operational HRRR have resulted in significant economic 

savings for the US through better grid operators’ decision-making. In their studyies, they found appreciable economic gain 

between HRRR versions 1 (HRRRv1) and 2 (HRRRv2) and a smaller but still appreciable onegain between versions 2 80 

(HRRRv2) and 3 (HRRRv3). 

The accuracy of the NWP model at forecasting wind ramp events cannot be estimated using standard statistical metrics (e.g., 

mean absolute error, correlation coefficient, or root mean square error) because these would also take into consideration the 

periods of time when the wind power is at its minimum or full capacity. Therefore, a tool called the Ramp Tool and Metric 

(RT&M) was developed to evaluate an NWP model only for the times when wind ramps occur, with the aim of measuring the 85 

skill of the NWP model at forecasting wind ramp events (Bianco et al., 2016). The RT&M has been used during WFIP1 

(Bianco et al., 2016; Akish et al., 2019) and WFIP2 (Djalalova et al. 2020) campaigns to estimate the improvement in the 

operational NWP models. 

Turner et al. (2022) and Jeon et al. (2022) already demonstrated that improvements in the operational HRRR have resulted in 

significant economic savings for the US through better grid operators’ decision-making. In their study, they found appreciable 90 

economic gain between HRRR versions 1 (HRRRv1) and 2 (HRRRv2) and a smaller but still appreciable one between versions 

2 (HRRRv2) and 3 (HRRRv3). 

In this study, the RT&M is used to estimate the skill of the operational HRRR model in its two most recent versions, version 

3 (HRRRv3) and version 4 (HRRRv4). The analysis is performed using the datasets collected in the US Great Plains, where 

wind energy production is abundant, and is achieved on an annual basis, as well as on a seasonal basis. 95 

The manuscript is organized as follows: the wind ramp definition and the RT&M used to evaluate the model forecast skill are 

described in Sec. 2; the area of investigation and the datasets (observational and model) used are presented in Sec. 3; the diurnal 

https://rmets.onlinelibrary.wiley.com/authored-by/Jin/Chenxi
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and seasonal variability of wind speed and ramp events in the study area are presented in Sec. 4; the skill of the HRRRv3 and 

HRRRv4 models at forecasting ramp events both from an annual and a seasonal perspective is discussed in Sec. 5. Finally, the 

summary and conclusions are in Sec. 6. 100 

2 Wind ramps definition and description of the RT&M 

Weather-dependent energy is subject to rapid changes of power availability over short periods in time, referred to as ramps. In 

this study, the dependence of wind power capacity factor (P) to wind speed (WS), in the range of wind speed values between 

3-16 m s-1 (region II of the wind speed to wind power capacity factor curve), is assumed to be given by the formula presented 

in Wilczak et al. (2019b). This formula is computed using the average of several wind power capacity factor curves for IEC 105 

Class 2 turbines. 

Additional information to be considered is: (a) below the cut-in wind speed (3 m s-1) the wind is insufficient to produce power 

by the wind turbines, therefore P = 0 (region I of the wind speed to wind power capacity factor curve); (b) between 16 m s-1 

and the cut-off wind speed (25 m s-1) the wind power capacity factor is at its maximum (P = 1, region III of the wind speed to 

wind power capacity factor curve); and (c) above the cut-off wind speed the wind turbines have to be shut down to avoid strain 110 

on the rotor, therefore P = 0 (region IV of the wind speed to wind power capacity factor curve). 

The wind speed to wind power capacity factor curve is presented in Fig. 1, where regions I, II, III, and IV of the curve are 

indicated between the dashed lines. 
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Figure 1: Wind speed to wind power capacity factor conversion curve. Cut-in wind speed is 3 m s-1 and cut-off wind speed is 25 m s-115 
1. Regions I, II, III, and IV of the curve are indicated in between the dashed lines. 

The RT&M has three components: the first is the identification of ramp events in the time series of the observed and model 

power data; the second is matching observed ramp events with those predicted by the forecast model; the final component is 

scoring the ability of the model to forecast ramp events (both timing and intensity). As an exact definition of a ramp is not 

unique (i.e., how much the wind power capacity factor has to change and over what time period for the event to be considered 120 

a ramp), a metric that is aimed at evaluating an NWP model at forecasting ramp events has to include a range of ramp 

parameters. Additionally, the skill of a model at forecasting the occurrence of these events has to consider the capability of the 

model to predict the time of the event (or its central time, Ct), its duration (ΔT), and the amplitude of the change in the wind 

power capacity factor (ΔP). The RT&M was developed to take into consideration the fact that a ramp is not uniquely defined 

and that the skill of the model is a function of accurately forecasting all three Ct, ΔT, and ΔP variables. This RT&M is described 125 

in Bianco et al. (2016). 

Equations for the computation of the model skill score at forecasting wind ramp events are formulated for different matching 

scenarios between forecasted and observed ramps. Specifically, 8 possible scenarios are considered, consisting of: up/up, 

up/null, up/down, null/up, null/down, down/up, down/null, down/down, model vs observed events, based on the 3x3 
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contingency table except null/null events that do not impact the score. For null scenarios (up/null, null/up, null/down, and 130 

down null), the score will be equal to 0. For the nonnull scenarios the score is computed as a cube-root equation dependent on 

the three nondimensional errors associated with the amplitude, timing, and duration of the ramp, with coefficients based on 

the 8 different scenarios, as described in detail ; see particularly by Eq. 1-8 of Bianco et al. (2016).for how the skill of the 

model is determined). 

This metric has potential usefulness for grid operators that need to quantify the reliability of NWP models they depend on for 135 

their decision making, or for NWP model developers to test whether their efforts at improving the operational model are 

reflected in better forecasts that can benefit the energy sector. 

3 Area of investigation and dataset description 

According to Table 1.14.B of the US Energy Information Administration (EIA) electric power monthly report (US EIA, 2024), 

the six states with the most electricity generation from wind in 2023 were Texas, Iowa, Oklahoma, Kansas, Illinois, and New 140 

Mexico. These six states combined produced about 64% of total US wind electricity generation in 2023. 
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Figure 2: Annual mean (a) and standard deviation (b) of the wind speed at 80 m derived from 1-h forecasts from the HRRR over 

2020–2022. Panels (c) and (d) show the mean wind speed for DJF and JJA, respectively, and panels (e) and (f) show the standard 145 
deviation of the wind speed for DJF and JJA, respectively (using the same colour bar ranges as in panels (a) and (b)). 

This information is also confirmed by the 2-dimensional wind speed field output at 80 m above ground level (agl) of the HRRR 

model (Fig. 2), which is a typical height used for wind energy investigations. From this figure, larger values of 80 m wind 

speed can be seen in the six states listed above, which will also result in more wind power ramp events at these locations, 

which will be explored in Section 3.2. Another interesting feature shown in Fig. 2 is the lower values of summer 80 m wind 150 

speed (Fig. 2d), compared to winter (Fig. 2 c). This will also be explored later in the manuscript when comparing the model 

to the observations (Section 4).  

This study focuses on this particular geographical area (US Great Plains). 

One of the atmospheric phenomena experienced in the US Great Plains, and of large interest for wind energy, are low-level-

jets (LLJs). LLJs have been studied for many years (e.g., Bonner, 1968, Whiteman et al. 1997, Banta et al. 2002, Banta et al., 155 
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2008) and occur often in the US Great Plains, particularly in the southern part of it (Freedman et al., 2008). They happen over 

relatively flat terrain, during nighttime when the boundary layer is stable, as the ground cools down during the evening 

boundary layer transition and the flow is decoupled just above the surface. This decoupling leads to an acceleration of the flow 

above the atmospheric surface layer and produces a layer of air with high-momentum, which often exhibits a maximum in the 

vertical profile of the horizontal wind. Whiteman et al. (1997) analyzed the climatology of the LLJ in the United States Great 160 

Plains from 2 years of radiosonde data and found that the height of the jet maximum occurs most frequently in the 300–600-

m height range, with a peak between 300 and 400 m. This maximum can be found anywhere between a few tens of meters to 

a few hundred meters agl (Banta et al., 2008). Because this layer of the atmosphere might include typical onshore wind turbine 

hub-heightsOf course, it would be ideal in this analysis to use a dataset of wind speeds at hub-height. Unfortunately, this is not 

possible as there were very few such observational datasets available to carry out a meaningful geographical investigation. 165 

Previous studies (Schwartz and Elliott, 2005; Newmann and Klein, 2014) also recognize the fact that, although the wind speed 

at hub height is the one of interest for wind energy application, most wind speed measurements are taken at 10 m agl as tall 

meteorological towers are expensive to build, operate, and maintain. Newmann and Klein (2014) used the Oklahoma Mesonet 

surface observation stations and compared the most widely used extrapolation method to relate 10- m measurements to 80- m 

wind speeds collected by tall towers. They found that the power law, which relies only on the information of wind speed at a 170 

reference height (i.e., 10 m agl) and a shear exponent (dependent on atmospheric stability regimes), produced accurate 80- m 

wind speed estimates from 10- m wind speed observations and concluded that these could be therefore used for increasing our 

knowledge of hub-height wind speed climatologies. 

To make ensure that also the results conclusions of our study are of interest for the wind energy community, we decided to 

investigate if the results found usingavailable observations of 10- m wind speed are applicable to thecan be representative of 175 

the atmospheric wind speed field at amore typical hub-height, such as 80 m agl. Ramp events can be divided into those that 

occur because of the strong diurnal variability within the boundary layer, and those that are associated with meteorological 

phenomena such as cold fronts, gust fronts, or other changes in forcing from transient mesoscale pressure gradient 

fields. Although the diurnal variation of wind speeds at 10 m and at several 100 m can be out-of-phase (with 10 m wind speeds 

decreasing during the night time hours while at 300-400 m they may increase at night due to the low-level jet) diurnal variations 180 

at both heights are driven by surface and boundary layer fluxes and turbulent mixing. If improvements to the model’s 

parameterization of those diurnal processes increases forecast skill at 10 m, one would expect that improvements to forecast 

skill would also be found at greater heights within the boundary layer. Although we only use 10 m observations in our analysis, 

evaluation of 10 and 80 m winds in the model indicate that improvements to 80 m wind forecasts are in fact expected. The 

results of this investigation are presented in Appendix 1, confirming that our findingsthe results from our study can be 185 

considered representative of the wind speed atmospheric field of interest for renewable energy and we will thereafter use wind 

speed observations made at 10 m agl. This study focuses on the geographical area of the US Great Plains, whereIn the area of 

interest, a large number of observations is available. and mModel output at the same height will be used for comparison.. We 

compared the HRRR model output of the wind speed field at 10 m agl to the HRRR wind speed field output at 80 m agl over 
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the time period from 2020-2022. We found a correlation coefficient equal to 0.84 between wind speed values at these 2 heights. 190 

For this reason, we believe that, as for Newmann and Klein (2014), the results from our study can be considered representative 

of the wind speed atmospheric field of interest for renewable energy and we will thereafter use wind speed observations made 

at 10 m agl. In the area of interest, a large number of observations is available and model output at the same height will be 

used for comparison. 

3.1 Observational dataset description and preparation 195 

The observational dataset used in this study is obtained by the METeorological Aerodrome Reports (METARs) stations, a 

network of weather stations located mainly in airports and used for flight planning and weather forecasting 

(https://aviationweather.gov/data/metar/). The United States Geological Survey (USGS) Wind Turbine database 

(https://eerscmap.usgs.gov/uswtdb/) was used to identify the location of the wind turbines. The 10- m agl wind speed 

observations at locations that are within 20 km of a wind turbine are extracted. Native METAR data are typically 15-min or 200 

20-min resolution; as the output from the HRRR is hourly, we have temporally linearly interpolated the METAR observations 

in time to the HRRR output times (i.e., the top of each hour). Generally, the observation close to the top of the hour is within 

10 minutes. 

Fig. 3 shows the geographical location of the METAR weather stations used in this study, which are superimposed over the 

topography of the study area. The location of the METAR weather stations allows for a geographically well distributed analysis 205 

of the results. 

https://aviationweather.gov/data/metar/
https://eerscmap.usgs.gov/uswtdb/
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Figure 3: Geographical location of the METAR weather stations used in this study superimposed on the topography of the study 

area. 

3.2 Operational model description and preparation 210 

As mentioned earlier, the model of interest in this study is the operational HRRR, which uses a 3-km grid spacing. The HRRR 

is initialized from the operational Rapid Refresh model (RAP; Benjamin et al. 2016), and assimilates other observations (e.g., 

METAR, AMDAR aircraft, and weather radar data) to derive its analysis, from which forecasts are initiated. The HRRR 

provides 18 h forecasts every hour, but for four times per day the maximum forecast length is extended. For those four 

initialization times (00:00, 06:00, 12:00, and 18:00 UTC), the HRRRv3 provides forecast out to 36 forecast hours, while the 215 

HRRRv4 goes out to 48 hours. Additional details on the model configurations and parameterizations are provided in Dowell 

et al. (2022).  

The “day-ahead” forecast is particularly useful for the energy community, as that is when decisions are made on the amount 

of fossil fuel generation to have on-line, which depends on the amount of wind (and solar) energy that is expected to be 



12 

 

generated. Thus, we focused on the 00:00 UTC initialization, and used the 12-to-36 h forecasts from both the HRRRv3 and 220 

HRRRv4. For each model, the 13-to-36 h forecasts were concatenated to provide continual temporal coverage across the time 

periods analyzed. However, an artificial “ramp” could be created when merging the 36-h forecast initialized at 00:00 UTC on 

day X with the 13-h forecast initialized on day X+1 at 00:00 UTC due to a slight bias between the two forecast runs. To reduce 

this impact, a 3-point (equivalent to 3 hours) smoother was applied to the transition times; i.e., the model output valid at 23:00 

was the weighted average of the output valid at 22:00, 23:00, and 00:00 with the two outer points having 25% weight and the 225 

central time having a 50% weight, whereas the model output valid at 00:00 was the weighted average of the output valid at 

23:00, 00:00, and 01:00 with the same weighting approach.  

An example of how the model forecast runs are combined together to provide a time series of wind power capacity factors to 

compare with the observations is presented in Fig. 4. Both observed and modeled wind power capacity factors are obtained 

applying the wind power curve to the 10 m observed and modeled wind speeds. In this example, a time series of the observed 230 

wind power capacity factors at 10 m agl for the KEWK METAR weather station, located in Kansas, is presented with the black 

solid line for the time period from 8 April 2021 to 13 April 2021. Dashed lines, in different colors, present the HRRRv4 

forecasts (out to 48 forecast hours), at 00Z initialization times each day. The solid red line represents the time series of the 

model data obtained by the procedure described above. In this example, several ramp events are identifiable. The sharpest 

down ramp happens at the end of 8 April 2021, while the sharpest up ramp event is noticeable at the end of 9 April 2021. 235 

During these events, the available wind power capacity factor for a wind turbine at this location could easily go from its 

maximum to zero and vice-versa. The HRRRv4 tends to reproduce the wind power capacity factor fairly well, with some 

inaccuracy in the timing, amplitude, and duration of the ramp events. These inaccuracies are taken into consideration by the 

RT&M when the skill of the model is computed. 
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Figure 4: Time series of the wind power capacity factor from 8 April 2021 to 13 April 2021 from the KEWK METAR weather 

station, located in Kansas (black line), and of the HRRRv4 forecasts (out to 48 forecast hours) at 00Z initialization times (dashed 

lines in different colour for the different days). The wind power capacity factors are obtained converting the 10 m observed and 

modelled wind speeds. 245 

An optimal way to evaluate the relative skill of the HRRRv3 against the HRRRv4 would be to use periods of time when both 

models are available. However, since we are assessing the operational models, there are no periods of overlap that can be used. 

To prove that using different time periods for the two versions of the HRRR is a valid alternative, we looked at the geographical 

distributions of wind ramp events found on the 10- m agl wind power capacity factor of the HRRRv3 in 2020 and the HRRRv4 

in 2021 and 2022. Fig. 5 shows the number of ramp events (for the type of ramps defined as having a ΔP/ΔT ≥ 40%/2hrs) at 250 

each of the observational locations, represented with colored circles increasing in size with function of the number of identified 

ramps. The geographical distribution of the number of wind ramp events agrees with the annual wind speed geographical 

distribution presented in Fig.2. The smallest circles represent a number of ~40 ramps, while the largest circles represent a 

number of ~500 ramps. Additionally, Tthe geographical distribution of the number of these events are very similar between 

HRRRv3 in 2020 (panel a), HRRRv4 in 2021 (panel b), and HRRRv4 in 2022 (panel c). Of course, it has to be considered that 255 

the inter-annual variability of the wind distribution across the study area could impact the results of this study. A discussion 

about this possibility is included in Appendix 2. It is interesting to notice how for all three years the number of ramps is larger 

in the west side of the study area, in the north-western part of Texas, in the southeast locations closer to the Gulf of Mexico, 

and in Oklahoma. Consistently between the years, there are fewer ramps in the central part of Texas and on the eastern side of 

the study domain. The central, northern, and north-eastern parts of the study area also experience many fewer ramp events, 260 

and the numbers are relatively consistent for all three years. This confirms that even though the time periods used to evaluate 

the HRRRv3 and HRRRv4 are not coincidental, the comparison is still valuable. 
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Figure 5: Geographical distribution of wind ramp events (ΔP/ΔT ≥ 40%/2hrs), at each tower location, by year: HRRRv3 in 2020 is 265 

in panel a, HRRRv4 in 2021 and 2022 are in panel b and c, respectively. 



16 

 

Similarly, the ratio between the number of forecast wind ramps (for the type of ramps defined as having a ΔP/ΔT ≥ 40%/2hrs) 

and those observed, for the three years is presented in Fig. 6. It is noticeable how the models tend, in general, to find fewer 

ramp events (ratio less than 1), which is expected due to the smoother wind field output of the model compared to observations. 

This is in accordance with what was found by Bianco et al. (2016) and by Djalalova et al. (2020). Nevertheless, it is encouraging 270 

to find that the average of the ratio over the study area of the ratio tends to get closer to 1 for the HRRRv4 periods relative to 

the HRRRv3 period (being equal to 0.53 ± 0.24, 0.58 ± 0.24, and 0.68 ± 0.22 respectively for the years 2020, 2021, and 2022). 
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 275 

Figure 6: Geographical distribution of the ratio of the number of model vs observational wind ramp events (ΔP/ΔT ≥ 40%/2hrs), at 

each tower location, by year: HRRRv3 in 2020 is in panel a, HRRRv4 in 2021 and 2022 are in panel b and c, respectively). 

4 Diurnal and seasonal variability of 10- m wind speed and ramp events in the observational and model datasets 

The composites of the diurnal variability of the 10- m wind speed field over the study area are presented in Fig. 7 (right y-

axes), for the four seasons in the different years. Winter is defined as December, January, and February; spring as March, 280 

April, and May; summer as June, July, and August; and fall as September, October, and November. The spring, summer, fall, 

and winter seasons are presented in panels a, b, c, and d for 2020, in panels e, f, g, and h for 2021, and in panels i, j, k, and l 

for 2022. The mean diurnal observed wind speeds are in blue and modeled values in magenta. The diurnal cycle of the 10- m 

wind speed field is clearly evident, with winds weaker at night time and increasing in value starting from sunrise into the 

daytime (local time in the US Great Plains is: LT = UTC - 5). 285 

The strongest daytime winds are experienced in the spring, while summer has the weakest 10- m wind speeds throughout the 

whole day. The models are able to reproduce the diurnal variability of this field pretty well (magenta and blue time-series for 

the model and observations, respectively), across the three years and for the different seasons. On the left y-axes are plotted 

the total number of ramps measured by the observations (in black) and by the models (in red), for both up ramps (positive ΔP) 

and down ramps (negative ΔP). 290 
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Figure 7: Left axes: Total number of wind ramp events for one ramp definition (ΔP/ΔT ≥  40%/2hrs) over the study area as a 

function of time-of-day (hours UTC), for the four seasons. Winter is defined as December, January, and February; spring as March, 

April, and May; summer as June, July, and August; and fall as September, October, and November (left to right: spring, summer, 295 

fall, and winter) in the different years (panels a, b, c, and d: 2020; panels e, f, g, and h: 2021; and panels i, j, k, and l: 2022). Right 

axes: Composites of the diurnal variability of the 10- m wind speed field over the study area, for the four seasons in the different 

years. Sunrise and sunset times are denoted by the red and navy arrows, respectively. 

It is apparent that the daily distribution of ramp events analyzed in this study follows the diurnal cycle of the 10- m wind speed 

for all seasons with down ramps more evident around 22:00-03:00 UTC when the 10- m wind speed sharply decreases, and up 300 

ramps more evident around 12:00-17:00 UTC when the 10- m wind speed sharply increases. For this reason, the diurnal peaks 

in the ramps coincide with the largest temporal changes in the mean wind speed. We could speculate that a reverse behavior 

in the diurnal cycle of wind speed may appear at higher heights, especially at nighttime. This consideration is particularly valid 
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at the height of the nose of the LLJ although, as mentioned earlier, Whiteman et al. (1997) found that the height of the jet 

maximum occurs most frequently between 300–600-m. 305 

Although, as discussed in Fig. 6, the number of observed ramps is in general larger than the number of model ramps, we 

performed aA statistical analysis observed vs modelled ΔP for the matched observed vs model wind ramp events (model and 

observed ramps are matched when the distance between their relative central time is less than the defined time window length, 

i.e. 2hr for the type of ramps defined as having a ΔP/ΔT ≥ 40%/2hrs) averaged by model version . The correlation and root 

mean square error (RMSE) in ΔP for these matched events at all sites(HRRRv3 in 2020 in violet, and the average of the 310 

HRRRv4 in 2021 and 2022 in aqua) is are presented in Fig. 8. For HRRRv4 we used the averaged correlation coefficient and 

RMSE of years 2021 and 2022. With the exception of winter, both the correlation coefficients and the root mean square errors 

(RMSEs)statistical metrics of observed vs modeled ΔP improve in HRRRv4 compared to HRRRv3. 
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Figure 8: Left axes: Bar charts of correlation coefficients (panel a) and RMSE (panel b) of observed vs modelled ΔP (for matched 315 

wind ramp events defined as ΔP/ΔT ≥ 40%/2hrs) by year (left to right: annually and by season). There are two different sets of data, 

with 2020 in violet and the average of years 2021 and 2022 in aqua. Right axes: Percentage improvements in correlation (panel a), 

and in RMSE (panel b). 

5 Models’ skill at forecasting ramp events 

 5.1 Annual geographical analysis 320 

In this section, the geographical distribution of the annual improvements in the skill of the HRRRv4 versus HRRRv3 is 

discussed. The improvement in the skill is computed as: 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (%)  =  [(𝑆𝑘𝑖𝑙𝑙 𝐻𝑅𝑅𝑅𝑣4) − (𝑆𝑘𝑖𝑙𝑙 𝐻𝑅𝑅𝑅𝑣3)] / (𝑆𝑘𝑖𝑙𝑙 𝐻𝑅𝑅𝑅𝑣3) 𝑥 100   (1) 
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Figure 9: Geographical distribution of the annual improvement of the HRRRv4 vs HRRRv3 skill score at forecasting ramp events 325 

at each tower location, by year (panels a, b, and c: 2021 vs 2020; panels d, e, and f: 2022 vs 2020), for all ramps (panels a and d), up 

ramps (b and e), and down ramps (c and f). 
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Fig. 9 presents the improvements in red (or degradation in blue) in the skill scores for year 2021 vs 2020 and year 2022 vs 

2020, and for all ramps, up ramps only, and down ramps only. The predominance of increased skill (red colours) is apparent 

and it is quite uniform spatially, despite the different geographical distribution of wind ramp events seen in Fig. 5, denoting 330 

the improvement found in the HRRRv4 compared to the HRRRv3, confirming that physical developments in HRRRv4 are 

valid across the study area. This is true for all ramps, and for up ramps slightly more than for down ramps. 

5.2 Annual and seasonal statistical analysis 

A similar analysis to the one presented in the previous sections was repeated for the individual seasons and is presented here 

averaged over the study area. The left axes of Fig. 10 presents bar charts with the ramp skill scores averaged by model version 335 

(HRRRv3 in 2020 in violet, and the average of the skill of HRRRv4 in 2021 and 2022 in aqua) annually and by season, for all 

ramps (panel a), up ramps only (panel b), and down ramps only (panel c); right axes show the percentage improvements in 

skill score annually and by season, for all ramps (panel a), up ramps only (panel b), and down ramps only (panel c). 
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Figure 10: Left axes: Bar chart with skill scores averaged by model version annually and by season, for all ramps (panel a), up ramps 340 

only (panel b), and down ramps only (panel c). Right axes: Percentage improvements in skill score annually and by season, for all 

ramps (panel a), up ramps only (panel b), and down ramps only (panel c). 
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Most noticeable is the marked increase in the skill of detecting up ramps in HRRRv4 during the summer, with HRRRv4 nearly 

50% more skilful than HRRRv3. Across all seasons, and for both up ramps and down ramps, the skill of the HRRRv4 is 

improved relative to that of HRRRv3. Inter-annual variability can play a role in the skill of the model by year; nevertheless, in 345 

Appendix 2 we show that although there is variability in the hub-height wind field between year 2021 and 2022, in both years 

the skill of the model (HRRRv4) has improved substantially, with respect to that of year 2020 (HRRRv3). 

6 Summary and conclusions 

To mitigate the effects of fossil fuel production on climate change and meet the demands for new electricity generation, many 

nations are investing in renewable energy resources. Since the availability of renewable energy resources is inherently weather-350 

dependent, numerical weather prediction (NWP) model developers are also investing resources to improve the forecast of the 

meteorological variables of interest for grid operators. 

In this study, the operational High Resolution Rapid Refresh (HRRR) numerical weather prediction model is assessed in its 

ability to forecast wind ramp events. Wind ramp events are rapid changes in wind speed over short periods of time and their 

accurate forecast is very important for wind energy operators, so that they can reliably plan what source of energy to count on 355 

for the grid. The two most recent versions of the HRRR are considered in this study: version 3 (HRRRv3, operational from 

August 2018 to December 2020) and version 4 (HRRRv4, operational from December 2020 onward). Datasets used in this 

analysis were collected in the United States Great Plains, an area with a large amount of installed electricity generation from 

wind. This study uses wind speed observations from METeorological Aerodrome Reports (METARs) stations made at 10 m 

agl, and model output at the same height. 360 

The evaluation of the HRRR model in its two versions is performed using the Ramp Tool and Metric (RT&M), a tool aimed 

at measuring the skill of a NWP model at forecasting wind ramp events. This tool takes into consideration the fact that a ramp 

is not uniquely defined and measures the capability of a NWP model to accurately forecast the time of the event, its duration, 

and the amplitude of the change in the wind power capacity factor. 

The results are investigated from both annual and seasonal perspectives and show how the HRRRv4 is more accurate at 365 

forecasting wind ramp events compared to HRRRv3. The HRRRv4 demonstrated notable improvements in the skill of 

forecasting wind ramp events, compared to the skill of HRRRv3, with increased correlation coefficient and reduced root mean 

square error relative to change in wind power capacity factor found in the observations. Importantly, this analysis shows that 

across all seasons, and for both up and down ramp events, the skill of the HRRRv4 is improved relative to that of HRRRv3, 

with a marked increase in the HRRRv4’s skill at detecting up ramps during the summer (HRRRv4 nearly 50% more skillful 370 

than HRRRv3). Some of the advances between the versions of the model that likely contributed to the improvements found in 

this study are: improved higher-resolution data assimilation system, which provides better detailed initial conditions for the 

model; reduction in the solar radiation bias at the surface that is the result of the improved treatment of clouds, as the net 

radiation at the surface drives the surface energy budget which itself helps to drive turbulent mixing in the boundary layer; and 
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the reduction of the diffusion terms in the model, which allows for finer scale features to be maintained longer into the forecast 375 

before they dissipate. 

This study demonstrates the positive evolution of the operational HRRR model to support the integration of wind energy into 

the electric grid. 

 

Appendix 1 380 

To demonstrate that the results of our study are of interest for the wind energy community, we investigate representativeness 

of 10 m wind speed to 80 m wind speed. As a first step, we compared the HRRR model output at 2 levels: 10 m and 80 m agl 

over the time period from 2020-2022. We found a correlation coefficient equal to 0.84 between wind speed values at these 2 

heights. In addition, we converted the time series of the model at these levels to power and identified the 40%/2hr ramps at 

both levels. In Fig A1.1 we show the total number of ramps at each METAR weather station location. In general, we found that the 385 

number of ramps at 10 m is around 3 times less than the ramps at 80 m, but the correlation between the number of ramps at these 2 

levels over all locations is high (R = 0.82 for up ramps and R = 0.84 for down ramps). 

 

 

Figure A1.1: Total number of ramps (up ramps in upper panel and down ramps in bottom panel) by METAR weather stations for 390 

years 2020-2022. Red lines are relative to 10 m wind power capacity factor and blue lines are for 80 m wind power capacity factor. 
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We also looked at the geographical distribution of the ramps at these 2 levels, as presented in Fig. A1.2. The number of ramps 

at each site in this figure is normalized by the maximum number of ramps at that level over the entire domain. This 

demonstrates that the spatial pattern of the occurrence of wind ramps, both up and down ramps, is qualitatively very similar at 395 

the two heights.  

 

 

Figure A1.2: Normalized number of up ramps (panels a and b) and down ramps (c and d) for wind power capacity factor at 10 m 

(panels a and c) and at 80 m (panels b and d). 400 
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As noted in the main body of the manuscript, for all three years combined the normalized number of ramps is larger in the 

west side of the study area, in the north-western part of Texas, in Oklahoma, and Kansas compared to the north-east part of 

the domain. The normalized geographical distribution is consistent between the 10 m and 80 m levels. As it could be expected, 

the geographical distribution is smoother at 80 m. 405 

Although 80 m wind speeds are not measured in many locations compared to the availability of METAR stations observations, 

we used the long-term routine measurements collected at the Central Site of the ARM Southern Great Plains (SGP) 

Observatory in OK (lat: 36.6050 N; lon:  -97.4850 W; alt: 318m; Sisterson et al. 2016). At this location routine radiosondes 

are launched nominally every 6 hours. The time-height cross section of wind speeds by year is presented in Fig. A1.3, with 

corresponding correlation coefficient values for wind speed and wind power capacity between the 10 m and the levels above. 410 

Of course, this value decreases rapidly with height, but the correlation between the 10 m level and the next few levels is high 

(R = 0.94 for 10 m vs 80 m wind speed, and R = ~0.8 for 10 m vs 80 m wind power capacity factor) for all 3 years.  

 

Figure A1.3: Time-height cross section of wind speeds by year (2020 in panel a, 2021 in panel c, and 2022 in panel e) at the SPG site. 

Corresponding profiles of correlation coefficient values for wind speed between 10 m and the levels above are on the right panels 415 

(2020 in panel b, 2021 in panel d, and 2022 in panel f). Note that during the 3 April–5 May 2020 period, the SGP site was shut down 

due to COVID-19. 
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For this reason, we believe that, as for Newman and Klein (2014), the results from our study can be considered representative 

of the wind speed atmospheric field of interest for renewable energy. 420 

Appendix 2 

Inter-annual variability of wind speed in the study area has to be considered as a possible factor impacting the results of this 

study. We looked at the 2-dimensional wind speed field output at 80 m agl of the HRRR model individually for years 2020, 

2021, and 2022, and for winter and summer months, as presented in Fig. A2.1. 

 425 

 

Figure A2.1: Winter (DJF; a, b, and c) and summer (JJA; d, e, and f) geographical distribution of the wind speed at 80 

m derived from 1-h forecasts of the HRRR over 2020 (a and d), 2021 (b and e), and 2022 (c and f). 
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From this figure we do see that 80 m wind speeds are similar in winter months between years 2020 and 2021, but are stronger 430 

in 2022, while they are stronger in summer 2020 compared to summer months of 2021 and 2022. 

Nevertheless, if we look at the skill score by individual years (Fig. A2.2), we notice that although there are some differences 

in skill score between years 2021 and 2022 (with the same HRRRv4 model), the skill score is still improved in both years with 

HRRRv4 (2021 and 2022), compared to HRRRv3 (2020). This confirms that although inter-annual variability can impact the 

score of the model, HRRRv4 is still doing better than HRRRv3. 435 

 

Figure A2.2: Bar chart with model skill scores by years 2020, 2021, and 2022, annually and seasonally, for all ramps (panel a), up 

ramps only (panel b), and down ramps only (panel c).  
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Code availability 

The RT&M is publicly available online at http://www.esrl.noaa.gov/psd/products/ramp_tool/. The authors can be reached for 440 

assistance, if needed. 

Data availability 

The dataset from the METeorological Aerodrome Reports (METARs) stations is available at 

https://aviationweather.gov/data/metar/. The United States Geological Survey (USGS) Wind Turbine database is available at 

https://eerscmap.usgs.gov/uswtdb/. HRRR output is available from NOAA Open Data Dissemination site at 445 

https://registry.opendata.aws/noaa-hrrr-pds/. 
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