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Abstract. Incorporating more renewable energy into the electric grid is an important part of the strategy to expand our energy 14 

portfolio. To make the incorporation of renewable energy into the grid more efficient and reliable, numerical weather prediction 15 

models need to be able to predict the intrinsic nature of weather-dependent renewable energy resources. This allows grid 16 

operators to plan accurately the amount of energy they will need from each source (e.g., wind, solar, fossil fuel, etc.). For this 17 

reason, wind ramp events (rapid changes in wind speed over short periods of time) are important to forecast accurately. This 18 

is because one of their consequences is that wind energy could quickly be available in abundance or temporarily cease to exist. 19 

In this study, the ability of the operational High Resolution Rapid Refresh numerical weather prediction model to forecast 20 

wind ramp events is assessed in its two most recent versions: version 3 (HRRRv3, operational from August 2018 to December 21 

2020) and version 4 (HRRRv4, operational from December 2020 onward). The datasets used in this analysis were collected in 22 

the United States Great Plains, an area with a large amount of installed electricity generation from wind. The results are 23 

investigated from both annual and seasonal perspectives and show that the HRRRv4 is more accurate at forecasting wind ramp 24 

events compared to HRRRv3. Specifically, the HRRRv4 shows increased correlation coefficient and reduced root mean square 25 

error relative to the change in wind power capacity factor found in the observations, and in the skill of forecasting both up and 26 

down wind ramp events, with a marked increase in the HRRRv4’s skill at detecting up ramps during the summer (the HRRRv4 27 

is nearly 50% more skillful than the HRRRv3). This demonstrates that the HRRR’s continuing evolution will better support 28 

the integration of wind energy into the electric grid.  29 

 30 
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1 Introduction 31 

Many nations are making more investments in renewable energy sources (e.g., hydro, solar, and wind power). This is both to 32 

grow their energy portfolio and for economic reasons, given that renewable energy generation does not require the purchase 33 

of fuel. According to the International Energy Agency (IEA; Renewables, 2023) more than 500 GW of renewable electricity 34 

were added to grids around the world in 2023. This was the largest jump (nearly 50% from the year 2022) in the last two 35 

decades. Solar power is taking the lead in this new generation, followed by onshore and offshore wind energy (IEA; 36 

Renewables, 2023). Adding into consideration the decreasing costs for wind and solar photovoltaic systems, the IEA report 37 

estimates that wind and solar together will account for over 90% of the renewable power capacity that is added over the next 38 

five years (to 2028). 39 

Due to the inherent variability of weather-dependent renewable energy resources, numerical weather prediction (NWP) model 40 

developers are also investing resources to improve forecasting of the meteorological variables of interest for grid operators, 41 

who rely on NWP model forecasts to plan for energy source allocation. Indeed, NWP forecasts of wind speed have been used 42 

for over a decade in the decision making associated with integrating wind-generated power into the electrical grid (e.g., Yu et 43 

al. 2014; Dong et al. 2016; Jacondino et al. 2021). In this perspective, a series of Wind Forecast Improvement Projects (WFIP) 44 

have taken place in the United States (US). These projects have been sponsored by the US Department of Energy (DOE) and 45 

the National Oceanic and Atmospheric Administration (NOAA) and included partners from public and private institutions. 46 

The first WFIP (WFIP1; Wilczak et al., 2014, 2015) focused on measuring the impact of including additional meteorological 47 

information to the initialization of operational weather prediction models. WFIP1 conducted a 12-month field campaign in 48 

2011-2012 in the US Great Plains, an area of large wind energy production. The second WFIP (WFIP2; Shaw et al. 2019, 49 

Wilczak et al. 2019a, and Olson et al. 2019a) focused on an 18-month field campaign that took place in 2015-2017 in the US 50 

Pacific Northwest, also an area of large wind energy production. The goal of WFIP2 was to improve physical parameterizations 51 

within operational weather prediction models in complex terrain, where the wind flow is modulated by terrain features that are 52 

more difficult to simulate. The third WFIP (WFIP3) includes an 18-month field campaign off the coast of New England in the 53 

Eastern US, where many offshore wind plants are currently being erected. This ongoing effort, which started in February 2024, 54 

aims at supporting offshore wind generation through better forecasting for existing, new, and planned wind farms placed 55 

offshore of this area.  56 

All the findings from the WFIP efforts have been transferred to operational versions of the High Resolution Rapid Refresh 57 

(HRRR) model. The HRRR is a regional, rapid-refresh, convective-allowing (3 km horizontal grid) NWP model run 58 

operationally by the National Weather Service (NWS). The HRRR utilises the Weather Research and Forecasting (WRF) 59 

model (Skamarock and Klemp, 2008), wherein the development focused on improving the suite of physical parameterizations 60 

and data assimilation scheme to work well with each other for a range of operational forecasting applications. The HRRR first 61 

became operational in 2014, and remains as a key forecasting tool used by the NWS and other groups due to its hourly update 62 

and high resolution. Details on the HRRR’s configuration, data assimilation system, physical parameterizations, and evaluation 63 
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can be found in Dowell et al. (2022) and James et al. (2022). This paper will focus on two versions of the HRRR: version 3 64 

(which was operational in the NWS from 12 July 2018 to 1 Dec 2020) and version 4 (which became operational in the NWS 65 

on 2 Dec 2020). The primary differences between these two versions are (a) the improved horizontal resolution of the data 66 

assimilation system, (b) improved treatment of clouds that are smaller than the resolution of the model, (c) the introduction of 67 

wildfire smoke into the model, including its impact on solar radiation, (d) the improvement of the vertical advection scheme, 68 

and (e) the reduction in the strength of the numerical diffusion used within the model (Dowell et al., 2022). 69 

The intrinsic variability of the wind is amplified when the wind speed is converted into power, due to the relationship between 70 

wind speed and wind power capacity factor. In the range of wind speed values between the cut-in (minimum wind speed below 71 

which no power production is obtained by the wind turbines) and cut-off (maximum wind speed above which wind turbines 72 

have to be shut down to avoid strain on the rotor) thresholds, a change of a few m s-1 in wind speed can result in a change in 73 

wind power production of more than 50%. When these large power production changes happen over a short period of time 74 

(i.e., less than a couple hours), they are referred to as wind ramps. The accurate forecast of wind ramps is very important for 75 

wind energy operators and has potentially large economic impacts, as they need to plan in advance what source of energy will 76 

be available to the grid, as well as outside of the United States (Jeon et al., 2022; Jin et al., 2024). Turner et al. (2022) and Jeon 77 

et al. (2022) already demonstrated that improvements in the operational HRRR have resulted in significant economic savings 78 

for the US through better grid operators’ decision-making. In their studies, they found appreciable economic gain between 79 

HRRR versions 1 (HRRRv1) and 2 (HRRRv2) and a smaller but still appreciable gain between versions 2 (HRRRv2) and 3 80 

(HRRRv3). 81 

The accuracy of the NWP model at forecasting wind ramp events cannot be estimated using standard statistical metrics (e.g., 82 

mean absolute error, correlation coefficient, or root mean square error) because these would also take into consideration the 83 

periods of time when the wind power is at its minimum or full capacity. Therefore, a tool called the Ramp Tool and Metric 84 

(RT&M) was developed to evaluate an NWP model only for the times when wind ramps occur, with the aim of measuring the 85 

skill of the NWP model at forecasting wind ramp events (Bianco et al., 2016). The RT&M has been used during WFIP1 86 

(Bianco et al., 2016; Akish et al., 2019) and WFIP2 (Djalalova et al. 2020) campaigns to estimate the improvement in the 87 

operational NWP models. 88 

 89 

In this study, the RT&M is used to estimate the skill of the operational HRRR model in its two most recent versions, version 90 

3 (HRRRv3) and version 4 (HRRRv4). The analysis is performed using the datasets collected in the US Great Plains, where 91 

wind energy production is abundant, and is achieved on an annual basis, as well as on a seasonal basis. 92 

The manuscript is organized as follows: the wind ramp definition and the RT&M used to evaluate the model forecast skill are 93 

described in Sec. 2; the area of investigation and the datasets (observational and model) used are presented in Sec. 3; the diurnal 94 

and seasonal variability of wind speed and ramp events in the study area are presented in Sec. 4; the skill of the HRRRv3 and 95 

HRRRv4 models at forecasting ramp events both from an annual and a seasonal perspective is discussed in Sec. 5. Finally, the 96 

summary and conclusions are in Sec. 6. 97 

https://rmets.onlinelibrary.wiley.com/authored-by/Jin/Chenxi
Comment on Text
Consider rephrasing as "exceeding turbine design loads" for generality.

Highlight
Phrasing unclear here — operators need to plan what source of energy will be available outside of the US?
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2 Wind ramps definition and description of the RT&M 98 

Weather-dependent energy is subject to rapid changes of power availability over short periods in time, referred to as ramps. In 99 

this study, the dependence of wind power capacity factor (P) to wind speed (WS), in the range of wind speed values between 100 

3-16 m s-1 (region II of the wind speed to wind power capacity factor curve), is assumed to be given by the formula presented 101 

in Wilczak et al. (2019b). This formula is computed using the average of several wind power capacity factor curves for IEC 102 

Class 2 turbines. 103 

Additional information to be considered is: (a) below the cut-in wind speed (3 m s-1) the wind is insufficient to produce power 104 

by the wind turbines, therefore P = 0 (region I of the wind speed to wind power capacity factor curve); (b) between 16 m s-1 105 

and the cut-off wind speed (25 m s-1) the wind power capacity factor is at its maximum (P = 1, region III of the wind speed to 106 

wind power capacity factor curve); and (c) above the cut-off wind speed the wind turbines have to be shut down to avoid strain 107 

on the rotor, therefore P = 0 (region IV of the wind speed to wind power capacity factor curve). 108 

The wind speed to wind power capacity factor curve is presented in Fig. 1 109 

 110 
Figure 1: Wind speed to wind power capacity factor conversion curve. Cut-in wind speed is 3 m s-1 and cut-off wind speed is 25 m s-111 
1. Regions I, II, III, and IV of the curve are indicated in between the dashed lines. 112 
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The RT&M has three components: the first is the identification of ramp events in the time series of the observed and model 113 

power data; the second is matching observed ramp events with those predicted by the forecast model; the final component is 114 

scoring the ability of the model to forecast ramp events (both timing and intensity). As an exact definition of a ramp is not 115 

unique (i.e., how much the wind power capacity factor has to change and over what time period for the event to be considered 116 

a ramp), a metric that is aimed at evaluating an NWP model at forecasting ramp events has to include a range of ramp 117 

parameters. Additionally, the skill of a model at forecasting the occurrence of these events has to consider the capability of the 118 

model to predict the time of the event (or its central time, Ct), its duration (ΔT), and the amplitude of the change in the wind 119 

power capacity factor (ΔP). The RT&M was developed to take into consideration the fact that a ramp is not uniquely defined 120 

and that the skill of the model is a function of accurately forecasting all three Ct, ΔT, and ΔP variables. This RT&M is described 121 

in Bianco et al. (2016). 122 

Equations for the computation of the model skill score at forecasting wind ramp events are formulated for different matching 123 

scenarios between forecasted and observed ramps. Specifically, 8 possible scenarios of model vs observed events are 124 

considered, consisting of: up/up, up/null, up/down, null/up, null/down, down/up, down/null, down/down, resulting in the 3x3 125 

contingency table except null/null events that do not impact the score. For null scenarios (up/null, null/up, null/down, and 126 

down null), the score will be equal to 0. For the nonnull scenarios the score is computed as a cube-root equation dependent on 127 

the three nondimensional errors associated with the amplitude, timing, and duration of the ramp, with coefficients based on 128 

the 8 different scenarios, as described in detail by Eq. 1-8 of Bianco et al. (2016). 129 

This metric has potential usefulness for grid operators that need to quantify the reliability of NWP models they depend on for 130 

their decision making, or for NWP model developers to test whether their efforts at improving the operational model are 131 

reflected in better forecasts that can benefit the energy sector. 132 

3 Area of investigation and dataset description 133 

According to Table 1.14.B of the US Energy Information Administration (EIA) electric power monthly report (US EIA, 2024), 134 

the six states with the most electricity generation from wind in 2023 were Texas, Iowa, Oklahoma, Kansas, Illinois, and New 135 

Mexico. These six states combined produced about 64% of total US wind electricity generation in 2023. 136 

 137 
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 138 
Figure 2: Annual mean (a) and standard deviation (b) of the wind speed at 80 m derived from 1-h forecasts from the HRRR over 139 
2020–2022. Panels (c) and (d) show the mean wind speed for DJF and JJA, respectively, and panels (e) and (f) show the standard 140 
deviation of the wind speed for DJF and JJA, respectively (using the same colour bar ranges as in panels (a) and (b)). 141 

This information is also confirmed by the 2-dimensional wind speed field output at 80 m above ground level (agl) of the HRRR 142 

model (Fig. 2), which is a typical height used for wind energy investigations. From this figure, larger values of 80 m wind 143 

speed can be seen in the six states listed above, which will also result in more wind power ramp events at these locations, 144 

which will be explored in Section 3.2. Another interesting feature shown in Fig. 2 is the lower values of summer 80 m wind 145 

speed (Fig. 2d), compared to winter (Fig. 2 c). This will also be explored later in the manuscript when comparing the model 146 

to the observations (Section 4). 147 

One of the atmospheric phenomena experienced in the US Great Plains, and of large interest for wind energy, are low-level-148 

jets (LLJs). LLJs have been studied for many years (e.g., Bonner, 1968, Whiteman et al. 1997, Banta et al. 2002, Banta et al., 149 

2008) and occur often in the US Great Plains, particularly in the southern part of it (Freedman et al., 2008). They happen over 150 

Comment on Text
After reading Section 3.2, I do not follow how higher average wind speeds at 80-m AGL necessarily results in more ramp events. For example, Iowa has relatively high wind speeds but Fig 5 shows consistently fewer ramp events than, say, northern Texas.
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relatively flat terrain, during nighttime when the boundary layer is stable, as the ground cools down during the evening 151 

boundary layer transition and the flow is decoupled just above the surface. This decoupling leads to an acceleration of the flow 152 

above the atmospheric surface layer and produces a layer of air with high-momentum, which often exhibits a maximum in the 153 

vertical profile of the horizontal wind. Whiteman et al. (1997) analyzed the climatology of the LLJ in the United States Great 154 

Plains from 2 years of radiosonde data and found that the height of the jet maximum occurs most frequently in the 300–600-155 

m height range, with a peak between 300 and 400 m. Of course, it would be ideal in this analysis to use a dataset of wind 156 

speeds at hub-height. Unfortunately, this is not possible as there were very few such observational datasets available to carry 157 

out a meaningful geographical investigation. 158 

Previous studies (Schwartz and Elliott, 2005; Newman and Klein, 2014) also recognize the fact that, although the wind speed 159 

at hub height is the one of interest for wind energy application, most wind speed measurements are taken at 10 m agl as tall 160 

meteorological towers are expensive to build, operate, and maintain. Newman and Klein (2014) used the Oklahoma Mesonet 161 

surface observation stations and compared the most widely used extrapolation method to relate 10 m measurements to 80 m 162 

wind speeds collected by tall towers. They found that the power law, which relies only on the information of wind speed at a 163 

reference height (i.e., 10 m agl) and a shear exponent (dependent on atmospheric stability regimes), produced accurate 80 m 164 

wind speed estimates from 10 m wind speed observations and concluded that these could be therefore used for increasing our 165 

knowledge of hub-height wind speed climatologies. 166 

To ensure that the conclusions of our study are of interest for the wind energy community, we investigate if the results found 167 

using 10 m wind speed are applicable to the wind speed field at a typical hub-height, such as 80 m agl. Ramp events can be 168 

divided into those that occur because of the strong diurnal variability within the boundary layer, and those that are associated 169 

with meteorological phenomena such as cold fronts, gust fronts, or other changes in forcing from transient mesoscale pressure 170 

gradient fields. Although the diurnal variation of wind speeds at 10 m and at several 100 m can be out-of-phase (with 10 m 171 

wind speeds decreasing during the night time hours while at 300-400 m they may increase at night due to the low-level jet) 172 

diurnal variations at both heights are driven by surface and boundary layer fluxes and turbulent mixing. If improvements to 173 

the model’s parameterization of those diurnal processes increases forecast skill at 10 m, one could speculate that improvements 174 

to forecast skill would also be found at greater heights within the boundary layer. Although we only use 10 m observations in 175 

our analysis, evaluation of 10 and 80 m winds in the model indicate that improvements to 80 m wind forecasts are in fact 176 

expected. The results of this investigation are presented in Appendix A, supporting that our findings can be considered 177 

representative of the wind speed atmospheric field of interest for renewable energy and we will thereafter use wind speed 178 

observations made at 10 m agl. This study focuses on the geographical area of the US Great Plains, where a large number of 179 

observations is available. Model output at the same height will be used for comparison.  180 

3.1 Observational dataset description and preparation 181 

The observational dataset used in this study is obtained by the METeorological Aerodrome Reports (METARs) stations, a 182 

network of weather stations located mainly in airports and used for flight planning and weather forecasting 183 

Comment on Text
I was led to believe that this paper would distinguish between diurnal ramps (during morning/evening transitions) and ramps driven by other mesoscale phenomena. Can it be concluded that the vast majority of ramp phenomena (at least in the US SGP) are associated with diurnal variability (based on Fig 7)? Maybe some simple statistics can be reported (XX% of ramps were observed ±1 hr of sunrise/sunset).
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(https://aviationweather.gov/data/metar/). The United States Geological Survey (USGS) Wind Turbine database 184 

(https://eerscmap.usgs.gov/uswtdb/) was used to identify the location of the wind turbines. The 10 m agl wind speed 185 

observations at locations that are within 20 km of a wind turbine are extracted. Native METAR data are typically 15-min or 186 

20-min resolution; as the output from the HRRR is hourly, we have linearly interpolated the METAR observations in time to 187 

the HRRR output times (i.e., the top of each hour). Generally, the observation close to the top of the hour is within 10 minutes. 188 

Fig. 3 shows the geographical location of the METAR weather stations used in this study, which are superimposed over the 189 

topography of the study area. The location of the METAR weather stations allows for a geographically well distributed analysis 190 

of the results. 191 

 192 
Figure 3: Geographical location of the METAR weather stations used in this study superimposed on the topography of the study 193 
area. 194 

https://aviationweather.gov/data/metar/
https://eerscmap.usgs.gov/uswtdb/
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3.2 Operational model description and preparation 195 

As mentioned earlier, the model of interest in this study is the operational HRRR, which uses a 3-km grid spacing. The HRRR 196 

is initialized from the operational Rapid Refresh model (RAP; Benjamin et al. 2016), and assimilates other observations (e.g., 197 

METAR, AMDAR aircraft, and weather radar data) to derive its analysis, from which forecasts are initiated. The HRRR 198 

provides 18 h forecasts every hour, but for four times per day the maximum forecast length is extended. For those four 199 

initialization times (00:00, 06:00, 12:00, and 18:00 UTC), the HRRRv3 provides forecast out to 36 forecast hours, while the 200 

HRRRv4 goes out to 48 hours. Additional details on the model configurations and parameterizations are provided in Dowell 201 

et al. (2022).  202 

The “day-ahead” forecast is particularly useful for the energy community, as that is when decisions are made on the amount 203 

of fossil fuel generation to have on-line, which depends on the amount of wind (and solar) energy that is expected to be 204 

generated. Thus, we focused on the 00:00 UTC initialization, and used the 12-to-36 h forecasts from both the HRRRv3 and 205 

HRRRv4. For each model, the 13-to-36 h forecasts were concatenated to provide continual temporal coverage across the time 206 

periods analyzed. However, an artificial “ramp” could be created when merging the 36-h forecast initialized at 00:00 UTC on 207 

day X with the 13-h forecast initialized on day X+1 at 00:00 UTC due to a slight bias between the two forecast runs. To reduce 208 

this impact, a 3-point (equivalent to 3 hours) smoother was applied to the transition times; i.e., the model output valid at 23:00 209 

was the weighted average of the output valid at 22:00, 23:00, and 00:00 with the two outer points having 25% weight and the 210 

central time having a 50% weight, whereas the model output valid at 00:00 was the weighted average of the output valid at 211 

23:00, 00:00, and 01:00 with the same weighting approach.  212 

An example of how the model forecast runs are combined together to provide a time series of wind power capacity factors to 213 

compare with the observations is presented in Fig. 4. Both observed and modeled wind power capacity factors are obtained 214 

applying the wind power curve to the 10 m observed and modeled wind speeds. In this example, a time series of the observed 215 

wind power capacity factors at 10 m agl for the KEWK METAR weather station, located in Kansas, is presented with the black 216 

solid line for the time period from 8 April 2021 to 13 April 2021. Dashed lines, in different colors, present the HRRRv4 217 

forecasts (out to 48 forecast hours), at 00Z initialization times each day. The solid red line represents the time series of the 218 

model data obtained by the procedure described above. In this example, several ramp events are identifiable. The sharpest 219 

down ramp happens at the end of 8 April 2021, while the sharpest up ramp event is noticeable at the end of 9 April 2021. 220 

During these events, the available wind power capacity factor for a wind turbine at this location could easily go from its 221 

maximum to zero and vice-versa. The HRRRv4 tends to reproduce the wind power capacity factor fairly well, with some 222 

inaccuracy in the timing, amplitude, and duration of the ramp events. These inaccuracies are taken into consideration by the 223 

RT&M when the skill of the model is computed. 224 

 225 

Comment on Text
Should this be 13? Otherwise the distinction is unclear to me.

Comment on Text
Is it not clear to me how the forecasts are stitched together. Let's take 12:00 on day X+1. The valid forecast is from day X, forecast hour 36 (f36); the forecast from day X+1 (f12) is not used. Smoothly transitioning between forecasts makes sense: 12:00 is the weighted average of 11:00 (f35), 12:00 (f36), and 13:00 (f13). Similarly, 13:00 should be the weighted average of 12:00 (f36), 13:00 (f13), and 14:00 (f14). Before 12:00 and after 13:00, it does not seem practical to smooth the modeled winds from the same forecast. I'm confused by the averaging applied at 23:00 and 00:00. It might be helpful in the discussion to include the forecast hour associated with each time.
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 226 

Figure 4: Time series of the wind power capacity factor from 8 April 2021 to 13 April 2021 from the KEWK METAR weather 227 
station, located in Kansas (black line), and of the HRRRv4 forecasts (out to 48 forecast hours) at 00Z initialization times (dashed 228 
lines in different colour for the different days). The wind power capacity factors are obtained converting the 10 m observed and 229 
modelled wind speeds. 230 

An optimal way to evaluate the relative skill of the HRRRv3 against the HRRRv4 would be to use periods of time when both 231 

models are available. However, since we are assessing the operational models, there are no periods of overlap that can be used. 232 

To prove that using different time periods for the two versions of the HRRR is a valid alternative, we looked at the geographical 233 

distributions of wind ramp events found on the 10 m agl wind power capacity factor of the HRRRv3 in 2020 and the HRRRv4 234 

in 2021 and 2022. Fig. 5 shows the number of ramp events (for the type of ramps defined as having a ΔP/ΔT ≥ 40%/2hrs) at 235 

each of the observational locations, represented with colored circles function of the number of identified ramps. The 236 

geographical distribution of the number of wind ramp events agrees with the annual wind speed geographical distribution 237 

presented in Fig.2. Additionally, the geographical distribution of the number of these events are very similar between HRRRv3 238 

in 2020 (panel a), HRRRv4 in 2021 (panel b), and HRRRv4 in 2022 (panel c). Of course, it has to be considered that the inter-239 

annual variability of the wind distribution across the study area could impact the results of this study. A discussion about this 240 

possibility is included in Appendix B. It is interesting to note how for all three years the number of ramps is larger in the west 241 

side of the study area, in the north-western part of Texas, in the southeast locations closer to the Gulf of Mexico, and in 242 

Oklahoma. Consistently between the years, there are fewer ramps in the central part of Texas and on the eastern side of the 243 
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study domain. The central, northern, and north-eastern parts of the study area experience fewer ramp events, and the numbers 244 

are relatively consistent for all three years. This confirms that even though the time periods used to evaluate the HRRRv3 and 245 

HRRRv4 are not coincidental, the comparison is still valuable. 246 

 247 
Figure 5: Geographical distribution of wind ramp events (ΔP/ΔT ≥ 40%/2hrs), at each tower location, by year: HRRRv3 in 2020 is 248 

in panel a, HRRRv4 in 2021 and 2022 are in panel b and c, respectively. 249 

Similarly, the geographical distribution of the ratio between the number of forecast wind ramps (for the type of ramps defined 250 

as having a ΔP/ΔT ≥ 40%/2hrs) and those observed, for the three years is presented in Fig. 6 (panels a, b, and c). It is noticeable 251 

how the models tend, in general, to find fewer ramp events (ratio less than 1), which is expected due to the smoother wind 252 

field output of the model compared to observations. This is in accordance with what was found by Bianco et al. (2016) and by 253 

Djalalova et al. (2020). Nevertheless, it is encouraging to find that the average of the ratio over the study area of the ratio tends 254 

to get closer to 1 for the HRRRv4 periods relative to the HRRRv3 period (being equal to 0.53 ± 0.24, 0.58 ± 0.24, and 0.68 ± 255 

0.22 respectively for the years 2020, 2021, and 2022). 256 

To further show that the ratio between the number of forecast wind ramps and those observed improves over the years and the 257 

model versions, we present the geographical distribution of the improvement from 2020 to 2021 and from 2020 to 2022, in 258 

panels d and e of Fig. 6, respectively. As noticeable, at most of the stations (72.5% of panel d, and 67% of panel e) the 259 

improvement is positive. 260 

 261 
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 272 

Figure 6: Geographical distribution of the ratio of the number of model vs observational wind ramp events (ΔP/ΔT ≥ 40%/2hrs), at 273 
each tower location, by year: HRRRv3 in 2020 is in panel a, HRRRv4 in 2021 and 2022 are in panel b and c, respectively). 274 
Improvement in this ratio is in panel d for HRRRv4 in 2021 vs HRRRv3 in 2020, and in panel e for HRRRv4 in 2022 vs HRRRv3 in 275 
2020. 276 
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4 Diurnal and seasonal variability of 10 m wind speed and ramp events in the observational and model datasets 277 

The composites of the diurnal variability of the 10 m wind speed field over the study area are presented in Fig. 7 (right y-axes), 278 

for the four seasons in the different years. The spring, summer, fall, and winter seasons are presented in panels a, b, c, and d 279 

for 2020, in panels e, f, g, and h for 2021, and in panels i, j, k, and l for 2022. The mean diurnal observed wind speeds are in 280 

blue and modeled values in magenta. The diurnal cycle of the 10 m wind speed field is clearly evident, with winds weaker at 281 

night time and increasing in value starting from sunrise into the daytime (local time in the US Great Plains is: LT = UTC - 5). 282 

The strongest daytime winds are experienced in the spring, while summer has the weakest 10 m wind speeds throughout the 283 

whole day. The models are able to reproduce the diurnal variability of this field pretty well (magenta and blue time-series for 284 

the model and observations, respectively), across the three years and for the different seasons. On the left y-axes are plotted 285 

the total number of ramps measured by the observations and by the models, for both up ramps (positive ΔP) and down ramps 286 

(negative ΔP). 287 

 288 

Comment on Text
Please quantify or remove.



14 
 

 289 
Figure 7: Left axes: Total number of wind ramp events for one ramp definition (ΔP/ΔT ≥ 40%/2hrs) over the study area as a function 290 

of time-of-day (hours UTC), for the four seasons. Winter is defined as December, January, and February; spring as March, April, 291 
and May; summer as June, July, and August; and fall as September, October, and November (left to right: spring, summer, fall, 292 
and winter) in the different years (panels a, b, c, and d: 2020; panels e, f, g, and h: 2021; and panels i, j, k, and l: 2022). Right axes: 293 
Composites of the diurnal variability of the 10 m wind speed field over the study area, for the four seasons in the different years. 294 
Sunrise and sunset times are denoted by the red and navy arrows, respectively. 295 

It is apparent that the daily distribution of ramp events analyzed in this study follows the diurnal cycle of the 10 m wind speed 296 

for all seasons with down ramps more evident around 22:00-03:00 UTC when the 10 m wind speed sharply decreases, and up 297 

ramps more evident around 12:00-17:00 UTC when the 10 m wind speed sharply increases. For this reason, the diurnal peaks 298 

in the ramps coincide with the largest temporal changes in the mean wind speed. We could speculate that a reverse behavior 299 

in the diurnal cycle of wind speed may appear at higher heights, especially at nighttime. This consideration is particularly valid 300 
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at the height of the nose of the LLJ although, as mentioned earlier, Whiteman et al. (1997) found that the height of the jet 301 

maximum occurs most frequently between 300–600-m. 302 

Although, as discussed in Fig. 6, the number of observed ramps is in general larger than the number of model ramps, we 303 

performed a statistical analysis for the matched wind ramp events (model and observed ramps are matched when the distance 304 

between their relative central time is less than the defined time window length, i.e. 2hr for the type of ramps defined as having 305 

a ΔP/ΔT ≥ 40%/2hrs). The correlation and root mean square error (RMSE) in ΔP for these matched events at all sites are 306 

presented in Fig. 8. For HRRRv4 we used the averaged correlation coefficient and RMSE of years 2021 and 2022. With the 307 

exception of winter, both the statistical metrics improve in HRRRv4 compared to HRRRv3. 308 

 309 
Figure 8: Left axes: Bar charts of correlation coefficients (panel a) and RMSE (panel b) of observed vs modelled ΔP (for matched 310 

wind ramp events defined as ΔP/ΔT ≥ 40%/2hrs) by year (left to right: annually and by season). There are two different sets of data, 311 
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with 2020 in violet and the average of years 2021 and 2022 in aqua. Right axes: Percentage improvements in correlation (panel a), 312 
and in RMSE (panel b). 313 

5 Models’ skill at forecasting ramp events 314 

 5.1 Annual geographical analysis 315 

In this section, the geographical distribution of the annual improvements in the skill of the HRRRv4 versus HRRRv3 is 316 

discussed. The improvement in the skill is computed as: 317 

𝐼𝐼𝐼𝐼𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (%)  =  [(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻4)  −  (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3)] / (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3) 𝑥𝑥 100   (1) 318 
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 319 
Figure 9: Geographical distribution of the annual improvement of the HRRRv4 vs HRRRv3 skill score at forecasting ramp events 320 
at each tower location, by year (panels a, b, and c: 2021 vs 2020; panels d, e, and f: 2022 vs 2020), for all ramps (panels a and d), up 321 
ramps (b and e), and down ramps (c and f). 322 
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Fig. 9 presents the improvements in red (or degradation in blue) in the skill scores for year 2021 vs 2020 and year 2022 vs 323 

2020, and for all ramps, up ramps only, and down ramps only. The predominance of increased skill (red colours) is apparent 324 

and it is quite uniform spatially, despite the different geographical distribution of wind ramp events seen in Fig. 5, denoting 325 

the improvement found in the HRRRv4 compared to the HRRRv3, confirming that physical developments in HRRRv4 are 326 

valid across the study area. This is true for all ramps, and for up ramps slightly more than for down ramps 327 

5.2 Annual and seasonal statistical analysis 328 

A similar analysis to the one presented in the previous sections was repeated for the individual seasons and is presented here 329 

averaged over the study area. The left axes of Fig. 10 presents bar charts with the ramp skill scores averaged by model version 330 

annually and by season, for all ramps, up ramps only, and down ramps only; right axes show the percentage improvements in 331 

skill score annually and by season, for all ramps, up ramps only, and down ramps only. 332 

Comment on Text
Is there anything more to add here? Could you comment on why the skill score is generally worse in the north, or in the vicinity of Minneapolis? Or the large change between years along the Gulf coast? What model deficiencies (urban parameterizations, shoreline resolution, SST...) might this suggest—or is this out of scope?

Comment on Text
This seems to tell a different story about winter than Fig 8, which shows no improvement. Can you briefly discuss?
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 333 
Figure 10: Left axes: Bar chart with skill scores averaged by model version annually and by season, for all ramps (panel a), up ramps 334 
only (panel b), and down ramps only (panel c). Right axes: Percentage improvements in skill score annually and by season, for all 335 
ramps (panel a), up ramps only (panel b), and down ramps only (panel c). 336 
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Most noticeable is the marked increase in the skill of detecting up ramps in HRRRv4 during the summer, with HRRRv4 nearly 337 

50% more skillful than HRRRv3. Across all seasons, and for both up ramps and down ramps, the skill of the HRRRv4 is 338 

improved relative to that of HRRRv3. Inter-annual variability can play a role in the skill of the model by year; nevertheless, in 339 

Appendix B we show that although there is variability in the hub-height wind field between year 2021 and 2022, in both years 340 

the skill of the model (HRRRv4) has improved substantially, with respect to that of year 2020 (HRRRv3). 341 

5.3 Daytime and night time statistical analysis 342 

Since it could be argued that our results are dependent on atmospheric conditions, it would be helpful to know under which 343 

conditions conclusions drawn from 10 m data are most robust, and under which conditions further caution is needed. 344 

To see if the improvements presented in the previous section are still consistent between stable vs unstable atmospheric 345 

conditions, the dataset was divided into night time and daytime (due to the lack of temperature measurements at different levels 346 

from which to determine stability). We then recomputed the models’ skills and skill improvements over these different time 347 

periods for ramps defined as ΔP/ΔT ≥ 40%/2hrs. 348 

The daytime period is selected to be 12:00 to 22:00 UTC and the night time is 23:00 UTC plus 00:00 to 11:00 UTC. The results 349 

of this exercise showed that the daytime skill of the HRRRv4 years compared to the HRRRv3 year improved by 10.3% and 350 

9.1% in 2021 and 2022, respectively, and that the night time skill of the HRRRv4 years compared to the HRRRv3 year 351 

improved by 9.0% and 21.9% in 2021 and 2022, respectively. These results show that, although there are differences in values, 352 

the improvements are still consistently positive for both daytime and night time periods, and for both HRRRv4 years, compared 353 

to the HRRRv3 year. 354 

6 Summary and conclusions 355 

To increase energy availability and meet the demands for new electricity generation, many nations are investing in renewable 356 

energy resources. Since the availability of renewable energy resources is inherently weather-dependent, numerical weather 357 

prediction (NWP) model developers are also investing resources to improve the forecast of the meteorological variables of 358 

interest for grid operators. 359 

In this study, the operational High Resolution Rapid Refresh (HRRR) numerical weather prediction model is assessed in its 360 

ability to forecast wind ramp events. Wind ramp events are rapid changes in wind speed over short periods of time and their 361 

accurate forecast is very important for wind energy operators, so that they can reliably plan what source of energy to count on 362 

for the grid. The two most recent versions of the HRRR are considered in this study: version 3 (HRRRv3, operational from 363 

August 2018 to December 2020) and version 4 (HRRRv4, operational from December 2020 onward). Datasets used in this 364 

analysis were collected in the United States Great Plains, an area with a large amount of installed electricity generation from 365 

wind. This study uses wind speed observations from METeorological Aerodrome Reports (METARs) stations made at 10 m 366 

agl, and model output at the same height. 367 

Comment on Text
But at the same time, there is substantial inter-annual variability in the prediction of downramps (based on Fig B2(c)). Perhaps it would be more meaningful to highlight the v4 improvements during Spring and Fall, when the increase in skill score is consistently greater than the interannual variability.
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The evaluation of the HRRR model in its two versions is performed using the Ramp Tool and Metric (RT&M), a tool aimed 368 

at measuring the skill of an NWP model at forecasting wind ramp events. This tool takes into consideration the fact that a ramp 369 

is not uniquely defined and measures the capability of a NWP model to accurately forecast the time of the event, its duration, 370 

and the amplitude of the change in the wind power capacity factor. 371 

The results are investigated from both annual and seasonal perspectives and show how the HRRRv4 is more accurate at 372 

forecasting wind ramp events compared to HRRRv3. The HRRRv4 demonstrated notable improvements in the skill of 373 

forecasting wind ramp events, compared to the skill of HRRRv3, with increased correlation coefficient and reduced root mean 374 

square error relative to change in wind power capacity factor found in the observations. Importantly, this analysis shows that 375 

across all seasons, and for both up and down ramp events, the skill of the HRRRv4 is improved relative to that of HRRRv3, 376 

with a marked increase in the HRRRv4’s skill at detecting up ramps during the summer (HRRRv4 nearly 50% more skillful 377 

than HRRRv3). Some of the advances between the versions of the model that likely contributed to the improvements found in 378 

this study are: improved higher-resolution data assimilation system, which provides better detailed initial conditions for the 379 

model; reduction in the solar radiation bias at the surface that is the result of the improved treatment of clouds, as the net 380 

radiation at the surface drives the surface energy budget which itself helps to drive turbulent mixing in the boundary layer; and 381 

the reduction of the diffusion terms in the model, which allows for finer scale features to be maintained longer into the forecast 382 

before they dissipate. 383 

This study demonstrates the positive evolution of the operational HRRR model to support the integration of wind energy into 384 

the electric grid. 385 

Appendix A 386 

To demonstrate that the results of our study are of interest for the wind energy community, we investigate representativeness 387 

of 10 m wind speed to 80 m wind speed. As a first step, we compared the HRRR model output at 2 levels: 10 m and 80 m agl 388 

over the time period from 2020-2022. We found a correlation coefficient equal to 0.84 between wind speed values at these 2 389 

heights. In addition, we converted the time series of the model wind at these levels to power and identified the number of 390 

ramps that reached 40%/2hr at both levels. In Fig A1 we show the total number of ramps at each METAR weather station 391 

location. In general, we found that the number of ramps at 10 m is around 3 times less than the ramps at 80 m, but the correlation 392 

between the number of ramps at these 2 levels over all locations is high (R = 0.82 for up ramps and R = 0.84 for down ramps). 393 

We recognize that a correlation of 0.84 explains only 70% of the variance between 10 and 80 m wind speeds and number of 394 

ramps at those two heights. The remaining 30% are uncertainties that could possibly reflect in different diurnal wind speed 395 

and ramp events behaviours at these two heights. 396 

 397 
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 398 
Figure A1: Total number of ramps (up ramps in upper panel and down ramps in bottom panel) by METAR weather stations for 399 
years 2020-2022. Red lines are relative to 10 m wind power capacity factor and blue lines are for 80 m wind power capacity factor. 400 
 401 

We also looked at the geographical distribution of the ramps at these 2 levels, as presented in Fig. A2. The number of ramps 402 

at each site in this figure is normalized by the maximum number of ramps at that level over the entire domain. This 403 

demonstrates that the spatial pattern of the occurrence of wind ramps, both up and down ramps, is qualitatively very similar at 404 

the two heights.  405 

 406 
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 407 
Figure A2: Normalized number of up ramps (panels a and b) and down ramps (c and d) for wind power capacity factor at 10 m 408 
(panels a and c) and at 80 m (panels b and d). 409 
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 410 

As noted in the main body of the manuscript, for all three years combined the normalized number of ramps is larger in the 411 

west side of the study area, in the north-western part of Texas, in Oklahoma, and Kansas compared to the north-east part of 412 

the domain. The normalized geographical distribution is consistent between the 10 m and 80 m levels. As it could be expected, 413 

the geographical distribution is smoother at 80 m. 414 

Although 80 m wind speeds are not measured in many locations compared to the availability of METAR stations observations, 415 

we used the long-term routine measurements collected at the Central Site of the ARM Southern Great Plains (SGP) 416 

Observatory in OK (lat: 36.6050 N; lon: -97.4850 W; alt: 318m; Sisterson et al. 2016). At this location routine radiosondes are 417 

launched nominally every 6 hours. The time-height cross section of wind speeds by year is presented in Fig. A3, with 418 

corresponding correlation coefficient values for wind speed and wind power capacity between the 10 m and the levels above. 419 

Of course, this value decreases rapidly with height, but the correlation between the 10 m level and the next few levels is high 420 

(R = 0.94 for 10 m vs 80 m wind speed, and R = ~0.8 for 10 m vs 80 m wind power capacity factor) for all 3 years.  421 

 422 
Figure A3: Time-height cross section of wind speeds by year (2020 in panel a, 2021 in panel c, and 2022 in panel e) at the SPG site. 423 
Corresponding profiles of correlation coefficient values for wind speed between 10 m and the levels above are on the right panels 424 

(2020 in panel b, 2021 in panel d, and 2022 in panel f). Note that during the 3 April–5 May 2020 period, the SGP site was shut down 425 
due to the COVID-19 pandemic. 426 
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 427 

Additionally, at this site we computed the correlation between the model and the radiosonde observed winds at 80 m for those 428 

three years, finding an improvement in R from 0.85 in 2020 (HRRRv3), to 0.86 in 2021 and 2022 (HRRRv4). We also used 429 

high-frequency (10 Hz) observations of wind speed from a sonic anemometer (R3-50, manufactured by Gill Instruments) 430 

located on a 60 m tower at the same site. Sonic data were averaged at the top of the hour (plus/minus 5 minutes) providing a 431 

more complete dataset compared to the radiosonde one. In this case we found an improvement in R from 0.78 in 2020 432 

(HRRRv3), to 0.79 in 2021 (HRRRv4), to 0.84 in 2022 (HRRRv4) between 80 m model and 60 m sonic wind observations. 433 

Furthermore, the comparison with the 60 m sonic observations was repeated dividing the dataset into night time and daytime, 434 

similarly to what was presented in Section 5.3. For daytime, correlation coefficient values were found to be equal to 0.84 in 435 

2020 (HRRRv3), to 0.80 in 2021 (HRRRv4), and to 0.87 in 2022 (HRRRv4). For night time, correlation coefficient values 436 

were found to be equal to 0.73 in 2020 (HRRRv3), to 0.78 in 2021 (HRRRv4), and to 0.81 in 2022 (HRRRv4). Although this 437 

is at one site only, this result aligns with the findings presented in Section 5.3, that in stable conditions the correlation was 438 

much improved in HRRRV4 relative to HRRRV3. This supports our speculation that improvements of HRRRv4 compared to 439 

HRRRv3 to ramp skill at 10 m would also be found at hub height, although to prove this statement with more certainty, we 440 

would need a more appropriate dataset. 441 

Appendix B 442 

Inter-annual variability of wind speed in the study area has to be considered as a possible factor impacting the results of this 443 

study. We looked at the 2-dimensional wind speed field output at 80 m agl of the HRRR model individually for years 2020, 444 

2021, and 2022, and for winter and summer months, as presented in Fig. B1. 445 

 446 
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 447 
Figure B1: Winter (DJF; a, b, and c) and summer (JJA; d, e, and f) geographical distribution of the wind speed at 80 448 

m derived from 1-h forecasts of the HRRR over 2020 (a and d), 2021 (b and e), and 2022 (c and f). 449 

 450 

From this figure we do see that 80 m wind speeds are similar in winter months between years 2020 and 2021, but are stronger 451 

in 2022, while they are stronger in summer 2020 compared to summer months of 2021 and 2022. 452 

Nevertheless, if we look at the skill score by individual years (Fig. B2), we notice that although there are some differences in 453 

skill score between years 2021 and 2022 (with the same HRRRv4 model), the skill score is still improved in both years with 454 

HRRRv4 (2021 and 2022), compared to HRRRv3 (2020). This confirms that although inter-annual variability can impact the 455 

score of the model, HRRRv4 is still doing better capturing wind ramps than HRRRv3. 456 
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 457 
Figure B2: Bar chart with model skill scores by years 2020, 2021, and 2022, annually and seasonally, for all ramps (panel a), up 458 
ramps only (panel b), and down ramps only (panel c).  459 

Code availability 460 

The RT&M is publicly available online at http://www.esrl.noaa.gov/psd/products/ramp_tool/. The authors can be reached for 461 

assistance, if needed. 462 

http://www.esrl.noaa.gov/psd/products/ramp_tool/
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Data availability 463 

The dataset from the METeorological Aerodrome Reports (METARs) stations is available at 464 

https://aviationweather.gov/data/metar/. The United States Geological Survey (USGS) Wind Turbine database is available at 465 

https://eerscmap.usgs.gov/uswtdb/. HRRR output is available from NOAA Open Data Dissemination site at 466 

https://registry.opendata.aws/noaa-hrrr-pds/. 467 
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