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Abstract. Incorporating more renewable energy into the electric grid is an important part of the strategy to mitigate climate 

change. To make the incorporation of renewable energy into the grid more efficient and reliable, numerical weather prediction 15 

models need to be able to predict the intrinsic nature of weather-dependent renewable energy resources. This allows grid 

operators to plan accurately the amount of energy they will need from each source (e.g., wind, solar, fossil fuel, etc.). For this 

reason, wind ramp events (rapid changes in wind speed over short periods of time) are important to forecast accurately. This 

is because one of their consequences is that wind energy could quickly be available in abundance or temporarily cease to exist. 

In this study, the ability of the operational High Resolution Rapid Refresh numerical weather prediction model to forecast 20 

wind ramp events is assessed in its two most recent versions: version 3 (HRRRv3, operational from August 2018 to December 

2020) and version 4 (HRRRv4, operational from December 2020 onward). The datasets used in this analysis were collected in 

the United States Great Plains, an area with a large amount of installed electricity generation from wind. The results are 

investigated from both annual and seasonal perspectives and show that the HRRRv4 is more accurate at forecasting wind ramp 

events compared to HRRRv3. Specifically, the HRRRv4 shows increased correlation coefficient and reduced root mean square 25 

error relative to the change in wind power capacity factor found in the observations, and in the skill of forecasting both up and 

down wind ramp events, with a marked increase in the HRRRv4’s skill at detecting up ramps during the summer (the HRRRv4 

is nearly 50% more skillful than the HRRRv3). This demonstrates that the HRRR’s continuing evolution will better support 

the integration of wind energy into the electric grid.  

 30 

https://doi.org/10.5194/wes-2024-133
Preprint. Discussion started: 9 December 2024
c© Author(s) 2024. CC BY 4.0 License.



2 
 

1 Introduction 

Many nations are making more investments in renewable energy sources (e.g., hydro, solar, and wind power). This is both to 

mitigate the effects of fossil fuel production on climate change and for economic reasons, given that renewable energy 

generation does not require the purchase of fuel. According to the International Energy Agency (IEA; Renewables, 2023) more 

than 500 GW of renewable electricity were added to grids around the world in 2023. This was the largest jump (nearly 50% 35 

from the year 2022) in the last two decades. Solar power is taking the lead in this new generation, followed by onshore and 

offshore wind energy. Adding into consideration the decreasing costs for wind and solar photovoltaic systems, the IEA report 

estimates that wind and solar together will account for over 90% of the renewable power capacity that is added over the next 

five years (to 2028). 

Due to the inherent variability of weather-dependent renewable energy resources, numerical weather prediction (NWP) model 40 

developers are also investing resources to improve forecasting of the meteorological variables of interest for grid operators, 

who rely on NWP model forecasts to plan for energy source allocation. Indeed, NWP forecasts of wind speed have been used 

for over a decade in the decision making associated with integrating wind-generated power into the electrical grid (e.g., Yu et 

al. 2014; Dong et al. 2016; Jacondino et al. 2021). In this perspective, a series of Wind Forecast Improvement Projects (WFIP) 

have taken place in the United States (US). These projects have been sponsored by the US Department of Energy (DOE) and 45 

the National Oceanic and Atmospheric Administration (NOAA) and included partners from public and private institutions. 

The first WFIP (WFIP1; Wilczak et al., 2014, 2015) focused on measuring the impact of including additional meteorological 

information to the initialization of operational weather prediction models. WFIP1 conducted a 12-month field campaign in 

2011-2012 in the US Great Plains, an area of large wind energy production. The second WFIP (WFIP2; Shaw et al. 2019, 

Wilczak et al. 2019a, and Olson et al. 2019a) focused on an 18-month field campaign that took place in 2015-2017 in the US 50 

Pacific Northwest, also an area of large wind energy production. The goal of WFIP2 was to improve physical parameterizations 

within operational weather prediction models in complex terrain, where the wind flow is modulated by terrain features that are 

more difficult to simulate. The third WFIP (WFIP3) includes an 18-month field campaign off the coast of New England in the 

Eastern US, where many offshore wind plants are currently being erected. This ongoing effort, which started in February 2024, 

aims at supporting offshore wind generation through better forecasting for existing, new, and planned wind farms placed 55 

offshore of this area.  

All the findings from the WFIP efforts have been transferred to operational versions of the High Resolution Rapid Refresh 

(HRRR) model. The HRRR is a regional, rapid-refresh, convective-allowing (3 km horizontal grid) NWP model run 

operationally by the National Weather Service (NWS). The HRRR utilises the Weather Research and Forecasting (WRF) 

model (Skamarock and Klemp, 2008), wherein the development focused on improving the suite of physical parameterizations 60 

and data assimilation scheme to work well with each other for a range of operational forecasting applications. The HRRR first 

became operational in 2014, and remains as a key forecasting tool used by the NWS and other groups due to its hourly update 

and high resolution. Details on the HRRR’s configuration, data assimilation system, physical parameterizations, and evaluation 
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can be found in Dowell et al. (2022) and James et al. (2022). This paper will focus on two versions of the HRRR: version 3 

(which was operational in the NWS from 12 July 2018 to 1 Dec 2020) and version 4 (which became operational in the NWS 65 

on 2 Dec 2020).  The primary differences between these two versions are (a) the improved horizontal resolution of the data 

assimilation system, (b) improved treatment of clouds that are smaller than the resolution of the model, (c) the introduction of 

wildfire smoke into the model, including its impact on solar radiation, (d) the improvement of the vertical advection scheme, 

and (e) the reduction in the strength of the numerical diffusion used within the model (Dowell et al., 2022). 

The intrinsic variability of the wind is amplified when the wind speed is converted into power, due to the relationship between 70 

wind speed and wind power capacity factor. In the range of wind speed values between the cut-in (minimum wind speed below 

which no power production is obtained by the wind turbines) and cut-off (maximum wind speed above which wind turbines 

have to be shut down to avoid strain on the rotor) thresholds, a change of a few m s-1 in wind speed can result in a change in 

wind power production of more than 50%. When these large power production changes happen over a short period of time 

(i.e., less than a couple hours), they are referred to as wind ramps. The accurate forecast of wind ramps is very important for 75 

wind energy operators and has potentially large economic impacts, as they need to plan in advance what source of energy will 

be available to the grid (Jeon et al., 2022), as well as outside of the United States (Jin et al., 2024). 

The accuracy of the NWP model at forecasting wind ramp events cannot be estimated using standard statistical metrics (e.g., 

mean absolute error, correlation coefficient, or root mean square error) because these would also take into consideration the 

periods of time when the wind power is at its minimum or full capacity. Therefore, a tool called the Ramp Tool and Metric 80 

(RT&M) was developed to evaluate an NWP model only for the times when wind ramps occur, with the aim of measuring the 

skill of the NWP model at forecasting wind ramp events (Bianco et al., 2016). The RT&M has been used during WFIP1 

(Bianco et al., 2016; Akish et al., 2019) and WFIP2 (Djalalova et al. 2020) campaigns to estimate the improvement in the 

operational NWP models. 

Turner et al. (2022) and Jeon et al. (2022) already demonstrated that improvements in the operational HRRR have resulted in 85 

significant economic savings for the US through better grid operators’ decision-making. In their study, they found appreciable 

economic gain between HRRR versions 1 (HRRRv1) and 2 (HRRRv2) and a smaller but still appreciable one between versions 

2 (HRRRv2) and 3 (HRRRv3). 

In this study, the RT&M is used to estimate the skill of the operational HRRR model in its two most recent versions, version 

3 (HRRRv3) and version 4 (HRRRv4). The analysis is performed using the datasets collected in the US Great Plains, where 90 

wind energy production is abundant, and is achieved on an annual basis, as well as on a seasonal basis. 

The manuscript is organized as follows: the wind ramp definition and the RT&M used to evaluate the model forecast skill are 

described in Sec. 2; the area of investigation and the datasets (observational and model) used are presented in Sec. 3; the diurnal 

and seasonal variability of wind speed and ramp events in the study area are presented in Sec. 4; the skill of the HRRRv3 and 

HRRRv4 models at forecasting ramp events both from an annual and a seasonal perspective is discussed in Sec. 5. Finally, the 95 

summary and conclusions are in Sec. 6. 
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2 Wind ramps definition and description of the RT&M 

Weather-dependent energy is subject to rapid changes of power availability over short periods in time, referred to as ramps. In 

this study, the dependence of wind power capacity factor (P) to wind speed (WS), in the range of wind speed values between 

3-16 m s-1 (region II of the wind speed to wind power capacity factor curve), is assumed to be given by the formula presented 100 

in Wilczak et al. (2019b). This formula is computed using the average of several wind power capacity factor curves for IEC 

Class 2 turbines. 

Additional information to be considered is: (a) below the cut-in wind speed (3 m s-1) the wind is insufficient to produce power 

by the wind turbines, therefore P = 0 (region I of the wind speed to wind power capacity factor curve); (b) between 16 m s-1 

and the cut-off wind speed (25 m s-1) the wind power capacity factor is at its maximum (P = 1, region III of the wind speed to 105 

wind power capacity factor curve); and (c) above the cut-off wind speed the wind turbines have to be shut down to avoid strain 

on the rotor, therefore P = 0 (region IV of the wind speed to wind power capacity factor curve). 

The wind speed to wind power capacity factor curve is presented in Fig. 1, where regions I, II, III, and IV of the curve are 

indicated between the dashed lines. 

 110 

Figure 1: Wind speed to wind power capacity factor conversion curve. Cut-in wind speed is 3 m s-1 and cut-off wind speed is 25 m s-

1. Regions I, II, III, and IV of the curve are indicated in between the dashed lines. 
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The RT&M has three components: the first is the identification of ramp events in the time series of the observed and model 

power data; the second is matching observed ramp events with those predicted by the forecast model; the final component is 

scoring the ability of the model to forecast ramp events (both timing and intensity). As an exact definition of a ramp is not 115 

unique (i.e., how much the wind power capacity factor has to change and over what time period for the event to be considered 

a ramp), a metric that is aimed at evaluating an NWP model at forecasting ramp events has to include a range of ramp 

parameters. Additionally, the skill of a model at forecasting the occurrence of these events has to consider the capability of the 

model to predict the time of the event (or its central time, Ct), its duration (ΔT), and the amplitude of the change in the wind 

power capacity factor (ΔP). The RT&M was developed to take into consideration the fact that a ramp is not uniquely defined 120 

and that the skill of the model is a function of accurately forecasting all three Ct, ΔT, and ΔP variables. This RT&M is described 

in Bianco et al. (2016; see particularly Eq. 1-8 for how the skill of the model is determined). 

This metric has potential usefulness for grid operators that need to quantify the reliability of NWP models they depend on for 

their decision making, or for NWP model developers to test whether their efforts at improving the operational model are 

reflected in better forecasts that can benefit the energy sector. 125 

3 Area of investigation and dataset description 

According to Table 1.14.B of the US Energy Information Administration (EIA) electric power monthly report (US EIA, 2024), 

the six states with the most electricity generation from wind in 2023 were Texas, Iowa, Oklahoma, Kansas, Illinois, and New 

Mexico. These six states combined produced about 64% of total US wind electricity generation in 2023. 
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 130 

Figure 2: Annual mean (a) and standard deviation (b) of the wind speed at 80 m derived from 1-h forecasts from the HRRR over 
2020–2022. Panels (c) and (d) show the mean wind speed for DJF and JJA, respectively, and panels (e) and (f) show the standard 
deviation of the wind speed for DJF and JJA, respectively (using the same colour bar ranges as in panels (a) and (b)). 

This information is also confirmed by the 2-dimensional wind speed field output at 80 m above ground level (agl) of the HRRR 

model (Fig. 2), which is a typical height used for wind energy investigations. This study focuses on this particular geographical 135 

area (US Great Plains). 

One of the atmospheric phenomena experienced in the US Great Plains, and of large interest for wind energy, are low-level-

jets (LLJs). LLJs have been studied for many years (e.g., Bonner, 1968, Banta et al. 2002, Banta et al., 2008) and occur often 

in the US Great Plains, particularly in the southern part of it (Freedman et al., 2008). They happen over relatively flat terrain, 

during nighttime when the boundary layer is stable, as the ground cools down during the evening boundary layer transition 140 

and the flow is decoupled just above the surface. This decoupling leads to an acceleration of the flow above the atmospheric 

surface layer and produces a layer of air with high-momentum, which often exhibits a maximum in the vertical profile of the 
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horizontal wind. This maximum can be found anywhere between a few tens of meters to a few hundred meters agl (Banta et 

al., 2008). Because this layer of the atmosphere might include typical onshore wind turbine hub-heights, it would be ideal in 

this analysis to use a dataset of wind speeds at hub-height. Unfortunately, this is not possible as there were very few such 145 

observational datasets available to carry out a meaningful geographical investigation. 

Previous studies (Schwartz and Elliott, 2005; Newmann and Klein, 2014) also recognize the fact that, although the wind speed 

at hub height is the one of interest for wind energy application, most wind speed measurements are taken at 10 m agl as tall 

meteorological towers are expensive to build, operate, and maintain. Newmann and Klein (2014) used the Oklahoma Mesonet 

surface observation stations and compared the most widely used extrapolation method to relate 10-m measurements to 80-m 150 

wind speeds collected by tall towers. They found that the power law, which relies only on the information of wind speed at a 

reference height (i.e., 10 m agl) and a shear exponent (dependent on atmospheric stability regimes), produced accurate 80-m 

wind speed estimates from 10-m wind speed observations and concluded that these could be therefore used for increasing our 

knowledge of hub-height wind speed climatologies. 

To make sure that also the results of our study are of interest for the wind energy community, we decided to investigate if 155 

available observations of 10-m wind speed can be representative of the atmospheric wind speed field at more typical hub-

height, such as 80 m agl. We compared the HRRR model output of the wind speed field at 10 m agl to the HRRR wind speed 

field output at 80 m agl over the time period from 2020-2022. We found a correlation coefficient equal to 0.84 between wind 

speed values at these 2 heights. For this reason, we believe that, as for Newmann and Klein (2014), the results from our study 

can be considered representative of the wind speed atmospheric field of interest for renewable energy and we will thereafter 160 

use wind speed observations made at 10 m agl. In the area of interest, a large number of observations is available and model 

output at the same height will be used for comparison. 

3.1 Observational dataset description and preparation 

The observational dataset used in this study is obtained by the METeorological Aerodrome Reports (METARs) stations, a 

network of weather stations located mainly in airports and used for flight planning and weather forecasting 165 

(https://aviationweather.gov/data/metar/). The United States Geological Survey (USGS) Wind Turbine database 

(https://eerscmap.usgs.gov/uswtdb/) was used to identify the location of the wind turbines. The 10-m agl wind speed 

observations at locations that are within 20 km of a wind turbine are extracted. Native METAR data are typically 15-min or 

20-min resolution; as the output from the HRRR is hourly, we have temporally interpolated the METAR observations to the 

HRRR output times (i.e., the top of each hour). Generally, the observation close to the top of the hour is within 10 minutes. 170 

Fig. 3 shows the geographical location of the METAR weather stations used in this study, which are superimposed over the 

topography of the study area. The location of the METAR weather stations allows for a geographically well distributed analysis 

of the results. 
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Figure 3: Geographical location of the METAR weather stations used in this study superimposed on the topography of the study 175 

area. 

3.2 Operational model description and preparation 

As mentioned earlier, the model of interest in this study is the operational HRRR, which uses a 3-km grid spacing. The HRRR 

is initialized from the operational Rapid Refresh model (RAP; Benjamin et al. 2016), and assimilates other observations (e.g., 

METAR, AMDAR aircraft, and weather radar data) to derive its analysis, from which forecasts are initiated. The HRRR 180 

provides 18 h forecasts every hour, but for four times per day the maximum forecast length is extended. For those four 

initialization times (00, 06, 12, and 18 UTC), the HRRRv3 provides forecast out to 36 forecast hours, while the HRRRv4 goes 

out to 48 hours. Additional details on the model configurations and parameterizations are provided in Dowell et al. (2022).  

The “day-ahead” forecast is particularly useful for the energy community, as that is when decisions are made on the amount 

of fossil fuel generation to have on-line, which depends on the amount of wind (and solar) energy that is expected to be 185 

generated. Thus, we focused on the 00 UTC initialization, and used the 12-to-36 h forecasts from both the HRRRv3 and 
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HRRRv4. For each model, the 13-to-36 h forecasts were concatenated to provide continual temporal coverage across the time 

periods analyzed. However, an artificial “ramp” could be created when merging the 36-h forecast initialized at 00 UTC on day 

X with the 13-h forecast initialized on day X+1 at 00 UTC due to a slight bias between the two forecast runs. To reduce this 

impact, a 3-point (equivalent to 3 hours) smoother was applied to the transition times.  190 

An example of how the model forecast runs are combined together to provide a time series of wind power capacity factors to 

compare with the observations is presented in Fig. 4. Both observed and modeled wind power capacity factors are obtained 

applying the wind power curve to the 10 m observed and modeled wind speeds. In this example, a time series of the observed 

wind power capacity factors at 10 m agl for the KEWK METAR weather station, located in Kansas, is presented with the black 

solid line for the time period from 8 April 2021 to 13 April 2021. Dashed lines, in different colors, present the HRRRv4 195 

forecasts (out to 48 forecast hours), at 00Z initialization times each day. The solid red line represents the time series of the 

model data obtained by the procedure described above. In this example, several ramp events are identifiable. The sharpest 

down ramp happens at the end of 8 April 2021, while the sharpest up ramp event is noticeable at the end of 9 April 2021. 

During these events, the available wind power capacity factor for a wind turbine at this location could easily go from its 

maximum to zero and vice-versa. The HRRRv4 tends to reproduce the wind power capacity factor fairly well, with some 200 

inaccuracy in the timing, amplitude, and duration of the ramp events. These inaccuracies are taken into consideration by the 

RT&M when the skill of the model is computed. 
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Figure 4: Time series of the wind power capacity factor from 8 April 2021 to 13 April 2021 from the KEWK METAR weather 

station, located in Kansas (black line), and of the HRRRv4 forecasts (out to 48 forecast hours) at 00Z initialization times (dashed 205 

lines in different colour for the different days). The wind power capacity factors are obtained converting the 10 m observed and 

modelled wind speeds. 

An optimal way to evaluate the relative skill of the HRRRv3 against the HRRRv4 would be to use periods of time when both 

models are available. However, since we are assessing the operational models, there are no periods of overlap that can be used. 

To prove that using different time periods for the two versions of the HRRR is a valid alternative, we looked at the geographical 210 

distributions of wind ramp events found on the 10-m agl wind power capacity factor of the HRRRv3 in 2020 and the HRRRv4 

in 2021 and 2022. Fig. 5 shows the number of ramp events (for the type of ramps defined as having a ΔP/ΔT  40%/2hrs) at 

each of the observational locations, represented with circles increasing in size with the number of identified ramps. The 

smallest circles represent a number of ~40 ramps, while the largest circles represent a number of ~500 ramps. The geographical 

distribution of the number of these events are very similar between HRRRv3 in 2020 (panel a), HRRRv4 in 2021 (panel b), 215 

and HRRRv4 in 2022 (panel c). It is interesting to notice how for all three years the number of ramps is larger in the west side 

of the study area, in the north-western part of Texas, in the southeast locations closer to the Gulf of Mexico, and in Oklahoma. 

Consistently between the years, there are fewer ramps in the central part of Texas and on the eastern side of the study domain. 

The central, northern, and north-eastern parts of the study area also experience many ramp events, and the numbers are 

relatively consistent for all three years. This confirms that even though the time periods used to evaluate the HRRRv3 and 220 

HRRRv4 are not coincidental, the comparison is still valuable. 
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Figure 5: Geographical distribution of wind ramp events (ΔP/ΔT  40%/2hrs), at each tower location, by year: HRRRv3 in 2020 is 

in panel a, HRRRv4 in 2021 and 2022 are in panel b and c, respectively. 

Similarly, the ratio between the number of forecast wind ramps (for the type of ramps defined as having a ΔP/ΔT  40%/2hrs) 225 

and those observed, for the three years is presented in Fig. 6. It is noticeable how the models tend, in general, to find fewer 

ramp events (ratio less than 1), which is expected due to the smoother wind field output of the model compared to observations. 

This is in accordance with what was found by Bianco et al. (2016) and by Djalalova et al. (2020). Nevertheless, it is encouraging 

to find that the average of the ratio over the study area of the ratio tends to get closer to 1 for the HRRRv4 periods relative to 

the HRRRv3 period (being equal to 0.53 ± 0.24, 0.58 ± 0.24, and 0.68 ± 0.22 respectively for the years 2020, 2021, and 2022). 230 

 

 

Figure 6: Geographical distribution of the ratio of the number of model vs observational wind ramp events (ΔP/ΔT  40%/2hrs), at 

each tower location, by year: HRRRv3 in 2020 is in panel a, HRRRv4 in 2021 and 2022 are in panel b and c, respectively). 

4 Diurnal and seasonal variability of 10-m wind speed and ramp events in the observational and model datasets 235 

The composites of the diurnal variability of the 10-m wind speed field over the study area are presented in Fig. 7 (right y-

axes), for the four seasons in the different years. Winter is defined as December, January, and February; spring as March, 

April, and May; summer as June, July, and August; and fall as September, October, and November. The spring, summer, fall, 

and winter seasons are presented in panels a, b, c, and d for 2020, in panels e, f, g, and h for 2021, and in panels i, j, k, and l 

for 2022. The mean diurnal observed wind speeds are in blue and modeled values in magenta. The diurnal cycle of the 10-m 240 
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wind speed field is clearly evident, with winds weaker at night time and increasing in value starting from sunrise into the 

daytime (local time in the US Great Plains is: LT = UTC - 5). 

The strongest daytime winds are experienced in the spring, while summer has the weakest 10-m wind speeds throughout the 

whole day. The models are able to reproduce the diurnal variability of this field pretty well (magenta and blue time-series for 

the model and observations, respectively), across the three years and for the different seasons. On the left y-axes are plotted 245 

the total number of ramps measured by the observations (in black) and by the models (in red), for both up ramps (positive ΔP) 

and down ramps (negative ΔP). 

 

Figure 7: Left axes: Total number of wind ramp events for one ramp definition (ΔP/ΔT   40%/2hrs) over the study area as a 

function of time-of-day (hours UTC), for the four seasons (left to right: spring, summer, fall, and winter) in the different years 250 

(panels a, b, c, and d: 2020; panels e, f, g, and h: 2021; and panels i, j, k, and l: 2022). Right axes: Composites of the diurnal variability 

of the 10-m wind speed field over the study area, for the four seasons in the different years. 
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It is apparent that the daily distribution of ramp events analyzed in this study follows the diurnal cycle of the 10-m wind speed 

for all seasons with down ramps more evident around 2200-0300 UTC when the 10-m wind speed sharply decreases, and up 

ramps more evident around 1200-1700 UTC when the 10-m wind speed sharply increases. For this reason, the diurnal peaks 255 

in the ramps coincide with the largest temporal changes in the mean wind speed. 

A statistical analysis observed vs modelled ΔP for the matched observed vs model wind ramp events (for the type of ramps 

defined as having a ΔP/ΔT  40%/2hrs) averaged by model version (HRRRv3 in 2020 in violet, and the average of the 

HRRRv4 in 2021 and 2022 in aqua) is presented in Fig. 8. With the exception of winter, both the correlation coefficients and 

the root mean square errors (RMSEs) of observed vs modeled ΔP improve in HRRRv4 compared to HRRRv3. 260 

 

Figure 8: Left axes: Bar charts of correlation coefficients (panel a) and RMSE (panel b) of observed vs modelled ΔP (for matched 

wind ramp events defined as ΔP/ΔT  40%/2hrs) by year (left to right: annually and by season). There are two different sets of data, 

with 2020 in violet and the average of years 2021 and 2022 in aqua. Right axes: Percentage improvements in correlation (panel a), 

and in RMSE (panel b). 265 
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5 Models’ skill at forecasting ramp events 

 5.1 Annual geographical analysis 

In this section, the geographical distribution of the annual improvements in the skill of the HRRRv4 versus HRRRv3 is 

discussed. The improvement in the skill is computed as: 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ሺ%ሻ  ൌ  ሾሺ𝑆𝑘𝑖𝑙𝑙 𝐻𝑅𝑅𝑅𝑣4ሻ  െ  ሺ𝑆𝑘𝑖𝑙𝑙 𝐻𝑅𝑅𝑅𝑣3ሻሿ / ሺ𝑆𝑘𝑖𝑙𝑙 𝐻𝑅𝑅𝑅𝑣3ሻ 𝑥 100   (1) 270 
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Figure 9: Geographical distribution of the annual improvement of the HRRRv4 vs HRRRv3 skill score at forecasting ramp events 

at each tower location, by year (panels a, b, and c: 2021 vs 2020; panels d, e, and f: 2022 vs 2020), for all ramps (panels a and d), up 

ramps (b and e), and down ramps (c and f). 
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Fig. 9 presents the improvements in red (or degradation in blue) in the skill scores for year 2021 vs 2020 and year 2022 vs 275 

2020, and for all ramps, up ramps only, and down ramps only. The predominance of increased skill (red colours) is apparent 

and it is quite uniform spatially, denoting the improvement found in the HRRRv4 compared to the HRRRv3. This is true for 

all ramps, and for up ramps slightly more than for down ramps. 

5.2 Annual and seasonal statistical analysis 

A similar analysis to the one presented in the previous sections was repeated for the individual seasons and is presented here 280 

averaged over the study area. The left axes of Fig. 10 presents bar charts with the ramp skill scores averaged by model version 

(HRRRv3 in 2020 in violet, and the average of the skill of HRRRv4 in 2021 and 2022 in aqua) annually and by season, for all 

ramps (panel a), up ramps only (panel b), and down ramps only (panel c); right axes show the percentage improvements in 

skill score annually and by season, for all ramps (panel a), up ramps only (panel b), and down ramps only (panel c). 

https://doi.org/10.5194/wes-2024-133
Preprint. Discussion started: 9 December 2024
c© Author(s) 2024. CC BY 4.0 License.



17 
 

 285 

Figure 10: Left axes: Bar chart with skill scores averaged by model version annually and by season, for all ramps (panel a), up ramps 

only (panel b), and down ramps only (panel c). Right axes: Percentage improvements in skill score annually and by season, for all 

ramps (panel a), up ramps only (panel b), and down ramps only (panel c). 
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Most noticeable is the marked increase in the skill of detecting up ramps in HRRRv4 during the summer, with HRRRv4 nearly 

50% more skilful than HRRRv3. Across all seasons, and for both up ramps and down ramps, the skill of the HRRRv4 is 290 

improved relative to that of HRRRv3. 

6 Summary and conclusions 

To mitigate the effects of fossil fuel production on climate change and meet the demands for new electricity generation, many 

nations are investing in renewable energy resources. Since the availability of renewable energy resources is inherently weather-

dependent, numerical weather prediction (NWP) model developers are also investing resources to improve the forecast of the 295 

meteorological variables of interest for grid operators. 

In this study, the operational High Resolution Rapid Refresh (HRRR) numerical weather prediction model is assessed in its 

ability to forecast wind ramp events. Wind ramp events are rapid changes in wind speed over short periods of time and their 

accurate forecast is very important for wind energy operators, so that they can reliably plan what source of energy to count on 

for the grid. The two most recent versions of the HRRR are considered in this study: version 3 (HRRRv3, operational from 300 

August 2018 to December 2020) and version 4 (HRRRv4, operational from December 2020 onward). Datasets used in this 

analysis were collected in the United States Great Plains, an area with a large amount of installed electricity generation from 

wind. This study uses wind speed observations from METeorological Aerodrome Reports (METARs) stations made at 10 m 

agl, and model output at the same height. 

The evaluation of the HRRR model in its two versions is performed using the Ramp Tool and Metric (RT&M), a tool aimed 305 

at measuring the skill of a NWP model at forecasting wind ramp events. This tool takes into consideration the fact that a ramp 

is not uniquely defined and measures the capability of a NWP model to accurately forecast the time of the event, its duration, 

and the amplitude of the change in the wind power capacity factor. 

The results are investigated from both annual and seasonal perspectives and show how the HRRRv4 is more accurate at 

forecasting wind ramp events compared to HRRRv3. The HRRRv4 demonstrated notable improvements in the skill of 310 

forecasting wind ramp events, compared to the skill of HRRRv3, with increased correlation coefficient and reduced root mean 

square error relative to change in wind power capacity factor found in the observations. Importantly, this analysis shows that 

across all seasons, and for both up and down ramp events, the skill of the HRRRv4 is improved relative to that of HRRRv3, 

with a marked increase in the HRRRv4’s skill at detecting up ramps during the summer (HRRRv4 nearly 50% more skillful 

than HRRRv3). Some of the advances between the versions of the model that likely contributed to the improvements found in 315 

this study are: improved higher-resolution data assimilation system, which provides better detailed initial conditions for the 

model; reduction in the solar radiation bias at the surface that is the result of the improved treatment of clouds, as the net 

radiation at the surface drives the surface energy budget which itself helps to drive turbulent mixing in the boundary layer; and 

the reduction of the diffusion terms in the model, which allows for finer scale features to be maintained longer into the forecast 

before they dissipate. 320 
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This study demonstrates the positive evolution of the operational HRRR model to support the integration of wind energy into 

the electric grid. 

 

Code availability 

The RT&M is publicly available online at http://www.esrl.noaa.gov/psd/products/ramp_tool/. The authors can be reached for 325 

assistance, if needed. 

Data availability 

The dataset from the METeorological Aerodrome Reports (METARs) stations is available at 

https://aviationweather.gov/data/metar/. The United States Geological Survey (USGS) Wind Turbine database is available at 

https://eerscmap.usgs.gov/uswtdb/. 330 
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