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Abstract. An accurate prediction of aerodynamic damping is important for floating wind turbines, which can enter into resonant

low frequency motion. The Coleman transform is not directly valid for the stability analysis of two-bladed floating wind

turbines without requiring to apply an additional method to eliminate the system’s periodicity. Therefore, we here pursue

methods that do not rely on it. We derive a time domain model that takes into account the dynamic stall phenomenon and

which is used for developing Coleman free aero-eleastic stability analysis methods which can quantify the damping without5

actual simulation. It contains four structural degrees of freedom, namely the floater’s pitch angle and the blade deflection

amplitudes, as well as three dynamic stall aerodynamic degrees of freedom, one for each blade. The time domain model

is linearized by considering part of the aerodynamic forcing as an added damping contribution. The linearized model is then

made time independent through the application of Hill’s or Floquet’s method. This enables the possibility to carry out a stability

analysis where the eigenvalues results obtained with both methods are compared. A first modal analysis serves to demonstrate10

the influence of aerodynamic damping through the variation of the dynamic stall time constant. Thereafter, a second modal

analysis is reported as a Campbell diagram also for cross-comparison of the Hill- and Floquet- based results. Moreover, the

blade degrees of freedom are converted from the rotational basis to the non-rotational one using the Coleman transform so that

results in both frames can further be cross-validated. Finally, we apply the validated stability methods to a two-bladed floating

wind turbine and demonstrate their functionality. The stability analysis for the two-bladed wind turbine yields new insight into15

the blade modal damping and is discussed with comparison to the three-bladed analysis.

1 Introduction

Expanding offshore wind power beyond the usual water depth limit of 50 to 70 meters will unlock up to 10 times more

energy potential, positioning it as a worldwide source of clean energy (Stiesdal Offshore, 2023). Floating wind turbines have

been developed since the Hywind demonstrator from 2009 with the intent to extract energy in deeper waters and they are20

estimated to be capable of being installed in depths reaching up to 1000 meters (CORROSION, 2023). This endeavour pushes

the development of floating wind turbines for the ScotWind and INTOG (Innovation and Targeted Oil and Gas) projects in

Scotland to deliver by 2035 a cumulative capacity of 24.7 GW in floating wind energy (Offshore Wind Scotland, 2024).

The design of floating wind turbines relies heavily on aeroelastic modeling of the system response. For a dynamic model

described in the time domain, the rotation of the rotor introduces multiple periodic terms in the governing equations that are25
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based on physical effects. Due to the system’s periodicity, a standard eigenvalue analysis through a constant system matrix is

not possible. The aero-elastic stability analysis is an important calculation for the design of wind turbines that addresses the

damping of the structural modes as well as the aerodynamic damping contribution. This damping is of large importance for the

low-frequency pitch motion of floating wind turbines. Usually the aero-elastic stability analysis is carried out with a linearized

version of the turbine dynamic model by applying a Coleman transform (Coleman et al., 1957) which eliminates the system’s30

periodicity. The Coleman transform, also referred to as the multi-blade coordinate (MBC) transform, is only applicable for a

rotor containing three blades or more and for isotropic systems. Theoretically, the conditions to be fulfilled for a rotor to be

viewed as isotropic is not to be subjected to gravity effects, to a skewed or sheared inflow, and to not have a tilt angle either.

For floating wind turbines the aero-elastic stability analysis is further complicated due to the presence of the floater’s degree of

freedom which introduces low frequency modes. For this reason, there is a need to establish aero-elastic stability methods that35

are valid for floating and two-bladed wind turbines and that do not rely on the Coleman transform.

Certain past investigations on methods that render a system to become Linear Time Invariant (LTI) have been proven to

be less efficient and more computationally expensive to put into practice compared to other more novel methods, or even the

Coleman approach. For example, it has been proposed by Bir (2008) to use an averaged system matrix over a period as an

alternative to computing the system matrix at certain sampled times steps, but that method does not take into consideration40

accurately the full periodicity of the system. As a remedy to this problem for the treatment of the system’s periodicity, the

Hill (1886) determinant method has been employed by Hansen (2016) for the modal analyses of an onshore two-bladed and

three-bladed wind turbine. Alternatively, the Coleman transform is applied both in the aero-hydro-servo-elastic OpenFAST

code (Bortolotti et al., 2024) and in the aero-servo-elastic HAWCStab2 code (Hansen, 2004; Kim et al., 2013; Madsen et al.,

2020). As another alternative, in their respective works, Bottasso and Cacciola (2015) and Riva (2017) employed the Floquet45

(1883) theory to eliminate completely the periodicity so that the stability of a simplified onshore three-bladed wind turbine

could be assessed. Similarly, more recently Meng et al. (2024) researched the impact of aerodynamic states on the stability

analysis, by applying the Coleman transform to directly eliminate the periodicity of a floating wind turbine, followed by a

modal order reduction. With a similar main scope in mind, in our past work the linearization of a floating wind turbine’s

simplified equations of motion has been already realized (Pamfil et al., 2024) by relying on Hill’s method, but without taking50

into account all kinematic effects that influence the blade motion nor having implemented yet a dynamic stall model.

The purpose of the present study is to compare and validate Hill’s and Floquet’s methods for the stability analysis of a

floating wind turbine. In this context we aim to clarify four objectives stated as questions: 1) how the effect of the floater tilt

is involved in the stability analysis, 2) if the damping effects of the aerodynamic states can be consistently included, 3) if

the results of the two methods agree and can reproduce the forward and backward whirling rotor modes in a Coleman-based55

analysis, and 4) if the methods can successfully be applied to a two-bladed floating wind turbine. Hence, to answer these

questions, we derive a simplified floating wind turbine model which has four structural degrees of freedom (DOFs), being

the three blades deflection amplitudes and a platform pitch angle. This time domain model is then enhanced by including

Øye’s linearized dynamic stall model (Øye, 1991) through the consideration of an extra dynamic stall aerodynamic degree of

freedom per blade. The dynamic stall simulations are used as a benchmark for comparison between the time domain model60
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and a linear model which is assembled by a full linearization of the aerodynamic damping load. After it is assessed if the

linear model is assembled correctly and if it is physically consistent, we render it to be linear time invariant (LTI) by applying

Hill’s or Floquet’s method in order to be exempt from having to apply the Coleman transform. By relying on either method,

we conduct a first set of stability analyses for a varying dynamic stall model time constant intensity and a second set of studies

for a variation of the rotational speed and displayed as Campbell diagrams. Regarding the applicability of Hill’s and Floquet’s65

method on the system matrix, the resulting eigenvalues are compared with the ones found through the Coleman transform by

reconstructing the rotor forward whirling (FW) and backward whirling (BW) modes. The results of these analyses are further

verified through a cross-validation of the eigenvalues for a two-bladed floating wind turbine model.

We achieve the first objective about finding the impact of the floater tilt on the stability analysis by showing that the Equations

of Motion (EOMs) do not depend on the equilibrium floater tilt position when neglecting gravity effects. This implies that the70

equilibrium floater tilt position does not affect the stability analysis. Secondly, aerodynamic states are included in the linear

model’s state-space system and they do affect the modal damping and natural frequencies as showcased through stability

analyses results. The third objective is fulfilled by proving first that either Hill’s and Floquet’s stability method is able to

capture the correct principal eigenfrequenices in the original frame which is called rotational frame. It is also proved that these

eigenvalues can be expressed in a modified frame called the non-rotational frame to match with the ones found through the75

Coleman transformed system matrix. On that matter, the LTI model derived with Hill’s method takes fully into consideration

the periodicity of the system, making it possible to calculate the principal natural frequencies and the periodically shifted

frequencies. Conversely, the LTI model found with Floquet’s method is characterized only by the principal modes. The fourth

and last objective is fulfilled by developing the two-bladed wind turbine model and revealing that the same methods as for

a three-bladed rotor can be applied to obtain correct stability results. We also observe a marked difference in blade modal80

damping behaviour for the two-bladed floating wind turbine compared to the three-bladed case.

2 Floating wind turbine model description

The floating wind turbine model that is being studied has four structural degrees of freedom (DOFs) as schematized in Figure

1. For a three-bladed wind turbine, the four structural DOFs are the blades flap-wise deflection amplitudes labeled as al with

a blade identification index of l = 1,2,3, and the floater pitch angular motion labeled as ξ5. These four structural DOFs are85

represented in a vector form as x= [ξ5,a1,a2,a3]
T . Three additional aerodynamic DOFs are included later to account for the

dynamic stall phenomenon. The floating wind turbine blades structural properties, such as its blade mode shapes ϕ, natural

frequencies ω, and the blade mass per unit length m(r), are taken from the DTU 10-MW reference wind turbine (Bak et al.,

2013). In Figure 1, d identifies a reference radial position from the hub along the blade of length Lblade with d= 0.7Lblade,

i.e. at 70 % of the blade length span. For simplicity, the aerodynamic force for each blade Fl,aero is calculated at that reference90

distance r = d from the blade root which is representative of the full blade in terms of applied aerodynamic loads. The floating

wind turbine is subjected to an inflow velocity V0 at hub height H , to a forcing moment MF applied at the floater base, and
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to a constant rotor rotational speed of Ω. Here, Kξ5 refers to the rotational torsion stiffness coefficient along the floater pitch

angle ξ5 and M is the cumulative mass of the hub and nacelle combined.

Figure 1. Schematic representation of the four structural DOFs floating wind turbine model where m(r) is the blade’s mass distribution at

the radial location r, ul(r, t) is the blade deflection, and the index l refers to the blade identification.

The blade deflection ul(r, t) is approximated through the consideration of the first flap mode (1f) only which is characterized95

by a mode shape ϕ1f and a natural frequency ω1f , resulting in ul(r, t) = ϕ1f (r)al(t).

Further, the time (t) dependant azimuthal angular position Ψl of the blades is defined in radians as

Ψl(t) =
2π

Nb
(l− 1)+Ωt, (1)

where Nb is the rotor’s number of blades and the rotational speed Ω is connected to a corresponding period T through the ratio

of T = 2π/Ω.100

In Figure 1, a global fixed coordinate system is defined in terms of unit vectors x̂ and ŷ. Additionally, there is a local moving

coordinate system that rotates with the blade and describes the position of a blade section of mass m(r). That coordinate

system defines the radial location of mass m(r) with the unit vector x̂′(t) and its tangential motion as the blade is deflected in

the direction of unit vector ŷ′(t). Based on the perpendicularity of these unit vectors, an out of plane vector ẑ is the result of a

cross product between them, such that ẑ = x̂′× ŷ′ and −ẑ = ŷ′× x̂′. The radial position in the x̂′(t)-ŷ′(t) coordinate system of105

a blade’s element mass m(r) is Dl(r, t) =H + r cosΨl(t) and its tangential displacement is the blade deflection ul(r, t). The

vector representation of the mass m(r)’s displacement, D̂l(r, t), in the moving rotating coordinate system x̂′(t)-ŷ′(t) is thus

D̂l(r, t) =Dl(r, t)x̂
′(t)+ul(r, t)ŷ

′(t). (2)
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As mentioned earlier, the blade deflection ul(r, t) is quantified by the product of the first flap mode shape ϕ1f (r) in the direction

tangential to the rotor plane with the blade displacement amplitude al(t).110

2.1 Equations of Motion

A time domain model is developed with the initial purpose of obtaining the steady states responses for a given operational point.

It serves also as a foundation to linearize afterwards the aerodynamically damped forcing as a damping matrix contribution

and to include the linear dynamic stall DOFs equations in the system matrices. As a starting point, it is observable in Figure

1 that the unit vectors x̂′ and ŷ′ can be represented using the global fixed coordinates x̂ and ŷ after applying a rotation115

transformation, respectively as x̂′ = cos(ξ5)x̂+sin(ξ5)ŷ and ŷ′ =−sin(ξ5)x̂+cos(ξ5)ŷ. They are then derived in time to

obtain ˙̂x′ = ξ̇5ŷ
′ and ˙̂y′ =−ξ̇5x̂′. These expressions come in handy when deriving for the mass m(r) element its velocity

vector V̂l(r, t) = d
(
D̂l(r, t)

)
/dt,

V̂l(r, t) = Ḋl(t)x̂
′ +Dl(r, t) ˙̂x

′(t)+ u̇l(r, t)ŷ
′(t)+ul(r, t) ˙̂y

′(t) =
(
Ḋl(r, t)−ul(r, t)ξ̇5

)
x̂′ +

(
Dl(r, t)ξ̇5 + u̇l(r, t)

)
ŷ′, (3)

and acceleration vector Âl(r, t) = d
(
V̂l(r, t)

)
/dt,120

Âl(r, t) =
(
D̈l(r, t)−ul(r, t)ξ̈5 − 2u̇l(r, t)ξ̇5 −Dl(r, t)ξ̇

2
5

)
x̂′ +

(
2Ḋl(r, t)ξ̇5 +Dl(r, t)ξ̈5 + ül(r, t)−ul(r, t)ξ̇

2
5

)
ŷ′. (4)

The acceleration vector Âl(r, t) can then be linearized by disregarding higher order terms, which results in:

Âl(r, t)≈ Âl,lin(r, t) = D̈l(r, t)︸ ︷︷ ︸
Ax̂′,l

x̂′ +
(
2Ḋl(r, t)ξ̇5 +Dl(r, t)ξ̈5 + ül(r, t)

)
︸ ︷︷ ︸

Aŷ′,l

ŷ′. (5)

We observe in Eqs. (3) and (4) that none of the nonlinear terms include ξ5 as a factor. For this reason the linearized model

is applicable for any steady state value of ξ5. Finally, we identify in Eq. (5) the tangential acceleration Aŷ′,l that is relevant125

to describe the element mass m(r)’s inertial force fŷ′,l(r, t) =m(r)Aŷ′,l(r, t). To build up the EOM for the linearized total

moment applied around the ẑ axis, the angular momentum theory is used to compute the inertia moment pl(r, t) which translates

to:

pl(r, t) =
d

dt

(
D̂l(r, t)×

(
m(r)V̂l(r, t)

))
. (6)

The inertia moment pl(r, t) is then approximated as pl,lin(r, t) by neglecting higher order terms, which gives:130

pl(r, t)≈ pl,lin(r, t) =m(r)
(
D2

l (r, t)ξ̈5 +2Dl(r, t)Ḋl(r, t)ξ̇5 +Dl(r, t)ül(r, t)− D̈l(r, t)ul(r, t)
)
. (7)

These kinematic formulas can be used to establish the equations of rotational motion around the ẑ axis, and of the translation

motion along the ŷ′ axis which corresponds to the tangential direction of the blade rotation around the floater base. The inertia

contribution of the hub and nacelle cumulative mass M is translated from the hub height to the floater’s base point with a

distance H that separates the two points, MH2. The remaining share of the rotational inertia around the ẑ axis is due to the135
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blade’s distributed mass m(r)’s effect on the inertial moment pl,lin(r, t). The rotational motion equation for moments around

the ẑ axis is written as:

ẑ : MH2ξ̈5δξ5 +

Nb∑
l=1

 Lblade∫
0

pl,lin(r, t)drδξ5

+Kξ5ξ5δξ5 =MF δξ5 +

(
Nb∑
l=1

Dl(d,t)Fl,aero(t)

)
︸ ︷︷ ︸

Maero

δξ5, (8)

after using the principle of virtual work with a δξ5 rotation. The applied forces on the right hand side of Eq. (8) include MF

which is the moment applied directly on the floater DOF ξ5, and an aerodynamic moment Maero contribution through Fl,aero.140

As seen in Figure 1, the aerodynamic moment Maero is induced by an equivalent total aerodynamic forcing Fl,aero applied on

each blade with a moment arm Dl(d,t) =H + dcosΨl(t) at the reference location of r = d. This aerodynamic forcing is an

approximation to the total contribution by a local load Fl integrated over the entire blade length span as Fl,aero = FlLblade.

Similarly the equation of translation motion along the ŷ′ axis for each lth blade is found based on the principle of the blade

displacement virtual work δul(r, t) = δal(t)ϕ1f (r):145

ŷ′ :

Lblade∫
0

m(r)Aŷ′,l(r, t)︸ ︷︷ ︸
fŷ′,l(r,t)

δalϕ1f (r)dr+

Lblade∫
0

k(r)al(t)ϕ1f (r)(δalϕ1f (r))dr︸ ︷︷ ︸
Kal

alδal

= Fl,aero(t)ϕ1f (d)︸ ︷︷ ︸
GFal

δal, (9)

where there is a consideration of the blade aerodynamic forcing Fl,aero and the tangential inertia force fŷ′(r, t). In Eq. (9),

k(r) is the blade sectional stiffness as k(r) =m(r)ω2
1f , and ϕ1f (d) is the first flap mode’s value at the reference radial location

r = d. The internal force which is caused by the element mass’s m(r) stiffness coefficient k(r) is not appearing in Eq. (8)

because it is not an external force applied to the system. The external force that is considered in Eq. (9) is the generalized150

aerodynamic blade force GFal
.

The right hand side for both the rotational and translation equations of motion are part of the time domain model’s forcing

vector noted FT . The time (index T ) domain model’s dynamics is described by the following overall EOM,

M
S
ẍ+C

S
ẋ+K

S
x = FT , (10)

where there is only a structural (index S) damping C
S

.155

The structural mass M
S

and stiffness K
S

matrices include a contribution due to the floater and overall turbine (nacelle and

tower) structural properties (M
S,floater

and K
S,floater

). The other contribution originates from the blades (M
S,blades

(r) and

K
S,blades

(r)) structural properties through an integration span-wise in direction r. Therefore, for the three-bladed wind tur-

bine, the structural mass M
S
=M

S,floater
+
∫ Lblade

0
M

S,blades
(r)dr and stiffness K

S
=K

S,floater
+
∫ Lblade

0
K

S,blades
(r)dr

matrices are assembled as160

M
S
=


MH2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+

Lblade∫
0

m(r)


∑3

l=1D
2
l (r, t) D1(r, t)ϕ1f (r) D2(r, t)ϕ1f (r) D3(r, t)ϕ1f (r)

D1(r, t)ϕ1f (r) (ϕ1f (r))
2

0 0

D2(r, t)ϕ1f (r) 0 (ϕ1f (r))
2

0

D3(r, t)ϕ1f (r) 0 0 (ϕ1f (r))
2

dr, (11)
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and

K
S
=


Kξ5 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+

Lblade∫
0

m(r)


0 −D̈1(r, t)ϕ1f (r) −D̈2(r, t)ϕ1f (r) −D̈3(r, t)ϕ1f (r)

0 ω2
1f (ϕ1f (r))

2
0 0

0 0 ω2
1f (ϕ1f (r))

2
0

0 0 0 ω2
1f (ϕ1f (r))

2

dr, (12)

in accordance with the rotational and translation equations of motion in Eqs. (8) and (9). As observable in Eq. (12), the inertia

moment pl,lin(r, t) generates negative restoring forces that are equivalent to a negative stiffness effect. Moreover, the restoring165

floater pitching moment coefficient Kξ5 is tuned to achieve a realistic platform pitch frequency of ωξ5 = 0.035 Hz.

The structural damping C
S

is inspired by a classical Rayleigh damping model, C
S
= νM

S
+µK

S
, where only the diag-

onal elements of the structural stiffness matrix K
S

are multiplying a specific factor µk. The off-diagonal components of the

structural stiffness matrix K
S

are not related to the structural stiffness of the structure itself but rather to the element mass

m(r)’s inertial effects which is why they are not considered in the structural damping. Further, including the mass matrix M
S

170

proportionality to the structural damping matrix could potentially over-damp the system at low natural frequencies because

the damping ratio contribution due to inertia is inversely proportional to the frequency. In line with Eqs. (8) and (9), the total

structural damping C
S
= C

S,floater
+
∫ Lblade

0
C

S,blades
(r)dr matrix for the three-bladed wind turbine considers additional

effects that are caused by the element mass m(r)’s inertia as revealed below:

C
S
=

Lblade∫
0

m(r)


∑3

l=1 2Dl(r, t)Ḋl(r, t) 0 0 0

2Ḋ1(r, t)ϕ1f (r) µa1
ω2
1f (ϕ1f (r))

2
0 0

2Ḋ2(r, t)ϕ1f (r) 0 µa2
ω2
1f (ϕ1f (r))

2
0

2Ḋ3(r, t)ϕ1f (r) 0 0 µa3
ω2
1f (ϕ1f (r))

2

dr

+


µξ5Kξ5 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .
(13)175

To compute each kth DOF’s diagonal component in the structural damping matrix C
S

, we set the log-decrement δk value and

then use the structural frequency ωk to obtain the damping factor µk through:

ζk =
δk√

4π2 + δ2
≈ δk

2π
and µk =

2ζk
ωk

. (14)

The approximation for ζk holds for a considerably small damping ratio ζk. The torsional structural damping applied on ξ5 must

represent the hydrodynamic damping effect of the floater’s motion. The damping ratio for a TetraSpar floater is found in Borg180

et al. (2024) as ζξ5 =3% with a log-decrement of δξ5 =0.20. This results in a damping factor of µξ5 =0.30. Besides, for the

blades DOF al the damping ratio is set at a very low value of ζal
=0.5% (Bak et al., 2013) with a corresponding logarithmic

decrement of δal
=0.03 and resulting in a damping factor of µal

=0.0024.
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We have not included the effect of gravity so far in the model, but its effect is still represented in Figure 1. This means that

the current structural model is independent of the equilibrium or steady state floater tilt value ξ5. This is confirmed by the185

fact that although ξ̇5 and ξ̈5 occur in the dynamic Eqs. (3) and (4), there is no explicit occurrence of ξ5 except for the linear

restoring term Kξ5 in the Eq. (8) for translation motion. Here the linear model is valid for oscillations around any tilt value ξ5.

The inclusion of gravity in the model would lead to additional terms in K
S
=K

S,floater
+
∫ Lblade

0
K

S,blades
(r)dr, namely in

K
S,floater

and K
S,blades

resulting in

K
S,floater

=


Kξ5 +M gH 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (15)190

and

K
S,blades

=

Lblade∫
0

m(r)


∑3

l=1 gDl(r, t) −D̈1(r, t)ϕ1f (r) −D̈2(r, t)ϕ1f (r) −D̈3(r, t)ϕ1f (r)

gϕ1f (r) ω2
1f (ϕ1f (r))

2
0 0

gϕ1f (r) 0 ω2
1f (ϕ1f (r))

2
0

gϕ1f (r) 0 0 ω2
1f (ϕ1f (r))

2

dr, (16)

under use of the small tilt assumption of sinξ5 ≈ ξ5. These stiffness matrix K
S

contributions demonstrate the additional

coupling effects from tilt and gravity for a floating wind turbine. For the purpose of model simplicity however, these gravity

effects have not been included in the further analysis.195

2.2 Aerodynamic loads

The aerodynamic loads applied on the blades are the lift forces Ll, which are taken at the reference radial location r = d

(Hansen, 2015),

Ll =
1

2
ρ{cCL,lV

2
rel,l}r=d. (17)

Here Vrel,l is the airfoil relative velocity observed at the reference radial location r = d, ρ denotes the air density, c is the airfoil200

chord length, and CL,l is the lift coefficient which is dependent on the angle of attack αl. As mentioned, the radial reference

position on the blade is the approximate location of the equivalent aerodynamic load which is comparable for an airfoil to the

position of the aerodynamic center along the chord length.

Since the main purpose of the model is to demonstrate methods for stability analysis, a number of simplifications are made.

To this end, the contribution of blade drag forces is neglected, as well as the induced wake velocity caused by the rotational205

speed. The assumption that drag can be neglected is applicable because of the airfoil shape at the reference position which is

a streamlined thin airfoil. As for the tangential induction factor, it generates a negligible wake velocity contribution. Another

approximation that is part of the model, is that the floater pitch angular motion ξ5 response is assumed to be considerably small,

8



which suggests that one can use the small angle approximations sinξ5 ≈ ξ5 and cosξ5 ≈ 1. These approximations hold very

well due to ξ5 responses being indeed very small, which will be demonstrated later in the paper through decay tests. The inflow210

velocity component projected perpendicularly to the rotor plane is assumed in our model not to be impacted by the floater

tilt angle variation due to the small angle approximation, i.e. V0 cosξ5 ≈ V0. According to this assumption, the resulting blade

aerodynamic load Fl,aero projected perpendicularly to the rotor plane can also abide to the same approximation and assumed

to be influenced by a non projected inflow velocity V0.

2.2.1 Velocity triangle215

The key velocity variables that constitute the relative velocity Vrel,l for an airfoil are the inflow velocity V0,l and the rotational

speed Vrot. The relations between these velocity triangle variables are illustrated in Figure 2.

Figure 2. The airfoil velocity triangle expressed in a coordinate system composed of a tangential (t̂), normal (n̂) and outward (ô) unit vector.

From Figure 2 several geometric relations are inferred and one of them is simply V 2
rel,l = V 2

n̂,l +V 2
t̂,l

. The relative velocity

Vrel,l has an orientation which is given by the inflow angle ϕl and the following trigonometric relation ϕl = tan−1
(
−Vn̂,l/Vt̂,l

)
is deduced. The inflow angle ϕl is also described as the sum of the twist angle βl with the angle of attack αl, which reads as220

ϕl = αl +βl.

Besides, the relative velocity Vrel,l is affected by the wake velocity Wl. The induced wake velocity Wl has only a velocity

component that is orientated in the normal direction to the rotor plane and it is characterised by the induction factor a. On this

basis, the radial and tangential velocity to the rotor plane, Vt̂,l, is the rotational velocity Vrot =−Ωd at r = d. The contribution

from the rotational wake induction factor a′ is negligible and hence chosen to be ignored in this analysis, meaning that Vt̂,l =225

Vrot.

The velocity Vn̂,l, normal to the rotor plane, is influenced by the inflow velocity V0, the velocity perceived on the airfoil due

to the blade deflection Val
and by the velocity caused by the floater’s pitch angular motion Vξ5,l. This leads to

Vn̂,l = (1− a)

V0(H)− ξ̇5 (H + dcosΨl)︸ ︷︷ ︸
Vξ5,l

− ȧlϕ1f (d)︸ ︷︷ ︸
Val

 . (18)
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2.2.2 Linearization of aerodynamic loads230

Given Eq. (18), V 2
n̂,l is expanded as

V 2
n̂,l = (1− a)

2
V 2
0 (H)︸ ︷︷ ︸

steady term

+(1− a)
2
(
2ξ̇5 (H + dcosΨl) ȧlϕ1f (d)+ ξ̇25 (H + dcosΨl)

2
+ ȧ2l (ϕ1f (d))

2
)

︸ ︷︷ ︸
higher order terms neglected

+2(1− a)
2
V0(H)

(
−ξ̇5 (H + dcosΨl)− ȧlϕ1f (d)

)
︸ ︷︷ ︸

damping contribution

.
(19)

For linearization purposes, higher order terms of V 2
n̂,l are neglected in the derivations to come.

Using the previous aerodynamic identities, the lift force Ll is projected in the normal direction to the rotor plane as can be

seen in Figure 2. This projection is done by utilizing the inflow angle ϕl,235

Fl = Ll cosϕl. (20)

The aerodynamic load Fl is a driver of the floating wind turbine’s motion. It is linearized as:

∂ (Ll,lin cosϕl,lin)

∂·
=

1

2
ρc

 ∂CL,l

∂·

∣∣∣∣
st

cosϕstV
2
rel,st +CL,st

∂ cosϕl,lin
∂·

∣∣∣∣
st

V 2
rel,st +CL,st cosϕst

∂
(
V 2
rel,l

)
∂·

∣∣∣∣∣∣
st

 , (21)

where the label st represents the steady state value of a variable. In Eq. (21), the variables CL,l,lin, cosϕl,lin, and V 2
rel,l,lin are

linearized in the same fashion as Yl,lin,240

Yl,lin = Yl,st +∆Y = Yl,st +
∂Yl
∂ȧl

∣∣∣∣
st

ȧl +
∂Yl
∂fs,l

∣∣∣∣
st

fs,l +
∂Yl

∂ξ̇5

∣∣∣∣
st

ξ̇5. (22)

The linearization contribution ∂Yl

∂fs,l

∣∣∣
st
fs,l that pertains to the dynamic stall variable fs will be introduced later in the dynamic

stall subsection. For the linearization of Ll,lin, one consideration required to be taken into account is that Vt̂,l is constant, which

entails that

∂V 2
rel,l

∂·
=
∂V 2

n̂,l

∂·
. (23)245

For the development of the linear model, using Eq. (21), it can be demonstrated that the partial derivative of Vn̂,l is involved in

the linearization of the force Fl. The partial derivative of Vn̂,l appears notably when deriving the inflow angle ϕl with respect

to other variables as

∂ϕl
∂·

=
1

−Vt̂,st
(

V 2
n̂,st

V 2
t̂,st

+1

) ∂Vn̂,l
∂·

. (24)

The partial derivative of the lift coefficient CL,l is dependant on the angle of attack αl and the dynamic stall variable fs,l.250

Details related to the the dynamic stall lift coefficient are clarified later in the paper. Hence, it remains to analyze for the linear
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model the partial derivative of cosϕl, which is found to be

∂cosϕl
∂·

=− Vn̂,st

V 2
t̂,st

(
V 2
n̂,st

V 2
t̂,st

+1

) 3
2

∂Vn̂,l
∂·

. (25)

The aerodynamic forcing terms from Eqs. (8) and (9) are linearized as GFal,lin = Fl,linLbladeϕ1f (d) and

Maero,lin =
∑Nb

l=1Fl,linLblade (H + dcosΨl) through the linearization of variables CL,l,lin, cosϕl,lin, and V 2
rel,l,lin as shown255

in Eq. (21).

We can now build a linearized model, characterized by the index L, for the use in stability analysis. For that to occur, a part

of the aerodynamic loading from FT in Eq. (9) is moved from the right hand side to the left hand side and then linearized in

the form of an added aerodynamic damping matrix contribution noted C
A

,

M
S
ẍ+

(
C

S
+C

A

)
ẋ+K

S
x = FL. (26)260

In the EOM from Eq. (26) which pertains to the linearized model, the damping matrix is altered due to the added linearized

aerodynamic damping matrix C
A

consideration. The partial derivatives of the forcing variables Maero,lin and GFa,l,lin allows

to put together that linearized aerodynamic damping matrix contribution C
A

as

C
A
=



−∂Maero,lin

∂ξ̇5
−∂Maero,lin

∂ȧ1
−∂Maero,lin

∂ȧ2
−∂Mlin

∂ȧ3

−∂GFa1,lin

∂ξ̇5
−∂GFa1,lin

∂ȧ1
0 0

−∂GFa2,lin

∂ξ̇5
0 −∂GFa2,lin

∂ȧ2
0

−∂GFa3,lin

∂ξ̇5
0 0 −∂GFa3,lin

∂ȧ3


st

. (27)

The partial derivatives within C
A

are all evaluated at steady state (st) conditions for the linear model, given an operational265

point with a specific rotational speed Ω and inflow velocity V0.

2.2.3 Dynamic stall model

To evaluate the stability of a floating wind turbine model with aerodynamic states, we include a dynamic stall model. The

variation of the angle of attack on an airfoil does not impact immediately the aerodynamic lift and drag forces due to the inertia

resulting in a time delay. Due to its simple implementation, we decide to include Øye’s linear dynamic stall model (Øye, 1991)270

which does take into account that time delay effect on aerodynamic loads. According to Øye’s model, the dynamic stall can be

expressed in the lift coefficient CL through the flow separation function variable fs. The variable fs indicates the trailing edge

flow separation point location x, starting from the leading edge, as a ratio with respect to chord length, i.e. fs = x/c (Hansen

et al., 2004a). The value of fs = 1 corresponds to stall not occurring signifying that the flow remains fully attached. On the

contrary, a value of fs = 0 implies that the separation occurs at the leading edge of the airfoil and that the flow is actually fully275

separated. According to Øye’s dynamic stall model, the influence of fs on the the lift coefficient CL is

CL (αl,fs) = fsCL,inv (αl)+ (1− fs)CL,stall (αl) . (28)
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In this context, CL,inv (α) refers to the inviscid or fully attached flow lift coefficient, whereas CL,stall (α) relates to a fully

separated flow. Considering that the angle of attack value α would be known, both lift coefficients CL,inv (α) and CL,stall (α)

are determined by the airfoil data from Figure 3. For the linearization of CL from Eq. (28), a set of partial derivatives are280

established, including ∂CL,l

∂αl
and ∂CL,l

∂fs,l
respectively as

∂CL,l

∂αl
= fs

∂CL,inv,l

∂αl

∣∣∣∣
st

+(1− fs)
∂CL,stall,l

∂αl

∣∣∣∣
st

and
∂CL,l

∂fs,l
= CL,inv −CL,stall. (29)

By making use of the airfoil data from Figure 3, the values of ∂CL,inv,l

∂αl

∣∣∣
st

and ∂CL,stall,l

∂αl

∣∣∣
st

are computed numerically as gradi-

ents at the operational angle of attack αl through a cubic spline interpolation. Lastly, to fill out the linear model’s aerodynamic

damping matrix C
A

according to Eq. (21), the partial derivative of the lift coefficient CL,l with respect to ẋ=
[
ξ̇5, ȧ1, ȧ2, ȧ3

]T
285

is elucidated by using the previous partial derivative identity from Eq. (24):

∂CL,l

∂·
=
∂CL,l

∂αl

∂αl

∂·
=
∂CL,l

∂αl

∂ϕl
∂·
. (30)

The linearization of CL with respect to fs is next included in the forcing vector FT from the time domain model and in FL

from the linear model as:

FT =


Maero +MF =

∑3
l=1Lblade (H + dcosΨl) ·

(
1
2ρc

(
∂CL,l

∂fs,l
fs,l +CL,stall,l

)
cosϕstV

2
rel,st

)
+MF

GFa,1,lin = Lbladeϕ1f (d)
(

1
2ρc

(
∂CL,1

∂fs,1
fs,1 +CL,stall,1

)
cosϕstV

2
rel,st

)
...

 and

FL =


∑3

l=1Lblade (H + dcosΨl) ·
(

1
2ρc

(
∂CL,l

∂fs,l

∣∣∣
st
fs,l

)
cosϕstV

2
rel,st

)
+MF

Lbladeϕ1f (d)
(

1
2ρc

(
∂CL,1

∂fs,1

∣∣∣
st
fs,1

)
cosϕstV

2
rel,st

)
...

 .
(31)290

The time domain model forcing vector FT considers a linear fs contribution through a CL variation dictated by Eq. (28).

Because the aerodynamic damping force is included in FT , what remains from it in FL is only the contribution of the partial

derivative ∂CL,l

∂fs,l

∣∣∣
st
= CL,inv|st − CL,stall|st which is expressed as a constant gradient evaluated at the operational point’s

steady state condition. Knowing the identities for FT and FL as well as CL’s linearized formulation, a Jacobian matrix of

partial derivatives can be derived for both forcing vectors F at each ith row, F i. The Jacobian matrix of partial derivatives for295

F i with respect to fs,j on the jth column is identified as
[
∂F i/∂fs,j

]
and has the following composition:

[
∂F i/∂fs,j

]
=


∂Maero,lin

∂fs,1

∂Maero,lin

∂fs,2

∂Maero,lin

∂fs,3
∂GFa1,lin

∂fs,1
0 0

0
∂GFa2,lin

∂fs,2
0

0 0
∂GFa3,lin

∂fs,3

 , (32)

with its assembly directly influenced by the partial derivative ∂CL,i

∂fs,j
. For the time domain model, the Jacobian matrix

[
∂F i/∂fs,j

]
varies in time as the simulation progresses. On the contrary, for the linear model case,

[
∂F i/∂fs,j

]
is constant and affected

12



by aerodynamic parameters that are fixed at steady state values found for a given operational point with a particular inflow300

velocity V0 and rotational speed Ω.

To be able to compute the lift coefficient CL that influences the aerodynamic loading, a dynamic stall Ordinary Differential

Equation (ODE) for fs is defined as

ḟs,l =
fs,static,l − fs,l

τ
. (33)

Here τ identifies a steady state time constant which is inversely proportional to the steady state relative velocity but directly305

proportional to the chord length, τ = (4c)/Vrel,st. In agreement with previous explanations about stall occurrence, the static

value of fs, i.e. fs,static, reaches 0 when there is a full separation of the flow. Simultaneously, the dynamic stall contribution

to CL, called CL,stall (α), reaches then a maximum value. Stall itself starts taking place when the static lift coefficient curve

CL,static reaches a maximum value, and then fs,static is close to 0.5 for the current airfoil being FFA-W3-241. Figure 3

exhibits the relations between the multiple aerodynamic that have been introduced.310
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Figure 3. Airfoil FFA-W3-241 dynamic stall data with respect to angle of attack α, and valid at the reference radial position r = d.

In the linearized model, ḟs,l is linearized with respect to the four structural DOFs of the system and the three aerodynamic

DOFs fs,l. This requires to take into account the full linearization of the ḟs ODE by including the linearization of the fs,static,l

variable as well,

ḟ
s,l,lin

=−fs,l
τ

+
1

τ

(
fs,static|st +

∂fs,static,l
∂αl

∣∣∣∣
st

∂ϕl

∂ξ̇5

∣∣∣∣
st

ξ̇5 +
∂fs,static,l

∂αl

∣∣∣∣
st

∂ϕl
∂ȧl

∣∣∣∣
st

ȧl

)
. (34)

This complete linearization translates in the following two Jacobian matrices represented as315

[
∂ḟ

s,i
/∂ẋ4×1,j

]
3×4

=


∂ḟs,1
∂ξ̇5

∂ḟs,1
∂ȧ1

0 0

∂ḟs,2
∂ξ̇5

0
∂ḟs,2
∂ȧ2

0

∂ḟs,3
∂ξ̇5

0 0
∂ḟs,3
∂ȧ3


st

(35)
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and
[
∂ḟ

s,i
/∂f

s,j

]
3×3

which is a diagonal constant matrix with components on the ith row and jth column being equal to

−1/τ . To evaluate for the linear model the partial derivative ∂fs,static,l

∂αl

∣∣∣
st

in Eq. (34), the numerical gradient is determined at

the corresponding operational angle of attack αl through the use of the airfoil data from Figure 3. It is observable in Figure

4 the numerical result for the gradient ∂fs,static,l

∂αl

∣∣∣
st

calculated via a cubic spline interpolation for a wide range of angles of320

attack.
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Figure 4. Numerical gradient ∂fs,static/∂α as a function of the angle of attack α.

The angles of attack labeled as Stall and αA refer respectively to the beginning of flow separation and the end of the flow

separation transitioning region.

2.3 State-space representation

When combining the time domain model EOM, which is a second order ODE (see Eq. (10)), with the first order dynamic325

stall ODE (see Eq. (33)), we can rewrite the system as a first order state-space model. This formulation comprises of a system

matrix A, a state vector q and a forcing input vector FB ,

q̇ =Aq+FB . (36)

The state vector q =
[
xT4×1, ẋ

T
4×1,fs,1,fs,2,fs,3

]T
includes the structural DOFs vector x, its time derivative ẋ as well as the

variable fs,l for each blade. The length of state q, labeled as Ns, is Ns = 11 for a three-bladed wind turbine. The response of330

q is quantified in terms of variations from the steady state values, which are determined through simulations using the time
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domain model. Finally, the state-space system matrix A is built for the time domain and linearized model respectively as

A
T
=


[
0
4×4

] [
I
4×4

] [
0
4×3

]
[
−M−1

S
K

S

]
4×4

[
−M−1C

S

]
4×4

[
M−1

S

[
∂F i/∂fs,j

]]
4×3[

0
3×4

] [
0
3×4

] [
∂ḟ

s,i
/∂f

s,j

]
3×3

 and

A
L
=


[
0
4×4

] [
I
4×4

] [
0
4×3

]
[
−M−1

S
K

S

]
4×4

[
−M−1

S

(
C

S
+C

A

)]
4×4

[
M−1

S

[
∂F i/∂fs,j

]]
4×3[

0
3×4

] [
∂ḟ

s,i
/∂ẋj

]
3×4

[
∂ḟ

s,i
/∂f

s,j

]
3×3


st

.

(37)

It is important to recall that the linear model system matrix A
L

matrix components are all evaluated at steady state (st)

conditions. In contrast, the time domain model matrix A
T

has partial derivatives that vary in time. For simulations with a335

forced response, the time domain model state-space forcing vector FB,T is, just like A
T

, impacted implicitly by a variation of

aerodynamic parameters. On the other hand, the linearized model’s forcing vector F
B,L

contains only a platform pitch forcing

moment MF contribution because it accounts for a response variation around steady state. This is summarized as

FB,T =



[
04×1

]
M−1

S


∑3

l=1Lblade (H + dcosΨl) ·
(

1
2ρcCL,stall,l cosϕstV

2
rel,st

)
+MF

Lbladeϕ1f (d)
(

1
2ρcCL,stall,1 cosϕstV

2
rel,st

)
...



fs,static,1/τ

fs,static,2/τ

fs,static,3/τ




and FB,L =



[
04×1

]
M−1

S

 MF[
03×1

]


[
03×1

]

 .

(38)

3 Model verification340

After the state-space representation of the time domain and linear model is completed, time domain simulations are performed

to assess how both models function in terms of decay tests and dynamic stall responses. These simulations serve as a model

verification as well.

3.1 Decay tests

To verify that the linear model (LM) has been fully linearized and that it behaves in a physically correct manner, decay tests345

simulations are carried out to compare results with the time domain model (TDM). Results are presented as variations from

the steady state values. The simulations conditions consider an operational point of V0 = 8 ms−1 and Ω= 0.6 rads−1. The

corresponding steady state angle of attack and lift coefficient are located in a region where the flow is not fully attached
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and closer to stall than the inviscid region, see Figure 3. The initial space perturbations for the structural DOFs (ξ5 and al)

are equal to the negative value of the steady state values, and the initial conditions for the dynamic stall fs,l variables are350

the corresponding values for those structural DOFs initial conditions. This means that ξ5(t= 0) =−0.02 rad, al(t= 0) =

−7.11 m, and fs,l(t= 0) =−0.67.

The results from Figure 5 show that the steady state plateau values for the al and the fs,l signals are reached in a very short

time span. The time domain plots also confirm that there is no disparity between the results obtained with the time domain

model (TDM) and the linear model (LM). Time responses also indicate that the system is highly damped with regards to the355

al and the fs,l DOFs in comparison to the floater pitch ξ5 which has not reached its steady state value yet in the time frame

displayed here.

In the frequency domain, the PSD plots in the right column of Figure 5 capture at the peaks the natural frequency of the

floater pitch motion, ωξ5 , for the ξ5 signal but also the shifted frequencies of −ωξ5 +Ω and ωξ5 +Ω in the other signals (al

and fs,l) because of the system’s periodicity. This entails that eigenfrequencies shifted by ±mΩ, where m is an integer, are360

also part of the response. The blade natural frequency, ω1f = 0.6255 Hz, cannot be captured by any signal with a decay test

due to a very high aerodynamic damping contribution. It was investigated by the authors (Pamfil et al., 2024) that the blade

natural frequency was well captured once the aerodynamic damping contribution was numerically reduced by decreasing the

air density, ρ.
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Figure 5. Decay test for the operational point of V0 = 8 ms−1, Ω= 0.6 rads−1 and τ = 0.34 s, where time domain model (TDM) and

linear model (LM) results are compared.
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3.2 Dynamic stall analysis365

To test furthermore the correct implementation of the linearized model compared to results generated with the time domain

model, we analyze on CL-α plots the hysteresis behavior of the airfoil’s lift due to the dynamic stall.

3.2.1 Operational point and floater pitch moment variation

The most direct way to verify the CL-α responses in the stall region is to vary the platform pitch moment MF that is given by

a harmonic time dependence as follows:370

MF =AM cos(ΩM t), (39)

with in amplitude AM and excitation frequency ΩM . The amplitude AM is varied depending on the chosen operational point

to achieve the desired angle of attack variation resulting in the hysteresis behavior that can be noticeable on CL-α plots.

Figure 6 reports the time domain model (TDM) and linear model (LM) results for three operational conditions with the same

inflow velocity of V0 = 8 ms−1. For each operational point, the floater pitch moment excitation amplitude AM is changed375

whereas its excitation frequency ΩM is fixed at 0.15 Hz, ΩM = 0.94 rads−1. The three operational points that are experimented

are located at the onset of stall, before, and right after, respectively, to allow to examine more clearly the hysteresis behavior

for a high fluctuation of the lift and angle of attack values. The results for the point located where the flow is not fully attached

and in the pre-stall region are presented on the first row, and they are achieved with a rotor speed of Ω= 0.43 rads−1, a

nominal time constant τnom = 0.47 s and AM = 1.212 · 109 Nm. The results presented in the second and third row in Figure380

6 are related to an operational point located respectively at the stall region around α= 15 deg and nearby at a higher angle

of attack. The simulations conditions for the second and third row are respectively a rotor speed of Ω= 0.38 rads−1 and

Ω= 0.35 rads−1, a nominal time constant of τnom = 0.52 s and τnom = 0.56 s, and a platform pitch moment amplitude

of AM = 9.70 · 108 Nm and AM = 1.212 · 109 Nm. The distinction for the three different operational conditions in terms of

nominal time constant τnom = (4c)/Vrel,st arises from the difference in steady relative velocity Vrel,st =
√
V 2
n̂,l +V 2

t̂,l
through385

the tangential velocity component Vt̂,l =−Ωd, see airfoil velocity triangle in Figure 2.

Further, the time frame chosen to be plotted captures entirely the steady state cyclic behavior of the lift coefficient and angle

of attack for more than one cycle.
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Figure 6. Dynamic lift and stall behaviour at three different operational points surrounding the stall region, with a varying forcing moment

applied on the floater pitch DOF, and where the time domain model (TDM) and linear model (LM) results are compared.

The hysteresis phenomenon is caused by the time delay effect in the region of the operational point, see airfoil data in Figure

3. There is a good overall match between the time domain and linear model time series for α and CL. Both the time domain390

and linear models are able to describe the stall phenomenon. This difference between results is more pronounced in the region

before stall, where the hysteresis curves are more elongated.

3.2.2 Influence from time constant

The aerodynamic damping depends on the time constant τ from the dynamic stall model, and it influences the hysteresis

behavior of the system in the the region where the flow is not fully attached and before the onset of stall. Varying τ ’s value395

in the dynamic stall model with respect to a reference nominal value τnom = 0.34 s would clarify what is the impact on the

angle of attack α and lift coefficient CL, and it demonstrates the effect on the aerodynamic damping. Simulations are executed
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at an operational point of V0 = 8 ms−1 and Ω= 0.6 rads−1 with a steady state angle of attack α= 8.32 deg. The region

of this operational point is not in the inviscid region because the flow is not fully attached, but it still precedes the onset of

stall. To observe the effect of τ ’s change on CL-α graphs there is a platform pitch forcing applied with fixed parameters for the400

amplitude,AM = 1.2118e+09 NM, and for the excitation frequency set at 0.15 Hz, ΩM = 0.15·2π rads−1. We investigate this

hysteresis behavior of the lift coefficient and angle of attack time series and compare results between the time domain model

(TDM) and linear model (LM). In Figure 7, the hysteresis effect is studied for an angle of attack ranging from α= 6.47 deg to

α= 10.11 deg. The dynamic stall τ parameter’s intensity is varied by a factor of 0.15, 1 and 100 applied to the nominal value

τnom = 0.34 s.405
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Figure 7. Hysteresis results for simulations with the operational point of V0 = 8 ms−1 and Ω= 0.6 rads−1, with a forcing moment applied

on the floater pitch DOF, and where time domain model (TDM) and linear model (LM) results are compared.

The variation of τ ’s value helps to visualize on a CL-α plot the impact on the slope ∂CL

∂α during the cyclic motion of the

platform pitch. Results point out that a higher value of τ brings about a higher slope ∂CL

∂α . After performing an analytical

integration of the ODE from Eq. (33), this conclusion can be supported by studying the influence of τ on the solution of the

dynamic stall variable fs. It is explicitly expressed at a current time step t+∆t for a small time step increment of ∆t,

fs(t+∆t) = fs,static +(fs(t)− fs,static)e
(−∆t

τ ). (40)410

It is discernible in Eq. (40) that a larger time constant τ leads to a larger exponential factor e(−
∆t
τ ). This inevitably increases

fs(t+∆t) through the term (fs(t)− fs,static)e
(−∆t

τ ). In compliance with Eq. (29) for ∂CL

∂α , a greater value of fs induces a

higher slope ∂CL

∂α . To recapitulate, τ ’s variation has an outcome that is noticeable on a CL-α graph when a harmonic floater

pitch moment is applied. It has been proven that an increased time constant τ produces a higher slope of the lift coefficient CL

over the angle of attack α which is evidently demonstrated in Figure 7.415

This lift curve slope trend with an increasing time constant τ in the region where the flow is partially separated is not

physically accurate. A slope higher than the static curve implies that the model does not consider the Theodorsen effect.

This occurs because Stig Øye’s dynamic stall model does not take into account the shed vorticity from the airfoil trailing
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edge which is modeled by Theodorsen’s analytical function. This effect is captured by the Beddoes-Leishman dynamic stall

model (Leishman et al., 1986) which was linearized in the form of a state-space model by Hansen et al. (2004b). We opted420

for the Stig Øye dynamic stall model instead because it only requires one aerodynamic stall variable per blade compared to

multiple variables for the Beddoes-Leishman state-space model (Hansen et al., 2004b). This alleviates the implementation and

linearization of the dynamic stall model equations in the system state-space formulation.

4 Hill’s method of infinite determinants

The damping of dynamic systems is usually quantified through the eigenvalues analysis of linearized system matrices. However,425

for the dynamic system at hand, several system matrix components are azimuthally periodic, meaning that the stability analysis

cannot be directly analyzed for the time varying system matrix. Hill’s method is a solution that renders the system matrix to

become LTI so that the eigenvalues can be calculated.

4.1 Aero-elastic stability within Hill’s method

To obtain an LTI system via Hill’s method, the state-space ODE from Eq. (36) is rewritten as a truncated double sided Fourier430

series with a summation index spanning from j =−N till N , with N being the upper limit for the expansion. The Fourier

series expansion for the state vector q, the time derivative vector q̇, and the linearized system matrix A
L

(Christensen and

Santos, 2005), which are all of dimension Ns, is respectively

q(t) =

N∑
j=−N

q
j
(t)eijΩt, q̇(t) =

N∑
j=−N

(
(ijΩ) q

j
(t)+ q̇

j
(t)
)
eijΩt and A

L
(t) =

N∑
j=−N

A
L,j
eijΩt, (41)

where each A
L,j

is a constant matrix. In our model, a Fourier decomposition with N = 4 suffices to create an exact description435

of the system’s periodicity.

The Fourier decomposition of the system must be doubled sided because the linearized model’s system matrixA
L

is real and

has no imaginary component, refer to Eq. (37). To rephrase, the double sided Fourier decomposition of A
L

allows to cancel

out the imaginary parts that appear from the positive (+jΩ) and negative (−jΩ) harmonics. The expressions from Eq. (41) can

be inserted into the state-space ODE from Eq. (36). For the eigenvalue analysis to be applicable, the free vibration condition is440

considered in Eq. (36) which implies that no input forcing FB is exerted on the system. This approach is laid out as

N∑
n=−N

(
q̇
n
(t)+ (inΩ) q

n

)
einΩt =

N∑
j=−N

N∑
r=−N

A
L,j
q
r
ei(j+r)Ωt. (42)

The expression from Eq. (42) can then be manipulated to get

N∑
n=−N

q̇
n
(t)einΩt =

N∑
n=−N

−(inΩ)q
n
+

n+N∑
j=n−N

A
L,j
q
n−j

einΩt. (43)
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Since Eq. (43) must hold for any value of time t, the factor for each einΩt term in the summation must satisfy445

q̇
n
(t) =−(inΩ)q

n
+

n+N∑
j=n−N

A
L,j
q
n−j

. (44)

Upon definition of q̂ = [qT
n=−N

, ..., qT
n=0

, ..., qT
n=N

]T , Eq. (44) is recast into a hyper-matrix formulation by varying the index n

from from −N till N to represent a state-space equation for different harmonics q
n

of the response q,



...

q̇
n=−1

q̇
n=0

q̇
n=+1

...


︸ ︷︷ ︸

ˆ̇q

=



. . .
...

...
...

...

. . . A
L,0

+ iΩI A
L,−1

A
L,−2

. . .

. . . A
L,1

A
L,0

A
L,−1

. . .

. . . A
L,2

A
L,1

A
L,0

− iΩI . . .

...
...

...
...

. . .


︸ ︷︷ ︸

Â



...

q
n=−1

q
n=0

q
n=1
...


︸ ︷︷ ︸

q̂

. (45)

It can be seen in Eq. (45) that for a truncation with the expansion upper limit N , the number of harmonic matrices A
L,j

450

required to be computed spans from j =−2N till j = 2N . The hyper-matrix Â that emerges is a Toeplitz matrix of dimension

Ns · (2N +1) with an additional contribution on the diagonal terms due to the rotational speed Ω. Since Â is a constant matrix

it allows to describe an LTI system and thus to compute its eigenvalues and eigenvectors.

4.2 Hill’s eigenvalue problem

Put differently, Eq. (45) translates to ˆ̇q = Â q̂ where the stability of the LTI system is determined through the eigenvalues of Â.455

Consequently, the eigenvalue problem to solve for the hyper-matrix Â (Skjoldan, 2009) is expressed as



. . .
...

...
...

...

. . . A
L,0

+ iΩI A
L,−1

A
L,−2

. . .

. . . A
L,1

A
L,0

A
L,−1

. . .

. . . A
L,2

A
L,1

A
L,0

− iΩI . . .

...
...

...
...

. . .


︸ ︷︷ ︸

Â

−λk,mÎ





...

v̂k,m,n=−1

v̂k,m,n=0

v̂k,m,n=1

...


︸ ︷︷ ︸

v̂k,m

= 0̂. (46)

The eigenvalues λk,m have an index k that is related to a physical mode which can range from the first to the last state number,

k = 1...Ns. The index m refers to the periodic frequencies valid for a kth eigenvalue λk,m, and with a Fourier series truncation

consideration, it ranges just like index n from −N till N . Yet, if no truncation is considered in Eq. (46), each one of those460

physical modes is associated with an infinite number of eigenvalues due to the infinite nature of the hyper-matrix Â. In that

case, solving the eigenvalue problem for an eigenvalue λk,j+m in Eq. (46) leads to the same matrix Â to solve as for λk,j with
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the addition of ÎmΩ with shifted eigenvectors accordingly. In short, the eigenvalue is established as

λk,m = σk + i(ωp,k +mΩ)︸ ︷︷ ︸
ωk,m

= λk,0︸︷︷︸
λk

+imΩ, (47)

where the eigenvalue’s real part is the modal damping coefficient σk which is negative for stable modes, whereas its imaginary465

part is the damped frequency ωk,m. The damped frequency ωk,m is made of a principal (p) frequency ωp,k shifted by an integer

m multiple of iΩ. Furthermore, the redundancy of eigenvectors v̂k,m can be proven. If we take the middle row from Eq. (46)

linked to n= 0 and describe that subset of equations for λk,m=0, we get

. . .+A
L,2
v̂k,0,−2 +A

L,1
v̂k,0,−1 +

(
A

L,0
−λk,0I

)
v̂k,0,0 +A

L,−1
v̂k,0,1 +A

L,−2
v̂k,0,2 + . . .= 0. (48)

Then we can apply the same thought to the row associated to n= 1 and thus obtain the following subset of equations for470

λk,m=1 instead,

. . .+A
L,2
v̂k,1,−1 +A

L,1
v̂k,1,0 +

A
L,0

− (λk,1 − iΩ)︸ ︷︷ ︸
λk,0

I

 v̂k,1,1 +A
L,−1

v̂k,1,2 +A
L,−2

v̂k,1,3 . . .= 0. (49)

By comparison of Eqs. (48) and (49), it can be reasoned that v̂k,0,j = v̂k,m,j+m. It ensues that solving the basis eigenvector v̂k,0
for λk,0 is sufficient to describe the eigenvectors of the system. The eigenvector v̂k,0 is the same as any other eigenvector v̂k,m
linked to λk,m, but it is shifted in values in the positive n direction by m ·Ns and upwards in frequency by mΩ. The relations475

from Eqs. (46) and (47) for the infinite hyper-matrix Â are in practice affected by the truncation from the Fourier decomposition

which is applied to the system. After truncation, the full eigenvectors matrix that is associated to all the eigenvalues λk,m

is V̂
(Ns·(2N+1))×(Ns·(2N+1))

. Therefore a portion of the full eigenvector matrix V̂
(Ns·(2N+1))×(Ns·(2N+1))

is identified as

V̂
(Ns·(2N+1))×Ns

and it is composed of non-redundant hyper-eigenvectors v̂k,m=0 that are linked to the principal eigenvalues

λk,m=0. Inside V̂
(Ns·(2N+1))×Ns

, each column of index k is composed of individual eigenvectors v̂k,m=0,n (see Eq. (46)) of480

length Ns = 11 for a three-bladed rotor.

4.3 Principal eigenvalues selection method

Solving the eigenvalue problem from Eq. (46) for Hill’s constant hyper-matrix Â (LTI system) generates the multiple identical

eigenvectors v̂k,m with damping values σk. These identical modes have shifted eigenfrequencies ωk,m by an integer m of Ω

for each kth state, refer to Eq. (47). Among the redundant modes, it is essential to select the one for each kth state with the485

most significant eigenvalue and corresponding frequency ωp,k.

A principal damped frequency can be defined as the median in the set of all values obtained, which has been validated

by Xu and Gasch (1995) for a three-bladed wind turbine rotor, by Christensen and Santos (2005) for a general four-bladed

rotor, and by Lazarus and Thomas (2010) for a forced hardening Duffing oscillator. This procedure translates to selecting

the eigenvalues that are nearest in value to the ones of matrix A
L,0

labeled as λk,A
L,0

for each kth state. The eigenvalue490

selection for each kth state is associated to a given optimal frequency shift m̂Ω that allows to obtain the rightful principal
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frequency as λk,m̂ =min
(
|λk,m −λk,A

L,0
|
)

, and then the optimal eigenvalue for the kth state is eliminated from the selection

pool of candidate values. This straightforward selection technique is applicable when A
L,0

has matrix components that are

considerably larger in absolute value in comparison with the other higher harmonics matrices. The principal eigenvalues and

eigenvectors are associated to an index m= 0 in the eigenvalue identity from Eq. (47), and there are as many of them as there495

are number of states.

This technique of principal eigenvalue selection has also been employed by Genta (1988) for the stability analysis of a

non-axisymmetric rotor and stator modeled via Timoshenko beam elements. The Campbell diagram was plotted by using the

"zero order" and higher order estimations of the eigenvalues by solving the eigenvalue problem of the EOM respectively with

the zeroth and higher order harmonic matrices (Genta, 1988). More recently, a more elaborate method has been introduced by500

Hansen (2016) for the identification of the principal eigenvalues. It consists of eliminating from the eigenmode solutions half

of the largest eigenvectors with higher order harmonic components, and then selecting the principal solutions with the largest

mean or zeroth harmonic components so that they are mot centered around the mean value. Despite the proven functionality of

that method for two and three-bladed wind turbines (Hansen, 2016), we have demonstrated in our previous stability analysis

work (Pamfil et al., 2024) the reliability of our more direct and simple principal eigenvalue selection methodology to deal with505

the indeterminacy problem.

5 Floquet’s theory

Hill’s method has been shown to be capable of constructing an LTI system that can be used for stability analysis. Nonethe-

less, for cross-validation purposes, it is relevant to utilize another method to perform the modal analysis. As another option,

Floquet’s theory is commonly used too for the objective of rendering the periodic system to become LTI. Floquet’s (or the510

Floquet–Liapunov) theory has notably been employed by Frulla (2000) to obtain accurately the stability limit curves for the

EOM of a symmetrical four-bladed rotor and an unsymmetrical two-bladed one, both subjected to a constant rotational speed

Ω. The application of Floquet’s theory for wind turbines has been further investigated by Skjoldan (2011), Bottasso and Cac-

ciola (2015), and Riva (2017). Regarding the scope of their work, Bottasso and Cacciola (2015), and Riva (2017) emphasized

in tuning the principal natural frequencies selection so that they are more representative of the system.515

5.1 The original and transformed states with corresponding ODEs

As a starting point, Floquet’s theory introduces the transform matrix P (t), also referred to as the Lyapunov-Floquet (L-F)

L(t) transform (Filsoof et al., 2021). By definition, the inverse of the P (t) transform multiplies an original state y(t) to obtain

a transformed state z(t), i.e. z(t) = P (t)−1y(t). The P (t) transform is periodic meaning that P (t+T ) = P (t), which also

implies that P (0) = P (T ). The ODE from Eq. (36) is linked to the original state y and it is here governed solely by the linear520

model’s time dependent state-space matrix A
L
(t) with no added input or forcing (free vibration condition),

Ṗ (t)z+P (t)ż︸ ︷︷ ︸
ẏ

=A
L
(t)P (t)z︸ ︷︷ ︸

y

. (50)

23



A new LTI ODE is redefined for the transformed state z by isolating its time derivative ż. The resulting equation includes the

Floquet factor constant matrix R (Skjoldan and Hansen, 2009),

ż = P−1(t)
(
A

L
(t)P (t)− Ṗ (t)

)
︸ ︷︷ ︸

R

z. (51)525

If the dynamic system was represented for the transformed state z in a different coordinate system than the original state

y, and if the state-space matrix A
L
(t) would be expressed in the same coordinate system as y, then P−1(t) could potentially

be the Coleman transform. In that case, the Coleman transform would be the exact representation of the transform P−1(t) for

a dynamic system that is isotropic with a rotor having three blades or more. However, if the dynamic system is not entirely

isotropic, then the Coleman transform is an approximation of the transform P−1(t) and it does not generate a constant matrix530

R with a complete cancellation of periodic terms in A
L
(t).

5.2 The state transition matrix

The LTI ODE in Eq. (51) suggests that the transformed state solution z(t) can be found given its initial condition z(0) if the

Floquet factor R is known, z(t) = eRtz(0). In other words, the matrix multiplying the initial condition to obtain the solution is

called a state transition matrix, which means that Φ
R
(t,0) = eRt. Equivalently, the state transition matrix Φ

A
(t,0) enables the535

calculation of the original state y(t) in the following manner:

y(t) = P (t)Φ
R
(t,0)z(0) = P (t)eRtP−1(0)︸ ︷︷ ︸

Φ
A
(t,0)

y(0). (52)

P (0) is set as equal to the identity matrix I , which ensures that z(0) = y(0) according to the original state definition, y(t) =

P (t)z(t). This condition must be fulfilled because it is not intended to have an actual change of variables frame through P (t).

Knowing the system’s periodicity for the transform P (t), i.e. P (0) = P (T ) = I , the state transition matrices in Eq. (52) are the540

same after a duration of a period T has passed, leading to Φ
A
(T,0) = Φ

R
(T,0). In order to solve either state transition matrix,

a corresponding ODE is found. For instance, the transition matrix Φ
A
(t,0) ODE obtained for the original state y (Bottasso and

Cacciola, 2015) involves the system matrix A
L
(t),

Φ̇
A
(t,0) =A

L
(t)Φ

A
(t,0), (53)

whereas the state transition matrix Φ
R
(t,0) ODE involves instead the constant matrix R and follows the same principle,545

Φ̇
R
(t,0) =RΦ

R
(t,0). The state transition Φ

A
(T,0) matrix is also referred to as the monodromy matrix C and it is equated

to C = eRT . The monodromy matrix is solved using Eq. (53) through as many decay tests simulations for the duration of a

period T as there are states (Skjoldan, 2011). Each one of those simulations is characterized by an initial unit perturbation

for one state at a time. The simulations initial condition is a column vector taken from Φ
A
(0,0) = I that is utilized to fill the

corresponding column of Φ
A
(T,0). The numerous simulations executed to solve the monodromy matrix by a Runge-Kutta550

time-integration scheme can be computationally expensive in terms of duration especially at lower rotational speeds Ω which

have longer periods T .
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5.3 The diagonalization of the monodromy matrix and the constant Floquet factor matrix with eigenmodes

Once the state transition matrix Φ
A
(T,0) or monodromy matrix C has been calculated, it is diagonalized as C = V ρV −1.

To do so, the eigenvalue problem for C (Riva, 2017) is solved to determine the eigenvectors basis matrix V , where columns555

are eigenvectors, and to find the diagonal matrix of eigenvalues, ρ= diag(ρk). The eigenvalues of the monodromy matrix ρk

are also referred to as the characteristic or Floquet multipliers (Skjoldan, 2011). In addition, the eigenvectors are the same

irrespective of the infinite amount of valid eigenvalues characterized by a given frequency shift difference of mΩ. In regard to

the Floquet factor R, it is diagonalized with the same eigenvector basis matrix V as for C, but with a modified diagonal matrix

of eigenvalues, λ= diag(λk) (Riva, 2017):560

R=
1

T
ln
(
C
)
= V

1

T
ln
(
ρ
)
V −1 = V λV −1. (54)

Furthermore, the eigenvalues λk are affected by the periodicity of the system in the following way (Bauchau and Nikishkov,

2001):

λk,m = λk + imΩ= σk + i(ωp,k +mΩ)︸ ︷︷ ︸
ωk,m

=
1

T
ln(|ρk|)+ i

(
1

T
arctan

(
ℑ(ρk)

ℜ(ρk)

)
+mΩ

)
. (55)

This eigenvalue λk,m definition is synonymous with the one in Eq. (47) that is associated to Hill’s method (Skjoldan, 2011).565

The real component of λk,m, i.e. σk, is unique to each kth state. In contrast, there is a multiplicity per state for the imaginary

component of λk,m being the frequencies ωk,m. Analogously to Hill’s method, a principal (p) frequency ωp,k is linked to a

given state of index k and can be shifted by mΩ, as indicated in Eq. (55). To rephrase, due to the system’s periodicity, there are

an infinite amount of valid eigenvalues solutions λk,m for each kth state with any integer m selected. For the sake of precision,

it is imperative to determine an optimal frequency shift of m̂Ω from the value obtained by diagonalizing the monodromy570

matrix. Thus, more suitable eigenvalues noted λ̂k,m̂ = λk + im̂Ω serve to recalculate an adjusted diagonalized Floquet factor,

i.e. R̂= V λ̂V −1.

5.4 Selecting principal eigenvalues through the participation factor

It is left to determine a technique for the selection of the most representative or principal eigenvalues λk,m considering their

multiplicity. This redundancy problem is resolved by quantifying instead a participation factor of modes ϕk,m that is associated575

to each eigenvalue λk,m. The notion of a participation factor being used for the principal frequency selection among other

candidates was first elaborated by Bottasso and Cacciola (2015), but it was more thoroughly investigated by Riva (2017)

afterwards. To be able to obtain the participation factor from the state transition matrix ϕ
A
(t,0) definition, the projected matrix

of the eigenvector basis Ξ(t) (Riva et al., 2016), Ξ(t) = P (t)V can be used. The matrix Ξ(0) is the eigenvector basis V since it

has been shown earlier that P (0) = I (Bottasso and Cacciola, 2015). These new expressions are included in the reformulation580

of the transition matrix ϕ
A
(t,0) from Eq. (52) after substituting R with its diagonalized representation from Eq. (54):

Φ
A
(t,0) = P (t)V eλtV −1P−1(0) = Ξ(t)eλt

(
P (0)V

)−1
=

Ns∑
k=1

[
. . . 0Ns×1 Ξ

(:,k)
eλkt 0Ns×1 . . .

]
Ξ−1(0). (56)
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Given that Φ
A
(t,0) has been solved for each time step t, P (t) is isolated in Eq. (56) so that it can be used to compute

Ξ(t), P (t) = Φ
A
(t,0)V e−λtV −1. Using the identity of P (t) = Φ

A
(t,0)V e−λtV −1 in combination with the definition of the

eigenvector basis matrix Ξ(t), the indeterminacy problem of the modal frequencies has also been resolved by Skjoldan and585

Hansen (2009). That has been achieved through a Fourier expansion of the time varying mode shape vector ψ
k
(t) = colk

(
Ξ(t)

)
that is the kth column (colk) extracted from the projected matrix of the eigenvector basis Ξ(t),

ψ
k
(t) = colk

(
P (t)V

)
= colk

(
Φ

A
(t,0)V e−λt

)
=Φ

A
(t,0)colk

(
V e−λt

)
=Φ

A
(t,0)vke

−(λk+imΩ)t = ψ
p,k

(t)e−imΩt. (57)

The kth principal periodic mode ψ
p,k

(t) = Φ
A
(t,0)vke

−λkt from Eq. (57) is dependent on the constant eigenvector vk ex-

tracted from the eigenvector basis V . A truncated double sided Fourier expansion of ψ
p,k

,590

ψ
p,k

(t) =

N∑
m=−N

ψ
p,k,m

(ωk,m)eimΩt, (58)

allows to pick the optimal frequency shift m̂Ω among the Fourier vector coefficients based on the maximal Eucledian norm, i.e.

∥Ψp,k,m̂(ωk,m̂)∥2 =max
(
∥Ψp,k,m(ωk,m)∥2

)
. This selection method fails to determine the participation of ∥Ψp,k,m̂(ωk,m̂)∥2

compared to other candidate vectors. In order to improve the frequency shift selection criteria, we need to find a definition of

the participation factor ϕk,m by continuing from Eq. (56). One can then bring into the picture the matrix I
k,k

which is null595

except for a unit value on the matrix diagonal component located on the kth row and column (Bottasso and Cacciola, 2015).

This gives the simplified expression of Φ
A
(t,0) =

∑Ns

k=1Ξ(t)Ik,kΞ
−1(0)eλkt. After some additional manipulations of Eq.

(56), another identity for Φ
A
(t,0) can be deduced (Riva et al., 2016):

Ns∑
k=1

[
. . . 0Ns×1 Ξ

(:,k)
0Ns×1 . . .

]


...

01×Ns(
Ξ−1(0)

)
(k,:)

01×Ns

...


eλkt =

Ns∑
k=1


Ξ
(1,k)

...

Ξ
(Ns,k)


︸ ︷︷ ︸

Ψk(t)

[(
Ξ−1(0)

)
(k,1)

. . .
(
Ξ−1(0)

)
(k,Ns)

]
︸ ︷︷ ︸

Lk(0)
T

eλkt.

(59)

This introduces in Eq. (59) the kth row (rowk) for the inverse of the eigenvector basis Ξ(0)−1 = V −1, which results in600

Lk(0)
T = rowk

(
Ξ(0)−1

)
. The state transition matrix can be written afterwards as a Fourier decomposition,

Φ
A
(t,0) =

∑Ns

k=1

∑N
m=−N Zk,m

(ωk,m)e(λk+imΩ)t where Z
k
(t) = Ξ(t)I

k,k
Ξ−1(0) = Ψk(t)Lk(0)

T is transformed from the

time to the frequency domain, Z
k,m

(ωk,m), through a double sided Fourier series expansion. In light of this, the matrix

Z
k,m

(ωkm) describes the contribution in the total value of Φ
A
(t,0) which quantifies the participation factor ϕk,m. The partic-

ipation factor can be evaluated through the Frobenius norm of ∥Z
k,m

(ωkm)∥F (Riva, 2017):605

ϕk,m =
∥Ξ

k,m
(ωk,m)I

k,k
Ξ−1(0)∥F∑N

m=−N∥Ξ
k,m

(ωk,m)I
k,k

Ξ−1(0)∥F
=

∥Ψk,m(ωk,m)∥2�����∥LT
k (0)∥2∑N

m=−N∥Ψk,m(ωk,m)∥2�����∥LT
k (0)∥2

=
∥Ψk,m(ωk,m)∥2∑N

m=−N∥Ψk,m(ωk,m)∥2
. (60)
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After a set of participation factors of indexm have been calculated for each kth state, the most appropriate principal eigenvalue

is selected. It is crucial to point out that a much greater number of frequency shifts candidates should be covered at lower

rotational speeds. When nearing low rotational speeds, the initial frequencies estimates obtained from the monodromy matrix

for the blades motion amplitudes al DOFs are suddenly too low and closer to the damped frequency pertaining to the floater610

pitch angle ξ5 DOF. The selection criteria is to pick for each kth eigenvalue, the frequency shift m̂Ω that is associated to the

maximum participation factor ϕ̂k,m̂ =max(ϕk,m) among the tested set of candidate values (Riva et al., 2016).

6 Coleman Transform

An aero-elastic stability analysis is usually carried out by using the Coleman transform which modifies the DOFs’ frame and

it suffices in this case to render the system to become LTI. We utilize it here as our benchmark model to validate Hill’s and615

Floquet’s results from the previous sections. The Coleman transform expresses the blades deflections amplitudes al from a

rotational frame of reference to a fixed non-rotational (NR) frame as a0, ac and as amplitudes. To clarify this multi-blade set

of variables, the three fixed rotor motions in that frame can be visualized in Figure 8.

Figure 8. The flap-wise three motions of the blades expressed as NR variables are the blades collective flap-wise (a0), the rotor fore-aft

tilting (ac) and rotor yawing (as) motion amplitudes.

The Coleman matrix T−1 transforms the four structural degrees of freedom from the rotational frame, x= [ξ5,a1,a2,a3]
T ,

to the non-rotational one, xNR = [ξ5,a0,ac,as]
T , and its inverse T provides the opposite transform:620


ξ5

a0(t)

ac(t)

as(t)

=



1 
1/3 1/3 1/3

2/3cosψ1 2/3cosψ2 2/3cosψ3

2/3sinψ1 2/3sinψ2 2/3sinψ3


︸ ︷︷ ︸

B−1
3×3




ξ5

a1(t)

a2(t)

a3(t)

 and


ξ5

a1(t)

a2(t)

a3(t)

=



1 
1 cosψ1 sinψ1

1 cosψ2 sinψ2

1 cosψ3 sinψ3


︸ ︷︷ ︸

B
3×3




ξ5

a0(t)

ac(t)

as(t)

 .

(61)
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Put differently, Eq. (61) translates to xNR = T−1x and x= T xNR. It means that we transform the original four structural

degrees of freedom vector in the non-rotational basis, by first excluding the three fs,l aerodynamic variables associated with

the dynamic stall model implementation. The equation of motion for the linear model from Eq. (26) is derived in the NR frame

by multiplying both left and right hand side by T−1 and by utilizing T and T−1 to express the vector x and its time derivatives625

in the same frame:

T−1M
S

(
T̈ xNR +2Ṫ ẋNR +T ẍNR

)
︸ ︷︷ ︸

ẍ

+T−1
(
C

S
+C

A

)(
Ṫ xNR +T ẋNR

)
︸ ︷︷ ︸

ẋ

+T−1K
S

(
T xNR

)︸ ︷︷ ︸
x

= T−1FL︸ ︷︷ ︸
FNR

. (62)

Here the forcing vector is set to be null due to the free vibration condition considered, i.e. FL = FNR = 0. From Eq. (62), the

equation of motion in the non-rotational frame can be worked out by grouping together the matrices contributions that multiply

individually the acceleration, velocity and displacement vectors that are specified in the same frame too:630 (
T−1M

S
T
)

︸ ︷︷ ︸
M

NR

ẍNR+
(
2T−1M

S
Ṫ +T−1

(
C

S
+C

A

)
T
)

︸ ︷︷ ︸
C

NR

ẋNR+
(
T−1M

S
T̈ +T−1

(
C

S
+C

A

)
Ṫ +T−1K

S
T
)

︸ ︷︷ ︸
K

NR

xNR = 0.

(63)

All the components in Eq. (63), including the mass, stiffness and damping matrices, are now represented as non-rotational

variables. Thereafter, the contribution of the additional three aerodynamic DOFs fs,l and the terms related to them need to be

defined as non-rotational variables too and taken into account into the system matrix A
L,NR

. The state vector q transformed in

the NR frame is q
NR

=
[
xT4×1,NR, ẋ

T
4×1,NR, fs,0,fs,c,fs,s

]T
, and it has a length of integerNs. For instance, the system matrix635

A
fs

is the first order ODE’s Jacobian matrix for fs, i.e. A
fs

=
[
∂ḟ

s,i
/∂f

s,j

]
. The state-space ODE for the transformed state

vector q
fs,NR

= [fs,0,fs,c,fs,s]
T is q̇

fs,NR
=A

fs,NR
q
fs,NR

, and the matrix A
fs,NR

is developed after some manipulations

starting with the expression q
fs

=Bq
fs,NR

. The resulting system matrix A
L,NR

is defined by the EOM that is described in

the NR frame and by other transformed Jacobian matrices that are inserted,

A
L,NR

=



[
0
4×4

] [
I
4×4

] [
0
4×3

]
[
−M−1

4×4,NR
K

4×4,NR

] [
−M−1

4×4,NR
C

4×4,NR

] T−1

4×4
M−1

S,4×4
T

4×4︸ ︷︷ ︸
M−1

4×4,NR

T−1

4×4

[
∂F i/∂fs,j

]
4×3

B
3×3


[
B−1

3×3

[
∂ḟ

s,i
/∂ẋ4×1,j

]
3×4

Ṫ
4×4

] [
B−1

3×3

[
∂ḟ

s,i
/∂ẋ4×1,j

]
3×4

T
4×4

] [
B−1

3×3

[
∂ḟ

s,i
/∂f

s,j

]
3×3

B
3×3

−B−1

3×3
Ḃ

3×3

]
︸ ︷︷ ︸

A
fs,NR


.

(64)640

This system matrixA
L,NR

is time independent and can be used to calculate the eigenvalues without having to rely additionally

on Hill’s or Floquet’s method to cancel out the periodicity of the system. This implies that the former periodicity of matrix

A
L
(t) has been eliminated.
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The clear disadvantage of relying on the Coleman transform system is the complexity of the Coleman transformed constant

matrixA
L,NR

compared to the time varying counterpartA
L
(t). Applying the Coleman transform to the parts of the matrix that645

define the coupling between the aerodynamic fs,l states with the other structural states is not as trivial as obtaining the Coleman

transformed mass M
NR

, damping C
NR

and stiffness K
NR

constant matrices. Nevertheless, applying the Coleman transform

is a computationally efficient approach if it renders the system to become LTI, because it is not expensive in comparison to

other methods.

7 Stability analysis650

We now apply the stability methods on the linearized model to quantify the impact on the modal damping from the dynamic

stall model’s time constant τ and rotational speed Ω. Aerodynamic damping plays a major role in influencing the system’s

modal damping but also the damped frequency. The extent of that impact is thoroughly studied in this section.

Regarding the presentation of the stability analysis, the eigenvalues found in the rotational frame through Hill’s and Floquet’s

method are compared to the ones found in the non-rotational frame using the Coleman transformed constant system matrix655

A
L,NR

.

7.1 Time constant τ variation eigenvalue analysis

Our first stability study consists of analyzing the evolution of eigenvalues while varying the time constant τ . We choose an

operational point of V0 = 8 ms−1 and Ω= 5.73 RPM. This is associated to the nominal time constant τnom = 0.34 s. The

steady state for that operational point is located in a specific region of the lift coefficient with respect to the angle of attack.660

That region is characterized by a flow which is not fully attached and it precedes stall. In this particular study, the aerodynamic

properties are all kept constant and only the time constant τ is varied without any influence on other variables, such as Vrel.

The eigenvalues that are associated with the dynamic stall aerodynamic DOFs fs,l are omitted from plots. These eigenvalues

are not physically relevant because the dynamic stall DOFs fs,l only serve to express the aerodynamic damping of the system,

and they can be correlated to a one DOF dynamic system with a null frequency.665

7.1.1 Rotational frame

Eigenvalues in Figure (9) are expressed as a function of τ in the rotational frame for the floater pitch mode denoted by PITCH

and for the symmetric blade mode denoted by SYM. Hill’s (marked ◦) and Floquet’s (marked △) results are matching and they

are presented in terms of modal damping σk, damped frequencies ωk and damping ratio ζk for these modes. This investigation

serves to notice the impact of the eigenvalues with respect to the time constant, and to observe after what time constant value670

and onward the blade damped frequencies, modal damping and damping ratio have reached a plateau.
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Figure 9. Modal damping, damped frequency and damping ratio for an eigenvalue analysis in the rotational frame with a time constant τ

variation.

For the most part, the blade symmetric mode is not that affected by a larger time constant at values above the nominal one.

The time constant does however influence slightly the growth of the floater pitch mode’s modal damping and damping ratio.

The damping ratio ζk is linked to the modal damping σk and to the principal damped frequency ωp,k as follows:

ζk =
−σk

|ωp,k|
√
1+

σ2
k

ω2
p,k

. (65)675

When the modal damping σk is low in absolute value, evidently the damping ratio ζk can be approximated simply as the ratio

of ζk ≈−σk/|ωk|. The floater pitch damping ratio increases marginally with τ according to that approximation for ζk since its

modal damping is very small while its damped frequency remains constant.

There is a strong correlation between the time constant τ and the dynamics of fs,l (refer to Eq. (40)) which in turn influences

the dynamic stall lift coefficient CL,l according to Eq. (28). This clarifies why the time constant τ has a noticeable effect680

on the blade modal damping whereas it barely impacts the platform pitch modal damping. It can also be observed that the

eigenfrequencies for the blades DOFs al get slightly larger with the time constant τ after the nominal value is surpassed. They

increase so until reaching a plateau value where τ ’s growth affects minimally the damped frequency and modal damping, since

large values of τ leads to fixed values of fs. Before the nominal τ value is reached, there is an augmentation of the blade DOFs’

modal damping which leads to a reduction of the the damped frequency. Concerning the damping ratio, it follows the same685

trend as the modal damping for both the symmetric blade mode and the floater pitch mode.

7.1.2 Non-rotational frame

Figure 10 shows in the non-rotational (NR) frame the modal damping σk, damped frequencies ωk and damping ratio ζk as

a function of τ . Results are reported for Hill’s (marked △), Floquet’s (marked □) and Coleman’s (marked ⋄) approach. In

the frequency plot, the blade lowest damped frequency belongs to the rotor first backward whirling (BW) mode, the middle690
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damped frequency belongs to the first symmetric flap mode (SYM), and the highest damped frequency belongs to the first

forward whirling (FW) mode. The overall lowest damped frequency describes the floater pitch ξ5 mode and the lowest modal

damping and damping ratio are also linked to that mode.
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Figure 10. Modal damping, damped frequency and damping ratio for an eigenvalue analysis in the NR frame with a time constant τ variation.

Results calculated via Hill’s and Floquet’s method are not originally found in the NR frame but they are reconstructed in that

frame by applying the frequency shifts on the symmetric mode damped frequency to generate the rotor FW and BW whirling695

modes. The rotor FW mode’s damped frequency is shifted away from the rotor SYM mode’s damped frequency by a constant

distance of +Ω, and the rotor BW mode is shifted by −Ω where Ω= 5.73 RPM= 0.0955 Hz is the rotational speed of the

operational point. That being said, the modal damping is the same in both frames, implying that σk,NR = σk, while the damped

frequency in the rotational frame is expressed in the NR frame through the following shifts:

ωk,FW,NR = ωk,SYM +Ω, ωk,BW,NR = ωk,SYM −Ω, (66)700

given that ωk,SYM,NR = ωk,SYM . Afterwards, the damping ratio ζk is found accordingly through Eq. (65) for all the blade

modes,

ζk,FW,NR =
−σk

|ωk,FW,NR|
√
1+

σ2
k

ω2
k,FW,NR

, ζk,BW,NR =
−σk

|ωk,BW,NR|
√

1+
σ2
k

ω2
k,BW,NR

, (67)

and ζk,SYM,NR = ζk,SYM applies again for the SYM mode. Once the eigenvalues determined with Floquet and Hill’s method

are transformed in the NR frame, they do match perfectly with the ones calculated by directly solving the eigenvalue problem705

for the Coleman transformed system matrix A
L,NR

. As for the difference in damping ratio between the FW, SYM and BW

modes, it is due to the different damped frequencies for the three modes because the modal damping is identical and not

influenced by the frame considered. According to Eq. (65), because the modal damping is the same for all three rotor modes, a

BW mode experiences a higher modal damping above the symmetric mode, whereas a FW mode experiences instead a lower

damping ratio.710
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Since the rotational speed Ω is kept constant, the rotor BW, SYM, and FW modes’ damped frequencies (distanced by 1×Ω

from the SYM mode) and damping ratio values are equally spaced and they remain unaffected by the time constant τ after the

threshold of τ = 1 s has been exceeded.

7.2 Rotational speed Ω variation - Campbell diagram

To validate once more the correct implementation of Hill’s and Floquet’s method, an eigenvalue analysis for a varying rotational715

speed Ω is performed. The modal damping σk, damped frequency ωk and damping ratio ζk results are displayed on a Campbell

diagram in the rotational and non-rotational frame. The operational point of V0 = 8 ms−1 and Ω= 5.73 RPM is yet again

located in the usual region before stall where the flow is not exactly fully attached. For this operational point, we compute the

steady state responses and the normal inflow velocity Vn̂,l which are kept constant for varying rotational speeds Ω. However the

rotational velocity is updated as Vt̂,l =−Ωd and the aerodynamic parameters are calculated accordingly with a varying angle720

of attack α. Using the eigenvalues calculated with Floquet’s and Hill’s method in the rotational frame, the rotor BW (−Ω) and

FW (+Ω) modes are once again added on the damped frequency plot in the NR frame as offsets from the SYM blade mode.

On the contrary, when solving the eigenvalues for the Coleman transformed system, these modes manifest themselves because

they are rotor modes associated to a global fixed coordinate system rather than being blade specific.

7.2.1 Rotational frame725

The purpose of this stability analysis is to demonstrate that the stability methods can determine the aerodynamic damping as a

function of rotational speed. An augmentation of the rotational speed Ω and of the tangential velocity component Vt̂,l amplifies

the relative velocity Vrel,l, while simultaneously decreasing the angle of attack α.

Results in Figure 11 show that with a greater rotational speed Ω, the floater pitch motion’s damped frequency does not rise

significantly, but its modal damping increases slightly causing the damping ratio to be amplified considerably. It is also seen in730

Figure 11 that the damped frequency and modal damping predicted by Hill’s (marked ◦) and Floquet’s (marked △) methods

are well matched.
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Figure 11. Modal damping, damped frequency and damping ratio for a Campbell diagram eigenvalue analysis in the rotational frame with a

rotational speed variation. The operational point is of V0 = 8 ms−1.

Further, the effect of increasing aerodynamic damping is observable notably in terms of a decreased blades DOFs al damped

frequency. The amplification of the relative velocity Vrel,l increases the aerodynamic damping through the lift loads and leads

to a higher blade modal damping. Thus, at lower rotational speeds the symmetric blade mode has a very small modal damping735

and a low damping ratio too, which also applies to the floater pitch mode. At very low rotational speeds, the blades damping

ratio is even smaller than the floater pitch one, but it grows drastically with rotational speed and overpasses it soon after. In view

of this, with a higher aerodynamic damping at higher rotational speeds Ω, the natural frequencies for the pitch DOF ξ5 barely

increases and remains almost unchanged in comparison to the apparent reduction of the blade natural frequencies. Nevertheless,

the damping ratio also increases for the floater pitch mode in a linear way according to the approximation ζk ≈−σk/|ωk| that740

holds since its modal damping is very low, and the damped frequency remains almost unaffected. It ensues that the aerodynamic

damping is influencing more the eigenvalues of the blades DOFs than the floater pitch eigenvalue.

The change in damped frequency at 3.16 RPM is due to the occurrence of stall at that rotational speed with a corresponding

angle of attack as can be seen in Figure 4. At the stall angle, the gradient ∂fstatic,l/∂αl starts increasing locally. The resulting

change in damped frequency at the stall RPM is caused by a high fluctuation of aerodynamic parameters and it demonstrates745

that the stability analysis methods can detect the effect of stall. Fluctuations at other rotational speeds are caused by gradual

numerical changes too in the gradient ∂fstatic,l/∂αl for corresponding angles of attacks as detailed in Figure 4. The angle of

attack noted αA in Figure 4 represents a sudden rise in the value of ∂fstatic/∂α which disturbs mainly the floater pitch motion

damping trend. That sudden change in ∂fstatic,l/∂αl is connected to the stall region in Figure 3 where the static lift coefficient

CL,static starts decreasing with the angle of attack while the full stall coefficient CL,stall slope stops increasing. In short the750

angle of attack region between the onset of stall and αA is a region which impacts both the damping and damped frequency for

the floater pitch motion, and only the damped frequency for the blades.
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7.2.2 Non-rotational frame

Comparing eigenvalues on a Campbell diagram with both Hill’s (marked △) and Floquet’s (marked □) method, as well as

with the Coleman approach (marked ⋄) allows to cross-validate them at last in the NR frame. Just like in Figure 10 for the755

time constant τ variation eigenvalue analysis expressed in the NR frame, the rotor FW and BW modes are reconstructed as

before from the SYM mode when using Hill’s and Floquet’s method to compare with the Coleman-based results. The Campbell

diagram in Figure 12 proves that the eigenvalues found with either procedure are equal.
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Figure 12. Modal damping, damped frequency and damping ratio for a Campbell diagram eigenvalue analysis in the NR frame with a

rotational speed variation. The operational point is of V0 = 8 ms−1.

The three blades modes all have a modal damping that increases with rotational speed, while their natural frequencies

decrease. To summarize, a growth of modal damping and a drop of damped frequency cause simultaneously the damping760

ratio to rise with rotational speed. Moreover, for the NR frame, the blades DOFs rotor FW mode is associated to a lower

damping ratio curve, while the rotor BW mode is linked instead to a higher damping ratio curve. This occurs because all three

blade modes curves are associated to the same modal damping, refer to the damping ratio expression in Eq. (65). The rotor’s

SYM mode’s curve is the middle one in both the damped frequency and damping ratio plots. The BW, SYM and FW natural

frequencies and damping ratio curves become more distinguishable from each other at higher rotational speeds due to the765

application of the ±Ω frequency offset.

8 Two-bladed floating wind turbine model

The main motivation for developing the two-bladed floating wind turbine model is to test under different design circumstances

and operational conditions the applicability of our developed Coleman free aero-elastic stability methods, namely Hill’s and

Floquet’s method. As a reminder, using only the Coleman transform for a two-bladed rotor would not result in making the770

system to be LTI which is another reason to rely on those methods in the first place. The Coleman transform for a two-bladed
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rotor does not use the azimuthal periodicity in its definition but rather its eigenmodes. For a two-bladed rotor, if one were to

apply the Coleman transform, the periodicity of the system matrix could be eliminated through the use of a supplementary

method such as Floquet’s or Hill’s method.

The two-bladed wind turbine model is obtained firstly by having a blade chord length c increased by a factor 3/2 compared775

to the three-bladed model (Kim et al., 2015). This chord length extension is applied for all airfoils across the whole blade

length span. It accounts for the reduction of the number of blades so that the same lift, thrust and torque would be generated by

both wind turbines models. This blade design change affects equally so the airfoil section of interest at r = d. The two-bladed

model EOMs differ from the three-bladed case due to the system matrices size reduction through an elimination of matrices

rows and columns that pertain to the third blade components. In light of this, the structural DOFs vector for the two-bladed780

wind turbine is x3×1 = [ξ5,a1,a2]
T in the EOM from Eq. (26). Subsequently, the state vector within the state-space ODE from

Eq. (36) is q =
[
xT3×1, ẋ

T
3×1,fs,1,fs,2

]T
and is of dimension Ns = 8. The system matrices are thus fundamentally the same

except for the scaling of the chord length, and the matrices size reduction. The azimuthal angular Ψl position of the two blades

is also changed as prescribed by Eq. (1) with Nb = 2 and all system equations are modified accordingly.

8.1 Decay test785

To verify that the two-bladed wind turbine linearized model has been rightfully built, decay tests simulations are performed.

Like for the three-bladed rotor case, results are presented in the time domain as variations from the steady states. The simula-

tions time span is relatively short because there is a focus to analyze the time responses of signals pertaining to the DOFs al

and fs,l until they reach their steady state. The simulation conditions that are considered are the same as for the three-bladed

decay test in Figure 5, meaning that an operational point of V0 = 8 ms−1 and Ω= 0.6 rads−1 is applied. The resulting steady790

state angle of attack and lift coefficient is still positioned in the same region before stall where the flow is not fully attached.

Once more, the structural DOFs initial conditions for the simulation are the negative value of the steady state values with

corresponding dynamic stall fs,l variables initial conditions, meaning that ξ5(t= 0) =−0.02 rad, al(t= 0) =−10.54 m, and

that fs,l(t= 0) =−0.73.

Figure 13 presents the decay responses for the linear model (LM) and time domain model (TDM). We observe a slight795

difference in time series for the blades deflection amplitude al signals and for the dynamic stall variable fs,l before reaching

the steady state of the operational point. That difference in responses between the time domain and linear model originates

from the initial conditions being considerably far away from the operational point’s steady state. Nevertheless, it is clear that

the linearized model generates consistent time responses compared to the time domain model.
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Figure 13. Decay test for the operational point of V0 = 8 ms−1, Ω= 0.6 rads−1 and τ = 0.512 s for the two-bladed wind turbine, where

time domain model (TDM) and linear model (LM) results are compared.

As anticipated, the time domain responses are converging fast towards the steady states also for the two-bladed model.800

Just like for the three-bladed wind turbine results from Figure 5, the PSDs plots dot not capture the blades DOFs al natural

frequency, ω1f = 0.6255 Hz, because the aerodynamic damping effect prevents it. However, the natural frequency of the floater

pitch motion, ωξ5 , is clearly observable as a peak value in the ξ5 signal, and other natural frequencies of the system are not

observable in this signal due to its own natural frequency dominant effect. Similarly to results for a three-bladed rotor in Figure

5, the other signals for the al and fs,l DOFs show peaks also at the frequencies of −ωξ5 +Ω and ωξ5 +Ω which are caused by805

the system’s periodicity.

8.2 Eigenvalue analysis

For the eigenvalue analysis of the two-bladed wind turbine, the applicability of Floquet’s and Hill’s method remains to be

demonstrated by executing the same studies as previously done for the three-bladed rotor. It is also relevant to analyze the

distinctions in the eigenvalues trends between those computed for the two- and three-bladed rotor. This is relevant in particular810

for the Campbell diagram study.

The eigenvalues are originally computed in the rotational frame because the Coleman transform is not applicable for the

two-bladed rotor. Despite that, they are expressed in the NR frame through a reconstruction of the rotor BW and FW modes.
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8.2.1 Time constant τ variation eigenvalue analysis

In regard to the eigenvalue analysis for a varying time constant τ , results for the two-bladed wind turbine in Figure 14 are815

similar to the three-bladed case in terms of tendency to reach plateau values with an increasing τ . The current eigenvalue

results consider the same simulations conditions as for the three-bladed rotor simulations in the same region, meaning that the

operational point still has an inflow velocity of V0 = 8 ms−1, and a rotational speed of Ω= 5.73 RPM, but a nominal time

constant of τnom = 0.512 s instead. Similarly to previous results in Figure 9 for the three-bladed rotor, the blades damped

frequency are smallest at the nominal τ value for the current operational point. Furthermore, for the rotor BW and FW modes,820

the blades natural frequencies are shifted again by a constant rotational speed Ω= 5.73 RPM away from the SYM blade

mode’s damped frequency. In accordance with previous results, the floater pitch damped frequency remains almost constant

whereas its modal damping σ increases proportionally to τ and so does consequently its damping ratio ζ. The only distinction

between the two- and three-bladed rotor results in Figure 14 and 10, are the damping and natural frequencies values magnitude

for the blades DOFs. For the two-bladed rotor, the blades natural frequencies are lower, while the modal damping and damping825

ratio are considerably higher. Due to its increased chord length, the two-bladed rotor experiences higher aerodynamic loads on

each blade and for that reason a higher aerodynamic damping.
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Figure 14. Modal damping, damped frequency and damping ratio for an eigenvalue analysis in the NR frame with a time constant τ variation.

8.2.2 Rotational speed Ω variation - Campbell diagram

On the subject of eigenvalue results for the Campbell diagram study, the two-bladed rotor’s BW and FW modes can only be

obtained through the frequency shift away from the blade symmetric mode since the Coleman transform is not applicable in830

this context. Figures 15 and 16 report the Campbell diagrams for two operational points with the same rotational speed of

Ω= 5.73 RPM that are located in the region before stall for a flow not fully attached. Their inflow velocities are respectively

V0 = 8 ms−1 and 10 ms−1, and their corresponding nominal time constants are τnom = 0.512 s and τnom = 0.508 s. The
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operational point is used to get the steady states and the normal inflow velocity Vn̂,l, but not the rotational velocity which is

updated Vt̂,l with −Ωd and so is the time constant τ accordingly. We consider here these two different inflow velocities when835

investigating the eigenvalues trends to support our conclusions on the matter for the three- and two-bladed rotor design.

First of all, in Figures 15 and 16, the occurrence of stall around 3.00 RPM for an inflow velocity of V0 = 8 ms−1 and

4.1216 RPM for V0 = 10 ms−1 has a noticeable influence on the blades natural frequencies, which is similar to what was

detected in Figure 11 for the three-bladed rotor. As noticed earlier for the three-bladed rotor, according to the variation of

∂fs,static/∂α in Figure 4 with respect to the angle of attack, there is a high impact on the eigenvalue analysis in the stall840

proximity region, between the stall angle of attack and the angle of attack αA. Likewise, it can be observed in Figures 15 and

16, that the two-bladed rotor’s floater pitch motion’s damped frequency, and especially its damping, are highly fluctuating in

that angle of attack region. The blades damped frequencies are also highly impacted by the local variation of aerodynamic

parameters in that region.

For the results with an inflow velocity of V0 = 8 ms−1 compared to V0 = 10 ms−1, an overall higher blade modal damping845

is observed because the angles of attack are lower for the same rotational speeds in the angle of attack region after stall occurs,

meaning above 15 deg. According to the airfoil data in Figure 3, in that region, lower angles of attack are associated to a

greater fs value and to a lower CL,inv , but the CL,stall value can vary. Thus, the overall value of the dynamic lift coefficient

CL can increase due to the impact of the dynamic stall variable fs, refer to Eq. 28. A higher lift coefficient CL would increase

the lift force and ultimately generate a higher blade modal damping. Conversely, in the region where the flow is not attached850

and before stall occurs, a higher angle of attack value generates a greater CL,inv and CL,stall. This comes along with a lower

fs which can also increase the overall value of the dynamic lift coefficient CL depending on the impact of the dynamic stall

variable fs.

As a marked difference from the three-bladed rotor, a pronounced maximum in the blade modal damping is reached for a

rotational speed of 6.054 RPM for V0 = 8 ms−1 and 5.57 RPM for V0 = 10 ms−1. The higher modal damping occurs for the855

lower inflow velocity of V0 = 8ms−1 where the modal damping increases with rotational speed until reaching a maximal value

at a lower angle of attack around α= 7.78 deg compared to α= 11.52 deg for the higher inflow velocity of V0 = 10 ms−1.

At that particular rotational speed, the angle of attack is positioned between the inviscid fully attached flow region and the stall

region just like the operational point. The blades modal damping and damped frequency curves for V0 = 10 ms−1 fluctuate

more because of a higher lift load variation with a greater inflow velocity. In this context the two-bladed rotor experiences860

higher aerodynamic loads through higher lift loads because of the chord length being increased. Therefore, a small variation

of the angle of attack, particularly at higher inflow velocities V0 with greater lift variations, can cause such fluctuations in the

eigenvalues. This difference in modal behavior on a Campbell diagram is a characteristic for the two-bladed floating wind

turbine that is accentuated compared to the three-bladed rotor.

Moreover, the attained maxima of blade modal damping is different compared to the three-bladed case. For example, as865

mentioned previously, at V0 = 8 ms−1 the blade modal damping maxima occurs at Ω= 6.054 RPM. We investigate this

further in Figure 17 when a change in trend with rotational speed Ω occurs for the gradient ∂ḟ
s,i
/∂ẋj , which is the partial

derivative of the dynamic stall variable fs with respect to the structural DOFs time derived vector ẋ. The overall variation
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of the gradient ∂ḟ
s,i
/∂ẋj components in the LTI system matrix is evaluated as a 1-norm (|| · ||1) which is a sum of matrix

components in absolute value. Results for ∂ḟ
s,i
/∂ẋj are investigated using Hill’s matrix A

0
, i.e. ||Σḟ

s,i
/∂ẋj ||1A

0

, and using870

Floquet’s diagonalized matrix with updated eigenvalues and corresponding eigenfrequencies shifts R̂, i.e. ||Σḟ
s,i
/∂ẋj ||1R̂. We

also investigate eigenvectors changes with rotational speed Ω to understand furthermore the causes for the variation of blade

modal damping. Upon inspection of the structural modes eigenvectors v = [v1, ...,v8]
T , we identify the symmetric blade mode

eigenvector vSYM as having only blade amplitude components al for the displacement (vSYM,2 and vSYM,3) and acceleration

(vSYM,5 and vSYM,6) DOFs, as well as dynamic stall values for the fs,l DOFs (vSYM,7 and vSYM,8). When considering the875

absolute value of eigenvectors, |v|, with respect to their real and imaginary parts, we notice for the symmetric blade mode that

only the fs,l components, which are equal (|vSYM,7|= |vSYM,8|), vary with rotational speed Ω. For instance, the same trend

as for the gradient ∂ḟ
s,i
/∂ẋj is observed at the rotational speed of maximal blade modal damping for the SYM blade mode’s

eigenvector dynamic stall components evaluated as absolute values, |vSYM,7|= |vSYM,8|= |vSYM,fs,l |. This points out the

high correlation in this case between the gradient ∂ḟ
s,i
/∂ẋj and the SYM blade mode. Onward from the rotational speed of880

maximal blade modal damping, there is a visible change in shape for the results curves. For V0 = 10 ms−1 these changes occur

at Ω= 5.57 RPM according to Figure 18. We also observe in Figures 17 and 18 that the curves for the gradient ∂ḟ
s,i
/∂ẋj and

for the symmetric mode’s eigenvector dynamic stall variable reach a maximal value at a rotational speed associated to the angle

of attack in the region where dynamic stall starts to occur. All these observations indicate that for varying rotational speeds, the

dynamic stall gradient ∂ḟ
s,i
/∂ẋj impacts greatly the SYM blade mode and consequently also the blade modal damping.885
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Figure 15. Modal damping, damped frequency and damping ratio for a Campbell diagram eigenvalue analysis in the NR frame with a

rotational speed variation. The operational point is of V0 = 8 ms−1.
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Figure 16. Modal damping, damped frequency and damping ratio for a Campbell diagram eigenvalue analysis in the NR frame with a

rotational speed variation. The operational point is of V0 = 10 ms−1.
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Figure 17. Angle of attack α, 1-norm of the gradient ∂ḟ
s,i
/∂ẋj components, and dynamic stall component of the symmetric blade mode

(|vSY M,fs,l |) for the LTI system matrix using Hill’s and Floquet’s method. The rotational speed Ω is varied for the operational point of

V0 = 8 ms−1.
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Figure 18. Angle of attack α, 1-norm of the gradient ∂ḟ
s,i
/∂ẋj components, and dynamic stall component of the symmetric blade mode

(|vSY M,fs,l |) for the LTI system matrix using Hill’s and Floquet’s method. The rotational speed Ω is varied for the operational point of

V0 = 10 ms−1.

Finally, for the two-bladed rotor, an increased chord length gives overall a larger lift and a larger blade modal damping. At

large RPMs, the blade damping is so strong (ζ ≈ 1) that the damped frequency tends to zero. In consequence, it can be seen for

both test cases in Figures 15 and 16 that the rotor backward whirling mode reaches a critical damping state when the damping

ratio is ζ = 1. The rotor backward whirling mode also experiences a reflection of its damped frequency once reaching a null

value because a negative frequency is not physically plausible.890

9 Conclusions

A three-bladed floating wind turbine time domain model and a linear model were established to devise Coleman free methods

for aero-elastic stability analysis. It was demonstrated how the presence of gravity leads to additional terms in the stiffness

matrix that couples the blade deflection and floater pitch, thus introducing a dependency to the floater equilibrium tilt angle for

the stability analysis. This tilt dependency on the structural dynamics disappeared when gravity was excluded. The aerodynamic895

states were included in the model through the dynamic stall variable fs with its respective ODE, then the time domain model

was linearized with the inclusion of the aerodynamic damping contribution. The time domain and linear model enabled to

do a first dynamic stall analysis by varying the floater pitch excitation intensity for different operational points where stall

occurs, which verified the match between the two models. Another time domain hysteresis analysis was conducted with the

time constant τ being fixed at different intensity levels while operating in the region before stall with a non attached flow. Those900

analyses verified that both the time domain and linear model were consistent, and that they represented the wished physical

behaviour of the floating wind turbine.

Afterwards, the three-bladed linear model was rendered time independant through the use of Hill’s and Floquet’s method.

Once the linear model was made time invariant, all stability analyses proved that the impact of aerodynamic states is observable
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both in terms of modal damping and damped frequency. For the sake of completeness and understanding of Hill’s and Floquet’s905

methods, the eigenvalues results were cross-validated with each other for multiple stability studies. The first eigenvalue analysis

was carried out for a varying time constant τ and it demonstrated that both methods produced matching results that included

the damping influence of the aerodynamic states. The next eigenvalue analysis was accomplished on a Campbell diagram

where the rotational speed was varied. Results showed again a perfect agreement between the eigenvalues provided by both

methods. Following those eigenvalue studies, a modification of the frame, from a rotating frame to a fixed non-rotating one,910

was applied to the system through the Coleman transform. The evolution of eigenvalues with respect to the variation of τ and

rotational speed Ω was examined in the new frame too. These results were compared to previous ones expressed in the rotating

frame, and they were identical irrespective of the method applied, Floquet’s or Hill’s. This comparison illustrated that having

stability analyses executed for a Coleman free system provides the same eigenvalues for the blades symmetric mode as with

the Coleman transformed system. Using Hill’s and Floquet’s eigenvalues computed in the rotational frame, it was proven that915

it is possible to reconstruct the rotor forward and backward whirling modes’ eigenvalues of the model so that they are identical

to those obtained directly with the Coleman transformed system matrix.

Finally, a two-bladed rotor model was implemented for the main objective of investigating the change of eigenvalues in a

Campbell diagram compared to results for the three-bladed rotor model. Two different inflow velocity cases were tested. The

same methods of Hill’s and Floquet’s were applied for the two-bladed stability studies and both of them produced matching920

results again. Both methods were utilized for the two-bladed rotor too to reconstruct the rotor forward and backward whirling

modes with the frequency shift of ±Ω away from the symmetric blade mode. Results have shed a light on the major differences

that can be present for the two-bladed wind turbine stability analysis. Just like for the three-bladed rotor, the region where

stall occurs had a noticeable impact on the two-bladed rotor’s eigenvalues. The blade modal damping had a distinct peak at the

rotational speed of Ω= 6.054 RPM for an inflow velocity of V0 = 8ms−1, whereas the peak was located at Ω= 5.57 RPM for925

an inflow velocity of V0 = 10 ms−1. This observation was investigated further through inspection of the dynamic stall gradient

of ∂ḟ
s,i
/∂ẋj with respect to the structural DOFs velocity vector ẋ. The 1-norm value of the gradient ∂ḟ

s,i
/∂ẋj components

(summed absolute values) was considered for the LTI system matrix with Hill’s (matrix A
0
) and Floquet’s method (updated

diagonalization matrix R̂). It was observed that the maximum blade modal damping was seen to coincide with a change of

curve trend for the stall gradient as well as for the symmetric blade mode’s dynamic stall DOF fs. For varying rotational speeds930

Ω (and angles of attack α), the change caused by the gradient ∂ḟ
s,i
/∂ẋj in the system matrix generated a fluctuation with the

same trend observed in the symmetric blade mode’s eigenvector dynamic stall variable fs value.

In line with previous studies, special attention was needed for the selection of the principal eigenfrequencies when applying

both Hill’s and Floquet’s methods. When using Hill’s method, the principal eigenfrequencies selection was facilitated because

the harmonic matrix A
L,j=0

from the Fourier expansion of A
L
(t) had components that were overall higher in value than for935

higher harmonics matrices A
L,j ̸=0

. One could select the principal eigenfrequencies as being closest to the ones associated

to A
L,j=0

. As for Floquet’s method, it was unable to calculate more than the principal damped frequency per system state,

meaning that it could not consider the system’s full periodicity unlike Hill’s method. The other drawback of Floquet’s method

was that it was computationally demanding in time duration compared to Hill’s method. Essentially, it was a numerically less
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efficient method on account of the need to compute the transition state or monodromy matrix by carrying out as many decay940

simulations of a period duration as there are states. However, for situations where the system matrix is not available or for the

analysis of experimentally acquired time series, Floquet’s method would be a better alternative compared to Hill. In that case,

the monodromy matrix could be extracted directly from responses after a period without further need for simulation. Although

Hill’s method relied on a bigger expanded state-space matrix to solve the eigenvalue problem, it was still computationally less

costly than Floquet’s method in our context. In spite of that, we found that both methods are reliable and accurate to provide945

consistent and identical eigenvalue results.

Future work will focus on relying on Hill’s method for fast response calculations by using improved approaches compared

to our previous methodology (Pamfil et al., 2024).
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