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Abstract. Mesoscale model predictions of wind, turbulence, and wind energy capacity factors are evaluated in the Altamont

Pass Wind Resource Area of California (APWRA), where the diurnal regional seabreeze and associated terrain-driven speedup

flows drive wind energy production during the summer months. Results from the Weather Research and Forecasting model

version 4.4 using a novel three-dimensional planetary boundary layer (3D PBL) scheme, which treats both vertical and hori-

zontal turbulent mixing, are compared to those using a well-established one-dimensional (1D) scheme that treats only vertical5

turbulent mixing. Each configuration is evaluated over a nearly 3-month-long period during the Hill Flows Study, and due

to the recurring nature of the observed speedup flows, diurnal composite averaging is used to capture robust trends in model

performance. Both model configurations showed similar overall skill. The general timing and direction of the speedup flows is

captured, but their magnitude is overestimated within a typical wind turbine rotor layer. Both also fail to capture a persistent

observed near-surface jet-like flow, likely due to limited grid resolution that is typical of mesoscale models. However, the 3D10

PBL configuration shows several notable
:::::
minor improvements over the 1D PBL configuration, including improved wind speed

and turbulence kinetic energy profiles during the accelerating phase of the speedup events, as well as reduced positive wind

speed bias at surface stations across the APWRA region. Using a mesoscale wind farm parameterization, modeled capacity

factors are also compared to monthly data reported to the U.S. Energy Information Administration (EIA) during the study

period. Although the monthly trend in the data is captured, both model configurations overestimate capacity factors by roughly15

7–11%. Through model evaluation, this study provides confidence in the 3D PBL scheme for wind energy applications in

complex terrain and provides guidance for future testing.

1 Introduction

Accurate mesoscale simulations of winds in the atmospheric boundary layer are essential for wind energy resource assessment

and forecasting of wind power production. However, while wind turbines are often sited in regions of complex terrain to take20

advantage of local wind accelerations, mesoscale models are likely to experience larger errors in these regions (Jiménez and
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Dudhia, 2013; Olson et al., 2019; Chow et al., 2019; Radünz et al., 2021). Errors may result from a variety of interrelated

effects, including under-resolved terrain, model numerics, and the treatment of atmospheric turbulence and its interplay with

atmospheric stability and diurnal cycles.

First and foremost, complex terrain is usually under-resolved in mesoscale models, often referred to more generally as
:
a25

:::::
subset

::
of

:
numerical weather prediction (NWP) models. Historically, operational NWP models have used

:::::
NWP

::::::
models

:::::
were

:::
run

::::
with

:
horizontal grid spacing of roughly 3 kmor larger. With recent

::
on

:::
the

:::::
order

::
of

::::::
10-100

::::
km.

::::::::
However,

:::::
with

:::::::
ongoing

advances in computing power, NWP models
:::::::::
operational

:::::
NWP

:::::::
models

::::
may

::::
now

:::
be

:::
run

::
at
::::::
higher

:::::::::
resolution.

::::
For

::::::::
example,

::
the

:::::::::::::::
High-Resolution

:::::
Rapid

:::::::
Refresh

::::::
model

::::::::::::::::::::::::::::::::::::::::::
(HRRR; Benjamin et al., 2016; Dowell et al., 2022),

::::::::::
maintained

:::
by

:::
the

::::::::
National

::::::::::::
Oceanographic

::::
and

:::::::::::
Atmospheric

:::::::::::::
Administration

::::::::
(NOAA),

::::::
covers

:::
the

::::::::::
continental

::::::
United

:::::
States

:::::
with

::
3

:::
km

:::::::::
horizontal

::::
grid30

:::::::
spacing.

::::::::
Recently,

:::::
NWP

::::::
models

:
have been tested with 1 km or sub-kilometer grids (e.g., Olson et al., 2019), but their ability

to capture local terrain-driven flow variability at the grid scale or smaller is inherently limited.

Complex-terrain errors can also result from model numerics. NWP models generally use a terrain-following coordinate sys-

tem (e.g., Gal-Chen and Somerville, 1975) because it provides a straightforward implementation of surface boundary condi-

tions. However in regions with steep terrain, the grid becomes skewed, leading to model errors that often manifest as numerical35

diffusion (see, e.g., Arthur et al., 2021). A variety of approaches have been taken in the literature to address these grid-related

errors, including hybrid vertical coordinate systems, improved finite difference stencils, and immersed boundary methods (see

discussion in Arthur et al., 2022), but these are not a focus of the present study.

All atmospheric models require a parameterization for the effects of subgrid-scale (SGS) turbulence, and this study focuses

on the treatment of atmospheric turbulence as an important source of model variability. In a mesoscale model, vertical turbulent40

mixing is typically parameterized using a one-dimensional (1D) planetary boundary layer (PBL) scheme. Horizontal turbulent

mixing is assumed to be small and is therefore neglected in the governing equations. This assumption is valid in coarse-grid

simulations, but may be violated for higher-resolution simulations (Honnert and Masson, 2014; Mazzaro et al., 2017; Muñoz-

Esparza et al., 2017; Doubrawa and Muñoz-Esparza, 2020), especially in regions with complex terrain or other sources of

horizontal heterogeneity.45

To address this issue, Kosović et al. (2020) and Juliano et al. (2022) implemented a three-dimensional (3D) PBL scheme

within the widely used Weather Research and Forecasting model (WRF; Skamarock et al., 2019). The scheme is intended for

use within the so-called turbulence gray zone (Wyngaard, 2004), within which neither traditional 1D PBL schemes nor large-

eddy simulation (LES) schemes are necessarily appropriate (see further discussion in Chow et al., 2019). Gray-zone resolution

is a function of atmospheric stability, with PBL depth being a proxy (e.g., Rai et al., 2019), but is typically considered to span50

horizontal grid spacing of 100 m to 1 km.

The 3D PBL scheme parameterizes both vertical and horizontal turbulence shear stresses and turbulent fluxes, as well as their

divergences, using the framework of Mellor and Yamada (1974, 1982), which is based on a prognostic equation for the SGS

turbulence kinetic energy (TKE). In this way, the scheme is similar to the 1D Mellor-Yamada-Nakanishi-Niino (MYNN) level

2.5 model (Nakanishi and Niino, 2006) available in WRF, but with full 3D treatment of turbulent mixing. It should be noted55

that with MYNN or other 1D PBL schemes, a two-dimensional (2D) form of the Smagorinsky model (Smagorinsky, 1963) is
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often used to add additional horizontal diffusion and can thus be considered a form of smoothing to improve numerical stability

(e.g., Smagorinsky, 1993).

In an effort to further develop the WRF 3D PBL scheme for wind energy applications, Rybchuk et al. (2022) coupled it to the

mesoscale wind farm parameterization of Fitch et al. (2012). Hereafter denoted WFP, the Fitch et al. (2012) parameterization60

accounts for the presence of wind turbines by adding drag and TKE to the flow within the turbine rotor region. These effects

are aggregated over each horizontal grid cell based on the number of turbines located within the cell. The Fitch et al. (2012)

WFP is coupled to the MYNN PBL scheme in the standard WRF release (including the bug fix of Archer et al., 2020), allowing

for direct comparisons with the 3D PBL implementation.

The initial work of Juliano et al. (2022) and Rybchuk et al. (2022) focused on developing and testing the 3D PBL scheme65

in idealized model configurations, mostly with flat terrain or over open water. Juliano et al. (2022) considered idealized con-

vective boundary layer and sea breeze tests, as well as a mountain-valley test with simple terrain, while Rybchuk et al. (2022)

considered the offshore environment. Arthur et al. (2022) and Wiersema et al. (2023) subsequently evaluated 3D PBL perfor-

mance relative to standard WRF options in real complex-terrain scenarios. However, further testing of the model is necessary

to ensure its robustness.70

With this in mind, the present work has two main goals. The first is to evaluate the 3D PBL scheme in a complex-terrain

region that is relevant to wind energy. The second is to build on the work of Rybchuk et al. (2022) by testing the WFP coupled

to the 3D PBL scheme in a realistic configuration with terrain. Ultimately, this work aims to better establish the utility of the

3D PBL scheme for wind energy applications.

2 Data and methods75

2.1 Case study and observational data

The Altamont Pass Wind Resource Area (APWRA) is a collection of wind plants located in a gap within the Diablo Range

of Northern California,
::::::::::
north-central

:::::::::
California.

::::
The

::::
gap

::
is just east of

:::
San

:::::::::
Francisco

:::
Bay

::::
and

:::::
south

::
of

:
the San Francisco

Bay Area
:::::
Delta,

::::
and

::
is

:::::::
roughly

:::::::
bounded

:::
by

:::
Mt.

::::::
Diablo

::
to
:::

the
:::::::::

northwest
:::
and

::::
the

::::::
greater

::::::
Diablo

::::::
Range

::
to

:::
the

::::::::
southeast

:
(see

Figure 1). With nearly 200 turbines and roughly 326 MW of installed capacity spread over six plants (excluding very small,80

old 65 kW turbines), it
::
the

::::::::
APWRA is the fifth largest wind energy installation in California and one of the oldest commercial

wind farms in the United States, with the first turbines installed in 1981 (see Hoen et al., 2018). The turbines
::::::
typical

::::::
annual

::::
cycle

::
of

:::::
wind

::::::
energy

:::::::::
production

::
in

:::
the

::::::::
APWRA

:
is
::::::
shown

::
in

::::::
Figure

:
2
::
in

:::::
terms

::
of

::::::::
monthly

:::::::
capacity

::::::
factors,

::::::
defined

:::
as

:::
the

::::
ratio

::
of

:::::
actual

:::::::::
production

::
to

:::
the

:::::::::
maximum

:::::::
possible

:::::::::
production

::::
(i.e.,

::
if

::
all

:::::::
turbines

::::::::
operated

::
at

:::
full

::::::::
capacity)

:::::
during

:::::
each

::::::
month.

:::
The

:::::::
turbines

:
in the APWRA are especially productive over the summer months (see Figure 2) when a synoptic pressure85

difference between the ocean and the land drives westerly/southwesterly winds that are channeled through the Altamont Pass

(see, e.g., Zaremba and Carroll, 1999). Monthly capacity factors for the six wind plants in the APWRA, based on EIA-reported

data (EIA, 2023a, b) averaged over 2014–2021. The shaded area represents± 1 standard deviation. The average over all plants

is weighted by plant capacity as noted in the legend. Note that Summit Wind became operational in 2021. These winds are
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Figure 1. A map of the study region, zooming in from (a) the US west coast, to (b) the WRF model domain, to (c) the APWRA. Included

in (b) and (c) are the locations of observation stations (black symbols) used for model evaluation, the locations of APWRA wind turbines

at the time of the HilFlowS study (colored by their rated power), the
:::
and terrain elevation as represented in the model, and the coastline of

San Francisco Bay (dark gray contour)
:::
with

::::
water

:::::
shown

::
in
::::
blue. Dashed-line boxes indicate zoomed-in regions in the next panel to the right,

while the dotted-line box in (b) indicates the region shown in Fig. 7.

modulated by diurnal temperature variability, which enhances the land-sea pressure difference, leading to peak wind speeds in90

the late afternoon to early evening local time (see, e.g., Wharton et al., 2015). The regularity of these
::
the

:
summertime speedup

events, combined with the importance of terrain-induced wind acceleration, makes them a useful case study for evaluating

mesoscale models (see, e.g., Banta et al., 2020, 2023).

The Hill Flow Study (HilFlowS; Wharton and Foster, 2022) consisted of two vertically profiling ZephIR300 lidars and a

52-m meteorological tower deployed at Lawrence Livermore National Laboratory Site 300, roughly 10 km southeast of the95

APWRA wind plants, during the mid-to-late summer of 2019. HilFlowS was conducted along three parallel ridgelines that run

northwesterly to southeasterly in the Diablo Range, making them perpendicular to the predominant summertime, southwesterly

(onshore) wind direction. Lidars were deployed on the first two (upwind) parallel ridgelines at the Western Observation Point

(WOP)
:::::::::::::::::::::::::::::::::
(WOP; Atmosphere to Electrons, 2019c) and Eastern Observation Point (EOP)

::::::::::::::::::::::::::::::::
(EOP; Atmosphere to Electrons, 2019b)

, which are separated by a line-of-sight distance of 860 m. The WOP ridgeline has a higher peak (527 m MSL), while the EOP100

peak is slightly lower (448 m MSL). The ridgeline slopes, respectively, are 22◦ and 13◦ along the predominant wind direction

of 240◦. The meteorological tower
:::::::::::::::::::::::::::
(Atmosphere to Electrons, 2019a) is found on the third ridgeline and is at an elevation of

395 m MSL. The study area and surrounding region is largely covered by grassland. All instrument and turbine locations are

included in Figure 1.
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Figure 2. Monthly capacity factors for the six wind plants in the APWRA, based on EIA-reported data (EIA, 2023a, b) averaged over 2014–

2021. The shaded area represents ±1 standard deviation. The average over all plants is weighted by plant capacity as noted in the legend.

Note that Summit Wind became operational in 2021.

Wind speed data from the two lidars are used here to evaluate model performance between the surface and 150 m AGL,105

spanning the vertical range of the turbines in the APWRA. Both lidars gathered horizontal wind speed, wind direction, and

vertical velocity data at 10, 20, 30, 38, 50, 60, 70, 80, 90, 120, and 150 m AGL (note that 38 m is a fixed calibration height),

between 9 July and 23 September 2019. Horizontal wind speed, direction, air temperature, and air pressure data are also

available at 1 m AGL from an on-board meteorological station, although only the wind speed and direction data are used here.

While the lidars completed their scan strategy roughly once every 15 s, the data have been averaged in 10-min intervals110

as in Wharton and Foster (2022). Over the study period, the WOP lidar had greater than 98% data availability for horizontal

wind speed/direction, and roughly 90% data availability for vertical velocity. The EOP lidar ran on solar/battery power, which

resulted in slightly lower data availability of roughly 84% and 77%, respectively. Lower data availability for the vertical

velocity, relative to the horizontal, is a result of standard quality control filtering applied by the lidars when calculating 10-

min averages, which removes the vertical velocity when rain or fog are detected. Diurnal composite averages over the nearly115

3-month-long data record were analyzed by Wharton and Foster (2022) and shown to be robust; a similar composite averaging

:::::::::::::::::
composite-averaging approach is used in the present study for model evaluation.

Horizontal wind speed, wind direction, and vertical velocity are calculated from lidar observations using the velocity-azimuth

display (VAD) technique for each measurement height. Note that the ZephIR300 does not have a vertically pointing beam, thus

vertical velocities are not measured directly. TKE is calculated using high-frequency variance measurements during post-120
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processing (see section 3.1.2). Reported accuracy for the ZephIR300 in ideal site conditions (e.g., flat, homogeneous terrain) is

±0.25% for wind speed and direction. However, the HilFlowS experiment was not conducted under these ideal conditions. In

hilly terrain, assumptions about the horizontal homogeneity of the flow across the lidar’s observation volume may be invalid.

Because this assumption is used in the calculation of both horizontal and vertical wind speeds, lidar accuracy ,
:::::::
leading

::
to

:::::
errors

::
in

:::
the

::::::::
measured

::::::::
horizontal

:::::
wind

:::::
speed

::
as

:::::
large

::
as

::::::
±10%

:::::::::::::::::
(Bingöl et al., 2009).

::::::::
Although

:::::::::::::::::
Bingöl et al. (2009)

::
did

::::
not

:::::::
quantify125

:::::
errors

::
in

::::::
vertical

:::::::::
velocities,

::::
these

:::
are

::::
also

::::::::
expected

::
to

::
be

::::::
present

:
in complex terrain is reduced and it is important to remember

that the measurements themselves may have bias or other sources of uncertainty
:::
due

::
to

:::
the

:::::::::
ZephIR300

::::::
lidar’s

:::
lack

::
of
::
a
::::::::
vertically

:::::::
pointing

::::
beam.

To assess errors in horizontal wind speed, data is examined from an
:::
An earlier experiment in the APWRA (Wharton et al.,

2015) that used identical ZephIR300 lidars to measure hill speedup flows and their effects on power production . In that130

study, wind speed measurements were corrected for
::::::
assessed

:
terrain-induced errors during post-processing using

:::::::::::
measurement

:::::
errors

::::
with

:
the Dynamics software package (

:::::::
provided

::
by

:
ZephIR Ltd. ),

::
As

:::::::::
discussed

:::::::
therein,

:::
the

::::::::
software

:::::::
converts

::::
raw

::::
lidar

::::::::::
line-of-sight

:::::::
velocity

::::
data

::::
into

::::::::
unbiased

::::::::::::
measurements

::
of
:::::

wind
:::::
speed

::::
and

:::::
wind

::::::::
direction

:::
for

::::
hilly

:::::
sites, based on the

work of Bingöl et al. (2009). Dynamic
::
In

::::::::::::::::::
Wharton et al. (2015)

:
, conversion factors for all wind directions and measure-

ment heights ranged from +1% to +8% for the hill lidar. Although these ranges are relatively large
:
,
::::::
within

:::
the

:::::
range

:::
of135

::
the

:::::::::::::::::
Bingöl et al. (2009)

:::::
study.

::::::::
Moreover, the correction factors associated with the predominant wind direction were closer to

zero: +3% for the hill lidar and -2% for the base lidar near the bottom of the hill. These correction factors

:::
The

:::::::::
conversion

::::::
factors

::
in
:::::::::::::::::::
Wharton et al. (2015) were calculated for a hill that is similar to those at the HilFlowS site. ,

::::
and

::
are

:::::::::
presented

::::
here

:::
for

::::::::
additional

:::::::
context.

:::::::::
However,

:::::::::
conversion

::::::
factors

:::
are

:::
not

:::::::::::
recalculated

::
for

::::
the

::::::
present

:::::
study.

:::::::
Rather,

:::
the

:::::::
potential

::::::
±10%

:::::::::
calculated

::
by

:::::::::::::::::
Bingöl et al. (2009)

:
is
:::::

used
::
to

::::::::::::
conservatively

::::::
bound

:::
the

::::::::
potential

:::::
mean

::::
error

::
in

:::
the

:::::::::
measured140

::::::::
horizontal

:::::
wind

::::::
speed.

:
It
::::::

should
:::

be
:::::
noted

::::
that

::::
prior

:::
to

:::
the

::::::::
HilFlowS

::::::::::
experiment,

:::
the

:::::
lidars

:::::
were

:::::::::::::
cross-compared

::::
with

:::::
high

::::::::
agreement

::::::::::::::::::::::::::
(see Wharton and Foster, 2022)

:
,
::::::::
providing

:::::::::
confidence

::
in

::::
their

:::
use

:::
for

::::::
model

:::::::::
evaluation.

To supplement lidar observations, wind speed and temperature data are available from the meteorological tower at 10, 23,

and 52 m AGL. Wharton and Foster (2022) used these data to assess atmospheric stability via the bulk Richardson number;

here, the temperature data are used for model evaluation. Furthermore, before the start of HilFlowS, the lidars were deployed at145

the base of the meteorological tower to assess instrument agreement. That dataset showed strong agreement between the lidars

and the tower, with r-squared values of 0.97-0.99 for all measurement levels.

To further examine the spatial variability of model performance, 10-m wind speed data from nearby surface meteorological

stations in the MesoWest network (Mesonet, 2023) are used. Although proprietary turbine data from the APWRA wind plants

are not generally available, public power production data reported to the United States Energy Information Administration150

(EIA) on a monthly basis (EIA, 2023a, b) are used to evaluate estimates of wind power production from the WFP. Note that

site-specific wind power studies have been performed previously in the APWRA, as presented in Wharton et al. (2015) and

Bulaevskaya et al. (2015).

?
::::::::::::::
Rios et al. (2025) used HilFlowS lidar data to evaluate the High-Resolution Rapid Refresh model (HRRR; Benjamin et al., 2016; Dowell et al., 2022)

. HRRR is an operational forecast modelwith 3 km horizontal grid spacing that is maintained by the National Oceanographic155
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and Atmospheric Administration (NOAA) and used frequently by
::::::::::::
aforementioned

:::::::
HRRR

::::::
model,

:::::
which

::
is
:::::

used
:::::::::
frequently

::
for

::::::::::
forecasting

:::::
within

:
the wind energy industry (Shaw et al., 2019). ?

::::::::::::::
Rios et al. (2025) found that while HRRR captured the

general diurnal trend of the observed speedup events, it overestimated hub-height wind speeds (by as much as 3 m s−1) during

nighttime hours, and underestimated hub-height wind speeds by as much as 2 m s−1 during daytime hours. Wind speed errors

also varied spatially and as a function of the predominant wind direction associated with different synoptic conditions. These160

results serve as a baseline for the present study, which explores the effects of increased grid resolution (relative to HRRR) and

PBL treatment on model performance.

2.2 Model configuration

2.2.1 Domain and model options

The WRF model version 4.4 is employed with a horizontal grid spacing of 1 km over the 120×120 km domain depicted165

in Figure 1b. The model is initialized on 6 July 2019 0000 UTC, allowing for roughly two days of spinup time prior to

observational comparisons, and run through 24 September 2019 0000 UTC. Initial and boundary conditions are derived from

hourly HRRR analysis fields (at the 0th forecast hour), but interior nudging is not employed due to the relatively small domain.

The WRF namelist and wind turbine specification files used in this study are archived under Arthur (2024).

Simulations are completed with two model configurations, varying only the treatment of SGS turbulent mixing. The first170

configuration is treated as a control and roughly corresponds to the standard HRRR setup, while the second configuration

employs the 3D PBL scheme. Recall that HRRR uses a horizontal grid spacing of 3 km; the present value of 1 km was chosen

to increase resolution relative to HRRR while also approaching both the upper limit of traditional mesoscale models and the

lower limit of the turbulence gray zone.

In the control configuration, vertical turbulent mixing is treated using the MYNN level 2.5 PBL scheme (bl_pbl_opt=175

5), while horizontal mixing is not treated explicitly; rather, horizontal smoothing is employed with WRF’s 2D Smagorinsky

scheme (km_opt= 4). In the second configuration, both vertical and horizontal turbulent mixing are treated using the 3D PBL

scheme. Following
:
In

::::
both

:::::::::::::
configurations,

::::
local

:::::::::::::
curvilinear-grid

:::::
metric

:::::
terms

:::
are

::::
used

::
in

:::
the

:::::::::
calculation

::
of

:::::::::
horizontal

::::::::
gradients

::
(as

::::
with

:::::::
WRF’s

:::::::::::::
diff_opt= 2),

:::::::
although

:::::::::
diff_opt

:
is
:::
set

::
to

::
0
:::::
when

:::
the

:::
3D

::::
PBL

::::::
scheme

::
is
:::::
used.

:::
All

:::::
other

:::::
model

:::::::
options

:::
are

:::::::
identical

:::::::
between

:::
the

:::
two

:::::::::::::
configurations.180

::::
Note

:::
that

::::::::
following

:
Rybchuk et al. (2022), Arthur et al. (2022), and Wiersema et al. (2023), the boundary layer approximation

::::
PBL

::::::::::::
approximation

:::::::::::::::::::::::::::::::::::
(Mellor, 1973; Mellor and Yamada, 1982) is used within the 3D PBL scheme (pbl3d_opt= 1) to im-

prove computational efficiency and numerical stability (see discussions therein, and in Juliano et al., 2022). The boundary

layer approximationretains the calculations
::::::
Indeed,

:::
the

::::
full

:::
3D

::::
PBL

:::::::
scheme

::::
was

:::::
found

:::
to

::
be

::::::::::::::
computationally

:::::::
unstable

:::
in

::
the

:::::::
present

:::::::
domain,

::::::
likely

::::
due

::
to

:::
the

::::::::::
turbulence

::::::::::
length-scale

::::::::::
calculation.

:::::
This

::::
was

::::
also

:::
the

::::
case

:::
in

:::
the

::::::::::::::
complex-terrain185

::::::
studies

::
of

:::::::::::::::::
Arthur et al. (2022)

:::
and

:::::::::::::::::::
Wiersema et al. (2023).

:::::
With

:::
the

::::
PBL

:::::::::::::
approximation,

::::
the

::::::::::
divergences

:
of horizontal tur-

bulence shear stresses and turbulent fluxes , and their divergences, but neglects the impact of horizontal velocity shear on

the the stresses . Note that in both configurations, local curvilinear-grid metric terms are used in the calculation of horizontal

7



gradients (as with WRF’s diff_opt= 2), although diff_opt is set to 0 when the 3D PBL scheme is used. All other model

options are identical between the two configurations
::
are

::::::::
retained

::
in

:::
the

::::::::::
prognostic

::::::::
equations

:::
for

::::::::::
momentum

::::
and

:::::::
scalars,190

::::::::::
respectively.

::::::::
However,

:::::::::
horizontal

::::::::
gradients

:::
are

::::::::
neglected

::
in

:::
the

::::::
system

::
of

:::::::::
equations

::::
used

::
to

::::::::
calculate

:::
the

::::::
stresses

::::
and

::::::
fluxes,

:::::::
allowing

:::::
them

::
to

:::
be

:::::::::
determined

:::::::::::
analytically.

:::::::::
Horizontal

::::::::
gradients

::::
are

::::
also

::::::::
neglected

::
in

::::
the

:::::::::
prognostic

:::::::
equation

::::
for

:::::
TKE.

:::::
Thus,

::::
TKE

:::::::::
production

::::
due

::
to

:::::::::
horizontal

:::::
shear,

:::::
which

::::
has

::::
been

:::::
found

:::
by

:::::::
previous

::::::
studies

::
to
:::

be
::::::::
important

::
in
::::::::

complex
::::::
terrain

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zhong and Chow, 2012; Muñoz-Esparza et al., 2016; Goger et al., 2018),

::
is
::::

not
:::::::::
considered

:::::
here.

::::::::
Potential

:::::::::::
ramifications

:::
of

::::
using

:::
the

::::
PBL

:::::::::::::
approximation

::
in

:::
this

:::::
study

:::
are

::::::::
discussed

::::::
further

:::::
below.195

For consistency with the HRRR forcing, the present model runs use the HRRR atmospheric physics suite following Benjamin

et al. (2016). This includes the Rapid Update Cycle (RUC) land-surface model (sf_surface_physics= 3), the Thompson

aerosol-aware microphysics scheme (mp_physics= 28; Thompson, 2014), and the RRTMG radiation schemes (ra_sw_physics=

4 and ra_lw_physics= 4; Iacono et al., 2008). However, for compatibility with the 3D PBL scheme, the revised MM5 surface

layer scheme (sf_sfclay_physics= 1) is used instead of the MYNN scheme (sf_sfclay_physics= 5). Additionally, fol-200

lowing Arthur et al. (2022), WRF’s option to add positive-definite 6th order
::::::::
6th-order horizontal diffusion (diff_6th_opt= 2)

is used in both configurations with a factor of 0.25. To
:::
The

:::::
added

::::::::
diffusion

::
is

:::::
purely

:::::::::
numerical

:::
and

::
is
::::
used

::
to
:::::
damp

:::::::::
grid-scale

:::::
noise.

::::::::
However,

::
to

:
prevent over-diffusion in regions of sloping terrain, where numerical diffusion is

::::::
already

:
expected to be

relatively large, diff_6th_slopeopt is set to 1 with a threshold value of
::
the

::::::
added

::::::::
6th-order

::::::::
diffusion

::
is

:::::::
linearly

:::::::
damped

:::::::
between

:::::
slopes

::
of

::
0
:::
and

::::
0.05

:::::::
(2.86◦)

:::
and

::::::
turned

::
off

:::
for

:::::
larger

::::::
slopes

:::::
(using

:::
the

::::::::
namelist

::::::
options

::::::::::::::::::::
diff_6th_slopeopt= 1

::::
and205

diff_6th_thresh= 0.05
:
).

The vertical grid spacing is modified from HRRR in the present study to increase vertical grid resolution within the turbine

layer. HRRR uses 50 vertical levels, with a vertical grid spacing of ∆z ≈ 16 m at the surface such that the first half level (the

lowest level at which temperature and velocities are calculated) is located at roughly 8 m AGL. The vertical grid spacing is

stretched above the surface, as detailed in Benjamin et al. (2016), with a domain top of roughly 25 km. Here, ∆z is held constant210

at 16 m between the surface and roughly 300 m AGL (19 levels), and stretched with a factor of 1.1 above, with a total of 69

levels. Although Tomaszewski and Lundquist (2020) and Rybchuk et al. (2022) recommend setting ∆z to 10 m or less with

the WFP, this was found to be computationally unstable for the 3D PBL run; ongoing improvements to the 3D PBL scheme

may alleviate this issue in the future. Note also that the present model runs use WRF’s standard terrain-following vertical

coordinate system (hybrid_opt= 0), as in Arthur et al. (2022). Although WRF’s hybrid vertical coordinate (hybrid_opt= 1)215

is used in HRRR version 3 (used here for model forcing, see Dowell et al., 2022), the hybrid coordinate system primarily

affects predictions above the boundary layer and is therefore not considered here.

2.2.2 Wind turbine representation

The Fitch et al. (2012) WFP, including the bug fix of Archer et al. (2020), is used in both model runs to predict the power

output by APWRA turbines during the diurnal speedup events
::::
study

::::::
period. Turbines are represented in the WFP by their220

location, hub height, rotor diameter, and power/thrust curves. The necessary WRF-WFP input files used in this study are

archived under Arthur (2024). For consistency with Rybchuk et al. (2022), the wind farm TKE factor (WRF namelist variable

8



Table 1. A summary of wind plants in the APWRA during the summer 2019 study period. Actual turbine specifications are based on Hoen

et al. (2018), while modeled turbines
::::::::::
specifications are based on the best-available public data and

::
as

:::::::
described

::
in
:::

the
::::
text.

:::::::
Turbines

:
are

colored by their
::::
listed

::
in
:::::
terms

::
of

:::
the

::::::::::
manufacturer

:::::
(Mfr),

:::
the rated power

::
PR::::

(see
:::::
colors in Figure 1

:
),

::
the

::::
hub

:::::
height

:::
H ,

:::
and

:::
the

::::
rotor

::::::
diameter

::
D.

:::
The

::::::::::
manufacturer

::
is

::::
listed

::
as
:::::::

“NREL”
::::
when

:::
the

::::::
generic

::::::
dataset

::
of

::::::::::
NREL (2022)

::
is

::::
used. Note that the 62 MW Summit Wind

plant shown in Figure 2 was installed after the study period and is therefore not included here. The Patterson Pass and Patterson Wind plants

(included in Hoen et al., 2018), which consist of very small (65 kW), old turbines, are also not considered in the analysis.

Actual Modeled

Wind Plant # Turbines Mfr-PR [MW] H,D [m] Mfr-PR [MW] H,D [m]

Golden Hills North 20 GE-2.3 80, 116 NREL-2.3 80, 116

Vasco 34 Siemens-2.3 80, 101 NREL-2.3 80, 107

Golden Hills 48 GE-1.7 80, 100 NREL-1.7 80, 103

Buena Vista 38 Mitsubishi-1.0 55, 61 Bonus-1.0 55, 54

Diablo Winds 31 Vestas-0.66 60, 47 Vestas-0.66 60, 47

Total 171 264.26 MW 264.26 MW

windfarm_tke_factor), which controls the amount of TKE added to the flow, is set to 1. This differs from the value of 0.25

used by Archer et al. (2020). As of the time of this writing, there is no clear consensus in the literature on the optimal choice

for this parameter (Larsén and Fischereit, 2021; Ali et al., 2023). Note that although wind farm wake dynamics are predicted225

by the WFP, they are not a focus of the present study. Moreover, wakes are not expected to reach the HilFlowS observation

sites given the complex terrain and predominant wind direction of 240◦.

At the time of the study period, the APWRA consisted of 171 total turbines spread across 5 wind plants, summarized in

Table 1. Turbine locations (as shown in Figures 1 and 7) and specifications are extracted from the United States Wind Turbine

Database (Hoen et al., 2018). However, the present analysis excludes very small (65 kW), old turbines that are still listed in230

Hoen et al. (2018).

Because the power and thrust curves for the actual APWRA turbines are generally proprietary, comparable publicly available

curves are used here (see Table 1). The General Electric (GE) 2.3, Siemens 2.3, and GE 1.7 MW APWRA turbines are matched

as closely as possible to the generic dataset of NREL (2022), which is based on the OpenFAST model (https://github.com/OpenFAST)

and includes both power and thrust curves. However, since lower-power turbines are not included in the NREL (2022) dataset,235

additional curves are gathered from the dataset of wind-turbine-models.com (2024b, a). Within this dataset, a power curve for

the Vestas 0.66 MW turbine is available (wind-turbine-models.com, 2024b); however, the thrust curve must be interpolated

from the generic NREL 1.7 model. For the Mitsubishi 1.0 MW turbine, a comparable power curve from a Bonus 1.0 MW

turbine (wind-turbine-models.com, 2024a) is used, again with a thrust curve interpolated from the generic NREL 1.7 model.

The modeled APWRA turbines have the same total rated capacity of 264.24 MW as the installed turbines at the time of240

the study period (Table 1). Furthermore, Siedersleben et al. (2020) demonstrated that the exact details of the power and thrust
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curves are not critical to WFP performance. Ultimately, modeled capacity factors, rather than raw power production estimates,

are presented below. Thus, the effect of differences between the actual and modeled turbine specifications is expected to be

small.

3 Model evaluation245

3.1 Vertical variability

3.1.1 Wind speed, wind direction, and temperature

Model performance is first evaluated through comparison to lidar observations from the HilFlowS experiment (Wharton and

Foster, 2022). The model bias BV AR :::::::::::
instantaneous

::::::
model

::::
error

::::::
EV AR is defined as

BE
: V AR = V ARWRF −V AROBS , (1)250

where V AR is the meteorological variable, either horizontal wind speed V , wind direction φ,
:
or

:
vertical velocity w, or

turbulence kinetic energy TKE. A positive bias indicates an overestimate by the model, while a negative bias indicates an

underestimate. The bias
:
.
::::
The

::::
error is calculated at 10-min intervals, corresponding to the frequency of the processed lidar data

as well as the model output. The bias
::::
This calculation requires spatial interpolation of the model data to the lidar measurement

locations. Model data are first interpolated horizontally to the latitude/longitude of the lidar, using nearest neighbor interpola-255

tion, and are then linearly interpolated to the lidar vertical levels.
::::
Note

::::
that

:::
Eφ ::

is
:::::::
adjusted

::
to

:::::::
account

::
for

:::
the

:::::::
cyclical

::::::
nature

::
of

::
the

:::::
wind

::::::::
direction:

::
if

:::
the

:::
raw

:::
Eφ:::::

value
::
is

:::
less

::::
than

::::::
−180◦

:::::::
(greater

::::
than

::::::
180◦),

:
it
::
is

:::::::
adjusted

:::
by

::::::
+360◦

:::::::
(−360◦).

:

Due to the day-to-day consistency of the observed speedup events, diurnal composite averages can be
::
are

:
used to summarize

model performance over the nearly 3-month-long study period (see Figure 3). Averages
:::
The

::::::
diurnal

:::::::::
composite

:::
bias

::
is

::::::::
therefore

::::::
defined

::
as

:
260

BV AR = 〈V ARWRF −V AROBS〉C = 〈EV AR〉C ,
:::::::::::::::::::::::::::::::::::::::::

(2)

:::::
where

:::
the

:::::
angle

:::::::
brackets

::::::
denote

:
a
:::::

time
:::::::
average,

::
in

:::
this

::::
case

::
a
::::::
diurnal

:::::::::
composite

:::::::
denoted

:::
by

:::
the

:::::::
subscript

:::
C.

::
A

:::::::
positive

::::
bias

:::::::
indicates

:::
an

::::::::::
overestimate

:::
by

:::
the

::::::
model,

:::::
while

::
a

:::::::
negative

::::
bias

:::::::
indicates

:::
an

::::::::::::
underestimate.

:::::::::
Composite

::::::::
averages are performed

between 9 July 2019 0000 PST and 23 September 2019 0000 PST such that only complete days in local time (PST=UTC-8)

are included in the analysis. Model results in Figure 3 are shown for the 3D PBL configuration, although those for the MYNN265

configuration are visually similar; more detailed comparisons between the two are discussed below. Note that while the figures

in this section are shown at the WOP site for brevity, the discussion generally applies to both sites unless otherwise noted. Error

:
A
::::::::
selection

::
of

::::::::::
time-height

::::::::
averaged

::::
error metrics are shown for both sites in Table 2.

As presented in Wharton and Foster (2022), observed winds at the study site begin to accelerate around midday, reaching a

peak between 1500–2100 PST. Winds then decelerate over the course of the night, reaching a minimum between 0600–0900270

:::
PST

:
(Figure 3a). The speedup flows, which are channeled through the Altamont Pass, are predominantly southwesterly (230-

250◦), while daytime flows are more variable (Figure 3c). The speedup flows at the study site are associated with subsidence,

10



Figure 3. Diurnal composite average
:::::::::::::
composite-average

:
WOP lidar observations and 3D PBL model bias. Positive bias (red) indicates an

overestimate by the model, while negative bias (blue) indicates an underestimate. Shown are wind speed V (a,b), wind direction φ (c,d), and

vertical velocity w (e,f). To better contextualize the vertical velocity bias in (f), contour lines are shown for the modeled vertical velocity

::::::::
〈wWRF 〉C in 0.1 m s−1 increments. Dotted lines in (a)

::
and

:::
(b) indicate the rotor-swept area of the most prevalent generic turbine model in

the simulations, with hub-height H = 80 m and rotor diameter D = 103 m (NREL-1.7; see Table 1).
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a negative vertical velocity (blue colors in Figure 3e), and increased horizontal wind speeds near the surface (yellow colors in

Figure 3a). As discussed in ?, this
::::
This suggests that vertical convergence leads to horizontal divergence and an acceleration

of the flow near the surface.275

While the model captures the timing and direction of the speedup flows well (Figure 3b,d), wind speeds are generally

overestimated above 30m
:::

m AGL, especially between 0000–0300 PST (red colors in Figure 3b). Conversely, wind speeds

are underestimated near the surface, indicating that the model fails to capture near-surface accelerations. This highlights an

inherent limitation of the vertical grid setup, which, although finer than HRRR, has only several model levels
:::
1–2

::::::
model

:::::
levels

::::::::
(∆z ≈ 16

::
m)

:
within the observed jet-like flow layer

:::::
below

:::::::
roughly

::
30

::
m

::::
AGL. While the model captures some negative vertical280

velocities at the study site during the speedup events (see contours in Figure 3f), its vertical velocities are too weak and thus

do not translate to near-surface accelerations of the magnitude seen in the observations.

Several
::::::::::
time-height

::::::
average

:
error metrics (following e.g., Chang and Hanna, 2004; Smith et al., 2018; Wiersema et al., 2020;

Arthur et al., 2022) are used to compare the performance of the two model configurations over the course of the study period.

The fractional bias is defined as285

FBV AR =
BV AR

0.5
(
V ARWRF +V AROBS

) 〈
EV AR

〉
0.5
(〈
|V ARWRF |

〉
+
〈
|V AROBS |

〉)
::::::::::::::::::::::::::::::::

, (3)

and the normalized mean absolute error is defined as

NMAEV AR =
|BV AR|

0.5
(
V ARWRF +V AROBS

)
〈
|EV AR|

〉
0.5
(〈
|V ARWRF |

〉
+
〈
|V AROBS |

〉)
::::::::::::::::::::::::::::::::

, (4)

where
:::::
angle

:::::::
brackets

::::::
denote

:
a
::::
time

:::::::
average

::::
over

:
9
::::
July

::::
2019

:::::
0000

::::
PST

:::::::
through

::
23

:::::::::
September

:::::
2019

::::
0000

::::
PST

:::
and

:
the overbar

denotes an average over all available observations for a given lidar (both vertically and in time).
:
a
:::::::
vertical

::::::
average

::::
over

::::::::
available290

::::
lidar

:::::::::::
measurement

:::::::
heights.

::::
Note

::::
that

:::
the

:::::::
absolute

:::::
value

::::::::
operation

::
in

:::
the

::::::::::
denominator

::
is
::::
only

:::::::
relevant

:::
for

:::
the

::::::
vertical

::::::::
velocity,

:::::
which

:::
has

::::
both

:::::::
positive

:::
and

:::::::
negative

:::::::
values;

::
the

:::::::::
horizontal

:::::
wind

:::::
speed

:
is
:::::::
positive

:::
by

::::::::
definition.

:

For the wind direction, the scaled average angle is defined as

SAA=
1

NVWRF

1

N
〈
VWRF

〉
:::::::::

N∑
i=1

VWRF,i|BE: φ,i|, (5)

where N is the total number of observations
:::
(in

::::
both

::::
time

:::
and

:::::::
height) for the given lidar. SAA weighs wind direction errors295

based on the modeled wind speed at the given observation location and time, assuming that directional errors at low wind

speeds are less impactful.

Overall, error metrics are nearly equal for the MYNN and 3D PBL configurations at both sites (see
::::
Error

::::::
metrics

::::
are

::::::::::
summarized

::
in

:
Table 2 )

::
for

:::::
both

:::::
model

::::::::::::
configurations

::::
and

::::
lidar

::::
sites. For example, at WOP, the normalized mean absolute

wind speed error is 27%, the scaled average angle is 13◦, and the average vertical velocity error is 0.27
:::
The

:::::::
metrics

::::::
shown300

::
in

:::
the

::::
table

:::
are

:::::
time

:::::::
averaged

:::::
over

:::
the

:::
full

:::::
study

::::::
period

:::
and

:::::::::
vertically

::::::::
averaged

::::
over

:::
two

::::::::
separate

::::::
layers,

:::
the

::::::
surface

:::::
layer

12



Table 2. Model error
::::
Error metrics,

::
as

::::::
defined

::
in

::::::::
Equations

::
3,

:
4,
::::

and
:
5,
:

for each
::::

model
:
configuration at each lidar site, .

::::::
Metrics

:::
are

::::
time

averaged over the full study period
::
and

:::::::
vertically

:::::::
averaged

::::
over

:::
two

:::::::
separate

:::::
layers,

::
the

::::::
surface

::::
layer

:::::
(lidar

::::::::::
measurement

:::::
heights

::
of

:::
10,

:::
20,

:::
and

::
30

::
m

::::
AGL)

:::
and

:::
the

::::
rotor

::::
layer

::::
(lidar

::::::::::
measurement

::::::
heights

::
of

::
30,

:::
38,

:::
50,

::
60,

:::
70,

:::
80,

::
90,

::::
and

:::
120

:
m
:::::
AGL).

:::
The

::::
rotor

::::
layer

:
is
:::::
based

::
on

:::
the

::::
most

:::::::
prevalent

:::::
generic

::::::
turbine

:::::
model

:
in
:::
the

:::::::::
simulations,

::::
with

::::::::
hub-height

::::::
H = 80

::
m

:::
and

::::
rotor

::::::
diameter

:::::::
D = 103

::
m
:::::::::
(NREL-1.7;

:::
see

::::
Table

:::
1).

Site WOP WOP
::::
WOP

: ::::
WOP EOP EOP

:::
EOP

: :::
EOP

:

::::::
Vertical

:::::
Layer

::::::
Surface

::::::
Surface

::::
Rotor

: ::::
Rotor

:::::
Surface

: :::::
Surface

: ::::
Rotor

::::
Rotor

Model 3DPBL
::
3D

::::
PBL

:
MYNN 3DPBL

::
3D

::::
PBL

:
MYNN

::
3D

::::
PBL

:::::
MYNN

: ::
3D

::::
PBL

::::::
MYNN

FBV 0.0018
::::
-0.20 -0.0060

::::
-0.19 -0.032

::::
0.069 -0.039

::::
0.059

: :::
-0.26

: :::
-0.25

: ::::
0.034

::::
0.024

NMAEV 0.27
::::
0.31 0.27

:::
0.30

:
0.28

::::
0.25 0.28

:::
0.25

: :::
0.34

: :::
0.34

: :::
0.26

: :::
0.25

:

SAA [◦]
::
12

: ::
11

::
12

: ::
12 13 13 12 12

|Bw| m s−1
::::
FBw 0.27

::::
-0.86 0.27

::::
-0.85 0.25

::::
-0.32

::::
-0.30

:::::
-0.039

:::::
-0.026

:::
0.24

:
0.25

FBTKE ::::::::
NMAEw -0.48

::
1.2

:
-0.12

::
1.2

:
-0.12

:::
0.94 0.16 NMAETKE :::

0.94
:

0.72
:::
0.69 0.60

:::
0.67 0.60

:::
0.73 0.60

:::
0.73

::::
(lidar

::::::::::::
measurement

::::::
heights

::
of

:::
10,

::::
20,

:::
and

:::
30

::
m

:::::
AGL)

::::
and

:::
the

::::
rotor

:::::
layer

:::::
(lidar

:::::::::::
measurement

:::::::
heights

::
of

:::
30,

:::
38,

:::
50,

::::
60,

:::
70,

:::
80,

::
90,

::::
and

:::
120 m s−1. Note that the vertical velocity error is not normalized because w has both positive and negative values.

However, more detailed differences between the two model configurationscan be seen in composite average
::::::
AGL).

:::
The

:::::
rotor

::::
layer

::
is

:::::
based

:::
on

:::
the

::::
most

::::::::
prevalent

:::::::
generic

::::::
turbine

:::::
model

::
in
::::

the
::::::::::
simulations,

::::
with

:::::::::
hub-height

:::::::
H = 80

::
m

::::
and

::::
rotor

::::::::
diameter305

:::::::
D = 103

::
m

::::::::::
(NREL-1.7;

:::
see

:::::
Table

:::
1).

:::::::
Overall,

::::
error

:::::::
metrics

:::
are

:::::
nearly

:::::
equal

:::
for

:::
the

:::::::
MYNN

:::
and

:::
3D

::::
PBL

:::::::::::::
configurations,

::::
with

:
a
:::::
slight

::::::::::
overestimate

:::
of

:::
the

::::
wind

:::::
speed

::
in

:::
the

:::::
rotor

::::
layer

:::
and

::
a
:::::
larger

::::::::::::
underestimate

::::
near

:::
the

::::::
surface.

:

:::::
Model

:::::::::::
performance

::
is

::::::::
examined

::
in

:::::
more

:::::
detail

::::
using

::::::::::::::::
composite-average wind speed profiles,

:
presented in Figure 4.

During the onset of the speedup events, the 3D PBL configuration predicts faster wind speeds than the MYNN configu-

ration throughout the lidar range, showing reduced
:::::::
negative bias compared to the observations, especially below hub height310

(assumed to be 80 m; Figure 4, 1200–1500 PST).
::::
This

::::
may

::
be

::::
due

::
to

:::::::
slightly

::::::::
improved

::::::::::
predictions

::
of

:::::::
vertical

::::::
mixing

:::
of

:::::
higher

::::::::::
momentum

::::
from

:::::
aloft;

:::::
during

::::
this

::::
time,

:::::
prior

::
to

::
jet

:::::::::::
development,

:::
the

::::::
winds

:::::
follow

::
a

:::::::
standard

:::::::::::::::
quasi-logarithmic

::::::
profile.

:::
The

:::
3D

::::
PBL

:::::::
scheme

:::
has

::::
been

::::::
shown

:::::::::
previously,

::
in

::::::::
idealized

:::::
tests,

::
to

:::::::
improve

:::::
model

:::::::::::
performance

::::::
during

:::::::
daytime

:::::::::
convective

::::::::
conditions

:::::::::::::::::
(Juliano et al., 2022)

:
.

During the peak of the speedup flow, however, the 3D PBL configuration begins to overestimate wind speeds below hub315

height, showing a slightly more pronounced jet near the surface relative to the MYNN configuration (Figure 4, 1800–2100

PST). This pronounced jet persists into the night for both model configurations, until roughly 0000 PST. Then, as the flow

decelerates in the early morning, both model configurations tend to overestimate wind speeds throughout the rotor layer (Fig-

ure 4, 0300–0600 PST). Finally, when the flow reaches a minimum around 0900 PST, both models underestimate wind speeds

throughout the rotor layer, with a slightly larger underestimate in the 3D PBL configuration.320
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Figure 4. Diurnal composite average
::::::::::::::
composite-average wind speed profiles, shown for WOP lidar observations and both model configura-

tions.
:::::::
Potential

::::
mean

::::
error

::::::
bounds

::
of

:::::
±10%

:::
are

::::
also

:::::
shown

::
for

:::
the

::::
lidar

:::::::::
observations

::::::::
following

:::::::::::::::
Bingöl et al. (2009).

:
Profiles are averaged

over the hour indicated at the top of each panel, and model data have been interpolated to the vertical levels of the lidar, as in Figure 3. The

shaded regions show ±1 standard deviation , as well as potential ± 10% error in
:::
over

:
the observations following Bingöl et al. (2009)

::::
given

:::
hour

::
of

:::
the

:::::
diurnal

::::::::
composite. Dotted lines indicate the rotor-swept area of the most prevalent generic turbine model in the simulations, with

hub-height H = 80 m and rotor diameter D = 103 m (NREL-1.7; see Table 1).

::
To

::::::
expand

:::::
upon

:::
the

:::::::::::::::
composite-average

:::::
wind

:::::
speed

:::::::
analysis

::
in

::::::
Figure

::
4,

::::::
results

::::
from

:
a
:::::::
sample

:::
day

::::::
during

:::
the

:::::
study

::::::
period,

::
21

::::
July

:::::
2019,

:::
are

::::::::
presented

:::
in

::::::::
Appendix

:::
A.

::::
This

:::
day

::::
was

::::::
chosen

::
to
::::::::

highlight
::::::::::
differences

:::::::
between

:::
the

:::
3D

::::
PBL

::::
and

:::::::
MYNN
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:::::::::::
configurations

:::::
while

::::
also

:::::::
showing

::::::::::
consistency

::::
with

:::
the

::::::::::::::::
composite-average

::::::
results.

::::
The

::::
same

:::
day

::::
was

:::::::::
highlighted

::
in

:::
the

:::::::
original

::::::::
HilFlowS

:::::
study

:::::::::::::::::::::::::::::::::::
(Wharton et al., 2015, see Figure 5 therein).

::::
The

:::::
reader

::
is

:::::::
referred

::
to

::::::::
Appendix

::
A
:::
for

:::::::::
additional

:::::::::
discussion.

As mentioned previously, the resolution
:
1
:::
km

::::::::
horizontal

::::
grid

::::::
spacing

:
of the present simulations limits the ability of the model325

to capture the observed jet-like flow near the surface. Both
::
In

::::::::
particular,

:::
the

:::::
hilly

:::::::::
topography

::
of

:::
the

:::::::::
HilFlowS

::::
site,

::::::::
including

::
the

:::::::::
individual

::::::::
ridgelines

:::
on

:::::
which

:::
the

:::::
lidars

:::::
were

::::::::
deployed,

::
is

:::
not

::::
fully

::::::::
captured

:::
(see

::::::
Figure

:::
1).

::::::::
Although

::::
both

:
model config-

urations produce a pronounced jet below hub-height and reduced wind speeds above (Figure 4, 2100–0600 PST). However,

this jet development
:::::::
generally

:
leads to wind speed overestimates

::
in

:::
the

::::
rotor

:::::
layer

:::
and

:::::::::::::
underestimates near the surfacein the

present case study. Further development and testing of the 3D PBL scheme could lead to more accurate predictions, especially330

if near-surface vertical resolution is increased. Notably, the 3D PBL scheme allows more run-time flexibility in turbulence

treatment (via, e.g., the closure constants) relative to MYNN and other 1D PBL schemes, which could facilitate performance

improvements.

To further contextualize model wind speed biases, it is important to recall
:::
(see

:::::::
Section

:::
2.1)

:
that conically scanning lidars

such as the ZephIR300 deployed during HilFlowS are known to experience errors in complex terrain(Bingöl et al., 2009).335

These errors result from violating the assumption of homogeneity that the lidars use to deduce the horizontal and vertical wind

speeds. In particular, Bingöl et al. (2009) found horizontal wind speed errors as large as 10%in complex terrain, as compared

to a few percent or less over flat, homogeneous terrain. Their result implies
:
,
:::::
while

::::::::::::::::::
Wharton et al. (2015)

:::::
found

::::::::::
comparable

::
or

::::::
smaller

::::::
values

:::
for

:
a
::::::
similar

::::
site

::
in

:::
the

::::::::
APWRA.

:::
As

::
a

::::::::::
conservative

::::::::
estimate,

:::
the

:::::::
findings

::
of

:::::::::::::::::
Bingöl et al. (2009)

:::::
imply

:::::
mean

horizontal wind speed errors as large as roughly 1.5 m s−1 in the HilFlowS lidar observations , especially near the surface
:::
(see340

::::
gray

::::::::
bounding

::::
lines

::
in

::::::
Figure

::
4). In general, the expected maximum

::::
lidar

:
error is smaller than the standard deviation of the

diurnal composite (see gray shading in Figure 4). Bingöl et al. (2009) did not quantify errors in vertical velocities, but these

are also expected to be present in complex terrain due to the ZephIR300 lidar’s lack of a vertically pointing beam
:::::
model

:::::
bias,

::::::::
especially

::::
near

:::
the

:::::::
surface.

:::::
Thus,

:::
the

::::::::
potential

::::
lidar

:::::
error

::
is

:::
not

::::::::
expected

::
to

:::::
affect

:::
the

:::::::
present

::::::::::
conclusions

::::::
related

::
to

::::::
model

::::::::
evaluation.345

To complement wind profile comparisons at the lidar sites, temperature profiles at the meteorological tower site are shown

in Figure 5. Note that the meteorological tower is on a similar hill to that found at WOP and EOP, and is separated by a line-of-

sight distance of 950 m from EOP. The 3D PBL configuration shows
::::::
slightly better agreement with the observed temperature

profile for most hours of the day, especially during daytime conditions when the vertical temperature gradient is negative

(0900–1500 PST). This time corresponds to reduced wind speed bias at both lidar sites. Improvements
:::::
Small

::::::::::::
improvements350

in the temperature prediction are also seen during the evening transition, as the vertical temperature gradient becomes positive

(1800–2100 PST). At these times
::
this

:::::
time, the 3D PBL scheme produces a more pronounced near-surface jet, but shows larger

wind speed bias relative to MYNN, as discussed above.

3.1.2 Turbulence kinetic energy

Both the 3D PBL and MYNN schemes parameterize SGS turbulence shear stresses and turbulent fluxes using a prognostic355

equation for the SGS TKE. Thus, TKE predictions can provide insights into model performance. TKE estimates are also
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Figure 5. Diurnal composite average
::::::::::::::
composite-average

:
temperature profiles (T0 = 300 K), shown for the HilFlowS 52-m meteorological

tower and both model configurations. Profiles are averaged over the hour indicated at the top of each panel, and model data have been

interpolated to the vertical levels of the tower observations. The shaded regions show ±1 standard deviation
:::
over

:::
the

:::::
given

::::
hour

::
of

:::
the

:::::
diurnal

::::::::
composite. Note that the vertical axis range is limited to the tower height.

available from the HilFlowS lidars, and are calculated as

TKE =
1

2

(
〈u′2〉+ 〈v′2〉+ 〈w′2〉

)
, (6)

where u, v, and w denote velocities in the zonal, meridional, and vertical directions, respectively, and brackets denote 10-min

averages. Perturbation quantities, denoted by the prime symbol, are calculated as the difference between the high-frequency360
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(15-s) time series and a detrended time series based on 2-min averages. There are inherent differences in the modeled vs.

observed TKE calculations, which should be considered when making direct comparisons

::::
Note

::::
that

::::
both

:::
the

::::::::
observed

::::
and

::::::::
modeled

::::
TKE

::::::
values

:::::
have

:::::::
inherent

:::::::::
limitations. The lidar TKE estimates are spatially

averaged over the lidar’s conical scanning volume and are time-averaged in 10-min windows.
::::::::::
Furthermore,

:::
the

:::::::::
estimated

::::
TKE

::
is

::::::
limited

:::
by

:::
the

::::
15-s

:::::::
sampling

:::::::::
frequency

::::::::::::::::::::::::::::::::::::::
(see additional discussion in Sathe et al., 2011)

:
. Lidar TKE estimates are also365

influenced by errors in complex terrain, as discussed above for wind speeds. The modeled TKE is fully parameterized (i.e.,

it is assumed that there is no resolved TKE) in each model grid cell and is output as an instantaneous value every 10 min.

:::::::::
Ultimately,

:::::
these

:::::::::
limitations

:::::::
preclude

:::::
direct

::::::::::
comparison

::
of

::::::::
observed

:::
and

:::::::
modeled

:::::
TKE

:::::
values

::::
(i.e.,

::::
bias

:::::::::::
calculations).

::
In

:::::
what

::::::
follows,

::::
the

:::::::::
time-height

::::::::
structure

::
of

:::
the

:::::
TKE

::
is

::::::::
compared

:::::::::::
qualitatively

:::::::
between

:::
the

:::::::::::
observations

:::
and

:::
the

::::::
model,

::::::
while

::::
only

::
the

::::::::
modeled

::::
TKE

::::::
values

:::
are

::::::::
compared

::::::::::::
quantitatively.370

Keeping these limitations in mind, comparison of modeled TKE with lidar estimates shows differences between the two PBL

configurations.Based on fractional bias and normalized mean absolute error metrics (see Table 2), the 3D PBL configuration

tends to predict lower TKE values, relative to observations , over the full study period. TKE profiles,
::::::::
Observed

:::
and

::::::::
modeled

::::
TKE

:::::::
profiles

:::
are shown in Figure 6 for the WOP site, highlight additional variability in model performance. In the midday,

observed TKE is elevated throughout the lidar’s vertical range due to surface heating and associated atmospheric instability.375

The speedup flows are also accelerating during this time, leading to peak TKE values below 50 m AGL due to shear associated

with the jet-like velocity profile (Figure 6a, 1200–1800 PST). Both model configurations capture elevated TKE during this

time (Figure 6b,d
:
c). However, while the MYNN configuration generally overestimates the TKE throughout the lidar range

(Figure 6c), the
::::::
predicts

:::::
larger

:::::
TKE

:::::
values

:::::::
relative

::
to

:::
the 3D PBL configurationpredicts lower TKE values that generally lead

to underestimates (Figure 6e).
::::
This

::
is
::::::

likely
::::::
because

::::
the

:::
3D

::::
PBL

::::::
scheme

:::::
with

:::
the

::::
PBL

::::::::::::
approximation

:::::::::
introduces

:::::::::
additional380

::::::::
horizontal

:::::::
mixing,

::::::
relative

:::
to

:::::::
MYNN,

::::::
without

::::::
added

::::
TKE

::::::::::
production

:::
due

::
to

:::::::::
horizontal

:::::
shear. Reduced TKE

:
in
:::
the

:::
3D

:::::
PBL

:::::::::::
configuration is associated with improved velocity profile predictions at this time

:
in

:::
the

:::::::
midday

:
(see Figure 4, 1200–1500

PST), although the near-surface jet-like flow is not captured
::::::::
accurately

:
by the model. During and after the peak of the speedup

flow (1800–0900 PST),
::
the

:::::::::::
observations

::::
and both model configurations underestimate the TKE throughout the lidar range,

especially below 50 m AGL
:::::
show

::::::::
increased

::::
TKE

::::
near

:::
the

:::::::
surface,

::::
with

:::::::
reduced

:::::
values

::::
aloft.385

Arthur et al. (2022), in
::
In their cold-air pool case study,

::::::::::::::::
Arthur et al. (2022) also found that the 3D PBL scheme

::::
with

:::
the

::::
PBL

::::::::::::
approximation predicts lower TKE values as compared to MYNN. As in the present study, this generally led to a reduction

in TKE overestimates, but an increase in TKE underestimates. Moreover, ,
:::
and

::::
that times of reduced TKE overestimates

:::::
values

::
in

:::
the

:::
3D

::::
PBL

:::::::::::
configuration

:
were associated with improved velocity profile predictions. It is important to note that modeled

TKE predictions depend on parameters such as the turbulence length scale and closure constants, which differ in the between390

the MYNN and 3D PBL schemes as configured here (and in Rybchuk et al., 2022; Arthur et al., 2022; Wiersema et al., 2023).

These parameters were not varied in the present study, although the reader is referred to Arthur et al. (2022) for a discussion of

model sensitivity.

3.2 Horizontal variability

17



Figure 6. Diurnal composite average
::::::::::::::
composite-average TKE observations at the WOP lidar (a) compared to model results (b–e). Modeled

TKE and bias are
:::
site,

:
shown for the MYNN PBL

:::::::::
observations

:
(b,ca)and ,

:::
the

:
3D PBL

:::::
model

::::::::::
configuration (d,e

:
b)configurations. Positive

bias (red) indicates an overestimate by
:
,
:::
and the

:::::
MYNN

:
model , while negative bias

:::::::::
configuration

:
(blue

:
c)indicates an underestimate. Dotted

lines in (a) indicate the rotor-swept area of the most prevalent generic turbine model in the simulations, with hub-height H = 80 m and rotor

diameter D = 103 m (NREL-1.7; see Table 1).

To extend the analysis beyond the HilFlowS lidar locations, MesoWest stations are used to examine horizontal variability in395

model performance around the APWRA turbines. MesoWest wind data are generally available at 10 m AGL (Mesonet, 2023).

Here, wind speed data are used at select stations shown in Figures 1 and 7. For clarity in the analysis, only stations along

the primary wind direction (230-250◦; see Figure 3c) are considered. Furthermore, overlapping stations and those reporting

predominantly 0 m s−1 velocity readings are excluded.

The fractional bias, defined in equation 3, is used to evaluate the spatial variability of model wind speed errors. FBV is400

similar to the NMAEV metric defined in equation 4, but it includes the sign of the error. While this value tends to be small

over the full profile due to averaging over both positive and negative bias values at different measurement heights (see Table 2

and Figure 4), at a single height it more reliably quantifies model over- vs. underestimates.

Spatial evaluation of model performance shows that the 3D PBL scheme tends to reduce model overestimates of the 10 m

wind speed relative to MYNN. As summarized in the inset of Figure 7, the 3D PBL configuration has a lower 10-m FBV value405
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Figure 7. Fractional wind speed bias FBV at 10 m AGL for MYNN (purple) and 3D PBL (green) configurations at meteorological obser-

vation stations in the APWRA. Station markers are colored by the sign of the bias in the MYNN configuration, blue for negative and red

for positive. Gray contour lines are shown at 100 m intervals between 100 and 1000 m AGL, and gray dots represent cell centers on the

∆x= 1 km model grid. The portion of the domain shown here is highlighted by the dotted-line box in Figure 1b. Inset is a summary of 10-m

FBV at all stations, sorted in descending order based on the value for the MYNN configuration.

at all but 1 of the 20 stations with positive bias. At the 8 locations with negative bias, the value for the 3D PBL configuration

tends to be more negative, as is true at both lidar sites and the meteorological tower. This suggests that model underestimates

are related to near surface jet-like flows (as shown in Figure 4). However, additional vertical profile data would be necessary

for confirmation.
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4 Wind energy predictions410

4.1 Hub-height and rotor-equivalent wind speeds

To better establish the utility of the 3D PBL scheme for wind energy applications, model evaluation is extended to wind energy-

specific quantities, including hub-height and rotor-equivalent wind speeds. The rotor-equivalent wind speed VEQ is often used

in wind energy resource and turbine performance assessment (Wagner et al., 2014), and is recommended by the International

Electrotechnical Commission (IEC) for determining power curves and annual energy production (see Van Sark et al., 2019).415

VEQ more accurately captures the kinetic energy flux through the rotor-swept area, as compared to a single hub-height wind

speed measurement VHH . However, substantial differences between VEQ and VHH are generally only seen at times of high

shear (e.g., Van Sark et al., 2019; Redfern et al., 2019).

Following Wagner et al. (2014), the rotor-equivalent wind speed is defined as

VEQ =

(
Nh∑
i=1

V 3
i

Ai
A

)1/3

(7)420

where Nh is the number of observation heights, A is the total rotor-swept area, and

Ai =

zi+1∫
zi

2
√
R2− (z−H)2dz (8)

is the area of the rotor disk segment corresponding to the ith observation height, with rotor radius R and hub height H . The

integral in equation 8 is evaluated analytically with zi and zi+1 representing the lower and upper bounds of the ith rotor disk

segment, which are by definition located halfway between available observation points. Here, VEQ is calculated using both425

HilFlowS lidar data and model predictions. The modeled wind speed profiles are interpolated to the lidar observation locations

as in the bias calculations in Section 3.

As in Figures 3 and 4, a diurnal composite average captures the trend of the hub-height and rotor-equivalent wind speeds

during the study period (see Figure 8 for WOP and Figure 9 for EOP). The observed hub-height wind speed gradually increases

over the course of the day, reaching a peak around 1800 PST. It then decreases gradually, reaching a minimum around 0900430

PST. The observed rotor-equivalent wind speed follows a similar trend. Note that here, VEQ is calculated with a hub height

H = 80 m and a rotor diameter D = 103 m, which corresponds to the most prevalent generic turbine model in the simulations

(NREL-1.7; see Table 1) and is also representative of most APWRA turbines (see discussion in Section 2.2.2 and Table 1).

The modeled hub-height and rotor-equivalent winds speed
::::
wind

::::::
speeds

:
are generally underestimated at both sites , as

compared to the observations, during the ramp-up portion of the speedup event (0900–1500 UTC). The 3D PBL configu-435

ration shows improved predictions during this time, reducing the negative bias by as much as 50%. Then, during the peak and

decreasing portion of the speedup event, the modeled hub-height and rotor-equivalent wind speeds are generally overestimated

(1500–0900 UTC). ,
:::

by
::
as

:::::
much

::
as

::
a
:::::
factor

::
of

:::::::
roughly

::
2.

:
While the 3D PBL configuration shows larger overpredictions than

the MYNN configuration at the peak of the speedup event, its performance is similar to or slightly better than MYNN for
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Figure 8. Diurnal composite average
::::::::::::::
composite-average hub-height wind speed VHH and rotor-equivalent wind speed VEQ. (a) Results for

WOP lidar observations
:
,
:::::::
including

:::::::
potential

::::
mean

::::
error

::::::
bounds

::
of

:::::
±10%

:::::::
following

:::::::::::::::
Bingöl et al. (2009),

:
and both model configurations; (b)

model bias, including a summary of time-averaged
::::::
absolute

::::
error values

::
in

::
m

:::
s−1. In (a), the shaded regions show ±1 standard deviation

:::
over

:::
the

:::::
diurnal

::::::::
composite for VHH , as well as potential± 10% error in the observed VHH following Bingöl et al. (2009). VEQ is calculated

with hub height H = 80 m and rotor diameter D = 103 m, corresponding to the most prevalent generic turbine model in the simulations

(NREL-1.7; see Table 1).

the rest of the night.
:::::::::
Hub-height

::::
and

:::::::::::::
rotor-equivalent

:::::
wind

::::::
speeds

:::
for

:::
the

::::::
sample

::::
day

:::::
shown

:::
in

::::::::
Appendix

::
A

::::::::
reinforce

:::::
these440

:::::::::::::::
composite-average

::::::
trends.

The difference between the observed hub-height and rotor-equivalent wind speeds is larger at EOP than at WOP, highlighting

differences in vertical shear between the sites despite similar wind climatology overall. As shown in Wharton and Foster (2022),

the EOP site has lower wind speeds in the bottom half of the rotor layer for an 80-m turbine, causing VEQ to be lower than VHH

(see Figure 7b therein). This variability is not captured in the model, which predicts similar hub-height and rotor-equivalent445

wind speed values at both sites. Thus, at the EOP site, model bias values are larger for VEQ, by as much as 2 m s−1 compared
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Figure 9. As in Figure 8, but for the EOP site.

to VHH . At the WOP site, bias values for both quantities are similar. This analysis demonstrates the potential effect of using

VEQ when evaluating model performance for wind energy applications in regions with highly sheared wind speed profiles.

4.2 Monthly capacity factors

Although the flows at the HilFlowS lidar locations are expected to be representative of those experienced by the APWRA450

turbines, more localized effects may contribute to turbine performance (see, e.g., Wharton et al., 2015; Bulaevskaya et al.,

2015). For this reason, the Fitch et al. (2012) WFP is used in both model runs to represent the interaction between the APWRA

turbines and the diurnal speedup events. Because Rybchuk et al. (2022) considered only an ocean environment with no terrain

in their testing of the 3D PBL-WFP implementation, the present case study presents an opportunity to further evaluate the

implementation in a realistic complex-terrain scenario.455

Diurnal composite average
:::::::::::::::
composite-average capacity factors for the WFP-modeled APWRA turbines are shown by month

in Figure 10 to illustrate changes in production over the roughly 3-month-long study period. The overall trend is similar to that
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Figure 10. Diurnal composite average
::::::::::::::
composite-average capacity factor, by month during the study period, for modeled APWRA turbines.

shown in Figure 2, with the highest capacity factors in July, a slight decrease in August, and a more substantial decrease in

September. However, the same diurnal trend remains, indicating the prominence of the speedup flows throughout the mid-to-

late summer.460

The capacity factors in Figure 10 follow the trend of the hub-height and rotor-equivalent wind speeds at both lidar sites

(shown in Figure 8 and Figure 9). Notably, however, there is a roughly 3-hour delay in the timing of the peak and minimum

capacity factors relative to the modeled wind speeds at the HilFlowS lidar sites. This suggests differences in the timing of the

speedup flows between the HilFlowS site and the APWRA, despite their relative proximity, and highlights the influence of

terrain on power production.465

Despite this time lag, larger differences in bias magnitude between the two model configurations tend to correspond to times

of larger differences in the modeled APWRA capacity factor. Figure ?? shows a scatter plot of the difference in the magnitude

of the hub-height wind speed bias ∆|BVHH
| at WOP vs. the difference in modeled capacity factor ∆CF between the MYNN

and 3D PBL configurations. Differences are calculated as MYNN PBL minus 3D PBL using a diurnal composite average and

colored by the time of day. A scatter plot of the difference in the magnitude of the hub-height wind speed bias ∆|BVHH
| at470

WOP vs. the difference in modeled capacity factor ∆CF , between the MYNN and 3D PBL configurations. Differences are

calculated as MYNN PBL minus 3D PBL using a diurnal composite average, and colored by the time of day. Quadrants are

labeled by the phase of the diurnal speedup event and correspond to the following differences (as noted in the axis labels):

relative to the MYNN configuration, the 3D PBL configuration has (I) lower bias, lower CF ; (II) higher bias, lower CF ; (III)
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Figure 11. Comparison of modeled vs. EIA-reported (EIA, 2023a, b) monthly capacity factors in the APWRA during the study period.

higher bias, higher CF ; (IV) lower bias, lower CF . Thus, for example, quadrant I indicates times when lower bias for the 3D475

PBL configuration corresponds to lower capacity factors in the 3D PBL configuration.

As seen in Figure 10, the 3D PBL configuration generally predicts higher capacity factors than the MYNN configuration

during the accelerating phase of the speedup event (1200–1800 PST), while the opposite is true during the peak and decelerating

phase (1800–1200 PST). These differences in capacity factor roughly correlate with times at which the 3D PBL configuration

displays lower bias values at the WOP lidar site (see quadrants IV and I, respectively, in Figure ??). Note that during the late480

acceleration phase just before the peak of the speedup event (1500–1800 PST), when the MYNN configuration displays lower

bias, capacity factors in the 3D PBL configuration tend to be slightly higher (see quadrant III in Figure ??). Additionally, during

the late deceleration phase (0900–1200 PST), when the MYNN configuration again displays lower bias, capacity factors in the

3D PBL configuration tend to be lower (see quadrant II in Figure ??).

To further evaluate the performance of the 3D PBL-WFP configuration during the HilFlowS study period, modeled monthly485

capacity factors are compared to those calculated with publicly available data (Figure 11). The EIA collects monthly plant-
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Figure 12. Spatial variability of modeled monthly capacity factors in the APWRA during the study period, using data from the 3D PBL

configuration. Circles are shown for each model grid cell that contains turbines; the color scale represents the capacity factor and the size

of the circle represents the total capacity in the given cell. Gray contour lines show the terrain at 100 m intervals between 100 and 1000 m

AGL, and gray dots show cell centers on the ∆x= 1 km model grid.

level generation data within the United States (EIA, 2023a, b, as shown in Figure 2). These data are depicted in Figure 11

(black bars) as an average over the five wind plants shown in Table 1, weighted by rated plant capacity. Because plant-level

information is not available in WRF output, modeled monthly capacity factors in Figure 11 (colored bars) are shown as an

average over the APWRA as a whole.490

Overall, the modeled monthly capacity factors follow the decreasing trend evident in the EIA data. However, the model

generally overestimates the reported values by roughly 7–11%. Several factors likely contribute to this overestimate. Most

notably for this study, overestimated wind speeds in the model, especially during the night (see Figures
:
3,
:
4, 8, and 9), likely

lead to overestimated power production. Additionally, the model does not account for turbine downtime, for example, due to

curtailment or maintenance, which reduces the reported monthly production; this likely also contributes to model overestimates.495

Keeping these caveats in mind, the 3D PBL configuration predicts slightly lower monthly capacity factors relative to the

MYNN configuration (roughly 1% or less, see Figure 11). However, differences are more pronounced in the monthly diurnal

composite average
:::::::::::::::
composite-average comparisons, especially at night (see Figure 10, 1800–0600 PST), when the capacity

factors in the 3D PBL configuration are up to roughly 6% smaller than those in the MYNN configuration. These results, along

with those in Figures 4, 8, 9, and ??,
:::
and

::
9, suggest that the 3D PBL scheme’s wind power predictions may be slightly closer500

to reality. However, comparisons to higher-frequency (e.g., hourly) turbine- or plant-level data are necessary for a more robust

evaluation.

Although turbine- and plant-level data are not output by the WFP, grid cell-level data reveal some spatial variability in

modeled monthly capacity factor. Figure 12 shows the capacity factor and total capacity in each model grid cell that contains

turbines. Results are based on the 3D PBL configuration, although those for the MYNN configuration are qualitatively similar.505

The capacity factor tends to be higher in the central to southeastern portion of the APWRA, where the southwesterly speedup

flows are less obstructed by upstream terrain. This trend is consistent across the three months of the study period, although
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the overall capacity factors decrease noticeably in September. It should be noted that the Summit Wind plant, which became

operational in 2021 after the study period, is located in the central APRWA to the southwest of the turbines considered here

(see Hoen et al., 2018). This location is generally upstream of other plants during the summertime and likely takes advantage510

of the spatial trend in capacity factor seen in Figure 12. However, spatial variability in the APWRA capacity factor is expected

to change seasonally due to shifts in the synoptic forcing and the predominant wind direction.

5 Conclusions

This study examined mesoscale model predictions of boundary layer winds and turbulence in the Altamont Pass Wind Re-

source Area of California, where the diurnal regional seabreeze and associated terrain-driven speedup flows drive wind energy515

production during the summer months. The recurring nature of these terrain-driven wind accelerations, as well as their im-

portance to the wind energy industry, makes the APWRA a useful testbed for numerical weather prediction. In particular, this

study focused on the treatment of turbulence in mesoscale models, which require a PBL scheme to parameterize subgrid-scale

turbulent mixing. The WRF-based 3D PBL scheme of Juliano et al. (2022)with the PBL approximation, which treats both

vertical and horizontal turbulent mixing ,
:::::
(here,

:::::
using

:::
the

::::
PBL

:::::::::::::
approximation),

:
was evaluated in comparison to a traditional520

1D PBL scheme, MYNN, which treats only vertical turbulent mixing.

Both PBL treatments were tested during the nearly 3-month-long HilFlowS experiment (Wharton and Foster, 2022), which

took place near the APWRA in the summer of 2019. As noted by Banta et al. (2020) in their study of recurring marine-air

intrusions, capturing repeated flow dynamics, and thus repeated model errors, allows for robust model evaluation. Here, as

in Banta et al. (2020), composite averaging was used to analyze model errors over the course of the study period. Model525

predictions were evaluated against data from two profiling lidars and a meteorological tower deployed during HilFlowS, as

well as surface meteorological stations within the MesoWest network. Thus, both vertical and horizontal variability in model

errors
::::::::::
performance

:
was examined.

In terms of overall model skill, the 3D PBL and MYNN configurations performed similarly over the duration of the study

period, with both capturing the general timing and direction of the speedup flows but overestimating their magnitude within530

a typical wind turbine rotor layer. Additionally, neither model configuration captured the persistent jet-like flow observed by

the lidars, and thus both models underestimated near-surface wind speedsand turbulence. Despite these overall similarities ,

several notable .
:::::::
Similar

::::::::::
performance

:::::::
between

:::
the

::::
two

::::::::::::
configurations

:::::::
suggests

::::
that

::::
both

:::
are

::::::
limited

:::
by

:::
the

::::::
chosen

:::::::::
mesoscale

::::::::
resolution,

::::::
which

::::
does

:::
not

:::::
fully

::::::::
represent

:::
the

::::::
effects

::
of

:::::::
complex

::::::
terrain

:::
on

::::
local

:::::
wind

:::::::
profiles.

::
It

:::::::
follows

:::
that

::
in

:::
the

:::::::
present

:::
case

::::::
study,

:::::
strong

:::::::
synoptic

:::::::::
conditions

::::
may

:::::
drive

:::::
model

:::::::::::
performance

::::
more

::::
than

:::
the

:::::
PBL

:::::::
scheme.535

::::::
Despite

::::::
overall

::::::::::
similarities

::
in

::::::::::::
performance,

::::::
several

::::::
minor differences were found between PBL treatments. In terms of

vertical variability, the 3D PBL scheme demonstrated
::::::
slightly improved predictions of wind speed profiles during the afternoon

acceleration phase of the diurnal speedup flows, and this was associated with a reduction in TKE overestimates, as compared

::::::
reduced

:::::
TKE

::::::
relative

:
to MYNN. Additionally, the 3D PBL scheme showed evidence of a more pronounced near-surface jet

and reduced wind speeds aloft, as seen in the observations.
::::::::
Although

::::
this

:::::::
evidence

::
is

::::::
muted

::
in

:::
the

::::::
diurnal

:::::::::
composite

:::::::
average,540
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:
it
::
is

:::::
more

:::::::::
pronounced

:::
on

:
a
:::::
given

::::::
sample

::::
day

:::
(see

:::::::::
Appendix

::
A). In terms of horizontal variability, the 3D PBL scheme showed

reduced positive wind speed bias at most MesoWest surface stations within the APWRA. This suggests that it more accurately

captures horizontal variability over complex terrain.

In future studies, the use of increased horizontal resolution could help to further distinguish 3D PBL performance relative

to MYNN. As model grid spacing progresses further into the gray zone, larger horizontal gradients will be resolved, leading545

to differences in flow predictions. The 3D PBL scheme has been tested successfully in the past with horizontal grid spacing

between 250 and 750 m (Juliano et al., 2022; Arthur et al., 2022; Wiersema et al., 2023), although careful setup is still
:
.

::::
Note

:::
that

::::::
careful

::::::
model

:::::
setup,

::::::::
including

:::
use

::
of
:::
the

:::::
PBL

::::::::::::
approximation,

::
is

::::
still

:::::::
generally

:
required to ensure model stability. To

accurately capture the
::::
With

::::::
further

::::::::::
development

::
of

:::
the

:::
3D

::::
PBL

:::::::
scheme

::
to

:::::::
improve

:::::::
stability,

::::::::
additional

:::::
gains

::::::
relative

::
to

:::::::
MYNN

::
or

::::
other

:::
1D

:::::::
schemes

::::
may

:::
be

:::::
found.

::::::::::
Ultimately,

:::::::
however,

::::::::
accurate

:::::::::
simulation

::
of

:::
the observed jet-like flow at the HilFlowS site550

,
:::
will

:::::
likely

::::::
require

:
increased vertical resolution and

:::
the

:::
use

::
of an LES closure schemeare likely required.

To further evaluate the 3D PBL scheme for wind energy applications, the mesoscale wind farm parameterization of Fitch

et al. (2012) was employed. The WFP was recently coupled to the 3D PBL scheme by Rybchuk et al. (2022) and tested in an

idealized ocean environment. The present study provided an opportunity to further test the 3D PBL-WFP implementation, as

compared to the standard WRF implementation with MYNN, in a realistic complex-terrain scenario. Overall, the 3D PBL-WFP555

performs similarly to the MYNN-WFP, providing additional confidence in the implementation.

Modeled capacity factors capture the general diurnal trend of the observed speedup flows, but are roughly 7–11% larger

than EIA-reported values in the APWRA. This is likely due to overestimated wind speeds during the peak and decelerating

phase of the speedup events, as well as other factors including turbine operation and differences between the modeled and

actual turbines. The largest differences in capacity factor estimates between the MYNN and
:::::::
However,

:::::::
because

:::::
wind

::::::
power560

:
is
:::::::::::

proportional
::
to

::::
the

::::
cube

::
of

:::::
wind

::::::
speed

::::
over

:::::
much

::
of

::
a
::::::::
turbine’s

::::::::::
operational

:::::
range,

:::::
small

:::::::
relative

::::::::::::
improvements

:::
in

:::
the

:::::::
modeled

::::
wind

::::::
speed

:::::::
translate

::
to

:::::
more

::::::::
noticeable

::::::::::::
improvements

::
in

::::::::
modeled

:::::
power

::::::::::
production.

::::::::::
Consistently

::::
over

:::
the

::::::::
3-month

::::
study

:::::::
period,

:::
the 3D PBL configurations were seen at times at which the 3D PBL configuration displayed lower bias values.

This suggests that the 3D PBL-WFP configuration predicts slightly more realistic
:::::::
reduced

:::::::::::
overestimates

::
of

::::::::
monthly capacity

factors, although additional comparisons are required for confirmation
::::::
relative

::
to

:::
the

:::::::
MYNN

:::::::::::
configuration.565

In closing, this study has helped to establish the utility of the 3D PBL scheme for wind energy applications in complex

terrain. Its overall similar performance to MYNN, a much more established PBL scheme, is encouraging, as is evidence

of improved performance under certain conditions and across the spatially heterogeneous APWRA. However, the 3D PBL

scheme requires additional development and testing to confirm its robustness. As mentioned above, the 3D PBL scheme allows

more run-time flexibility in turbulence treatment relative to MYNN and other 1D PBL schemes, which could facilitate rapid570

performance improvements. Ultimately, increased understanding of model sensitivity to grid spacing and turbulence closure

parameters (e.g., length scales, closure constants, and use of the boundary layer
::::
PBL approximation) will guide the use of the

3D PBL scheme for high-resolution numerical weather prediction and wind energy applications.
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Code and data availability. All HilFlowS observational data used in this work are publicly available through the United States Department

of Energy’s Atmosphere to Electrons Data Archive and Portal (https://a2e.energy.gov/about/dap); each dataset is cited individually in the575

main text. MesoWest data are available through Mesonet (2023). The WRF code used in this work is available on GitHub at https://github.

com/twjuliano/WRF/tree/develop_3dpbl_on_top, commit f04c02387bdf9f3ab5f93a1b4b28c5f35c05a950. The WRF configuration files are

available on Zenodo (see Arthur, 2024). Modeled wind turbine specifications are based on data from NREL (2022) and wind-turbine-

models.com (2024b, a), as described in the text and summarized in Table 1.

Appendix A:
::::::
Sample

::::
day580

::
To

:::::::::::
complement

:::
the

:::::::::::::::
composite-average

:::::
wind

:::::
speed

::::::
results

:::::
shown

::
in
:::
the

:::::
main

::::
text,

:::
this

::::::::
appendix

::::::
shows

::::::
results

::::
from

:
a
:::::::

sample

:::
day

::::::
during

:::
the

:::::
study

::::::
period:

:::
21

::::
July

:::::
2019.

::::
This

::::
day

::::
was

::::::
chosen

::
to

::::::::
highlight

:::::::::
differences

::::::::
between

:::
the

:::
3D

::::
PBL

::::
and

:::::::
MYNN

:::::::::::
configurations

:::::
while

::::
also

:::::::
showing

::::::::::
consistency

::::
with

:::
the

::::::::::::::::
composite-average

::::::
results.

::::
The

::::
same

:::
day

::::
was

:::::::::
highlighted

::
in

:::
the

:::::::
original

::::::::
HilFlowS

::::
study

::::::::::::::::::::::::::::::::::::::::
(Wharton and Foster, 2022, see Figure 5 therein).

:::::
Wind

:::::
speed

::::::
profiles

::
at

:::::
WOP

:::
are

:::::
shown

::
in

::::::
Figure

:::
A1,

::::::::::::
corresponding

::
to

::::::
Figure

:
4
:::

in
:::
the

:::::
main

::::
text.

: :::::::::
Hub-height

:::
and

::::::::::::::
rotor-equivalent

:::::
wind

:::::
speed

:::::
time

:::::
series

::
at

:::::
WOP

::::
are

::::::
shown

::
in

::::::
Figure

::::
A2,585

:::::::::::
corresponding

::
to
::::::
Figure

::
8

::
in

:::
the

::::
main

::::
text.

:

::
On

::::
this

::::
day,

::::::
during

:::
the

:::::
peak

::
of

:::
the

:::::::
evening

:::::::
speedup

:::::
flow

::::::::::
(1800–0300

:::::
PST),

:::
the

::::
3D

::::
PBL

:::::::::::
configuration

:::::::
predicts

::
a
:::::
more

:::::::::
pronounced

:::::::
jet-like

::::
wind

::::::
speed

:::::
profile

:::::
(with

:::
its

::::
wind

::::::
speed

::::::::
maximum

::::::
closer

::
to

:::
the

:::::::
surface)

::::
than

:::
the

:::::::
MYNN

::::::::::::
configuration.

::::
This

::::
leads

::
to
:::::::::

improved
:::::::::
predictions

::
of

:::
the

::::::::::
hub-height

:::
and

::::::::::::::
rotor-equivalent

::::
wind

:::::::
speeds.

::::::::
However,

::::
both

::::::
model

::::::::::::
configurations

::::::::::
overestimate

:::
the

::::::::
observed

:::::::::
rotor-layer

:::::
wind

:::::
speed

:::::
during

::::
this

::::
time,

:::::
while

::::::::::::::
underestimating

:::
the

::::::::::
near-surface

:::::
wind

::::::
speed.

:::::
There590

:
is
::::
also

::::::::
evidence

::
of

:::::::
reduced

::::
error

:::
for

:::
the

:::
3D

::::
PBL

:::::::::::
configuration

::::::
during

:::
the

::::
onset

::
of
:::
the

:::::::
speedup

:::::
event

::::::::::
(0900–1500

:::::
PST).

::::::
These

:::::
results

:::
are

::::::::
generally

:::::::::
consistent

::::
with

:::
the

:::::::::
composite

:::::::
average,

:::::
while

::::
also

:::::::::::
highlighting

:::::::
potential

::::::
model

::::::::::::
improvements

:::::
when

:::
the

::
3D

:::::
PBL

:::::::::::
configuration

::
is

::::
used.
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Figure A1.
::::
Wind

::::
speed

::::::
profiles

:::
on

::
21

::::
July

::::
2019,

:::::
shown

:::
for

:::::
WOP

:::
lidar

::::::::::
observations

:::
and

::::
both

:::::
model

:::::::::::
configurations.

:::::::
Potential

:::::
mean

::::
error

:::::
bounds

::
of
::::::
±10%

:::
are

:::
also

::::::
shown

::
for

:::
the

::::
lidar

::::::::::
observations

:::::::
following

:::::::::::::::
Bingöl et al. (2009)

:
.
::::::
Profiles

:::
are

:::::::
averaged

::::
over

::
the

::::
hour

::::::::
indicated

:
at
:::

the
:::
top

::
of

::::
each

:::::
panel,

:::
and

:::::
model

::::
data

::::
have

::::
been

:::::::::
interpolated

::
to

:::
the

::::::
vertical

:::::
levels

::
of

:::
the

::::
lidar.

:::
The

::::::
shaded

::::::
regions

::::
show

:::
±1

:::::::
standard

:::::::
deviation

:::
over

:::
the

::::
given

::::
hour

::
of

:::
the

:::::
sample

:::
day.

::::::
Dotted

::::
lines

::::::
indicate

::
the

:::::::::
rotor-swept

::::
area

:
of
:::
the

::::
most

:::::::
prevalent

::::::
generic

:::::
turbine

:::::
model

::
in

:::
the

:::::::::
simulations,

:::
with

:::::::::
hub-height

::::::
H = 80

::
m

:::
and

::::
rotor

::::::
diameter

::::::::
D = 103

:
m
:::::::::
(NREL-1.7;

:::
see

:::::
Table

::
1).
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The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a

nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for605
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Figure A2.
::::::::
Hub-height

::::
wind

:::::
speed

::::
VHH:::

and
::::::::::::

rotor-equivalent
:::::

wind
::::
speed

::::
VEQ:::

on
::
21

::::
July

::::
2019.

:::
(a)

::::::
Results

::
for

:::::
WOP

::::
lidar

::::::::::
observations,

:::::::
including

:::::::
potential

::::
error

::::::
bounds

::
of
::::::
±10%

:::::::
following

:::::::::::::::
Bingöl et al. (2009)

:
,
:::
and

::::
both

:::::
model

::::::::::::
configurations;

:::
(b)

:::::
model

:::::
error,

:::::::
including

::
a

:::::::
summary

::
of

::::::
absolute

::::
error

:::::
values

:::
(in

::
m

::::
s−1)

::::::::::
time-averaged

::::
over

:::
the

:::
day.

::::
VEQ::

is
::::::::
calculated

:::
with

::::
hub

:::::
height

::::::
H = 80

::
m

:::
and

::::
rotor

:::::::
diameter

:::::::
D = 103

::
m,

:::::::::::
corresponding

::
to

::
the

::::
most

:::::::
prevalent

::::::
generic

:::::
turbine

:::::
model

::
in
:::
the

:::::::::
simulations

:::::::::
(NREL-1.7;

:::
see

::::
Table

::
1).
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