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Abstract. Individual pitch control (IPC) has been thoroughly researched for its ability to reduce wind turbine blade and tower

fatigue loads. Conventional IPC often uses the multiblade coordinate (MBC) transformation and aims for full attenuation

of the oscillating loads. However, this also leads to high control effort and increased fatigue damage on the pitch system.

Output-constrained IPC uses the minimum actuator effort to drive loads to some reference value instead of fully attenuating

them, achieving a trade-off between load reduction and actuator effort. To date, no control method exists that achieves output-5

constrained IPC using the conventional MBC approach. Furthermore, while multiple constrained IPC approaches have been

proposed and analyzed, none of them analyze the full range of operating points between ‘no IPC’ and ‘full IPC’. This paper

presents two output-constrained IPC methods that use the MBC transformation. The first method, ℓ∞-IPC, independently

drives the tilt and yaw moment to a tilt and yaw reference, while the second method, ℓ2-IPC, directly targets the magnitude

of the combined tilt and yaw load. We furthermore analyze all operating points between no IPC and full IPC. OpenFAST10

simulations of the IEA 15 MW turbine were run at a wind speed of 15 m/s. In laminar conditions, ℓ2-IPC is more efficient

because it reduces the magnitude of the load directly, while ℓ∞-IPC also uses control effort to change the phase of the blade

load in the direction of the load references. To assess the performance in realistic wind conditions, results are averaged over

multiple turbulent wind seeds. Both ℓ∞-IPC and ℓ2-IPC have a similar performance and the operating points between no IPC

and full IPC form a nonlinear trade-off. One of the operating points in this trade-off achieves a 50% load reduction, measured15

in damage equivalent load, with just 16.4% of the actuator effort, measured in actuator duty cycle, compared to conventional

IPC with the same integrator gain. This shows the potential of output-constrained IPC to facilitate a superior trade-off between

load reduction and actuator effort.

1 Introduction20

Wind energy has become a mainstream energy provider due to its severe cost reduction in recent decades. This cost reduction

was, in part, driven by engineering efforts that enabled taller towers, longer blades, and higher capacity factors of wind turbines
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(Veers et al., 2019). However, longer blades are more flexible and sample a larger area of the spatially and temporally varying

wind field, making them susceptible to fatigue loading and causing new challenges.

Individual pitch control (IPC) can alleviate some of these fatigue loads by pitching the three blades independently to reduce25

the periodic loading that arises from wind shear, tower shadow, turbulence, and rotor misalignment (Bossanyi, 2003). This

could decrease the material cost of the wind turbine and/or increase their lifespan (Pettas et al., 2018).

IPC implementations using classical control techniques often use the multiblade coordinate (MBC) transformation (Bir,

2008), also called the Park or d-q transformation originating from electrical engineering (Park, 1929), or Coleman transforma-

tion originating from helicopter rotor control (Coleman and Feingold, 1958). The MBC transformation converts signals from30

a rotating reference frame to a stationary reference frame, and vice versa. In the context of three-bladed wind turbines, it trans-

forms a set of three signals from the rotating blade frame to a set of three signals in the nonrotating frame, usually referred to

as collective, tilt, and yaw components, that represent the rotor as a whole. By converting the blade dynamics to rotor dynamics

in the nonrotating frame, they can be analyzed together in a common reference frame with the other nonrotating components,

such as the tower (Bir, 2008).35

The MBC transformation can also be used to control oscillations in blade loads. The forward transformation converts these

loads to steady tilt and yaw moments in the nonrotating frame. These tilt and yaw moments are then driven to zero by two

independent SISO controllers, typically integral (I) or proportional-integral (PI) controllers, that produce a tilt and yaw pitch

signal. These outputs are subsequently transformed back to the rotating frame using the inverse MBC transformation, resulting

in a sinusoidal pitch signal that has a 120◦ offset between each blade (Bossanyi, 2003, 2005; van Solingen and van Wingerden,40

2015). The dominant load on the blades is 1P (once-per-revolution), mainly due to wind shear. This 1P oscillation can be

reduced by a 1P IPC controller. However, the 2P harmonic can also be reduced by using a 2P MBC transformation. While the

2P harmonic typically contributes less to the fatigue damage of the blade, since their magnitude is smaller, they contribute to

fatigue damage on the tower since the 2P blade load maps to a 3P oscillation on the tower (van Solingen and van Wingerden,

2015; Bossanyi et al., 2013).45

Due to the rotation of the blades and system dynamics arising from, e.g., actuator and blade dynamics, the tilt and yaw axes

are coupled (Mulders et al., 2019). For flexible wind turbines, these dynamics are slower and thus lead to a strong coupling

between the tilt and yaw axes. This coupling necessitates a multivariable controller design (Bossanyi, 2003; Lu et al., 2015)

or decoupling of the tilt and yaw axes, enabling SISO controller design. This can be achieved by using an azimuth offset in

the inverse MBC transformation, as was already noted by Bossanyi (2003) and formally analyzed by Mulders et al. (2019);50

Mulders and van Wingerden (2019), who also provide a method to find the optimal azimuth offset.

Several field tests have been carried out, demonstrating the load reduction capability of IPC (Bossanyi et al., 2013; Shan

et al., 2013; Van Solingen et al., 2016; Ossmann et al., 2021). However, since conventional IPC always aims for complete load

alleviation, it leads to excessive pitch actuation. This has hindered industry adoption (Novaes Menezes et al., 2018). A control

method that balances load reduction and pitch actuation would make IPC more practically feasible.55
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Three methods to constrain IPC controllers can be distinguished that enable the trade-off between load reductions and pitch

activity: input-constrained IPC, where the actuator angle, rate, and/or acceleration is limited; output-constrained IPC, where

the amplitude of the oscillating loads is regulated; and fatigue-constrained, which aims to directly constrain the fatigue damage.

Input-constrained IPC can be implemented when using the MBC transformation by realizing that the resulting blade pitch

signal is sinusoidal, of which the maximum, maximum rate, and maximum acceleration can be derived using the amplitude of60

the pitch signal in the nonrotating domain and rotor speed. Bossanyi (2005) introduces a limit schedule that limits the output of

the PI controller in the nonrotating frame, thus limiting the pitch angle for each blade. Kanev and van Engelen (2009) extend

this and use an anti-windup strategy to limit the pitch angle, rate, and acceleration. The previous studies assume a constant

rotor speed while Ungurán et al. (2019) also derive angle and rate limits for non-constant rotor speeds. They furthermore note

that adding a rate limit causes a time lag in the pitch signal, which slightly reduces the efficiency of IPC.65

Input constraints can also be implemented when using a model predictive control (MPC) method by including additional

constraints in the optimization problem that is solved during each timestep. Raach et al. (2014) include actuator constraints in

a nonlinear MPC framework. Petrović et al. (2021) propose a method to convexify these constraints to get a convex optimal

control problem when using MPC. Lastly, Liu et al. (2021) include input constraints in a constrained subspace predictive

repetitive control (cSPRC) framework, a data-driven MPC controller.70

Output-constrained IPC sets limits on the permissible loads and employs the minimal pitch signal required to maintain the

loads within these limits, thus opting for no IPC action when the loads naturally fall within these limits. Liu et al. (2022)

later used the same cSPRC framework to constrain the periodic blade loads rather than the pitch angles to form an output-

constrained IPC method. Henry et al. (2024) uses the MBC transformation and sets a positive reference on the tilt axis, thus

only constraining the positive tilt load and assuming a negligible yaw moment.75

Fatigue-constrained IPC sets direct bounds on the fatigue damage that may be accumulated. Since the fatigue calculation is

usually algebraic and highly nonlinear, Collet et al. (2020) derive a convex, data-driven objective function that can approximate

the fatigue damage on both the blades and the actuators. Their MPC controller can find a trade-off between pitch actuation and

actuator activity by weighting the fatigue damage differently for the blade and actuator fatigue damage.

Comparing these methods, we see that output-constrained IPC sets limits on permissible loads and employs the minimal80

pitch signal required to maintain these loads within the specified bounds. When the loads naturally fall within these reference

bounds, the controller refrains from IPC action. In contrast, input-constrained IPC consistently actuates the pitch but never

exceeds a maximum pitching angle, rate, or acceleration. Fatigue-constrained IPC poses challenges due to the nature of fatigue

damage calculation. The conventional approach of rainflow counting to get a damage equivalent load cannot be done in real

time, thus requiring estimation techniques.85

Consequently, output-constrained IPC emerges as a promising method to balance load reduction and pitch actuation. Fur-

thermore, the load references could be integrated into the wind turbine design process, thus enabling control co-design of the

wind turbine (Pao et al., 2024) with IPC control, realizing its potential for material reduction. However, little research has fo-

cused on this approach, and some output-constrained IPC methods rely on data-driven techniques that are not commonly used

in industry or only constrain a positive tilt moment. Additionally, while any constrained IPC control method can explore the90
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operation space between no IPC and full IPC, the complete trade-off, to the best of our knowledge, has not been investigated.

Notably, though, both Han and Leithead (2015) and Lara et al. (2024) have explored a small portion of this space by adjusting

the gains of IPC controllers, thus showing the trade-off when operating close to full IPC.

This work explores the full operating region between no and full IPC using two different output-constrained IPC controllers

using classical control elements and the MBC transformation. The first method, ℓ∞-IPC, constrains the tilt and yaw moments95

independently, while the second method, ℓ2-IPC, constrains the magnitude of the combined tilt and yaw moment. Thereby

providing the following contributions:

1. Proposing the two output-constrained control methods ℓ∞-IPC and ℓ2-IPC.

2. Deriving the original load estimator, used by both control methods.

3. Sharing the two output-constrained control methods in an open and freely-accessible online repository (Hummel, 2024).100

4. Analyzing the working mechanism of these controllers in laminar conditions.

5. Analyzing the trade-off between fatigue load and pitch actuation when operating at any operating point between no and

full IPC both in laminar and turbulent flow conditions.

In this work, we refer to the IPC methods that aim for full load alleviation as conventional, unconstrained, or full IPC. When

only the collective pitch controller is active, this is referred to as no IPC. Furthermore, this work focuses on blade loads only,105

and thus only on 1P IPC. However, by adding additional MBC loops, the proposed control methods could be easily extended

to higher harmonics.

This paper proceeds as follows: First, the MBC transformation and its use for IPC is discussed in Sect. 2. An illustrative

example of using controller tuning with conventional IPC to achieve a trade-off between load reduction and actuator effort is

given in Sect. 3. Next, the two output-constrained IPC controllers are introduced in Sect. 4. The results of the controllers are110

presented in Sect. 5. Finally, conclusions are drawn in Sect. 6.

2 Individual pitch control using the multiblade coordinate transformation

This section provides an overview of individual pitch control using the MBC transformation. Besides general theory, the

rotations that lie at the fundament of the MBC transformations are shown, and how these rotations are used to decouple the

orthogonal tilt and yaw axes using an azimuth offset is discussed.115

2.1 Motivation behind the MBC transformation

The MBC transformation transforms a set of three signals from a rotating reference frame to a nonrotating reference frame, or

vice versa. It has proven helpful in two ways in the wind turbine field: system analysis and control. First, by transforming the

dynamics from the rotating blades to a nonrotating frame, the dynamics of the rotor are unified with the dynamics of the rest of

the wind turbine, enabling physical insights of this interaction (Bir, 2008). Second, it can be used for individual pitch control.120

By transforming the oscillating blade loads to a nonrotating frame, the targetted harmonic is converted to a steady-state signal,

which greatly simplifies controller design and implementation (Bossanyi, 2003).
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Figure 1. Block diagram of conventional IPC for the nP blade harmonic, fully attenuating the tilt and yaw moments. The forward MBC

transformation Tn transforms the rotating blade loads to the nonrotating frame, where the SISO controllers Ct,n and Cy,n fully attenuate the

tilt and yaw moments. The inverse MBC transformation T−1
n converts the pitch signals back to the rotating frame and includes an azimuth

offset ψo,n to decouple the tilt and yaw axes.

The periodicity of the blade load is caused by wind shear, tower shadow, and rotor misalignment (Bossanyi, 2003). Due

to the periodic nature of the system, the blade load power spectrum mainly consists of nP harmonics, where n ∈ N, of the

rotation of the rotor (defined as 1P, or once-per-revolution). Only stochastic disturbances, such as turbulence, cause power at125

non-integer multiples of the rotation frequency. When using the MBC transformation, the nP harmonics map to the nearest

3nP harmonic in the nonrotating frame, while the 3nP harmonic itself is filtered out. So, the 1P blade load is experienced as a

0P (constant) load in the nonrotating frame, the 2P and 4P blade load as a 3P nonrotating load, and so on (van Solingen and

van Wingerden, 2015).

Since the 1P blade loads are dominant (Bossanyi, 2005), most research focuses on damping these loads. However, since the130

2P blade loads cause a 3P load in the nonrotating frame, dampening the 2P blade loads also reduces fatigue loads on the tower

(van Solingen and van Wingerden, 2015). This work focuses on the 1P blade loads. However, the proposed control methods

can be easily extended to higher harmonics by adding additional MBC loops at those harmonics (Mulders and van Wingerden,

2019).

2.2 General MBC-IPC theory135

An IPC implementation for blade harmonic n using the MBC transformation is shown in Figure 1. The plant G(s,ψ), where

ψ ∈ [0,2π) is the azimuth angle of the rotor, is a linear parameter-varying (LPV) plant due to azimuth dependent effects on the

wind turbine dynamics, such as gravity. The three blade loads M b, where b ∈ {1,2, . . . ,B} and B = 3, are transformed to a

nonrotating coordinate system using the forward MBC transformation defined as

MN,n(t) = Tn(ψ(t))MR(t), (1)140
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with

Tn =
2
B




1/2 1/2 1/2

cos(nψ1(t)) cos(nψ2(t)) cos(nψ3(t))

sin(nψ1(t)) sin(nψ2(t)) sin(nψ3(t))


 ,

where MN,n =
[
M0,n Mt,n My,n

]T

denotes the nonrotating moment vector for the nP harmonic consisting of the collec-

tive, tilt, and yaw flapping moments, ψb the azimuth position of blade b, and MR =
[
M1 M2 M3

]T

the rotating moment

vector consisting of the flapping moments of the three blades in the rotating frame.145

If the blade load MR contains three pure nP harmonic sine waves, MN,n is a steady-state signal. However, due to the

presence of other harmonics in the blade loads, MN,n also contains power at 3nP harmonics. Furthermore, for unbalanced

rotors, arising from load imbalance or pitch imbalance, the signal contains power at all nP harmonics (van Solingen and van

Wingerden, 2015). In addition, turbulence and other stochastic effects give MN,n power at any frequency. To focus the control

loop on a single harmonic, MN,n is usually low-pass filtered, together with a 3P notch filter (Bossanyi, 2005; van Solingen and150

van Wingerden, 2015), so that only the 0P contribution in the nonrotating frame, and thus the nP contribution in the rotating

frame, is attenuated.

Usually, two I or PI-controllers are implemented in a diagonal controller configuration, represented as

θN,n(s) =




0 0 0

0 Ct,n(s) 0

0 0 Cy,n(s)


MN,n(s) (2)

where θN,n =
[
θ0,n θt,n θy,n

]T

denotes the nonrotating pitch vector consisting of the collective, tilt, and yaw pitch angles155

of the nP harmonic in the nonrotating frame and denotes the pitch angles in the nonrotating frame. The IPC controller is only

active on the tilt and yaw channels, which relate to the oscillating part of the moments, so the first row and column are filled

with zeros. These controllers fully attenuate the tilt and yaw moments by producing the necessary tilt and yaw pitch angles to

drive the tilt and yaw moments to zero. In this work, we refer to this as unconstrained, conventional, or full IPC.

These tilt and yaw pitch angles are then converted back to the rotating frame using the inverse MBC transformation, defined160

as

θR(t) = T−1
n (ψ(t) +ψo,n)θN,n(t), (3)

with

T−1
n =




1 cos(n[ψ1(t) +ψo,n]) cos(n[ψ1(t) +ψo,n])

1 cos(n[ψ2(t) +ψo,n]) cos(n[ψ2(t) +ψo,n])

1 cos(n[ψ3(t) +ψo,n]) cos(n[ψ3(t) +ψo,n])


 ,

where θR =
[
θ1 θ2 θ3

]T

denotes the rotating pitch vector containing the pitch angles of the three blades defined in the165

rotating frame and ψo,n ∈ R denotes the azimuth offset used for the nP harmonic.
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2.3 Rotations in the MBC transformation

The MBC transformation can be decomposed as a Clarke transformation followed by a rotation (O’Rourke et al., 2019). Note

that the authors define this rotation as the DQ0 transformation, but the DQ0 transformation is usually defined as equal to the

MBC transformation.170

An offset in the forward or inverse MBC transformation results in an offset in the rotation transformation and thus a rotation

of the nonrotating frame. This is mathematically derived by considering the forward MBC transformation for the first harmonic

with an azimuth offset ψr, given by

T(ψ+ψr)

=
2
3




1/2 1/2 1/2

cos(ψ1 +ψr) cos(ψ2 +ψr) cos(ψ3 +ψr)

sin(ψ1 +ψr) sin(ψ2 +ψr) sin(ψ3 +ψr)




=
2
3




1 0 0

0 cos(ψr) −sin(ψr)

0 sin(ψr) cos(ψr)




·




1/2 1/2 1/2

cos(ψ1) cos(ψ2) cos(ψ3)

sin(ψ1) sin(ψ2) sin(ψ3)




=R(ψr)T(ψ), (4)

where R(ψr) is a rotation matrix rotating the nonrotating frame by ψr around the collective axis. A similar derivation holds for175

the inverse MBC transformation.

2.4 Frequency domain analysis

The MBC transformations can be transformed to the Laplace domain, enabling frequency domain analysis, useful for controller

design and calibration. The main results from Lu et al. (2015) and Mulders et al. (2019) are given here. Transforming the

forward transformation (Eq. (1)) to the Laplace domain yields180

MN,n(s) =
2
3
CL,nMR(s−) +

2
3
CH,nMR(s+), (5)

and the inverse transformation (Eq. (3)) is transformed to

θR(s) = C̃T
L,n(ψo,n)θN,n(s−) + C̃T

H,n(ψo,n)θN,n(s+), (6)

whereCL,n andCH,n denote the low and high partial transformation matrices for the nP harmonic respectively, C̃T
L,n(ψo,n) and

C̃T
H,n(ψo,n) the transpose of the partial transformation matrices including azimuth offset for the nP harmonic, and s± = s± jnωr185

and denotes the frequency-shifted Laplace operator.
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Figure 2. Block diagram of the demodulated plant G̃n(s). By calibrating the azimuth offset ψo,n, the low-frequency cross-coupling from θt

and θy to My and Mt respectively, is minimized.

By analyzing the wind turbine plant G(s,ψ) surrounded by the MBC transformations, the demodulated plant G̃n(s) for

the nP harmonic is defined, shown in Figure 2. This demodulated plant is linear time-invariant (LTI) after averaging out the

azimuth dependency, which physically makes sense since the rotating blade loads are transformed to a nonrotating frame,

where the azimuth angle has no meaning (Bir, 2008). Note that the demodulated plant is depicted as a 2×2 system without the190

collective input θ0 and collective output M0 since these are not linked to the periodic loads and are not used by the individual

pitch controller.

Due to dynamics in the wind turbine, there is a coupling between the tilt and yaw inputs and outputs. The system thus needs

to be decoupled to enable the use of SISO controllers.

2.5 Decoupling using the Optimal Azimuth Offset195

Phase lag in the system, due to, e.g., actuator dynamics, blade dynamics, dynamic induction, and communication delays, causes

coupling in the nonrotating frame, so from the tilt input to the yaw output, and vice versa. Especially flexible wind turbines

have slower dynamics, and thus more coupling, which must be considered during the controller design process.

The literature describes two ways to deal with this coupling. The first is to design a multivariable controller that takes the

coupling into account (Bossanyi, 2003; Lu et al., 2015). Second, the system can be decoupled by using an azimuth offset in the200

inverse MBC transformation (Mulders et al., 2019; Mulders and van Wingerden, 2019). After the system has been decoupled,

SISO controllers are used to independently control the tilt and yaw moments.

The demodulated plant G̃n(s) is fully decoupled when its relative gain array (RGA) (Skogestad and Postlethwaite, 2001) is

close to identity. The RGA is a measure of the coupling between the inputs and outputs of a system and is defined as

R(jω) = H(jω) ◦H(jω)−T, (7)205

where H denotes the frequency response matrix of the system, ω the frequency, and ◦ element-wise multiplication.

The azimuth offset allows the system to be decoupled in the low-frequency region and works by introducing an offset

between the forward and inverse rotations, discussed in Sect. 2.3. Decoupling at low frequencies is sufficient and effective

because the IPC controller is only active in this region. The optimal azimuth offset is found by minimizing the RGA of the

off-diagonal components for low frequencies. In this work, the level of low-frequency coupling is defined as the highest off-210
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diagonal element of the RGA matrix averaged over the low frequencies and is given by

R# = max
m̸=n





1
ωm

ωm∫

0

|Rm,n(jω)|dω



 , m,n ∈ {t,y}, (8)

where ωm denotes the upper limit of the low-frequency range. By selecting m and n in the set {t,y} and specifying m ̸= n,

the off-diagonal elements from tilt to yaw and yaw to tilt are selected. The optimal azimuth offset is subsequently found by

minimizing R#.215

Note that since this work focuses on the 1P blade loads, so n= 1. Furthermore, the subscript 1 is omitted for brevity in

the rest of this work. The following section uses the MBC transformation with conventional, full IPC to give an illustrative

example of the trade-off between load reduction and actuator effort.

3 Illustrative example: trading off load reduction and actuator effort with conventional IPC

This section discusses controller objectives, controller calibration, and results from a conventional, unconstrained, full IPC220

controller. Using different controller gains, the trade-off between actuator effort and load is analyzed, similar to (Han and

Leithead, 2015; Lara et al., 2024) but for the IEA 15 MW turbine (Gaertner et al., 2020) at a wind speed of 15 m/s. This will

serve as an illustrative example of this trade-off and form the baseline to which the proposed control methods will be compared

in Sect. 5.

3.1 Control objectives225

This work focuses on two conflicting control objectives: fatigue load of the blade in the flapping direction and actuator effort

of the pitch actuators. The fatigue load is measured through the damage equivalent load (DEL) (Sutherland, 1999; Thomsen,

1998) and is defined as

DEL =
(∑

niR
m
i

neq

)1/m

, (9)

where ni denotes the number of cycles at load level i,Ri the load range at load level i, neq the number of cycles at the equivalent230

load level, and m the slope of the S-N curve (or Wöhler slope), typically 10 for composites used for the blade (Zahle et al.,

2024). A rainflow counting algorithm (E08 Committee, 2017) is used to obtain ni and Ri from a flapping moment signal. The

DEL is then calculated for a certain number of cycles neq, which is typically set to the simulation length to calculate the DEL

for a 1 Hz equivalent load. The objective in this work is the flapping moment DEL and is calculated by averaging the flapping

moment DEL for each of the three blades.235

The actuator effort is evaluated using the actuator duty cycle (ADC) (Bottasso et al., 2013), which represents a normalized

total travel angle and is defined as

ADC =
1
T

T∫

0

∣∣∣∣
u̇(t)
u̇max

∣∣∣∣ dt, (10)
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Figure 3. Frequency response of the demodulated plant with and without the optimal azimuth offset of 24.5◦ at a wind speed of 15 m/s.

When including the azimuth offset, the off-diagonal gain is significantly reduced at low frequencies, effectively decoupling the system at

those frequencies.

where u̇(t) is the time derivative of the control input, u̇max is the maximum control input rate, and T is the duration over which

the ADC is calculated. To calculate the ADC for the wind turbine, the pitch rate is used as the control input, and the average240

ADC is calculated for the three pitch signals. Furthermore, u̇max is set to 2◦/s, which is the maximum pitch rate of the IEA

15 MW wind turbine (Gaertner et al., 2020).

3.2 Controller calibration

This section establishes a properly tuned baseline full IPC controller. Two control variables need to be calibrated, namely the

azimuth offset used to decouple the plant and the integrator gain of the IPC controllers.245

Using the procedure outlined in Sect. 2.5 of minimizing the highest off-diagonal RGA using the frequency response obtained

from a spectral estimate, the optimal azimuth offset for the IEA 15 MW reference turbine at a wind speed of 15 m/s is found

to be 24.5◦. Figure 3 shows the diagonal and off-diagonal frequency response of the demodulated plant with and without this

azimuth offset. The off-diagonal frequency response, in the lower subplot, is significantly reduced at low frequencies when

using the optimal azimuth offset, effectively decoupling the system at frequencies where the IPC controllers are active. The250

response on the diagonal is increased slightly by a few dB. Note that the tilt-to-tilt and the yaw-to-yaw response are almost

identical, so the tilt-to-tilt response is shown as the diagonal element. Similarly, the tilt-to-yaw and yaw-to-tilt response are

almost identical, and the tilt-to-yaw response is shown as the off-diagonal element.

The diagonal controller, consisting of a tilt and a yaw controller, uses the same gain for both controllers since the diagonals

of the decoupled demodulated plant are almost identical. This work assumes a pure I-controller that targets a certain open loop255

crossover frequency. A grid search is performed to assess the effect of the crossover frequency on the trade-off between DEL
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Figure 4. Trade-off between DEL and ADC for full IPC in laminar wind conditions. Controller tuning has no effect since the controllers

reach a steady-state operating condition. So the only trade-off is to turn IPC on or off.

and ADC. The minimum crossover frequency is set to 0.01 rad/s, which corresponds to a time constant of 100 seconds. At this

time constant, the controller would converge to 95% of its steady-state value in 300 seconds, which is the same amount of time

that we discard in the simulation to let the turbine reach steady-state. Even slower controllers would take longer to converge,

which makes simulating and thus analyzing them impractical. The maximum crossover frequency is set to 1.25 rad/s, at which260

point the stability margins are significantly reduced, and performance degrades.

3.3 Results

Using OpenFAST (Jonkman et al., 2023), simulations were run on the IEA 15 MW reference turbine (Gaertner et al., 2020) in

monopile configuration. All degrees of freedom were enabled, but hydrodynamic loads were disabled to focus on the oscillating

blade loads induced by wind shear. The simulations were run at a wind speed of 15 m/s so the turbine operates in above-rated265

conditions with a constant torque and a collective pitch controller implementation from ROSCO (Abbas et al., 2022, 2024) to

regulate the rotor speed. A vertical wind shear coefficient of 0.07 with a power law profile was chosen to represent realistic

offshore conditions (Yang et al., 2024). Both laminar and turbulent conditions were tested. Each wind condition was run with

9 different integrator gains to assess the effect of controller tuning.

Figure 4 shows the results for laminar wind conditions. All full IPC controllers converge to the same steady-state operating270

point, and the bandwidth of the controller, as expected, does not affect this. The 1P oscillating load is always completely

attenuated since the DC gain of the demodulated plant’s diagonal open loop transfer functions is infinite due to the use of an

integral control element. This means that the tilt and yaw moments are fully attenuated by significantly pitching the blades and

that the controller tuning does not affect the trade-off between DEL and ADC. So there are two options: no IPC with a high

fatigue load and low actuator effort or full IPC (with any tuning) with a lower fatigue load and higher actuator effort.275

In turbulent wind conditions, the controller constantly adapts to changing wind conditions, so the bandwidth of the controller

affects its performance. The turbulent wind fields are generated using TurbSim (Jonkman, 2014) using the IECKAI turbulence
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Figure 5. Trade-off between DEL and ADC with 8% turbulence intensity averaged over 10 turbulent wind field instances. For a crossover

frequency of 0.75 rad/s, the full IPC controller has the highest reduction in DEL, and lowering the gain brings the trade-off closer to no IPC.

However, lowering the gain too much results in time constants larger than 100 seconds, so the full IPC controller cannot make the complete

trade-off.

model with 8% turbulence intensity. To obtain statistically significant results, each controller tuning was run for 10 different

instances of turbulence using a different input seed for TurbSim. Furthermore, each simulation was run for 2100 seconds,

resulting in 30 minutes of valid data after discarding the first 300 seconds to eliminate initialization effects.280

Over these 30 minutes, the DEL and ADC for each controller gain were calculated and are shown in Figure 5. With no

IPC action, there is a high damage equivalent load but little actuator effort. The actuator effort is not equal to zero since the

collective pitch control is active and regulates the rotor speed in these turbulent conditions. Furthermore, the fatigue load is

higher than in laminar conditions due to the additional excitation of the blades. Conventional, full IPC with different gains

results in different trade-offs between DEL and ADC. The highest reduction in load is achieved when targeting a crossover285

frequency of 0.75 rad/s, and the controllers with higher bandwidth increase the DEL while also increasing the actuator effort.

With the lowest bandwidth, the controllers get closer to no IPC, but to get even closer, the time constant would have to be

set unreasonably large. Instead of making this trade-off with controller tuning, output-constrained IPC makes this trade-off by

setting a reference load. Two such methods are introduced next and compared to this result in Sect. 5.

4 Output-constrained individual pitch control using the multiblade coordinate transformation290

Conventional, full IPC drives the oscillating loads to zero. Output-constrained IPC instead drives the loads to some reference

value. When using the MBC transformation, the tilt and yaw moments are thus driven to some reference. This section defines

two types of references through the norm they represent and subsequently proposes two output-constrained IPC methods using
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Figure 6. The tilt and yaw moments are visualized as a vector on the tilt-yaw plane. Output-constrained IPC then constrains this vector to a

reference r. Shown here are the ℓ∞ or ℓ2-norm of the load, which form the fundament of the ℓ∞-IPC and ℓ2-IPC control methods.

the MBC transformation, namely ℓ∞-IPC and ℓ2-IPC. It will become apparent that both methods require an estimation of the

original load, which is defined as the load that the system would experience without any IPC action, which is also derived.295

4.1 Load norms

Using the MBC transformation, the oscillating load is decomposed in a tilt and a yaw contribution. These contributions are

visualized using a vector in a tilt-yaw plane, shown in Figure 6. Conventional, full IPC drives this tilt-yaw moment vector to

the origin, fully attenuating the 1P oscillating load. Output-constrained IPC instead drives this vector to a certain reference or

constrains the norm of this load vector to a certain value.300

In this work, the load is constrained using two different norms, the ℓ∞ and ℓ2-norm, both defined through the p-norm
∥∥∥∥∥∥


Mt

My




∥∥∥∥∥∥
p

= p

√
Mp

t +Mp
y . (11)

For p=∞, this norm equals the infinity norm, resulting in a square reference, and for p= 2, this norm equals the Euclidian

norm, resulting in a circular reference, both shown in Figure 6.

4.2 ℓ∞-IPC305

Using the ℓ∞-norm of the load vector, the controller behaves in a decoupled manner and drives the tilt moment to a tilt reference

rt and the yaw moment to a yaw reference ry, as shown in Figure 7. It uses the decoupling between the tilt and yaw axes to

use independent tilt and yaw controllers, defined as

Ct(s) = Cy(s) =
Ki

s
, (12)

where Ki is the integral gain.310

13

https://doi.org/10.5194/wes-2024-153
Preprint. Discussion started: 10 January 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 7. Using ℓ∞-IPC, the nonrotating load vector is independently driven to a tilt and yaw reference rt and ry. The load is thus constrained

within an ℓ∞-norm, indicated by a square.

This method was hypothesized in the introduction of Liu et al. (2022) as a “deadband” augmentation of conventional IPC

and is an extension of Henry et al. (2024) by adding a yaw reference and the ability for the references to be both positive and

negative.

The negative reference on the tilt axis is likely not often active. However, it may become necessary when the wind conditions

have a negative shear component, which does occur sometimes, especially offshore (Yan et al., 2022).315

There are two main challenges with this approach. First, the tilt and yaw moments should never be amplified to the reference

because the control objective is load reduction, not amplification. In closed-loop, when the controller drives the moment to a

certain reference, the measurement of this moment alone is insufficient information to determine whether this load has been

amplified or reduced to its current value. Second, the sign of the reference should be changed appropriately since the load

vector can take any value in the tilt-yaw plane, and can therefore switch signs. Similarly, once the closed-loop system is at a320

certain load, measuring the moments alone is insufficient information to determine whether the positive or negative reference

should be used.

Both of these problems are solved by estimating the “original load”, which is defined as the load in the tilt-yaw plane that

the system would experience in open loop, so when the output-constrained IPC controller would be disengaged, the derivation

of the original load estimator will be discussed in Sect. 4.4325

If the original tilt moment is positive, the tilt moment shall be constrained between its current value and 0. So a positive tilt

reference is selected. Furthermore, the tilt controller is saturated on [0,∞), preventing the tilt moment from increasing so that

the load is kept constant or reduced towards zero. If the reference is between the original tilt load and zero, the load is driven

towards the reference, but if the reference is above the original tilt load, the controller is saturated and no IPC action is done.

If the original tilt moment is negative, the negative tilt reference is selected and the tilt controller is saturated on (−∞,0], this330

allows the controller to increase the tilt moment, bringing any negative moment closer to the origin. The same logic applies to

the yaw channel.

Figure 8 shows the block diagram for the ℓ∞-IPC control method. The tilt and yaw moments, together with the tilt and yaw

pitch angles are used to estimate the original load. The sign of the original tilt moment is then used to set the sign of the tilt
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Figure 8. Block diagram of ℓ∞-IPC. It uses a decoupled tilt and yaw controller that both drive the moment to the reference. To avoid load

amplification, the reference sign and integrator saturation are adjusted based on the sign of the original load.

Figure 9. Using ℓ2-IPC, the nonrotating load vector is projected on a new orthogonal reference system, consisting of a radial and tangential

axis. In this new axes system, the magnitude of the load is projected on the radial axes. The load is thus constrained using the 2-norm,

indicated by a circle.

reference and select the saturation bounds for the tilt controller based on the logic mentioned previously. The same applies to335

the yaw channel. Overall, the tilt and yaw channels remain decoupled in this approach, and each channel either drives the load

to its reference or is saturated to avoid amplification.

4.3 ℓ2-IPC

Instead of constraining the tilt and yaw loads separately, using the ℓ2-norm of the nonrotating load vector, the magnitude of the

load is constrained. This is achieved by projecting the nonrotating load vector to a new reference frame, where the magnitude340

of the load is projected on a single axis as shown in Figure 9. The new reference frame consists of a radial and a tangential

component. In steady-state the magnitude of the load is projected on the radial axis and the tangential component would be
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zero. This allows a single controller, defined as

Cr(s) =
Ki

s
, (13)

to act on the radial axes to directly regulate the magnitude of the load. Note that the integral gainKi is equal to the integral gain345

of the ℓ∞-IPC control method to provide a fair comparison. The rotation of this axes system is achieved using the rotations

inherent to the MBC transformation, as previously discussed in Sect. 2.3. The rotation is done by angle ψr.

This means that the nonrotating pitch angles are in phase with the nonrotating load. This is ideal when the azimuth offset in

the inverse transformation ensures that the phase lag from the nonrotating pitch to the nonrotating moment is zero. While the

optimal azimuth offset is defined to achieve decoupling, it also causes an almost zero phase shift from the nonrotating pitch to350

the nonrotating moment.

Ensuring that the controller does not amplify the loads is more straightforward than for the ℓ∞-IPC control method. Since

the controller only acts on the magnitude, which is always positive, it should only lower the magnitude of the load, which is

achieved by saturating the controller on [0,∞).

The challenge lies in estimating the rotation ψr and its estimation bandwidth. It can be estimated by taking the inverse355

tangent of the tilt and yaw moment. However, when operating close to full IPC, these moments are reduced to zero, making

this estimate noisy, or worse, undefined. As a solution, the ℓ2-IPC control method also uses the estimate of the original load

for ψr, which is thus calculated as

ψr = atan2(Mt,o,My,o) , (14)

where Mt,o and My,o are the original tilt and yaw moments respectively, whose estimation will be discussed in Sect. 4.4. This360

ensures that a robust estimate of the rotation angle is obtained even when operating close to full IPC (and the measured load is

close to zero).

The angle ψr is effectively the phase of the final commanded pitch angles to the three blades. This phase should thus change

sufficiently quickly to adapt to changes in wind conditions, but shall not contain noise as it directly translates to noise in the

phase of the pitch signal.365

Figure 10 shows the block diagram of ℓ2-IPC. Similarly to ℓ∞-IPC, the original load estimator uses the nonrotating moments

and pitch angles. The angle of the original load in the tilt-yaw plane is then calculated and used to rotate the tilt and yaw moment

to a new reference system with a radial and a tangential component. The inverse rotation uses the same angle to rotate the radial

control action back to a tilt and yaw component. This control method only needs a single controller,Cr(s), to regulate the radial

moment to a reference because it is actuating in the ideal phase. This is in contrast to conventional IPC and ℓ∞-IPC, which370

control the tilt and yaw axis separately and thus need two controllers.

4.4 Original load estimation

The original load is the load experienced by the system if IPC were disengaged. In closed-loop, with IPC active, this cannot be

measured and should instead be estimated. The estimation consists of a measurement of the current load and an estimation of

the load that is regulated away with the current IPC control action, using a simple model.375
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Figure 10. Block diagram of ℓ2-IPC. The original load estimator uses the nonrotating loads and nonrotating pitch angles to reconstruct

the original load. The angle of this load in the tilt-yaw plane is ψr, which is used to rotate the reference system to a radial and tangential

axis where the magnitude of the nonrotating load vector is projected on the radial axis. A single SISO controller then regulates this load

magnitude.

In steady-state, by using a first-order approximation, the original load is defined as

MN,o = MN− JMN,oθN, (15)

with

JMN,o =




∂M0
∂θ0

∂M0
∂θt

∂M0
∂θy

∂Mt
∂θ0

∂Mt
∂θt

∂Mt
∂θy

∂My
∂θ0

∂My
∂θt

∂My
∂θy


 ,

which is the Jacobian of the nonrotating blade moments with respect to the nonrotating blade pitch angles and is equal to the380

steady state gain of G̃(s). This estimate thus requires model information, which can be obtained through system identification

or linearizations of a wind turbine model. Note that while this definition also includes the estimate of the original collective

moment, only the original tilt and yaw moments are used by the ℓ∞-IPC and ℓ2-IPC control methods.

Furthermore, due to the decoupling using the azimuth offset, the off-diagonal elements of JMN,o are much smaller than the

diagonal elements. So, similarly to the control, the estimation of the tilt and yaw original load is decoupled. This simplifies the385

estimation to

Mt,o =Mt−
∂Mt

∂θt
θt

My,o =My−
∂My

∂θy
θy.

(16)

The two partial derivatives, ∂Mt/∂θt and ∂My/∂θy are almost equal to each other. This is also why the diagonal pitch

controller can have the same gains for its tilt and yaw controller.
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This estimate of the original load is a steady-state estimate and thus neglects the dynamics in the system. It is an instantaneous390

estimation of the original load after transient effects have died out. To reduce the bandwidth of this estimate and filter out high-

frequency components, the estimate is filtered with a low-pass filter with a cutoff frequency of ωo. This ensures that for the

ℓ∞-IPC controller, the switching between reference sign and integrator saturation is smooth and that for the ℓ2-IPC controller,

no noise is introduced into the phase of the resulting sinusoidal pitch signal.

Furthermore, it is assumed that the Jacobian is constant around a certain operating condition and does not change as a395

function of the load reference. These two proposed output-constrained IPC controllers are tested and compared against the

baseline in the following section.

5 Results

This section presents the results of the ℓ∞-IPC and ℓ2-IPC control method and compares them to the baseline set in Sect. 3. It

also uses the same setup with the IEA 15 MW turbine, a wind speed of 15 m/s, and a vertical shear coefficient of 0.07 (except400

for case 3) in both laminar and turbulent conditions.

After controller calibration, four different cases are analyzed. First, in laminar wind conditions, the staircase response is

shown to analyze the working mechanisms of the two control methods. Second, the trade-off between damage equivalent load

of the flapping moment and actuator duty cycle is analyzed in laminar wind conditions. Third, the controllers are tested in

a wind field with changing shear coefficients to analyze the effectiveness of using the estimated original load for integrator405

saturation and reference sign selection for ℓ∞-IPC and phase estimation for ℓ2-IPC. Lastly, both control methods were tested

in turbulent wind conditions with multiple seeds to analyze the trade-off between damage equivalent load and actuator duty

cycle in realistic wind conditions.

5.1 Controller calibration

The proposed output-constrained ℓ∞-IPC and ℓ2-IPC control methods have the same variables that need to be calibrated,410

namely the azimuth offset, the integral gain for the IPC controller (Ct(s) and Cy(s) for the ℓ∞-IPC controller and Cr(s) for

the ℓ2-IPC controller), and the bandwidth and partial derivatives in the original load estimator. For a fair comparison, both

control methods use the same calibration.

The optimal azimuth offset calculated in Sect. 3.2, found to be 24.5◦ is also used for ℓ∞-IPC and ℓ2-IPC. In Sect. 3.3, a

grid search was performed for different crossover frequencies for conventional full IPC. For the ℓ∞-IPC and ℓ2-IPC control415

methods, a crossover frequency of 0.2 rad/s is selected since the full IPC controller with this crossover frequency has a good

trade-off between DEL and ADC, resulting in an integral gain Ki =−6.8 · 10−7 for Ct(s), Cy(s), and Cr(s). Note that the

controller gain is negative, while in conventional IPC controllers, this gain is positive. This is because the pitch controllers of

ℓ∞-IPC and ℓ2-IPC actuate based on the load errors rather than the load itself.

The bandwidth of the original load estimator is set to 2 rad/s. This allows for good noise suppression while simultaneously420

being fast enough to respond to changes in wind shear.
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Figure 11. Time domain results to the staircase reference load input in the rotating frame. While both output-constrained IPC control methods

follow the reference accurately, they have a slightly different control action and resulting flapping moment during the transition between no

IPC to full IPC.

The partial derivatives in the original load estimator are estimated from the spectral estimate, also used to find the optimal

azimuth offset. The tilt-to-tilt contribution, ∂Mt/∂θt, and the yaw-to-yaw contribution, ∂My/∂θy, are both equal to 109.3 dB.

5.2 Staircase response in laminar wind

The first case simulates the response of the controller in laminar conditions to analyze the working principles of the controllers425

and compare them. A staircase input on the reference is used to let the controller pass through different operating points

between no IPC and full IPC. The reference load starts above the original load, resulting in no IPC control action from the

output-constrained IPC controllers. It then steps to zero in four steps, each lasting 25 seconds, until the output-constrained IPC

controllers perform equal to full IPC with a reference load of 0 Nm. The first 300 seconds are discarded to allow the system to

reach a steady state, and thus exclude initialization effects.430

Note that the reference for the ℓ∞-IPC control method is adjusted such that it achieves the same resultant load magnitude as

the ℓ2-IPC control method.

Figure 11 shows the time domain results in the rotating frame of the flapping moment, 1P filtered flapping moment, and

pitch signal. The 1P filtered signal is obtained by filtering the flapping moment with a finite impulse response (FIR) bandpass

filter with a passband between 0.75P and 1.25P. In the first subplot, the flapping moment initially shows a strong 1P component435

due to wind shear, and the effect of tower shadow is also clearly visible. As the reference is reduced, the 1P component
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Figure 12. Time domain results to the staircase reference load in the nonrotating frame. Both control methods accurately follow the reference.

The ℓ2-IPC controller requires a smaller nonrotating pitch magnitude, indicating that it is more efficient.

diminishes until the dominant oscillation is the 2P component. Furthermore, a small difference is observed between ℓ∞-IPC

and ℓ2-IPC, which is discussed more extensively later. In the second subplot, the peaks of the 1P flapping moment of the two

output-constrained IPC control methods track the reference accurately. Crucially, the oscillation is not amplified towards the

reference at the start of the simulation. Showing that the output-constrained IPC methods only activate when the load is above440

the reference. However, a small difference in phase between the two control methods can be observed. The third subplot also

shows this phase shift also in the pitch signal. In addition, the ℓ∞-IPC method requires a larger pitch magnitude to track the

same reference as ℓ2-IPC. This occurs because the ℓ∞-IPC method uses control effort to both change the magnitude and phase

of the load, rather than only the magnitude.

The difference in control magnitude is more clearly visible in the nonrotating frame. Figure 12 shows the time domain445

results in the nonrotating frame of the nonrotating moment and nonrotating pitch angle. The three blade loads are transformed

to the nonrotating frame using the MBC transformation and low-pass filtered. The controllers are compared by analyzing the

magnitude of the tilt and yaw contribution of the nonrotating moment and pitch angle. Both controllers track the reference

accurately and have a similar transient response due to their identical calibration. However, the ℓ∞-IPC controller requires

a larger pitch magnitude to track the same reference as ℓ2-IPC. This is because the ℓ∞-IPC controller uses control effort to450

both change the magnitude and phase of the load, rather than only the magnitude, as is clearly visible on the tilt-yaw plane,

discussed next.

Figure 13 shows the tilt contribution on the y-axis and the yaw contribution on the x-axis. So the response over time becomes

a line on the tilt-yaw plane. Both controllers start with a reference above the original load, resulting in no IPC action, thus equal

to no IPC. Once the reference is reduced in its first step, the ℓ∞-IPC controller only drives the moment vector down in the tilt455

direction since the load is naturally already below the yaw reference. This happens again in the second step of the reference
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Figure 13. Time domain results plotted on the tilt-yaw plane for the staircase input. Both controllers start at no IPC and gradually go to

full IPC in a few steps, resulting in a line in the tilt-yaw plane. The ℓ∞-IPC control method initially only drives the tilt moment to the tilt

reference and only starts actuating in yaw when the yaw moment is constrained by the yaw reference. On the other hand, the ℓ2-IPC method

drives the load directly to the origin and keeps the same phase of the pitch action. By only spending control action on load reduction and not

on a phase change of the load, ℓ2-IPC is more efficient.

load. Only when the tilt and yaw moment are equal and are both constrained by the reference, at a phase of 45◦, does the

controller start actuating in yaw. The ℓ2-IPC controller, on the other hand, drives the load directly to the origin and keeps the

same phase of the pitch action. The ℓ2-IPC control method is thus more efficient since it does not spend control effort to change

the phase of the load in the tilt-yaw plane. So the ℓ2-IPC control method requires a smaller pitch magnitude to track the same460

reference as ℓ∞-IPC. With a reference of zero, both controllers are equal in operation to full IPC.

Furthermore, a pure shear input does not lead to a pure tilt moment response. Even though the wind is strongest at the top of

the tilt axis, the blade’s dynamics cause the highest load to be experienced at the point indicated by no IPC.

21

https://doi.org/10.5194/wes-2024-153
Preprint. Discussion started: 10 January 2025
c© Author(s) 2025. CC BY 4.0 License.



0 0.02 0.04 0.06 0.08 0.1
Actuator duty cycle (-)

1.5

2

2.5

3

3.5

4

4.5

Fl
ap

pi
ng

 m
om

en
t

da
m

ag
e 

eq
ui

va
le

nt
 lo

ad
 (

M
N

m
) no IPC

full IPC
`1-IPC
`2-IPC

Figure 14. The trade-off when operating between no IPC and full IPC in laminar conditions. Especially close to full IPC, ℓ2-IPC achieves a

larger reduction in the damage equivalent load of the flapping moment for the same actuator duty cycle than ℓ∞-IPC.

Each reference thus leads to a separate steady-state point, which is used to analyze the trade-off between actuator effort and

load reduction.465

5.3 The trade-off in laminar conditions

The previous section showed that ℓ2-IPC achieves the same load reduction with a smaller pitch magnitude compared to ℓ∞-IPC

for a certain reference. This section expands on this by analyzing this trade-off for all operating points between no IPC and

full IPC. For both control methods, 19 reference loads were analyzed, ranging from 0 Nm (full IPC) to 2000 Nm (above the

original load, so no IPC). The load reduction is measured using the damage equivalent load (DEL, see Equation 9) while the470

actuator effort is measured using the actuator duty cycle (ADC, see Equation 10).

Again, the first 300 seconds from the simulation are discarded, and the last 100 seconds of each reference load are used to

calculate the actuator duty cycle and damage equivalent load. Since the system operates in steady-state in laminar conditions,

the DEL and ADC calculations do not require more data.

Figure 14 shows the trade-off between DEL and ADC for laminar conditions. For a reference load above the original load,475

both control methods are equal in operation to no IPC. When the reference load is reduced, initially both control methods

roughly achieve the same reduction in DEL for an increase in ADC. However, as the reference load is further reduced, the

ℓ2-IPC control method reduces the DEL up to 8.4% more than ℓ∞-IPC. This is because the ℓ2-IPC controller actuates in the

same phase as the load, while the ℓ∞-IPC controller also changes the phase of the load, as previously shown in Figure 13, thus

spending unnecessary control effort. As the reference load reaches zero, both controllers converge to full IPC. Furthermore,480

the slope of the trade-off between DEL and ADC diminishes close to full IPC, showing diminishing returns when opting for

conventional full IPC.
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Both proposed output-constrained IPC controllers can operate on any point between no and full IPC. In contrast, conventional

IPC cannot trade off fatigue load and actuator effort in laminar conditions since the controller tuning does not affect the steady-

state, as discussed in Sect. 3.3.485

Note that this result depends on the shear coefficient and wind speed, and the difference between the two controllers can be

larger or smaller depending on these parameters. For example, if the original load is a pure tilt moment, both controllers will

have identical performance since the ℓ2-norm and ℓ∞-norm are equal for a pure tilt moment. The following section evaluates

the performance of the original load estimator when the wind shear coefficients are varying.

5.4 Varying the wind shear coefficients490

The previous results were obtained for a constant vertical wind shear coefficient of 0.07. This section shows that both control

methods work for time-varying horizontal and vertical shear coefficients, which could arise from a changing boundary layer or

wake impingement from upstream wind turbines when operating in a wind park.

When the shear coefficients of the wind change, the ℓ∞-IPC control method has to adjust the sign of the reference load and

integrator saturation using the original load estimation, while the ℓ2-IPC has to adjust the phase of the pitch signal based on495

this estimate.

An artificial wind field was generated, starting with an initial vertical shear coefficient of 0.07 and a horizontal shear coef-

ficient of 0. In two steps, the vertical shear coefficient reduces to 0 while the horizontal shear coefficient goes to -0.07. This

is done in laminar wind conditions to analyze the working mechanisms of the original load estimator and its use by the two

control methods. During the entire simulation, both control methods follow a constant reference of 1 MNm.500

Figure 15 shows the results for the ℓ∞-IPC control method. Only the tilt signals are shown, but the same analysis applies

to the yaw signals. At 300 seconds, the ℓ∞-IPC controller follows the reference of 1 MNm accurately using a positive pitch

angle. Furthermore, the original tilt moment is accurately estimated since it is equal to the no IPC case, which does not do

any individual pitch control and its tilt moment is thus equal to the original tilt moment. The first wind shear change occurs

at 340 seconds, and the tilt moment naturally decreases below the reference. To amplify the tilt moment to the reference,505

the controller would require a negative tilt pitch action. However, since the original tilt moment is correctly estimated to be

positive, the pitch action is saturated on [0,∞) so that the controller does not amplify the load towards 1 MNm. Since the tilt

moment is naturally below the reference, the controller sets its tilt pitch signal to zero, furthermore highlighting the advantage

of output-constrained IPC. After the second wind shear change, at 380 seconds, the original tilt moment is correctly estimated

to be negative, so the pitch action is saturated on (−∞,0]. Simultaneously, the reference sign is flipped, so the controller is510

now driving the tilt moment to -1 MNm from an original tilt moment of about -1.4 MNm. This shows that in changing wind

shear conditions, the ℓ∞-IPC control method correctly sets its pitch saturation and reference sign by estimating the sign of the

original load.

The ℓ2-IPC control method uses the estimate of the original load to estimate the phase ψr of the original load, and then

matches the phase of the pitch signal to this. By doing this, it achieves the ideal phase of the pitch signal. So the pitch signal515

phase of ℓ2-IPC should ideally match the pitch signal phase of full IPC. This is shown in Figure 16 for the wind field with
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negative, just after the second wind shear change, the reference sign and the controller saturation change, allowing the controller to reduce

the tilt moment to -1 MNm.
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Figure 16. By estimating the phase of the original load, the ℓ2-IPC control method actuates in the ideal phase. The ideal phase is equal to

the phase of the pitch signal of full IPC.

changing shear coefficients. In steady-state, the phase of the pitch signal accurately follows the ideal phase. In the transients,

when the shear coefficients change, the phase is slightly different, which is due to the controller and estimator tuning. The next

section analyses the controller performance in continually varying conditions using turbulent wind.
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Figure 17. The trade-off when operating between no IPC and full IPC with 8.0 % turbulence. The ℓ∞-IPC and ℓ2-IPC control methods use

a change in reference load while the full IPC uses a grid search of integrator gains to achieve the trade-off in DEL and ADC. The output-

constrained IPC methods have a nonlinear trade-off and achieve an 87% reduction in DEL at just 50% increase in ADC compared to the full

IPC controller with the same crossover frequency (0.2 rad/s).

5.5 The trade-off in turbulent wind conditions520

This section analyzes the effectiveness of the proposed output-constrained IPC methods in realistic turbulent wind conditions.

To this end, the trade-off between DEL and ADC for laminar wind conditions, previously shown in Figure 14, is extended to

turbulent wind conditions and compared to the baseline, discussed in Sect. 3.3.

Similarly to the baseline, the turbulent wind fields are generated using TurbSim (Jonkman, 2014) with 8% turbulence inten-

sity for 10 different seeds, each with 30 minutes of useful data to obtain statistically significant results.525

To analyze the different operating points between no IPC and full IPC, the ℓ∞-IPC and ℓ2-IPC methods were run using

multiple reference loads between 10 MNm (always above the original load, so no IPC) and 0 MNm (full IPC). Note that the

no IPC load is substantially higher than for the laminar conditions due to load peaks due to turbulence.

Additionally, the data from the conventional, full IPC controller, as previously shown in Figure 5, is used to compare to the

proposed control methods. Again, note that for full IPC a grid search for different crossover frequencies is used, while ℓ∞-IPC530

and ℓ2-IPC only change their reference load and have a constant crossover frequency of 0.2 rad/s.

Figure 17 shows the trade-off between DEL and ADC in turbulent wind conditions and compares the ℓ∞-IPC and ℓ2-IPC

control methods to the baseline. Since each operating condition is run for 10 different turbulent wind seeds, there is a distribu-

tion of results. This distribution is assumed to be Gaussian, and the mean is shown as a line connecting the data points from

each operating condition. The shaded region around this line represents one standard deviation from the mean. Since no IPC535
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has no parameters to tune, it only has a single mean and is thus shown as a data point with error bars representing the standard

deviations.

First, both ℓ∞-IPC and ℓ2-IPC smoothly transition between no IPC and full IPC by adjusting their reference loads. By setting

the reference above the original load, the controllers both converge to no IPC while a reference of 0 MNm results in operation

close to the full IPC controller that uses the same crossover frequency, namely 0.2 rad/s. The trade-offs that ℓ∞-IPC and ℓ2-IPC540

achieve are highly curved and do not go in a straight line from no IPC to full IPC. At the operating point where the ADC =

0.055, both methods achieve a 50% reduction in DEL with just 16.4% of the ADC, compared to full IPC tuned with the same

crossover frequency. Furthermore, at ADC = 0.094, a 87% reduction in DEL with just 50% of the ADC. Thus, a significant

decrease in actuator effort is achieved by aiming for a slightly lower reduction in fatigue loads using output-constrained IPC.

The relative change in fatigue load and actuator duty cycle are easier to observe in a normalized plot, given in Appendix A.545

This is caused by the nonlinearity of the DEL calculation. Closer to no IPC, the controllers only attenuate the largest load

peaks, which proportionally contribute more to the DEL than smaller peaks, which are only attenuated closer to full IPC,

leading to diminishing returns.

Second, the difference between the two control methods is minimal in turbulent conditions, though ℓ2-IPC is slightly more

efficient when operating closer to full IPC. However, this advantage is well within one standard deviation. In laminar conditions,550

ℓ2-IPC was clearly more efficient because it did not change the phase of the load. The difference in phase between ℓ∞-IPC and

ℓ2-IPC is highest when the original load is 22.5◦+ k45◦ where k ∈ N. But when the phase is 0◦+ k45◦, the ℓ∞-IPC does not

change the phase, and the two methods have an equal performance. In turbulent wind conditions, the phase of the original load

is constantly changing, so the large advantage of ℓ2-IPC is not as pronounced anymore.

The ℓ∞-IPC and ℓ2-IPC control methods were only run with a crossover frequency of 0.2 rad/s while the full IPC controller555

was run for a grid search over multiple crossover frequencies, as discussed in Sect. 3.3, and shown in black in Figure 17.

When lowering the gain of the full IPC controller, it moves towards no IPC in a more straight line, not taking advantage of the

nonlinearity of the DEL. Its lower gain ensures that it achieves a smaller load reduction, but the phase of the control action also

starts to lag behind the optimal phase, thus reducing efficiency. The proposed output-constrained control methods do not suffer

from this effect since their load reduction and bandwidth are separated into the reference load set point and controller tuning.560

Furthermore, the full IPC controller can not reach the no IPC operating point by lowering the crossover frequency further

because lowering its gain gets unpractical because the time constant of such a controller would be larger than 100 seconds, as

discussed in Sect. 3.2.

The highest load reduction is still achieved by a full IPC controller with a crossover frequency of 0.75 rad/s, which is

higher than the crossover frequencies used for our proposed output-constrained controllers, namely 0.2 rad/s. By using the565

same crossover frequency for the ℓ∞-IPC and ℓ2-IPC control methods and setting their reference to zero, they will achieve

the same high level of load reduction. This shows that our methods are a natural extension to conventional IPC methods. The

Pareto-optimal trade-off between DEL and ADC is likely a set of ℓ2-IPC controllers with different reference loads, crossover

frequencies, and original load estimator bandwidths. This optimization is planned as future work.
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6 Conclusions570

In this work, we have explored the entire operating region between no and full IPC, using two newly proposed output-

constrained IPC control methods, enabling the trade-off between actuator effort and load reduction, achieving an 87% reduction

with just 50% of the actuation effort. The two methods, ℓ∞-IPC and ℓ2-IPC, are natural extensions of the conventional IPC

implementation based on the multiblade coordinate transformation, thus contributing to industry adoption.

In laminar conditions, both control methods accurately follow any load reference and thus operate on any point between575

full IPC and no IPC. In these conditions, ℓ2-IPC is more efficient since it does not use actuator effort to change the phase of

the load. The original load estimator, used by the ℓ∞-IPC control method to set its reference sign and integrator saturation

and used by the ℓ2-IPC control method to set the phase of the control action, accurately reconstructs the original load using a

steady-state estimate.

In turbulent wind conditions, both controllers can operate on any point between no IPC and conventional, full IPC. The trade-580

off is highly curved, and both control methods achieve a 50% load reduction, measured in damage equivalent load (DEL), with

just 16.4% actuator effort, measured in actuator duty cycle (ADC), compared to full IPC with the same controller tuning. This

is the most important result of this work, and it shows that not only do these controllers facilitate the trade-off between no and

full IPC, but the new operating points also achieve an excellent trade-off between DEL and ADC. Since high ADC is a barrier

for industrial application of IPC, these methods allow the industry to get most of the benefits with little downside.585

In this work, both control methods are tuned with a crossover frequency of 0.2 rad/s, while in turbulent conditions, full

IPC achieves the highest load reduction with a crossover frequency of 0.75 rad/s. Future work will optimally tune the proposed

control methods to find the Pareto front between DEL and ADC by varying the reference load, crossover frequency, and original

load estimation frequency.

Since these control methods make a smooth trade-off between no and full IPC, they will also be integrated into a wind590

turbine control co-design framework. The large reduction in fatigue loads with a small effect on actuator fatigue might lower

the material costs of the blades at a small increase to the cost of the pitch actuation system, thus lowering the overall cost of

wind turbines.

Code and data availability. The code and data are available through Hummel (2024). Additionally, the code is available through GitHub1

for easier access. However, the GitHub repository might be updated in the future.595

Appendix A: The normalized trade-off in turbulent wind conditions

To normalize the results of Figure 17, no IPC is taken as 0% ADC increase and 0% DEL decrease, while the full IPC controller

with a crossover frequency of 0.2 rad/s is taken as 100% ADC increase and 100% DEL decrease. Figure A1 shows this
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Figure A1. The normalized trade-off when operating between no IPC and full IPC with 8.0 % turbulence. The trade-off is normalized so

that no IPC has 0% load reduction at 0% actuator effort increase while full IPC with a crossover frequency of 0.2 rad/s achieves 100% load

reduction at 100% actuator effort increase. The two output-constrained methods achieve a relatively high amount of load reduction with a

small actuator effort increase, compared to changing the crossover frequency of full IPC.

normalized trade-off. It is easier to see that both methods achieve an 87% reduction in DEL at just a 50% increase in actuator

effort with respect to no IPC.600
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