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Dear reviewers,

The authors would like to thank the reviewers for the constructive and thorough comments
and suggestions for our paper. We believe that your feedback has helped us significantly
improve the quality of the manuscript.

To consider all the feedback, the paper has been carefully revised. The objective of this
document is to reply to the points raised and provide a detailed overview of the changes
made. For each comment, a point-to-point response is provided in blue color, while the
corresponding changes to the manuscript are reported in red. Please note that, in the
enclosed marked-up version of the revised manuscript, the removed and added portions
of the manuscript are indicated by red strikethrough text and blue underlined text, re-
spectively. We hope that this document provides satisfying answers to the reviewers’
comments.

Yours sincerely,

Atindriyo K. Pamososuryo
Fabio Spagnolo
Sebastiaan P. Mulders

Enclosure(s): General notice
Response to Reviewer 1
Response to Reviewer 2
Response to Reviewer 3
Marked-up version of the revised manuscript
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General notice

Apart from the changes made in our responses to the reviewers’ comments and questions,
we include an additional figure for better clarity in the revised manuscript. This new figure
(Fig. 5) depicts the internal structure of the state estimation-based aerodynamic power
estimator, which is described by the state space system in (18). As a consequence,
Figs. 5-16 in the original manuscript become Figs. 6-17 in the revised manuscript. Nev-
ertheless, to prevent confusion in our responses below, we retain the indexing convention
of the original manuscript. We thank the reviewers for their understanding.

+

-
+

-

State Estimation-Based Aero. Power Estimator 

Figure 5. Internal structure of the state estimation-based aerodynamic power estimator. Note that
the aerodynamic power estimate P̂r is the product of the rotor speed estimate ω̂r and aerodynamic

torque estimate T̂r. See Remark 4 for more details.

Revised portion prior to (18):
The general state space expression for the state estimator—as depicted in Fig.5, aug-
menting (17) to (16) and also including feedback from the measured system output
y = ωr, is written as follows. . .
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Response to Reviewer 1

General Comments

The paper is well written and makes valuable contributions which opens the path to better
and more accurate rotor effective wind estimators. This is critical to achieve effective
control and lowering of loads and thus cost on modern very large wind turbines.

The work is based on a number of assumptions which significantly limits the direct appli-
cability of the work. These assumptions are clearly stated, but the expected consequences
and limitations that these assumptions entail are not treated. For the paper to give a
accurate picture of the contribution made and where further work is needed, I believe
that such assumptions should be discussed as part of the paper.

Response: Thank you for your kind words and appreciation of our work. We also thank
you for your feedback and, in the following, we provide our responses to your specific
comments.

Specific Comments

1. Assumption 1: No drivetrain loss
This assumption is obviously not realistic and will easily lead to a rotor power es-
timation error in the order of 10%. It would be beneficial to describe how this
assumption could potential be lifted in order to show the feasibility using the pro-
posed scheme in the presence of uncertain drivetrain losses.

Response: Thank you for your feedback regarding Assumption 1. In this work, first
and foremost, our aim was to establish an analysis framework of a power balance
wind speed estimation method. This involves segretation between aerodynamic
power estimation and wind speed solving submodules and finding the optimal com-
bination given multiple options for each and introduction of a calibration method
across a range of turbine sizes. Therefore, to make our derivations and analyses
more straightforward and stay aligned with the main goal of our paper, we did not
include any drivetrain losses in our original manuscript, thereby the inclusion of
Assumption 1.

That said, we agree that a degree of realism can be further added to the first-
principle modeling by including drivetrain losses. To this end, therefore, we include
a generator efficiency factor in the revised manuscript. Please note that the in-
clusion of the generator efficiency has been incorporated in Sections 2-4, including
Figs. 4, 5, 6, 11, and 12 of the revised manuscript. We also include an additional
explanation in Section 4.1 in this regard.
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Related to uncertainties in drivetrain losses, learning algorithms may perhaps be
incorporated, for instance, by Gaussian process methods (Hart et al., 2018). This
would require modification of the drivetrain model, accommodating uncertainties
in the losses. As such additional complexities would require extra work and poten-
tially drift the focus of our current study, we reserve such an extension for future
work.

Revised portions:

• (2) and the explanatory text that follows:
“. . .

Jωr(t)ω̇r(t) = Pr(t)− Pg(t)/ηg . (2)

where J ∈ R is the low-speed shaft (LSS) equivalent inertia, ωr ∈ R the
rotor angular speed, and Pg ∈ R the generated power with the corresponding
generator efficiency factor ηg ∈ (0, 1]. . . . ”

• (8) and (14) as a result of the change in (2):

P̂r(t) = Jωr(t)ˆ̇ωr(t) + Pg(t)/ηg . (8)

P̂r(k) = Jω̃r(k)
˜̇̂ωr(k) + Pg(k)/ηg . (14)

• Third paragraph of Section 4.1.1 (note: including the change of
steady-state power resulting from the inclusion of ηg = 0.94):
“. . . In addition, the inertia value of the NREL-5MW is used (see Table 1),
under the steady-state operating conditions ω̄r = 0.8 rad/s and P̄g = 1.647
P̄g = 1.548 MW, the latter of which is computed using (5) with C⋆

p = 0.469,
and λ⋆ = 6.53, and ηg = 0.94. . . . ”

• Explanatory text following (15):
“. . . where G ∈ R+ is the gearbox ratio of the drivetrain, Tr = Pr/ωr is the
aerodynamic torque, and Tg = Pg/(ηgωrG) is the generator torque.”

• Change in the aerodynamic power equation in Remark 4 as a result
of the change in (2):
“Remark 4. Similar to the numerical derivative-based method, the state
estimation scheme above can provide the aerodynamic power estimate by
making use of the relation P̂r = Jω̂r

ˆ̇ωr + Pg/ηg. . . . ”

• Last paragraph of Section 4.3:
“. . . as this will diminish and deteriorate the Jωrω̇r estimate such that P̂r ≈
Pg/ηg (i.e. information will be lost). The case where Jωrω̇r = 0 such that

P̂r = Pg/ηg is demonstrated by the green line, . . . ”
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• Section 6.1, second paragraph:
“. . . In contrast to using equal Cp tables in the previous analysis sections,
using the reference wind turbine models in OpenFAST leads to simulating the
aerodynamic properties of the respective turbines. For both turbines, ηg = 1
is chosen. . . . ”

2. Assumption 2: Only below rated operation with constant pitch angle

This assumption could potentially make the results of the paper unobtainable in
real conditions. The state of the art wind turbine control uses pitch extensively
in the below rated region. For e.g. optimal power tracking outside the optimal
lambda region, thrust peak shaving, noise reduction control, fore-aft tower damp-
ing.

The REWS is also critical for turbine control in the above rated region as various
load reduction control techniques rely on accurate wind speed information. Ensur-
ing that the estimator can work in above rated is therefore also of high importance.

From experience designing and tuning wind speed estimators assuming constant
pitch angles can lead to poorly tuned wind estimators where the pitch angle sig-
nal contaminates the REWS estimate leading to poor dynamic performance. The
tuning method procedure derived in this paper might therefore not work if this
assumption is lifted.

A discussion on the consequences of lifting this assumption, the feasibility of the
presented method when this assumption is lifted and possible mitigations would
make the applicability of the method much clearer.

Response: Thank you for your remark regarding Assumption 2. We acknowledge
the importance of blade pitch angle information to be accounted for in the proposed
wind speed estimation framework. In our manuscript, we focus on analyzing the
wind speed estimator in open-loop and, therefore, use the baseline Kω2

r controller
strategy:

“ . . . The drivetrain system outputs ωr, which is then fed into the optimal torque
controller (Bossanyi, 2000), often known as the ‘Kω2

r ’ controller. However, par-
tial-load controller design is not the main focus of this study; hence, the Kω2

r

controller is deemed sufficient for the goal of this work. . . . ”

Extending the current framework by including an extra input and considering blade
pitch angle dependency of the Cp table inside the wind speed estimator should not
be difficult. This approach has also been employed successfully by Lazzerini et al.,
(2024) and Zahle et al. (2024). For now, we retain the assumption, however, we

Page/of 5/21



Date January 27, 2025
Our reference n/a

Page/of 6/21

acknowledge the valuable suggestion of the reviewer for future formal analysis.

Revised portions:

• Section 3.2, prior to (5):
“. . . That said, this work is equally applicable to more advanced partial-load
controllers available in the literature, such as tip-speed ratio tracking schemes,
e.g., Brandetti et al. (2023) and Lazzerini et al. (2024). Note must be
taken, however, that in the latter scheme, blade pitching is active in partial
load. Thus, further study of the current scheme under varying pitch angles is
required and reserved for future work. . . . ”

• Section 7, last sentence:
“. . . Future study will consider providing an optimal means for the estimator
tuning, e.g., by Bayesian optimization, incorporating currently unmodeled dy-
namics, e.g., drivetrain torsion, tower dynamics, and dynamic inflow effects,
and accounting for blade pitch information. ”

3. Assumption 3: Accurate power coefficient

Assuming an accurate power coefficient is reasonable given clean blades, however
the power coefficient model used in this paper is not suitable for modern very large
wind turbine designs such as the IEA reference wind turbines used in this paper.
The model neglects the substantial aerodynamic effects of rotor deflection which
are especially prevalent in the below rated region.

The effect is not seen in the simulations as the ElastoDyn module is used for the
blade beam models and this model does capture the torsion of the blades which
is critical for the aerodynamic performance. Instead using the BeamDyn module
would show the effect of blade deflection on the estimator performance.

Discussing this aspect would likely give a clear path for future work. The authors
could even consider computing the Cp value for a few operating points of the
IEA22MW turbine near the rated wind speed with and without blade deflection in
order to discuss / assess the magnitude of the error induced

Response:
Thank you for your comment and suggestion. This is indeed a very valid point,
and we thank the reviewer for raising it. Indeed, present-day large-scale turbines
have blades with considerable flexibility under varying loads resulting in bending
and twisting largely due to bend-twist coupling effects. In our work, the power
coefficient is generated without considering significant deformations in terms of
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deflection and structural twist of the blades, which might not produce the most
accurate aerodynamic data with respect to real-world conditions, as the reviewer
has inferred. Therefore, in our mid-fidelity simulations, we deactivate the Beam-
Dyn module to prevent high inaccuracies between the generated power coefficient
table and the actual coefficient of the rotor during simulations. Therefore, we have
put in our best effort in terms of ensuring consistency between our data generation
and simulation conditions.

That said, we acknowledge that having a more representable power coefficient
table, followed by evaluation with the higher-fidelity structural module such as
BeamDyn, would be beneficial in terms of real-world accuracy. One of the im-
plications of incorporating a blade flexibility model into the aerodynamic power
coefficient generation would require a redefinition of the Cp table as a function of
tip-speed ratio λ = ωrR/U (where R is the rotor radius) into a function of rotor
speed ωr and wind speed U . This is because different combinations of ωr and U
would not give the same power coefficient due to changing aerodynamic properties
as a result of blade bending and bend-twist coupling even though they produce
the same λ. The previously mentioned approach involves extended steady-state
calculations of the aerodynamic properties in steady state resulting from the added
dimension and has been recently exposed and elaborately analyzed in the work of
Lazzerini et al. (2024).

As discussed above, considerations in accounting for significant blade deforma-
tion in generating a power coefficient table will add complexity to our current
analysis presented in the paper, for instance by replacing Cp(λ) into Cp(ωr, U).
Aligned with our earlier response on Assumption 1, our primary goal is to develop a
framework for analyzing a power balance wind speed estimation method, identify-
ing its optimal structure among subcomponent combinations, and calibrating it for
different turbine sizes. Hence, we must limit the scope of our current analysis, and
therefore, alterations in the behavior and performance of the proposed estimator
under more flexible blades are subject to future study. Nevertheless, to enhance
the clarity of our current work, we include a new remark in the revised manuscript
as documented below.

Revised portion, following (4):
“Remark 1. The power coefficient considered in this work does not take into
account the aerodynamic effects due to structural deformations, e.g., those asso-
ciated with bend-twist coupling of the blades. Had this been the case, changes
in local blade sections’ angle of attack are expected and different combinations of
ωr and U , although they correspond to the same λ, might yield different power
coefficients. This would render the one-on-one mapping between λ and Cp inade-
quate such that Cp : R2 → R mapping is needed (i.e., Cp(ωr, U) instead of Cp(λ);
see Lazerrini, et al. (2024) and references therein). Nevertheless, without loss
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of generality, the mapping of the former is adopted for the sake of clarity of the
analysis of this paper; thus, the Cp tables in this work are generated using rigid
rotor assumption. ”

Technical Corrections

1. Seems that the Fast simulations are sometimes referred to as mid-fidelity, some-
times high-fidelity. e.g. line 85 and 95.

Response: Thank you for your comment. Throughout our paper, we refer to
OpenFAST simulations as mid-fidelity, especially in the introduction and conclusion
chapters. At times, we also refer to it as higher-fidelity to contrast it with the
lower-fidelity simulations in Sections 4-5. Nevertheless, to prevent confusion, in
the revised manuscript, we consistently use ‘mid-fidelity.’ Please see the attached
marked-up version of the revised manuscript for details

2. Line 116 It is claimed that the reference turbines represent industrial turbine de-
signs which is not accurate since these turbines are designed by academia. If you
compare the relations of the listed quantities across industrially designed turbines
I expect you will find a high variance.

Response:Thank you for raising this point. It is indeed true that the presented
reference wind turbines are designed by academia. Moreover, we must acknowledge
that whether the listed reference wind turbines in our original manuscript are rep-
resentative of industrial turbine designs still requires more rigorous data collection
from various original manufacturers and further study. Therefore, we remove the
following statement in the revised manuscript.

Revised portion in Section 2.2, at the beginning and the end of the section,
respectively:
“As mentioned earlier in Section 1, wind speed estimator calibration for real-world
industrial turbines methodology for various wind turbine sizes is presented in this
work.
. . .
As the reference wind turbines represent industrial turbine designs, it is expected
that the derived fits hold acceptable prediction quality for industrial turbines.”

3. Line 240 Often the ”noise” seen on the speed measurement are unmodelled dy-
namics and not Gaussian white noise. Some of these unmodelled dynamics will be
present in the fast simulation. The filtering chosen thus often needs to consider
the unmodelled dynamics rather than the actual noise variance
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Response: Thank you for your remark. We acknowledge that, in real wind turbine
speed measurements, additional dynamic effects than what is modeled in our work
can be observed and may deteriorate wind speed estimation if not fully accounted
for.

We agree that including additional dynamics, such as additional drivetrain DOF,
tower DOFs, unsteady aerodynamics, and any residual unmodeled dynamics such
as noise, may further improve the wind speed estimation quality. As incorporating
such dynamics in the current work would potentially deviate from its main focus,
we intend to do this in the future, as we have already inferred in the revision below.

Revised portion, last paragraph of Section 7:
“ . . . Future study will consider providing an optimal means for the estimator tun-
ing, e.g., by Bayesian optimization and incorporating currently unmodeled dynam-
ics, e.g., drivetrain torsion, tower dynamics, and dynamic inflow effects. ”

4. Line 340 The turbulence intensity used for the simulations is very low. What jus-
tified using such low values?

Response: Thank you for your question. Although we present our work as a site-
independent framework, we believe that 4% of turbulence intensity is a reasonable
choice, e.g., for offshore sites (see, e.g., Van der Hoek et al. (2020) and Taschner,
E. et al. (2023)). Furthermore, despite the use of low turbulence presented in the
manuscript, we also performed simulations with higher turbulent wind cases, i.e.,
12% to prove the efficacy and validity of our method. This number is a reasonable
choice for onshore sites, as shown in the following figure.
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The above results show high similarities with respect to that of the 4% turbulence as
shown in Fig. 5 of the original manuscript, despite the change in overall magnitudes.
As we reach the same conclusions with the low turbulent case, we do not include
the high-turbulent results in the paper.

5. Figure 5: It would be beneficial to include the normalized power error and maybe
even the cubic root of the normalized error as this should be proportional to the
resulting error in estimated wind speed.

Response: Thank you for your comment. In the following figure, we plot the
normalized aerodynamic power error and the corresponding wind speed estimate
error, where tailored L2 gain setting is used and iterative single-step wind speed
estimate solver is employed for the latter. On the left plot, we show the mean values
and on the right plot, we depict the standard deviation values of both errors. The
data (and the fitted lines) confirm your statement regarding the proportionality
relationship between both errors in terms of mean and standard deviation.
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While this finding confirms your statement, we believe it serves as a supplementary
validation to the core contributions of our work. Therefore we refrain from its
inclusion in the revised manuscript.

6. Line 574 As part of assessing the performance of the estimator it would be benefi-
cial to have step wind or gust simulation cases where it is easy to see the transient
response e.g. lag. Minimizing the lag is very important for the turbine control in
gust like scenarios.

Response: We appreciate the suggestion to demonstrate transient response in
step wind or gust scenarios. However, transient characteristics are part of the dy-
namic tuning of the estimator, which would change for different tunings. Thus, we
heavily focus on providing tuning rules and methodology for satisfactory estimator
performance over a turbine range; the actual dynamic transient behavior is a design
choice of the one implementing and calibrating the estimator.

7. Figure 13: A zoom would nice as the both the actual REWS and the I&I REWS
have higher frequency content and it is not possible to see if they are actually
correlated

Response: Thank you for your suggestion. We agree with you that zoomed-in
insets would enhance the clarity of the plots, especially in providing information
on whether the actual REWS and the I&I estimate are correlated. Therefore, in
the revised manuscript, we changed Figs. 13 and 14 into the following to include
zoomed-in plots. As can be seen in the ‘Revised portions’ below, some oscillations
of the I&I REWS estimation seem to be correlated with that of the actual REWS
with some lags. However, without additional tools, it is challenging to present any
clear conclusions regarding the correlations of both signals. Therefore we do not
do so in the current work to retain its conciseness and clarity.

Revised portions:
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Figure 13. Wind speed estimation time series for the NREL-5MW wind turbine. The proposed
method (blue line) gives a smooth, less noisy estimate compared to the I&I (green line) for

both low (top plots) and high (bottom plots) turbulent cases. The low-frequent component of
the wind speed is captured where biased estimation occasionally occurs, potentially due to an
inaccurate Cp table utilized in both estimators and an absence of dynamic inflow modeling in
the estimators. The actual REWS, as outputted by OpenFAST, is shown in the gray line.
Zoomed-in plots of 25-s time spans are provided on the right for clearer observation of the

estimation performance.

Figure 14. Wind speed estimation time series for the IEA-22MW wind turbine. The proposed
method gives a smooth, less noisy estimate compared to the I&I (green line) for both low (top
plots) and high (bottom plots) turbulent cases. Constant L2 (dashed dark blue line) results in

lagged estimation compared to gain-tailored L2 (solid blue line). The actual REWS, as
outputted by OpenFAST, is shown in the gray line. Zoomed-in plots of 25-s time spans are

provided on the right for clearer observation of the estimation performance.

8. Figure 15: Very hard to read as the bars blue bars cover the green bars. Consider
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changing from bars to lines, such that both distributions can easily be seen,

Response: Thank you for pointing this out. We agree that Fig(s) 15 (and 16)
can be further improved by changing the presentation from bars to lines. Therefore
the following figure has been used to replace Figures 15 (and 16).

Revised portion:

Aerodynamic Power Estimation Error (%)
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Figure 15. Aerodynamic power estimation error histograms of the wind speed estimators. Both
the I&I and the proposed power balance wind speed estimator are shown to have similar

aerodynamic power error distributions.

Figure 16. Wind speed estimation error histograms of the wind speed estimators. Both the I&I
and the proposed power balance wind speed estimator are shown to have similar wind speed
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estimation error distributions. Subtle differences are also shown for both the I&I and the
proposed power balance wind speed estimator, where the former has slightly higher occurrences

at the histograms’ tails due to the higher noise level, while the latter has slightly higher
occurrences at the center of the distributions.

References:
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Response to Reviewer 2

The paper discusses the topic of estimating the wind speed for wind turbines, the topic
is relevant to wind energy industry. The paper is clear and well written, and it add a
contribution to the field of wind turbine wind speed estimation, the methods used to
develop both the aerodynamic power estimator and wind speed estimate solver has been
well implemented and described.

Response: Thank you for the kind words and appreciation given to our work. In the
following we provide our responses to your comments.

Nevertheless, the assumptions of neglecting the power losses between the generator and
the gearbox of the wind make the method developed not suitable for direct implementa-
tion, the efficiency of the drivetrain can be added to the problem in future study based
on the outcomes of this work.

Response: Thank you for your comment. In the original manuscript, we did not account
for the losses between the generator and the gearbox of the wind turbine. However, in the
revised manuscript, we have addressed this issue by lifting the assumptions, specifically
Assumption 1, as detailed in our response to Reviewer 1’s Specific Comment No. 1. We
kindly refer you to that response for further clarification.

There are minor typos observed in the manuscript as follow: 1- Page 3 line 76 ”...outlines
the contributions of this work” a colon (:) could be added after ’work’. 2- Page 7 line
157, the expression at the end of the line exceeds the page margin. 3- The front size in
figures [1, 4 - 6, 8, 9, 11 - 16] is small and could be enlarged.

Response: Thank you for pointing these out. In the revised manuscript, we have applied
changes to improve the readability of our paper, including: (1) adding a colon on page 3
line 76, (2) fixing the page margin exceeded by the expression at the end of line 157 of
page 7, and (3) increasing the font size in figures [1, 4 - 6, 8 - 16]. Please also note that
we altered the width vs. height ratio of Figs. 6, 11, and 12 in the revised manuscript to
reduce whitespace while still maintaining clarity.

Page/of 15/21



Date January 27, 2025
Our reference n/a

Page/of 16/21

Response to Reviewer 3

The paper addresses the topic of wind estimation, which is of great relevance in wind tur-
bine engineering, and uses a systematic approach and well-known tools such as Kalman
filters and Luenberger estimators. Besides, the method has been validated using aeroe-
lastic simulations. However, some important issues should be addressed before the paper
is published:

1. The introduction states that many wind turbine control structures are based on
wind estimators. However, this is far from true. Wind turbine controllers are mainly
based on the feedback of generator speed and nacelle acceleration because wind
measurements and estimates should not be trusted or have to great a delay. How
does the proposed method change this scenario?

Response: Thank you for your question. While it is true that many wind tur-
bine controllers rely heavily on feedback from generator speed and nacelle accel-
eration, the statement in the introduction has already provided evidence referring
to the growing body of research and emerging wind turbine control approaches
incorporating wind speed estimators. These methods, though they might not be
universally adopted, are gaining traction due to advancements in estimation tech-
niques and their potential to improve performance in certain scenarios. Further
evidence has also been found in recent publications, which we have included in the
revised manuscript:

(a) In the work of Brandetti et al. (2023), the authors provide a rigorous study
on the comparison between wind speed estimate-tip-speed ratio (WSE-TSR)
tracking scheme and a baselineKω2

r controller. It is shown that the WSE-TSR
scheme provides more flexibility compared to the baseline controller (which
solely relies on generator speed measurements) in terms of power and load
objectives trade-off;

(b) In the work of Lazzerini et al. (2024), the authors propose a novel feedforward-
feedback control scheme that leverages optimal operational set points com-
puted by an optimizer accounting for the effects of blade deformations on
the aerodynamic performance and turbine loading. In their proposed scheme,
the authors utilize wind speed estimates to schedule their proposed controller
to track the generated optimal set points, as well as to schedule a set point
smoother for a smooth partial-full load transition. This work has been estab-
lished in collaboration with an industry partner;

(c) The Reference Offshore Open-Source Controller (ROSCO) (Abbas et al.,
2022)—developed to represent industrial standards—provides wind speed es-
timation as a means to provide wind speed information to a tip-speed ratio
tracker torque controller, not to mention a pitch saturation routine.
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(d) The power balance wind speed estimation scheme that we proposed has been
utilized in previous studies in Mulders et al. (2023a) and Mulders et al.
(2023b), where the combination of numerical derivative-based aerodynamic
power estimator and continuous wind speed estimate solver is chosen as the
structure of the estimator. Therein, the wind speed estimate is leveraged in a
WSE-TSR tracking scheme to provide the optimal reference for tracking the
optimal TSR at the partial-load regime. In these studies, however, the authors
focus on Cp learning algorithms development and not on the analysis of the
power balance wind speed estimator itself. These works (and our current
work) have also been established in collaboration with an industry partner.

With regard to wind speed estimation delays/lags, Section 4 of our study has been
dedicated to the analysis of such undesired behavior. Particularly, we have identified
that information lack due to excessive noisy measurement filtering in the numerical
derivative-based aerodynamic power estimation would lead to P̂r ≈ Pg/ηg, which
is the worst-case lag scenario as presented in Fig. 6. As such a lag would entail a
lagged wind speed estimate, we propose the state estimation-based aerodynamic
power estimator as a viable alternative. This is because the estimation performance
can be tuned intuitively by choosing appropriate natural frequency and damping (ω0

and ζ0) as elaborated in Section 4.3 such that minimum delays/lags can be obtained
while achieving overall high estimation accuracy. The resulting wind speed estimate
thus becomes a reliable and valuable signal for augmentation with controllers (the
cases of which have been demonstrated in the aforementioned literature, as well as
in Section 1 of our manuscript).

We hope this clarifies our perspective.

Revised portion, second paragraph of Section 1:
“Regardless of the potential economic benefit, the task of controlling wind turbines
with larger rotors is becoming more of a challenge, especially when accurate in-
formation on wind speed is crucial to ensure high controller performance, e.g., for
gain-scheduling (Kumar and Stol, 2009; Koerber and King, 2013), feedforward(-
feedback) control (Van Engelen and Van der Hooft, 2003; Koerber and King, 2013;
Lazzerini et al., 2024), or tip-speed ratio tracking (Bossanyi, 2000; Ortega et al.,
2013; Abbas et al., 2022; Brandetti et al., 2022, 2023), to mention a few.. . . ”

2. What is the main purpose of the proposed wind estimate? If it is going to be used
for control purposes, how does the estimator block improve performance? As the
control action is going to be based on the generator speed either way, why is a
two step procedure (estimator+controller) a better option than the standard feed-
back? How does the main purpose affect the requirements on the estimated signal?

Response:
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Thank you for your questions. One of the main purposes of the proposed wind
speed estimate is indeed for control purposes, as you have indicated. Nonetheless,
in our work, the used controller (Kω3

r ) is solely reliant on the generator speed
and does not use any wind speed information, as you have also inferred. This is
done purposefully to allow as clear as possible analysis of our proposed estimator in
an open loop—free from controller interferences, similar to what was done in the
literature, e.g., Østergaard et al., (2007) and Soltani et al., (2013). That being
said, we, in contrast to the reviewer’s observation, see a large industrial traction
for advanced controllers including the wind speed estimator and tip-speed ratio
tracking (WSE-TSR) schemes. The use of such a controller is illustrated by the
works mentioned above. Nevertheless, several aspects of the estimator remained
unclear, which we aimed to address in our current work, such as

(a) how the estimated signal would look like under noisy measurements;

(b) how the estimator should be calibrated across different turbines such that the
estimated signal is representative with respect to the sizes of the turbines in
question;

(c) whether or not there are better alternatives (thus more optimal estimator
structure and better-conditioned resulting estimated signal) than the existing
aerodynamic power estimator and wind speed estimate solver.

The answer to the reviewer’s question on whether a two-step procedure is a better
option than the standard feedback might lie in the study of Brandetti et al. (2023).
In the study, the authors investigated a WSE-TSR tracking procedure akin to that
used in Mulders et al. (2023a) and Mulders et al. (2023b) and made a comparison
with a standard Kω2

r controller—with the Immersion and Invariance wind speed
estimator being used in place of the power balance estimator. The authors demon-
strate in that work that by having such a combined estimator-controller scheme,
more freedom in dynamic controller tuning is attained. Moreover, there are greater
possibilities in reaching optimal actuation and performance trade-offs, for exam-
ple limiting generator torque fluctuation and maximizing power production, these
optimal solutions are illustrated by Pareto fronts by virtue of additional tuning pa-
rameters the framework provides.

3. The estimator is based on the idea that both the inertia and the cP are known val-
ues. Is that a realistic approach? Have the authors performed a sensitivity analysis?

Response: Thank you for your questions. When a turbine is newly manufac-
tured, the modeled inertia J and power coefficient Cp are believed to be good
estimates of the actual properties of the turbine. However, these properties may
change over the lifetime of the turbine due to various causes of degradation. A
change of J , according to our framework, would result in a change in the dynamics
of the state estimation-based aerodynamic power estimator, in particular, the esti-
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mator gain L2 would no longer be accurate as it is parameterized by J , as shown
in (22b). Having an estimate of J from field tests, for instance, by deceleration
test (Paniagua and Yasa, 2007; Ilina, 2011; and Jager, 2017), one may retune L2

based on (22b).

With regard to Cp value learning, the work of Mulders et al. (2023a) and Mulders
et al. (2023b), for instance, have provided several learning algorithms for Cp table
calibration given the inaccuracies that might occur in real-world setups. The for-
mer of which proposes a wind speed measurement-free approach, whereas the latter
proposes an excitation-free and data-driven Cp calibration approach. Moreover, in
the work of Brandetti et al. (2022), sensitivity analysis on the effect of inaccurate
Cp table on wind speed estimation has been studied, where biased estimates might
result from the inaccuracy of the coefficient. Estimating such quantities, however,
falls within the scope of the parameter estimation and learning control field and is
not the focus of our current work; therefore, the reviewer is referred to the afore-
mentioned works for more details.

4. The paper says that high power wind turbines show great wind speed variance
across the rotor. How does it affect the estimation? Would it make sense to focus
on blade effective wind speed?

Response: Thank you for your question. The greater the rotor area of a wind
turbine, the greater the wind speed variation across the rotor. The whole con-
cept of rotor-effective wind speed (REWS) is, therefore, to capture this effect in a
single quantity—capturing the spatial variation effects (e.g., from shear, veer, etc.).

Blade-effective wind speed (BEWS) is another means to capture such spatial vari-
ance, for instance, by exploiting blade load measurements and the so-called cone
coefficient, the detail of which is provided in the literature, such as the work of
Liu et al. (2022). However, whether BEWS is required needs further context and
justification as it is needed mostly for more sophisticated control objectives such
as blade load mitigation by individual pitch control (e.g., as done in Pamososuryo
et al., (2023)), whereas REWS is already sufficient for most control purposes, such
as tip-speed ratio tracker torque controller (Brandetti et al., (2023) and Lazzerini
et al., (2024)), and blade pitch saturation (Abbas et al., 2022), to mention a few.
Based on this reasoning, we focus on the development of the proposed REWS
estimator.

5. Section 4.1 proposes a first order filter to eliminate measurement noise. Could the
time constant be chosen by characterizing the spectrum of the sensor noise and
the generator speed? Maybe a frequency domain analysis could be a useful guide.
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Response: Thank you for your question. It is indeed possible to choose the
time constant by characterizing the spectrum of the sensor noise and the generator
speed and then setting the cut-off frequency of the filter accordingly. In Section
4.1 we have provided a measurement noise-time constant sweep, in which we can
observe the trade-off between the noise filtering and biased estimate. Later on in
Section 4.3, we compare this method with the state estimation-based approach, in
which the latter is shown to be much more effective and noise-resilient. Therefore,
we do not include additional studies of the filtered derivative parameter character-
ization in our work, as it is of less interest.

6. The grammar should be reviewed, specifically the use of the Saxon genitive for
nonanimate subjects and the subject-verb agreement.

Response: Thank you for your feedback. In the revised manuscript, we have
made improvements wherever possible with regard to the misuse of the Saxon gen-
itive in the previous version of our work. Subject-verb agreements have also been
improved in the revised manuscript. Please refer to our marked-up version of the
revised manuscript to see the detailed changes.
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Abstract. Modern wind turbines’ size growth
:::
The

::::
size

::::::
growth

:::
of

:::::::
modern

::::
wind

:::::::
turbines

:
creates challenges in their control

system design, particularly due to greater wind variability across larger rotor areas. As modern turbine control systems rely

on the availability of accurate wind speed information, the increasing unrepresentativeness of pointwise measurement devices,

such as anemometers, necessitates the incorporation of more representative rotor-effective wind speed (REWS) estimation.

Classical REWS estimators, based on static power relations, often fail to account for dynamic changes, leading to inaccurate5

estimation. To overcome these challenges, this paper introduces a power balance-based REWS estimation framework and splits

the estimation problem into two modules: an aerodynamic power estimator and a wind speed estimate solver. Two possible

aerodynamic power estimation techniques are discussed based on numerical derivative and state estimation. As state estima-

tor calibration remained a challenge for varying wind turbine sizes, a gain-tailoring method for the performance calibration

throughout a range of modern wind turbine sizes has been derived for the state estimation-based aerodynamic power estimator.10

Two types of wind speed estimate solvers are analyzed, namely the continuous and iterative single-step methods. From the

two modules, the best-performing methods—the state-estimation aerodynamic power estimator and iterative single-step wind

speed solver—are chosen to form the optimal power balance REWS estimator. The combined optimal estimator is validated

through OpenFAST simulations of the NREL-5MW and IEA-22MW turbines and compared against a baseline method. The

proposed method demonstrates good tracking of the REWS, better noise resilience, and convenient estimator gain calibration15

across different turbine sizes.

1 Introduction

With the increasing demand for clean and renewable wind energy for the provision of electricity worldwide, there is a trend

to upscale wind turbine sizes (Global Wind Energy Council, 2024). Greater wind turbine rotor swept areas enable more wind

energy to be harnessable, resulting in increasing power production per unit turbine and effectively lowering the so-called20

levelized cost of energy—thus making wind turbines more competitive in the energy market (Burton et al., 2011; Veers et al.,

2019).

Regardless of the potential economic benefit, the task of controlling wind turbines with larger rotors is becoming more of

a challenge, especially when accurate information of
::
on

:
wind speed is crucial to ensure high controller performance, e.g., for

1



gain-scheduling (Kumar and Stol, 2009; Koerber and King, 2013), feedforwardcontrol (Van Engelen and Van der Hooft, 2003; Koerber and King, 2013)25

:::::::::
(-feedback)

::::::
control

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Van Engelen and Van der Hooft, 2003; Koerber and King, 2013; Lazzerini et al., 2024), or tip-speed ratio

tracking (Bossanyi, 2000; Ortega et al., 2013; Brandetti et al., 2022)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bossanyi, 2000; Ortega et al., 2013; Abbas et al., 2022; Brandetti et al., 2022, 2023)

, to mention a few. This is mainly caused by the greater spatial variability across the rotor-swept area for larger turbines. Thus,

pointwise wind speed information, such as provided by anemometers downstream at the nacelle, becomes increasingly unrep-

resentative, not to mention the presence of highly perturbed wind flow by the rotating turbine blades (Soltani et al., 2013). On30

the other hand, being the main driving force of a wind turbine, the deduction of more representative wind speed information

via the turbine dynamics has been seen as a viable alternative (Boukhezzar and Siguerdidjane, 2011). To be more exact, other

available measurements, namely rotor speed, generator torque signal, and blade pitch position, can be made use of to provide

the so-called rotor-effective wind speed (REWS) estimate (Østergaard et al., 2007).

Early REWS estimation studies (see Østergaard et al. (2007); Soltani et al. (2013) and references therein), for a large part,35

utilize the static relation between the produced power and the REWS by omitting the always-occurring dynamical changes in

the rotor speed. Resultingly, these REWS estimators cannot provide accurate estimations of the aerodynamic torque in transient

conditions due to the neglected dynamic information.

To address the aforementioned shortcoming, later REWS estimation studies, incorporating the rotor acceleration informa-

tion in their framework, arose in the literature. In Bossanyi (2000), the REWS estimate is obtained by firstly estimating the40

aerodynamic torque by reformulation of torque balance drivetrain dynamics, which account for rotor acceleration and drive-

train inertial information. Then, given a priori knowledge of the aerodynamic torque coefficient table, it is possible to deduce

the information on the wind speed1. The work of Van Engelen and Van der Hooft (2003) and Boukhezzar and Siguerdidjane

(2011) adopt a similar estimation approach, where for the wind speed estimate solver, the Newton-Raphson algorithm, being

an iterative single-(time)step method, is utilized. In Ortega et al. (2013), an Immersion and Invariance method for the wind45

speed estimation is employed and its global convergence guarantee is provided. This method seeks to nullify the error between

measured rotor speed and its estimate, the latter being the integrated difference between (inertia-scaled) generator torque and

aerodynamic torque estimate, by a proportional compensator (plus an integrator, as extended by Liu et al. (2022)). Having

canceled the rotor speed estimation error, the wind speed estimate is then obtained in a continuous manner. The continuous

method, in comparison with the iterative method, is considered to be a multiple time-step
:::::::::::::::
multiple-time-step solving scheme.50

Nevertheless, stability analysis of the continuous solver following a discretization has remained unaddressed, to the best of

the authors’ knowledge. Moreover, the performance comparison between the two wind speed estimation solving methods has

received little attention in the literature.

With regard to the aerodynamic torque or power estimator, the work of Østergaard et al. (2007) is of particular interest.

Two ways to obtain the aerodynamic torque estimate are studied therein, namely by (filtered) numerical derivative or by55

state estimation. The former is associated with the numerical differentiating method used to obtain rotor acceleration estimate

1In Bossanyi (2000), the information on the tip-speed ratio corresponding to the estimated aerodynamic torque is the main estimation output. Thus, given

rotor speed measurements, the wind speed estimate can be straightforwardly derived from this tip-speed ratio estimate (as explained in Østergaard et al.

(2007)).
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from measured rotor speed. This provides a necessary ‘ingredient’ to reconstruct aerodynamic torque given a priori inertia

information and generator torque input. The latter method provides two cascaded observers. The inner loop estimates the

unmeasurable turbine states by Kalman filtering, while the outer one estimates the aerodynamic torque by a proportional-

integral compensator structure. Although performance comparisons of both methods are provided, little attention was paid60

to the effect of noisy measurements on the aerodynamic torque estimators, which might deteriorate the ensuing wind speed

estimation. To facilitate calibration of wind speed estimation by state estimation, the work of Moustakis et al. (2019) proposed

a machine-learning-based Bayesian optimization approach. Nonetheless, since it remained unclear how to properly tune such

a wind speed estimator, a Bayesian optimization approach, which is a global optimization machine learning algorithm, was

adopted in the study.65

However, optimal wind speed estimator tuning for a single turbine might not necessarily translate into optimal performance

when applied to a different turbine. Given the accelerated growth in modern wind turbine sizes, there is a need to derive a

calibration methodology to ensure optimal estimator tuning throughout these turbines.

Furthermore, based on the above literature review, four possible combinations of aerodynamic torque (or aerodynamic

power, as made clearer shortly) estimator and wind speed estimate solver can be constructed with the optimal combination left70

undetermined. Moreover, validation in realistic simulation settings of such an optimal wind speed estimator combination—

calibrated for wind turbines of various sizes—needs to be performed. It is also worth noting that the aforementioned works on

various wind speed estimator schemes are based on the torque balance modeling of the wind turbine drivetrain. While utilizing

such torque-based coordinates has been widely used for wind turbine control designs in the literature, employing power-based

terms to represent the wind turbine dynamics is commonly used within the industry (Hovgaard et al., 2015; Odgaard et al.,75

2017; Brandetti et al., 2022; Mulders et al., 2023a; Pamososuryo et al., 2023). The current work thus provides a wind speed

estimator framework, for a major part, in terms of power balance dynamics. That said, adopting this work into the torque

balance framework is straightforward. The following outlines the contributions of this work
:
:

1. Provide a thorough analysis for numerical derivative- and state estimation-based aerodynamic power estimators given

noisy measurement settings;80

2. Formalizing a calibration methodology for state estimation-based aerodynamic power estimator for a range of modern

wind turbine sizes;

3. Deriving iterative and continuous wind speed estimate solvers, while providing frequency-domain stability analysis for

the latter mentioned method;

4. Identifying the optimal wind speed estimator structure out of the proposed aerodynamic power estimators and wind85

speed estimate solvers;

5. Provide a mid-fidelity validation of the selected optimal estimator under realistic conditions for multiple wind turbine

sizes.
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The remainder of this paper is structured as follows: In Section 2, preliminaries required for this paper, being the notation

convention, key reference wind turbine properties, and assumptions used throughout the paper, are explained. Section 3 touches90

upon the closed-loop wind turbine model and the proposed power balance REWS estimation framework. Section 4 and 5 covers

several potential options for the aerodynamic power estimator and wind speed estimate solver subcomponents, respectively,

where thorough analyses and low-fidelity numerical demonstrations are given. In Section 6, the proposed combination of the

aerodynamic power estimator and wind speed estimate solver subcomponents are validated using higher-fidelity wind turbine

simulation results. Finally, the conclusions and recommendations of this work are laid out in Section 7.95

2 Preliminaries

2.1 Notations

In this section, frequently used notations in this paper are defined. Time dependency in the continuous domain is indicated by

the time variable t and in the discrete-time domain by the time-step variable k. Quantities in the continuous frequency/Laplace

domain are indicated by s notation and those in the discrete z-domain with z. A signal’s
:::
The first time-derivative

:
of

::
a

:::::
signal is100

denoted by ˙(•), the ˆ(•) notation indicates an estimated quantity, ¯(•) indicates a quantity at its steady-state, and ˜(•) denotes a

signal corrupted by noise. Constants associated with the optimal power coefficient, design tip-speed ratio, and fine pitch angle

are indicated by (•⋆).

2.2 Key Reference Wind Turbine Properties

As mentioned earlier in Section 1, wind speed estimator calibration for real-world industrial turbines
:::::::::::
methodology

::
for

:::::::
various105

::::
wind

::::::
turbine

::::
sizes

:
is presented in this work. Therefore, a wide range of wind turbine power capacities, which are at the present

day represented by the available reference wind turbine models ranging from 5 to 22MW, is considered to showcase the

applicability of the current study on a wide range of relevant-sized wind turbines. For that purpose, several reference wind

turbines are considered in this study and their key physical properties are summarized in Table 1.

For later convenience, empirical relations have been derived between the turbines’ rotor diameters D, power ratings Pg,rated,110

as well as their
::
the

:
low-speed-shaft equivalent inertias J

::
of

:::
the

:::::::
turbines. By drawing such relations, it is possible to account

for more turbine dimensions, power ratings, and inertias other than that
::::
those

:
of the reference turbines. To this end, the key

properties of the reference wind turbines in Table 1 are made use of to obtain the following fitted functions

J(D) =
(
2.581 · 106 · e0.02024D

)
kgm2 , (1a)

Pg,rated(D) =
(
1.491 · 106 · e0.009613D

)
W , (1b)115

J(Pg,rated) =
(
9.979 · 107P 2

g,rated +2.843 · 108Pg,rated

+2.424 · 108
)

kgm2 . (1c)
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Table 1. Reference wind turbines’ key
:::
Key physical properties

:
of
:::::::
reference

::::
wind

:::::::
turbines. Those of the NREL-5MW are taken from Jonkman

et al. (2009), the IEA-10MW from Bortolotti et al. (2019), the IEA-15MW from Gaertner et al. (2020), and the 22MW turbine from Zahle

et al. (2024).

Turbine parameter
Reference wind turbine

NREL-5MW IEA-10MW IEA-15MW IEA-22MW

Rated power, Pg,rated (MW) 5 10 15 22

Rotor diameter, D (m) 126 198 240 280

LSS-equivalent inertia, J (kg m2) 43,702,538 160,342,052 312,456,272 752,272,514.5

Gearbox ratio, G (−) 97 1 1 1

Figure 1. Curve fitting results. Reference wind turbine datapoints are depicted by the dots and the fitted curves are indicated by the lines.

The top plot is the mapping from the rotor diameter to the inertia (left y-axis) and rated generator power (right y-axis). The bottom plot is

the mapping from the rated generator power to the inertia.

For the above fits, the coefficient of determination R2 > 0.99 is ensured. As the reference wind turbines represent industrial

turbine designs, it is expected that the derived fits hold acceptable prediction quality for industrial turbines.

2.3 Assumptions120

There are no electromechanical losses in the drivetrain; that is, the generator and gearbox efficiencies are assumed to be 100%.

Assumption 1. The wind turbines analyzed in this study operate solely in the partial-load (below-rated) region, where the

generator power is controlled. The blade pitch angle is set to its constant fine pitch position. Consequently, the power coefficient

depends solely on the tip-speed ratio.125
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Aerodynamics

Power Balance Wind Speed Estimator

Aerodynamic 

Power Estimator

Wind Speed

Estimate Solver

Controller Turbine

Figure 2. The general scheme of the power balance wind speed estimation considered in this study. The wind turbine (red block) is operated

in a closed loop with a Kω3
r controller (green block), whereas the power balance wind speed estimator (blue block) is in an open-loop

configuration with the turbine. The power balance wind speed estimator is subdivided into the aerodynamic power estimator (yellow block)

and wind speed estimate solver (purple block).

Assumption 2. The power coefficient represents the exact steady-state aerodynamic characteristics of the actual rotor.

Assumption 3. In the low-fidelity simulations provided throughout this study, the power coefficient of all the considered

reference wind turbines (see Table 1) is equal to that of the NREL-5MW reference wind turbine so as to enable a clear analysis

and comparison of the results between the various considered turbines.

Assumption 4. The drivetrain inertia value at the low-speed shaft side is assumed to be an a priori known parameter.130

3 Closed-Loop Wind Turbine Model and Rotor-Effective Wind Speed Estimation Framework

Figure 2 presents the overall scheme considered in this work, in which the wind turbine is controlled by a partial-load controller

along with a power balance wind speed estimator. The wind speed estimator, being the main focus of the analysis in this work,

is connected in an open loop to the closed-loop system. The red block represents the wind turbine, the green block contains the

controller, and the blue block is the power balance wind speed estimator considered in this study.135

Sections 3.1 and 3.2 provide the required theory used in this paper by outlining the first two subsystems, followed by defining

the wind speed estimator. Then Section 3.3 addresses the decomposition of the estimator into several subcomponents, providing

a framework for the remainder of the work presented in this paper.

3.1 Single-Degree-of-Freedom Wind Turbine Model and Optimal Controller

In this work, single-degree-of-freedom power-balance drivetrain dynamics are considered as a simplified representation of a140

wind turbine as follows

Jωr(t)ω̇r(t) = Pr(t)−Pg(t)/ηg
::

, (2)

where J ∈ R is the low-speed shaft (LSS) equivalent inertia, ωr ∈ R the rotor angular speed, and Pg ∈ R the generated power

::::
with

::
the

::::::::::::
corresponding

::::::::
generator

:::::::::
efficiency

:::::
factor

:::::::::
ηg ∈ (0,1]. The aerodynamic power is given by the nonlinear relation

Pr(t) =
1

2
ρArCp(λ(t))U(t)3 , (3)145
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in which ρ ∈ R, denotes the air density, Ar ∈ R the rotor area, and U ∈ R the REWS (Soltani et al., 2013). The power coefficient

at the fine pitch Cp : R→ R (see Assumption 1) is a nonlinear mapping from the non-dimensional tip-speed ratio (TSR),

defined as

λ(t) =
ωr(t)R

U(t)
, (4)

with R ∈ R as the rotor radius.150

Remark 1.
:::
The

:::::
power

:::::::::
coefficient

:::::::::
considered

::
in

::::
this

::::
work

::::
does

:::
not

::::
take

::::
into

:::::::
account

:::
the

::::::::::
aerodynamic

::::::
effects

:::
due

::
to
:::::::::
structural

:::::::::::
deformations,

::::
e.g.,

:::::
those

:::::::::
associated

::::
with

:::::::::
bend-twist

::::::::
coupling

::
of

:::
the

:::::::
blades.

::::
Had

:::
this

:::::
been

:::
the

:::::
case,

:::::::
changes

::
in

:::::
local

:::::
blade

:::::::
sections’

:::::
angle

:::
of

:::::
attack

::::
are

:::::::
expected

::::
and

::::::::
different

:::::::::::
combinations

:::
of

::
ωr::::

and
:::
U ,

::::::::
although

::::
they

::::::::::
correspond

::
to

:::
the

:::::
same

:::
λ,

:::::
might

::::
yield

::::::::
different

::::::
power

::::::::::
coefficients.

::::
This

::::::
would

::::::
render

:::
the

::::::::::
one-on-one

::::::::
mapping

:::::::
between

::
λ
::::

and
::::
Cp :::::::::

inadequate
:::::

such

:::
that

:::::::::::
Cp : R2 → R

::::::::
mapping

::
is

:::::::
needed

::::
(i.e.,

:::::::::
Cp(ωr,U)

::::::
instead

:::
of

::::::
Cp(λ);:::

see
:::::::::::::::::::

Lazzerini et al. (2024)
:::
and

:::::::::
references

::::::::
therein).155

:::::::::::
Nevertheless,

::::::
without

::::
loss

::
of
::::::::::

generality,
:::
the

:::::::
mapping

:::
of

:::
the

::::::
former

::
is

:::::::
adopted

:::
for

:::
the

::::
sake

::
of
::::::

clarity
:::

of
:::
the

:::::::
analysis

::
of

::::
this

:::::
paper;

:::::
thus,

:::
the

:::
Cp :::::

tables
::
in

:::
this

:::::
work

:::
are

::::::::
generated

:::::
using

:::::
rigid

::::
rotor

::::::::::
assumption.

:

The drivetrain system outputs ωr, which is then fed into the optimal torque controller (Bossanyi, 2000), often known as

the ‘Kω2
r ’ controller. However, partial-load controller design is not the main focus of this study; hence, the Kω2

r controller is

deemed sufficient for the goal of this work. That said, this work is equally applicable to more advanced partial-load controllers160

available in the literature, such as tip-speed ratio tracking schemes, e.g., Brandetti et al. (2023) and Lazzerini et al. (2024).

::::
Note

:::::
must

::
be

::::::
taken,

::::::::
however,

:::
that

:::
in

:::
the

:::::
latter

:::::::
scheme,

:::::
blade

:::::::
pitching

::
is
::::::

active
::
in

::::::
partial

:::::
load.

:::::
Thus,

::::::
further

:::::
study

:::
of

:::
the

::::::
current

::::::
scheme

:::::
under

:::::::
varying

::::
pitch

::::::
angles

:
is
::::::::
required

:::
and

:::::::
reserved

:::
for

:::::
future

:::::
work.

:
The Kω2

r controller, in its generator-power

equivalence, is expressed as

Pg(t) = ηg
:
Kω3

r , (5)165

where

K =
πρR5C⋆

p

2λ⋆3
,

is the optimal control gain. The notation λ⋆ indicates the design TSR, corresponding to the optimal power coefficient,
:::::::
defined

::
as C⋆

p := Cp(λ
⋆). Based on the expression (5), in the remainder of this paper, as well as in Fig. 2, this optimal controller is

referred to as the ‘Kω3
r ’.170

3.2 Power Balance Wind Speed Estimation General Concept

This section establishes the REWS estimation framework that forms a basis for the remainder of this paper. The rationale behind

the power balance REWS estimator presented herein lies in the retrievability of the wind speed information by asymptotic

minimization of an error term between the aerodynamic power and its estimate, in which Assumption 2 holds, that is

U(t) = lim
t→∞

argmin
Û(t)

|ep(t)| , (6)175
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Wind Speed

Estimate Solver

(Section 5)

Aerodynamic 

Power Estimator

(Section 4)

Numerical

Derivative-Based

(Section 4.1)

State Estimation-

Based

(Section 4.2)

or or

possible combinations

Continuous Solver

(Section 5.1)

Iterative

Single-Step Solver

(Section 5.2)

Power Balance Wind Speed Estimator

Figure 3. Power balance wind speed estimation partitioning. The left column contains the potential aerodynamic power estimators to be

connected with the potential wind speed estimate solvers within the right column, thereby creating four possibilities for combining the two

subcomponents.

where Û ∈ R denotes the REWS estimate. The notation ep ∈ R is the said estimation error, defined as

ep(t) = Pr(t)−
1

2
ρArCp

(
λ̂(t)

)
Û(t)3 , (7)

where the second term on the right-hand side of the equation is the aerodynamic power estimate based on (3), utilizing Û in

place of U . The challenge of obtaining an estimate of Pr and solving the optimization problem of (6) is explained in further

detail in the next section.180

Remark 2. Note that (6) will not be achieved in the presence of discrepancies between the used and actual Cp tables. Such

disparities will lead to a biased wind speed estimate as reported in Brandetti et al. (2022). Readers interested in the details of

such ill-conditioning are thus referred to the study.

3.3 Wind Speed Estimator Subcomponent Partitioning

Now that the closed-loop controlled wind turbine and wind speed estimation problem has been defined, the power balance185

REWS estimator explained in Section 3.2 can be partitioned into two subcomponents to allow for both rigorous analysis and

effective estimation schemes: (i) aerodynamic power estimator and (ii) wind speed estimate solver. Figures 2 and 3 depict

this partitioning, the latter of which details the possible techniques to realize these two subcomponents. Similar separation

approaches have also been adopted in the literature, e.g., in Van Engelen and Van der Hooft (2003) and Østergaard et al.

(2007). The current study provides a more in-depth analysis of the subcomponents.190
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The first block provides an estimate of the aerodynamic power, which—in contrast to the measured generator power—

is more challenging to obtain, as will be explained shortly. Fortunately, such information can still be obtained based on the

available measurements and is the concern of the orange blocks in Figs. 2-3. By rearranging (2) and replacing specific variables

with their estimated representations, one obtains

P̂r(t) = Jωr(t)ˆ̇ωr(t)+Pg(t)/ηg
::

. (8)195

Note that P̂r and Pg :::::
Pg/ηg:are equal to each other in steady state; however, due to the variable nature of the wind and rotor

speed, omitting the rotor acceleration term entirely from this calculation means losing valuable dynamic information (Øster-

gaard et al., 2007; Soltani et al., 2013). Therefore, taking into account the dynamics by the utilization of the rotor acceleration

and the Jωrω̇r terms enhances the accuracy of REWS estimate during both steady-state and transient conditions.

In practice, however, the rotor acceleration is not directly measurable, not to mention that it is challenging to obtain a good200

estimate of this quantity, ˆ̇ωr, due to the noisy nature of measured signals in practice. To retrieve ˆ̇ωr, one may resort to numerical

derivative of ωr or state estimation methods as depicted in Fig. 3. Subsequently, the aerodynamic power estimate P̂r is obtained

by solving (8).

Remark 3. At this point, two aerodynamic power estimate terms have been introduced. One being P̂r, defined in (8) and

another being the second term on the right-hand side of (7). To prevent any confusion, the term ‘aerodynamic power estimate’205

is used to refer to the former, whereas that of the latter from hereon is referred to as the ‘Û -dependent aerodynamic power

estimate.’

Independent of how P̂r is retrieved, such information, together with ωr measurements, is then fed into the wind speed

estimate solver subcomponent indicated as the purple blocks in Fig. 3. Solving for the estimated wind speed is achieved in

two ways in this work: continuous (e.g., as used in Ortega et al. (2013) and Liu et al. (2022)) or iterative single-step manner210

(e.g., by Newton-Raphson methods as done in Van Engelen and Van der Hooft (2003) and Boukhezzar and Siguerdidjane

(2011)). A linear analysis of the continuous wind speed estimate solver in continuous time will be provided, in which the

stability properties of the linearized solver dynamics are derived. Furthermore, the effects of various discretization methods

on the system, especially on the mentioned stability properties, are evaluated. The single-step approach solves the wind speed

estimate in a similar way to the former without the need for high solver gains, potentially causing stability issues to obtain215

good estimation quality without phase lags. Its wind speed estimation quality is determined by the choice of error tolerance

parameters and iteration budget.

The aforementioned options for each of the subcomponents, therefore, allow for several possible combinations in which the

power balance wind speed estimator can be constructed, as illustrated in Fig. 3; however, the optimal combination is yet to be

found. To that end, in the respective Sections 4 and 5, the derivations of the two aerodynamic power estimators and the wind220

speed estimate solvers are provided, where also their performance is evaluated.
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4 Aerodynamic Power Estimator

As discussed previously, reconstructing aerodynamic power from available measurements is an essential step in obtaining

an accurate REWS estimate in both steady-state and dynamic transient conditions. To this end, the most challenging part is

obtaining an accurate estimate of the rotor acceleration ˆ̇ωr, which is the main concern of this section. Two approaches are225

considered herein; first, the numerical derivative-based method is examined in Section 4.1. Later in Section 4.2, the state

estimation-based technique is discussed. In Section 4.3, the numerical comparisons for both methods are evaluated.

4.1 Numerical Derivative-Based Technique

To obtain an estimate of the rotor acceleration, a numerical derivative is applied to the measured ωr. In the frequency domain,

this is represented as follows230

ˆ̇Ωr(s) = Fnd,c(s,τ)Ωr(s) , (9)

in which Ωr and ˆ̇Ωr, with a slight abuse of notation for the latter, are the respective Laplace-transformed variables of ωr and
ˆ̇ωr. The transfer function

Fnd,c(s,τ) =
s

τs+1
, (10)

in (9) is the filtered derivative2 in accordance with IEEE 421.5-2016 standard (IEEE, 2016), with a unity derivative gain. The235

parameter τ ∈ R≥0 is the time constant of the numerical derivative.

In its implementation, the numerical derivative (10) is discretized via the Backward Difference method. Thus, the discrete-

time transfer function of the filter is

Fnd,d(z,τ) =

(
1

τ

)
1− z−1

1+h/τ − z−1
, (11)

where h denotes the sampling time.240

As τ is the only tuning parameter for the filter (11) it plays a crucial role. For instance, setting τ = 0 casts Fnd,d into a

pure differentiator. This enables infinite amplification at the high-frequencies
::::
high

::::::::::
frequencies (including noise), that

:::::
which

is propagated to ˆ̇ωr, which is undesired. Having too large τ is also unwanted as ˆ̇ωr and the subsequent P̂r may become

less accurate despite the better noise resilience. Calibration of τ is, therefore, a trade-off between having an accurate rotor

acceleration estimate and good noise suppression. In the following section, a numerical demonstration of such a trade-off is245

performed and analyzed.

4.1.1 Time Constant Selection: Accuracy and Noise Propagation

As stated above, the choice of τ may be helpful in suppressing the effects of noisy measurements often encountered in real-

world scenarios. To provide a clearer picture on this aspect, Fnd,d is applied to the discrete-time rendition of (9), resulting in

2That is, a pure differentiator combined with a first-order low-pass filter.
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Figure 4. The mean of the aerodynamic power estimate µP̂r
, normalized with respect to that of a noiseless case. It is shown that with a high

noise variance σ2
vωr

the noise propagated by the numerical derivative from ωr into ˆ̇ωr results in a high bias in P̂r. Nonetheless, the application

of τ lessened the severity of the increased aerodynamic power estimation bias, shown by lower µP̂r
as τ becomes higher.

the filtered and differentiated rotor speed250

˜̂
ω̇r(k) =

ω̃r(k)− ω̃r(k− 1)+ τ
˜̂
ω̇r(k− 1)

τ +h
, (12)

with

ω̃r(k) = ωr(k)+ vωr
(k) . (13)

as the noisy rotor speed signal, where vωr
∼ (0,σ2

vωr
) is an additive, Gaussian white noise with zero mean and variance σ2

vωr
.

The impact of the noise propagated from ω̃r will affect the aerodynamic power estimate, as made evident in the following255

relation, obtained by substituting (12)-(13) into (8)

P̂r(k) = Jω̃r(k)
˜̂
ω̇r(k)+Pg(k)/ηg

::
. (14)

Note that the equation contains a multiplication between ω̃r and ˜̂
ω̇r. This implies that the noise the former contains is multiplied

with the one it propagated to the latter from the previous time step. This introduces a biased P̂r that varies on the noise variance

because the product of a noise sequence with itself, although it is of zero mean, will give a nonzero mean3. A chosen τ may260

lessen the effects of such noise propagation but may deteriorate P̂r estimation performance and is a trade-off.

To numerically demonstrate the effect of noisy measurements to (14), 400-second simulations, sampled at h= 0.02 s,

were run for time constants and noise variances of τ ∈ [0,10−1] s and σ2
vωr

∈ [10−6,10−2] rad2/s2, respectively. In addi-

tion, the
::::::
inertia

::::
value

:::
of

:::
the

:
NREL-5MW ’s inertia value is used (see Table 1), under the steady-state operating conditions

ω̄r = 0.8 rad/s and P̄g = 1.647
::::::::::
P̄g = 1.548 MW, the latter of which is computed using (5) with C⋆

p = 0.469and
:
, λ⋆ = 6.53.265

:
,
:::
and

:::::::::
ηg = 0.94.

:
Figure 4 summarizes the statistical results of these simulations, where µP̂r

is the mean of the aerodynamic

power estimate.

It is apparent in the figure that greater noise variance leads to higher µP̂r
, representing added bias in the aerodynamic power

estimate; nevertheless, employing high τ values alleviates such deterioration to some extent. Also implied in this observation
3Consider this product to be νωr = v⊤ωr

vωr . The mean of νωr is thus equal to the variance of vωr , namely E[νωr ] = E[v⊤ωr
vωr ] = σ2

vωr
, where E is the

expected value operator (Verhaegen and Verdult, 2007).
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is using τ = 0 s (i.e., using a pure differentiator) is not desirable, especially in highly noisy environments, as this would lead270

to an infinite amplification of high-frequency components. In conclusion, attention needs to be paid to noisy ωr conditions as

the resulting biased P̂r may undermine the REWS estimation in the end.

4.2 State Estimation-Based Technique

Besides the aforementioned numerical derivative technique to obtain ˆ̇ωr and, thus, P̂r, state estimation-based methods can also

be employed. Obtaining P̂r via state estimation can be proven to be more beneficial compared to the numerical derivative275

technique in the possessed freedom to trade-off sensitivity to noisy measurements with responsiveness by estimation gain

tuning, however, might be more challenging in its implementation and calibration.

Despite the adopted power balance wind speed estimation framework, the state estimator employed in this section utilizes

an internal model based on the torque balance variant of (2). Retaining the power variables in (2) would lead to the internal

estimator dynamics being nonlinear such that it becomes necessary to obtain the system’s Jacobians—adding
::::::::
Jacobians

::
of

:::
the280

:::::::::::::
system—adding complexities to the observer design. Therefore, to provide an aerodynamic power estimate, a reformulation is

performed to obtain a torque-based estimator. To this end, the internal model is described as the following dynamics

ω̇r(t) =
Tr(t)−GTg(t)

J
, (15)

where G ∈ R+ is the gearbox ratio of the drivetrain, Tr = Pr/ωr is the aerodynamic torque, and Tg = Pg/(ωrG)
:::::::::::::::
Tg = Pg/(ηgωrG)

is the generator torque.285

The dynamics (15) are then recast into the following discrete state-space form by employing Forward Euler discretization

xs(k+1) =Asxs(k)+Bs,uus(k)+Bs,dds(k)+wωr
(k) ,

ys(k) = Csxs(k)+ vωr
(k) , (16)

with

xs = ωr, us = Tg, ds = Tr, and ys = ωr,290

as the respective estimator’s state, input, disturbance, and output, and the state space matrices

As = 1, Bs,u =−hJ−1G, Bs,d = hJ−1, and Cs = 1,

where {xs,us,ds,ys} ∈ R and {As,Bs,u,Bs,d,Cs} ∈ R. Also included in (16) are the process noise wωr
∼ (0,σ2

wωr
) with vari-

ance σ2
wωr

and measurement noise vωr
∼ (0,σ2

vωr
) with variance σ2

vωr
, both assumed to be uncorrelated, zero-mean, Gaussian

white noise. The aerodynamic torque is considered to be an unknown input and, therefore, a subject of the estimation. Thus, it295

is recast as a random-walk process (Verhaegen and Verdult, 2007) as follows

Tr(k+1) = Tr(k)+wTr
(k) , (17)
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State Estimation-Based Aero. Power Estimator 

Figure 5.
::::::
Internal

:::::::
structure

::
of

::
the

::::
state

:::::::::::::
estimation-based

::::::::::
aerodynamic

:::::
power

:::::::
estimator.

::::
Note

:::
that

:::
the

::::::::::
aerodynamic

:::::
power

::::::
estimate

::
P̂r::

is
:::
the

:::::
product

::
of
:::
the

::::
rotor

:::::
speed

::::::
estimate

::̂
ωr:::

and
::::::::::
aerodynamic

:::::
torque

:::::::
estimate

::
T̂r.:::

See
::::::
Remark

::
4
::
for

:::::
more

:::::
details.

:

where wTr
∼ (0,σ2

wTr
) is a zero-mean Gaussian white noise sequence with variance σ2

wTr
, uncorrelated to wωr

and vωr
. One

advantage of treating Tr as a random-walk process is in the ease of design as no a priori information, such as aerodynamic

torque coefficient, is needed. In particular, the Jacobian of this term is not necessary given that it is a nonlinear function of v300

and ωr.

The general state space expression for the state estimator
:::::::::::
estimator—as

:::::::
depicted

::
in

::::
Fig.

:
5, augmenting (17) to (16) and also

including feedback from the measured system output y = ωr, is written as followsx̂s(k+1)

T̂r(k+1)


︸ ︷︷ ︸
x̂s,aug(k+1)

=

As Bs,d

0 1


︸ ︷︷ ︸

As,aug

x̂s(k)

T̂r(k)


︸ ︷︷ ︸
x̂s,aug(k)

+

Bs,u

0


︸ ︷︷ ︸
Bs,aug

Tg(k)

+

wωr
(k)

wTr(k)


︸ ︷︷ ︸
ws,aug(k)

+L(y(k)− ŷs(k)) ,

ŷs(k) =
[
Cs 0

]
︸ ︷︷ ︸
Cs,aug

x̂s(k)

T̂r(k)


︸ ︷︷ ︸
x̂s,aug(k)

+vωr
(k) ,

(18)

with L= [L1,L2]
⊤ as the observer gain vector. This gain can be determined either by a pole placement (Luenberger approach)305

or Kalman design, the latter of which is able to provide minimum-variance, unbiased state estimation by solving an algebraic

Riccati equation involving the noise covariance matrices. However, because the former provides more freedom to define the

state estimator’s pole locations
::::
pole

::::::::
locations

::
of

:::
the

::::
state

::::::::
estimator

:
according to one’s own optimal performance criterion, in

this study, L is determined by pole placement.
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Remark 4. Similar to the numerical derivative-based method, the state estimation scheme above can provide the aerodynamic310

power estimate by making use of the relation P̂r = Jω̂r
ˆ̇ωr +Pg :::::::::::::::::

P̂r = Jω̂r
ˆ̇ωr +Pg/ηg. Nevertheless, as in the state estimation-

based scheme considered in this section, the quantities ω̂r and T̂r are accessible directly from the augmented state vector x̂s,aug

such that the aerodynamic power estimate can be computed straightforwardly via P̂r = ω̂rT̂r. Thus, this approach is considered

for the remainder of this study.

In the aforementioned Luenberger approach, L needs to be designed such that As,aug −LCs,aug has stable eigenvalues.315

Such a condition guarantees
:::
the

::::::::::
convergence

:::
of y− ŷs ’s convergence to zero given observable (As,aug,Cs,aug). Evaluating

this condition confirms that it is satisfied for hJ−1 ̸= 0, which is always the case in practical scenarios.

With regard to the estimator’s performance, having a closer look into the characteristic polynomial of As,aug −LCs,aug

may shed some new insights, e.g., how the design can be applied for different wind turbine power ratings. Furthermore, it

is also somewhat known that
:::
the

:::::
power

::::::
rating

::
of

:
a wind turbine ’s power rating is associated with its dimension and, thus,320

inertial properties (Rodriguez et al., 2007), which, in this particular case, is the most influential as h,G≪ J . This indicates

that a selected L suitable for a wind turbine might give a different performance when applied to another turbine with a different

power rating. Therefore, it is crucial to find a gain-tailoring guideline in such a way that identical state estimator performance

among different power ratings or inertia values can be found.

The aforementioned considerations are addressed in the following sections: Section 4.2.1 provides the investigation into the325

characteristic polynomial of the estimator. A numerical demonstration is presented in Section 4.2.2 to compare the performance

of the estimator with and without such a guideline.

4.2.1 State Estimator Characteristic Polynomial

This section covers the analysis of the characteristic polynomial for the state estimation-based aerodynamic power estimator

laid out in the previous section. Investigation into such a characteristic polynomial informs one about how, for instance, a choice330

of estimator gain influences the estimator’s natural frequency and damping
::
of

:::
the

::::::::
estimator. The characteristic polynomial is

derived as follows

det(zI −As,aug +LCs,aug) = z2 + p1z+ p2 = 0 , (19)

in which the roots of the polynomial coefficients are parameterized as

p1 = 2(hω0ζ0 − 1) = L1 − 2 , (20a)335

p2 = 1− 2hζ0ω0 +h2ω2
0 = 1−L1 +

h

J
L2 , (20b)
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where ω0 and ζ0 are the respective natural frequency and damping ratio of the continuous-time characteristic equation4, which

by further manipulation of (20) leads to

ω0 =

√
L2

hJ
, (21a)

ζ0 =
L1

2hω0
. (21b)340

It is directly evident from the above equations that to maintain constant ω0 and ζ0 for a range of different turbines, the ratio

L2/J needs to be maintained constant under the assumption that L1 and h are equal for all turbines. Furthermore, it is more

insightful to express L1 and L2 in terms of ω0 and ζ0 by rearranging (21) as follows

L1 = 2hζ0ω0 , (22a)

L2 = hJω2
0 . (22b)345

The relation above allows one to determine both gains based on specified ω0 and ζ0, but most importantly, it becomes clear

that L2 needs to be tailored based on the turbine inertia, especially if one desires to apply the estimator for different turbine

sizes and power ratings as discussed in the previous section. In the following section, how this gain is tailored for a range of

wind turbine inertias is discussed, and a numerical demonstration is also provided.

4.2.2 Constant and Tailored Estimator Gain Comparison350

To numerically demonstrate the performance difference between constant and tailored L2 over the considered range of turbines,

800-second simulations (sampled at h= 0.02 s) are performed with a turbulent wind with mean speed Uh = 7.5 m/s and

intensity IT = 4%. The drivetrain dynamics (2) in closed-loop with the controller (5) are incorporated to represent the wind

turbine. Ten wind turbines within Pg,rated ∈ [5,25] MW range are considered and the inverse of (1b) is made use of to obtain

R=D/2 from the specified Pg,rated, e.g., to compute TSR and the optimal mode gain K.355

Their estimator gains are subsequently obtained using (22), in which ω0 = 25 rad/s and ζ0 = 1 are chosen and, as will be

shown later, result in satisfactory estimator performance. The J values derived from (1c) for the selected Pg,rated range and are

subsequently substituted to (22b) to adjust L2
5. For the constant gain case, the L2 computed for Pg,rated = 5MW is considered

for all turbines. No noise is assumed for ωr measurements for simplicity’s sake
::
the

:::::
sake

::
of

::::::::
simplicity

:
in this demonstration;

nevertheless, similar conclusions can be derived under noisy measurements.360

Figure 6 summarizes the key statistical results of the simulations, being the absolute means (|µ(•)|) and standard deviations

(σ(•)) of the rotor speed, aerodynamic torque, and aerodynamic power estimation errors, ωr − ω̂r and Tr − T̂r, and Pr − P̂r

respectively. In general, it is observed from the figure that, compared with the tailored gain case, the use of constant gain

deteriorates the absolute means and standard deviations as the power rating increases. However, an exception applies for

σTr−T̂r
and σPr−P̂r

where similar results are depicted for both cases.365

4That is, s2 +2ζ0ω0s+ω2
0 = 0. Applying Forward Euler discretization to this equation gives (19).

5Alternatively, one may also use the previously obtained D followed by a substitution to (1a).
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Figure 6. Statistical assessment results of the constant (blue) and tailored (green) Luenberger estimator’s L2 gain based on the turbine’s

power rating (and inertia)
::
of

:::
the

::::::
turbines. Absolute errors of the rotor speed, aerodynamic torque, and aerodynamic power estimates (left

column) of the constant L2 strategy tend to be much higher than the tailored gain. Significant difference in the standard deviation of these

errors (right column) is only shown for the the rotor speed estimation, whereas those of the aerodynamic torque and power are comparable.

These results imply that appropriate gain adjustment based on the turbine’s power rating
:
of
:::

the
:::::::::::
corresponding

:::::
turbine

:
is imperative.

The observation from the above demonstration motivates the need to set a new standard, i.e., by employing L2 tailoring

based on the power rating and consequent drivetrain inertia of the considered turbines, which provides a convenient means

to calibrate state estimation-based aerodynamic power estimation. As will be shown later, such a gain-tailoring—and more

importantly, the state estimation-based aerodynamic power estimator—leads to faster (less phase lag) and more noise-resilient

wind speed estimation.370

4.3 Aerodynamic Power Estimation Techniques Comparison

With the numerical derivative and state estimation approaches to estimate aerodynamic power already presented in the previous

sections at hand, this section is now dedicated to comparing both methods. To this end, simulations with the same turbulent

wind setting in Section 4.2.2 are run, where a wind turbine of Pg,rated = 15 MW, representing a ‘mid-sized’ turbine in the

considered turbine range, is utilized. In addition, noisy rotor speed measurements are assumed, with σ2
vωr

= 10−6 rad2/s2.375

Two strategies in obtaining P̂r are compared:

1. Using filtered derivative Fnd,d introduced in Section 4.1 to obtain ˆ̇ωr, followed by its substitution to (8), including ωr and

Pg measurements with known J according to Assumption 4. A time constant of τ = 0.5 s is selected as it is considered

a good trade-off between noise correlation, quality of the derivative, and noise amplification limitation;
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Figure 7. Comparison of aerodynamic power estimation methods. It is shown that the estimate obtained via the state estimation-based

technique (red lines) has much less noise compared with that of the numerical derivative one (blue lines) while still maintaining high

estimation accuracy. Also depicted is the aerodynamic power estimate determined only using the generated power (green lines), which

shows the worst-case phase lag with respect to the other methods, demonstrating the loss of information if rotor acceleration information is

absent.

2. Directly retrieving P̂r by state estimation method explained in Section 4.2 by multiplying ω̂r and T̂r (see Remark 4). The380

gain L is computed by setting ω0 = 25 rad/s and ζ0 = 1 as used in the previous section.

Figure 7 depicts the time series results of the simulation, where, for clarity, only chosen for the timestamp t= 200− 250 s.

In the figure, the actual aerodynamic power as a ground truth is indicated by the gray line. It can be seen that the aerodynamic

power estimation result for the state estimation-based method excels that of the numerical derivative one in terms of less noise

propagation and phase lag.385

Note that, for the latter, increasing τ will result in less noise but increasing phase lag (Østergaard et al., 2007) as this will

diminish and deteriorate the Jωrω̇r estimate such that P̂r ≈ Pg ::::::::::
P̂r ≈ Pg/ηg:(i.e. information will be lost). The case where

Jωrω̇r = 0 such that P̂r = Pg :::::::::
P̂r = Pg/ηg:is demonstrated by the green line, which evidently shows a phase lag with respect to

those where the information of Jωrω̇r is made available. It is concluded, therefore, that for the power balance REWS estimation

scheme, the state estimation-based aerodynamic power estimator is to be used for the remainder of this paper. Note that the390

performance of the state estimation method can be improved by further tuning of ω0 and ζ0.

5 Wind Speed Estimate Solver

Having a good estimate of the aerodynamic power is crucial for the second component of the overall power balance wind speed

estimation scheme, which solves the effective wind speed estimate (see Fig. 2). Alluded to earlier in Section 3.3 and shown in

Fig. 3, the two manners in which such a solver can be designed are detailed in the following sections. Section 5.1 discusses the395

continuous solver, where the linear state-space derivation of the solver is done, followed by frequency-domain analysis. Then
:
,

the stability of the solver in the discrete-time domain is discussed. Later, in Section 5.2, the iterative single-step algorithm is

proposed as a promising alternative to the former.
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Continuous Wind Speed Estimate Solver 

+

Figure 8. Internal structure of the continuous wind speed estimate solver.

5.1 Continuous Solver

This section presents an analysis of the continuous manner to solve
:
of

:::::::
solving the wind speed estimate, given that the aero-400

dynamic power estimate and rotor speed measurements are provided. Figure 8 depicts the internal structure of this continuous

wind speed estimate solver and is elaborated in the following.

As laid out in Section 3.2, asymptotically minimizing the estimation error term ep returns the wind speed estimate Û , which

converges to the actual wind speed over time per the definition in (6). Such an integration operation enables the wind speed

estimate solver to be written as the following state transition equation405

˙̂
U(t) =−KUep(t) , (23)

with the integrator gain

KU =
κ

Pg,rated
, (24)

determining the convergence rate. The notation κ ∈ R+ is a constant and the rated generator power Pg,rated ∈ R+ is used to

convert ep from wattage into the per-unit (p.u.) system.410

As ep has a nonlinear analytic definition (7), the wind speed estimate solver in the continuous time is represented by the

following nonlinear dynamics

with

x= Û, u=
[
P̂r, ω̂r

]⊤
, and y = Û,415

as its state, input, and output vectors, respectively.
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To proceed with the linear analysis, the first-order Taylor expansion of S is derived, resulting in the following linear state-

space system

ẋ(t) =Ax(t)+Bu(t) ,

y(t) = Cx(t) ,
(25)

with the state, input, and output matrices defined by the following Jacobians420

A=
∂f

∂x

∣∣∣∣
(x̄,ū,ȳ)

=−KU

2
ρAr

¯̂
U2

(
3Cp

(
¯̂
λ
)
− ¯̂
λ
∂Cp

∂λ̂

)
,

B =
∂f

∂u

∣∣∣∣
(x̄,ū,ȳ)

=−KU

[
1 − 1

2
ρArR

¯̂
U

2 ∂Cp

∂λ̂

]
,

C =
∂g

∂x

∣∣∣∣
(x̄,ū,ȳ)

= 1 ,

(26)

respectively.

Given the linearized dynamics above, it becomes compelling to examine the stability properties of the linear system. To this

end, the next subsections provide frequency-domain stability and discretization-method analysis utilizing the above-derived

linear system.425

5.1.1 Frequency-Domain Stability Analysis

In the previous section, the nonlinear dynamics of the continuous solver have been described, followed by their linear state-

space rendition. Here, the stability of the solver is assessed via pole location investigation. Solving for G(s) = Y (s)/U(s) =

C(s−A)−1B, one obtains the multiple-input single-output transfer matrix formulation of the state-space (25) as follows

G(s) =
N

D(s)
. (27)430

The notations N =B and D(s) are the respective numerators and denominator of the transfer functions above, with the former

being a constant gain vector, hence the independence from s. The latter is of interest, especially with regard to stability analysis.

The denominator of the transfer functions is

D(s) = s+
KU

2
ρAr

¯̂
U2

(
3Cp

(
¯̂
λ
)
− ¯̂
λ
∂Cp

∂λ̂

)
︸ ︷︷ ︸

p

, (28)

which, in order to guarantee stability, left half-plane pole location p < 0 must be satisfied such that435

p=−KU

2
ρAr

¯̂
U2︸ ︷︷ ︸

pc

3Cp

(
¯̂
λ
)

︸ ︷︷ ︸
pa

− ¯̂
λ
∂Cp

∂λ̂︸ ︷︷ ︸
pb

< 0 , (29)
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Figure 9. Stability region of the continuous wind speed estimate solver in the continuous time G(s), where the condition p < 0 in (29) is

satisfied (indicated in green, otherwise in blue). The left subfigure shows the different Cp levels for the NREL-5MW turbine (white solid

lines), with C⋆
p indicated by the blue dot. The right subfigure shows the mapping of the stability region in terms of wind speed U and rotor

speed ωr for the fine pitch angle β⋆. The solid blue line is the partial-load regime, where the Kω3
r controller is active. Also shown for

completeness are the black dashed lines, indicating the lower and upper bounds for the rotor speed, as well as cut-in and rated wind speeds.

with pc > 0. The inequality (29) requires pa−pb > 0 to hold to ensure the pole stays within the left-half plane. This condition,

which can be rewritten as

pa > pb ⇔ 3
¯̂
λ
Cp

(
¯̂
λ
)
>

∂Cp

∂λ̂
, (30)

is a well-known condition for global asymptotic stability in the (Improved) Immersion and Invariance wind speed estimator440

works, e.g., Ortega et al. (2013) and Liu et al. (2022).

With the stability expression of (29)/(30) at hand, a stability map at different operating conditions is made. For this purpose,

the Cp table of the NREL-5MW is taken. Figure 9 depicts the resulting stability region of the continuous wind speed estimate

solver. The stable region is shown in green, whereas the unstable region is in blue. The left subfigure illustrates how the Cp

contour is divided based on whether (29)/(30) is satisfied. The blue dot shows the location of C⋆
p , corresponding to the fine445

pitch β⋆ (horizontal dashed line) and design TSR λ⋆ (vertical dashed line). The operating conditions at the β⋆ line are mapped

on the right subfigure, resulting in the stability region representation in terms of U and ωr. The blue solid line represents λ⋆ or

Kω3
r line, where maximum power extraction occurs. As can be seen, the continuous wind speed estimate solver is stable for a

large part of the turbine operational domain and, more importantly, along the optimal Kω3
r line where the turbine operates in

partial-load in the steady state.450

However, as far as practicality is concerned, the effects of discrete-time implementations should extend the above continuous-

time analysis. A discretization method, for instance, might not preserve the stability properties obtained in the continuous-time

domain (Åström and Wittenmark, 2011). Moreover, different estimator gain κ values influence the stability region. These

aspects are the main concerns in the next section.
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5.1.2 Solver Discretization and Instability455

In this section, the stability of the continuous wind speed estimate solver (27) in the discrete time is discussed. The three most

common discretization methods are considered as follows (Åström and Wittenmark, 2011)

1. The Forward Euler (FE) method, the s-to-z-domain transformation of which is as follows

s′FE =
z− 1

h
. (31)

2. The Backward Difference (BD) method, with the following transformation460

s′BD =
z− 1

zh
. (32)

3. The Tustin (TU) method, with

s′TU =
2

h

z− 1

z+1
. (33)

as the corresponding s-to-z-domain transformation.

Substituting any of the above discretization methods into G(s) results in the following general discrete-time approximation465

representation

G(s= s′) =H(z) =
P (z)

Q(z)
, (34)

with P (z) denoting the numerators and Q(z) the denominator of the discrete-time transfer function H(z).

Similar to its continuous-time counterpart, discrete-time stability analysis only focuses on the poles of the system, i.e.

whether they are within the unit disc, such that in the following study, only Q(z) is of interest (Åström and Wittenmark, 2011).470

Explicit representations for H(z), obtained by the discretization methods (31)-(33), are, therefore, provided below and their

corresponding stability condition derivation follows

1. Using s= s′FE for the FE method, G(s) becomes

HFE(z) =
Nh

z+KU,h
1
2ρAr

¯̂
U2(pa − pb)− 1

, (35)

with KU,h = hKU (or, similarly, KU,h = hκ/Pg,rated). From (35), the following inequality must hold for stability to475

hold∣∣∣∣1−KU,h
1

2
ρAr

¯̂
U2(pa − pb)

∣∣∣∣< 1 . (36)

2. For the BD method, s= s′BD is used and the following discrete transfer function is obtained

HBD(z) =
(Nh)z(

1+KU,h
1
2ρAr

¯̂
U2(pa − pb)

)
z− 1

, (37)
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with the following condition for stability480 ∣∣∣∣∣ 1

1+KU,h
1
2ρAr

¯̂
U2(pa − pb)

∣∣∣∣∣< 1 . (38)

3. Under the TU discretization, s= s′TU casts G(s) into

HTU(z) =
Nh
2 (z+1)

z+KU,h
1
4ρAr

¯̂
U2(pa − pb)(z+1)− 1

, (39)

the stability of which is determined by the following inequality∣∣∣∣∣1−KU,h
1
4ρAr

¯̂
U2(pa − pb)

1+KU,h
1
4ρAr

¯̂
U2(pa − pb)

∣∣∣∣∣< 1 . (40)485

Note that the stability properties may now be influenced by the choice of sampling time h and gain κ (as Pg,rated is constant).

Nevertheless, to illustrate better whether alterations in the stability region occur after discretization takes place, the stability

conditions (36), (38), and (40) are plotted in a similar manner as Fig. 9, as explained in the following text. Also considered are

two arbitrary operating points (OPs) along the Kω3
r line for a low and high partial-load wind speed being

OP 1:

x̄= ȳ =
¯̂
U = 4.5 m/s ,

ū=
[
¯̂
Pr, ω̄r

]⊤
= [3.263× 105 W,0.469 rad/s]⊤ ,

490

and

OP 2:

x̄= ȳ =
¯̂
U = 10.5m/s ,

ū=
[
¯̂
Pr, ω̄r

]⊤
= [4.145× 106 W,1.094 rad/s]⊤ ,

respectively, computed using the NREL-5MW properties.

First, the stability region for the FE method, with h= 1/50 s—constant for all evaluations, is examined. Figure 10 depicts

the resulting stability assessment, which illustrates the deterioration of the FE method’s stability region
:::::::
stability

::::::
region

::
of

:::
the495

::
FE

:::::::
method

:
as κ increases, affecting the partial-load operations (blue solid line), e.g. OP 2 (red dot). Although not shown in

the figure, even higher κ may affect low-wind speed operations. This observation, therefore, concludes that one’s choice of

discretization method results in a performance limitation of the wind speed estimate solver in terms of an existing ‘upper bound’

for
::
the

:::::::::
magnitude

::
of
:
κ’s magnitude . A compromise can be made, nevertheless, to improve the FE method’s stability

:::::::
stability

::
of

:::
the

:::
FE

::::::
method

:
by increasing sampling frequency (i.e., lowering h) proportional to the increase in κ to maintain constant500

KU,h. That said, increasing the sampling frequency does not eliminate the presence of a κ ‘upper bound,’ not to mention the

extent to which such a frequency can be increased is practically limited as a result, e.g., hardware capabilities. Therefore, a

more feasible solution is to adopt different discretization methods while leaving the sampling frequency unchanged.

Figure 11 makes clear that the BD method, in contrast to the FE method, does not result in the change of stability charac-

teristics of the continuous system into the discrete system for the considered κ values. Remarkably, if κ is further increased,505
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Figure 10. Unstable region (blue area) growth of HFE(z) with increasing κ= {200,300,400,500} using h= 1/50 s of sampling time and

the Forward Euler discretization method.

the pole of the discrete-time system HBD(z) moves away even more from the edge of the unit circle (as implied in (38),

theoretically leading to increased stability for increasing gains).

Similar to the BD method, the TU method gain increase will lead the discrete-time pole to move closer to the origin, but

under the same gain, that of the TU method will be closer to the origin than the BD method. This is because with the TU

method, higher gains simultaneously lower the numerator and increase the denominator of the discrete pole, as can be implied510

from (40). Regardless, for the considered κ, the stability region of the TU-discretized system HTU(z) is identical to that of

G(s). It is worth noting, therefore, that although Fig. 11 shows the stability characteristics of HBD(z) for the given gains, that

of HTU(z) would give identical representations; therefore, no dedicated figure is provided for the latter for brevity.

To summarize, the BD and TU methods are the preferred discretization techniques for discrete-time implementations of

the continuous wind speed estimate solver in that the stability condition from the continuous-time system is preserved. Given515

present-day computational resources and readily available discretization methods in popular software packages, the selection

for each of the methods is inconsequential from an implementation perspective. Therefore, later on in Section 5.3, a time-series

numerical comparison is performed to determine the most suitable approach, also including the iterative single-step solver

explained in the next section.
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Figure 11. Stability region of HBD(z) with increasing κ= {200,300,400,500} using h= 1/50 s of sampling time and the Backward

Difference (BD) discretization method. Identical graphical evaluation is obtained for the Tustin-discretized system HTU(z) for the selected

gains.

5.2 Iterative Single-Step Solver520

Besides the continuous wind speed estimate solver in the previous section, iterative numerical methods can also be employed to

solve for the wind speed estimate. A well-known iterative method for this purpose is that of the Newton-Raphson, such as used

in the work of Van Engelen and Van der Hooft (2003) and Boukhezzar and Siguerdidjane (2011). This iterative algorithm finds

the roots of a function given an initial guess and makes use of the function’s gradient
:::::::
gradient

::
of

:::
the

::::::::
function. The reliance

on such a gradient, however, adds an additional layer of complexity in this case in that an extra look-up table other than that525

for the Cp table is needed. Moreover, the use of this extra look-up table would increase the computational burden per iteration

within the algorithm. Luckily, the definition of the wind speed estimate, being an integration of the estimation error ep over

time multiplied by a gain KU can be straightforwardly adopted in an iterative manner in such a way that Û can be obtained in

a single time step. Algorithm 1 describes the proposed iterative single-step wind speed estimate solving method.

First, the iterative single-step algorithm computes the TSR estimate based on ω̂r(k), available through the aerodynamic530

power estimator in Section 4, and wind speed estimate Ui at the i-th iteration, namely λi. Having λi, the Ui-dependent aerody-

namic power estimate can then be computed, which is used to obtain the aerodynamic power error along with P̂r(k), available

from the aerodynamic power estimator. Normalized by Pg,rated, this error (denoted ep,norm,i), is then used to update the i+1-th

wind speed estimate Ui+1. These steps are then repeated until the relative wind speed estimate error or the absolute, normalized,
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Algorithm 1 Iterative single-step method for solving wind speed estimate

Require: P̂r(k), ω̂r(k), Û(k− 1), imax, ϵU, ϵp

Ensure: U ≈ Û(k)

1: i← 1

2: Ui← Û(k− 1)

3: repeat

4: λi←
ω̂r(k)R

Ui

5: ep,norm,i←
P̂r(k)−

1

2
ρACp(λi)U

3
i

Pg,rated

6: Ui+1← Ui + ep,norm,i

7: Uold← Ui

8: i← i+1

9: until (i≥ imax) or
(∣∣∣ (Ui−Uold)

Ui

∣∣∣≤ ϵU
)

or (|ep,norm,i| ≤ ϵp)

10: Û(k)← Ui

11: return Û(k)

aerodynamic power error falls within the tolerance bound ϵU ∈ R+ or ϵp ∈ R+, respectively. Otherwise, the algorithm stops535

until the maximum allowed iteration imax ∈ Z+ is reached. Finally, the algorithm outputs the wind speed estimate Û(k) = Ui

from the last iteration. Note that, compared to the continuous wind speed estimate solver, the iterative method here employs

κ= 1. Later, it will be shown that setting such a unity gain is sufficient to achieve fast convergence.

5.3 Wind Speed Estimate Solvers Comparisons

With the continuous and iterative single-step solvers explained in the previous sections, this section now compares both meth-540

ods numerically. The optimal wind speed estimate solver is then picked and combined with the state estimation-based aerody-

namic power estimator, as discussed in Section 4.2. To this end, the same simulation setup in Section 4.3 is considered.

First, the performance of the different continuous wind speed estimate solvers, discretized under the FE, BD, and TU

methods, are compared. The estimator gain is chosen to be κ= 400, which is a stable gain, especially for the FE discretization

at the considered operating condition (Uh = 7.5 m/s, under IT = 4%). Figure 12 shows the simulation results, which is focused545

on t= 210− 230 s timestamp for clarity. As shown in the figure, the BD- and TU-discretized wind speed estimate solvers

show identical estimation performance, which is not the case in their FE-discretized counterpart. The unstable-like oscillations

occurring in the beginning, middle, and end of the sequence of interest of the FE method are likely resulting from nonlinearity

effects in combination with frequency folding or aliasing (Åström and Wittenmark, 2011).

Figure 13 depicts the time-series comparison between the BD-discretized continuous solver and the iterative method. With550

the same tuning parameters as the previous simulation for the former, the latter is configured with imax = 5 and ϵU = ϵp = 0.01,

which are as a good trade-off between accuracy and speed of the estimation. As evidently shown, both solvers demonstrate
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Figure 12. Actual wind speed U and wind speed estimates of the continuous wind speed estimate solver under different discretization

methods Û(•). The FE-discretized solver occasionally shows high-frequent oscillatory behavior, potentially due to combined nonlinearity

and aliasing effects, which is not the case for that of the BD and TU methods for the chosen estimator gain κ= 400.

Figure 13. Actual wind speed U and wind speed estimates of the continuous and iterative single-step wind speed estimate solvers, the former

of which is discretized with the BD method. Identical responses indicate that the accuracy of the wind speed estimate solvers depends, to a

large extent, on the aerodynamic power (and rotor speed) estimation quality.

similar performance and accuracy for the presented case. However, in different scenarios, such as more noisy aerodynamic

power and rotor speed estimates, both solvers may show disparities.

Noisy inputs would require the continuous solver’s integrator gain
::::::::
integrator

::::
gain

:::
of

:::
the

:::::::::
continuous

::::::
solver to be lowered,555

such that high-frequency components in the input signals are attenuated but potentially resulting in lagged estimates. For the

iterative solver, noisy inputs would increase the computational cost in terms of the higher number of iterations to converge to

a solution.

Fortunately, as the role of the aerodynamic power estimation (with a bonus of rotor speed filtering) and wind speed esti-

mate solving are decoupled in this study, the task to ensure low-noise and accurate wind speed estimate relies mostly upon the560

former’s subcomponenttuning
:::::
tuning

::
of

:::
the

::::::
former

::::::::::::
subcomponent. This way, few iterations and strict error tolerances of the iter-

ative algorithm can be maintained. Such a condition also benefits the continuous solver’s wind speed estimate
::
of

:::
the

:::::::::
continuous

:::::
solver; however, as it requires a high gain to maintain good estimation quality, it is still prone to having the above-mentioned

sampled-time system artifacts.

Hence, for the final and optimal design of the power balance wind speed estimation in this work, the combination of the state565

estimation-based aerodynamic power estimator and iterative single-step wind speed solver is chosen and is evaluated next in

higher-fidelity simulations.
::::::::::
mid-fidelity

::::::::::
simulations.

26



6 Higher-Fidelity
::::::::::
Mid-Fidelity

:
Simulation Setup and Results

With the power balance wind speed estimation design finalized, this section covers the higher-fidelity
:::::::::
mid-fidelity

:
validation of

the proposed algorithm. The details of the simulation setup are covered in Section 6.1, and the validation results are discussed570

in Section 6.2.

6.1 Simulation Setup

The simulation setup for the higher-fidelity
::::::::::
mid-fidelity wind speed estimator validation in this work uses the open-source

simulation code OpenFAST v3.5.3 (Jonkman et al., 2024), the development of which is led by the National Renewable Energy

Laboratory (NREL). OpenFAST couples several nonlinear aero-hydro-servo-elastic computational modules by which realistic575

and complex wind turbine dynamic responses can be simulated with high accuracy. For the validation purposes of this work,

the AeroDyn, ServoDyn, ElastoDyn, and InflowWind modules of OpenFAST are used. Concerning the degrees of freedom

(DOFs) of the simulated wind turbines, the following are activated:

– generator;

– drivetrain rotational-flexibility;580

– first and second flapwise blade modes;

– first edgewise blade mode;

– first and second fore-aft tower modes; and

– first and second side-side tower modes;

Note that the drivetrain rotational-flexibility DOF is turned off when a direct-drive wind turbine is simulated.585

Two wind turbines representing the respective low- and high-power ratings are simulated, namely the NREL-5MW and the

IEA-22MW turbines, as introduced in Section 2.2. In contrast to using equal Cp tables in the previous analysis sections, using

the reference wind turbine models in OpenFAST leads to simulating the aerodynamic properties of the respective turbines.
:::
For

::::
both

:::::::
turbines,

::::::
ηg = 1

::
is

::::::
chosen.

:

With regard to the wind profile, Kaimal turbulent wind cases are considered for both turbines, with Uh = 7.5 m/s and590

IT = {4,12}%, generated using TurbSim (Jonkman, 2014), and used as input for the aforementioned InflowWind module. The

simulations are run for 1060 s, in which the first 60 s is excluded to remove computational transients from the evaluation.

The power balance wind speed estimator employs the state-estimation-based method for the aerodynamic power estimation

(Section 4) with its gain L computed using ω0 = 5.75 rad/s and ζ0 = 4.5. Note that, compared to the initial low-fidelity

simulations in Section 4.2.2, the lower frequencies and higher dampings of the estimator are chosen and considered to be a595

good compromise between noise filtering and good performance in the higher-fidelity
::::::::::
mid-fidelity settings. Better performance

might be attained by the incorporation of more systematic tuning methods that are able to find the optimal gain via cost
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minimization (e.g., mean and variance of the wind speed estimate error), such as Bayesian optimization (Mulders et al., 2020)

or genetic algorithms (Lara et al., 2024). With regard to the measurement noise, that of the rotor speed vωr
is assumed to

have variance of σ2
vωr

= 10−5 rad2/s2, i.e. one order of magnitude higher than that used in the low-fidelity simulations in600

Section 4.3.

Constant and tailored gain settings are considered, the first one being computed using the NREL-5MW’s LSS-equivalent

inertia
:
of

:::
the

:::::::::::
NREL-5MW

:
for both turbines, similar to what was done in Section 4.2.2, whereas the second one is tailored on

the actual LSS-equivalent inertia of the simulated turbines (see Table 1). For the two turbines considered in this section, the

chosen ω0 and ζ0 result in stable aerodynamic power estimators for both constant and tailored gain cases.605

For the iterative single-step wind speed estimate solver, imax = 10 and ϵU = ϵp = 0.005 are considered. Despite the tighter

convergence bounds compared to the low-fidelity simulations in Section 5.2, the wind speed estimate in the simulations of this

section only requires one iteration in
::
on average to solve.

The proposed method is also compared with an existing wind speed estimator, namely the Immersion and Invariance (I&I)

REWS estimator, based on the work of Liu et al. (2022), the brief derivation of which is provided in Appendix A. This estimator610

is based on torque balance drivetrain dynamics, in which the internal model estimates the rotor speed and aims to minimize its

difference from the actual measurements. Resultingly, the error compensation by a proportional-integral (PI) structure gives the

wind speed estimate of this scheme. For both turbines in the low turbulence scenario, the I&I estimator gains are Kp = 15 m

and Ki = 3.5 m/s, whereas for the high turbulence case, the gains are retuned to be Kp = 25 m and Ki = 5 m/s to match

the performance of the proposed method. Note that there have not been any studies yet in systematic tuning across a range615

of turbine sizes for the I&I approach, to the best of the authors’ knowledge. Thus, the above PI gains are tuned heuristically

and equally for NREL-5MW and IEA-22MW. The next section covers the results from the OpenFAST simulations for the

aforementioned settings.

6.2 Results

The time series
:::::::::::
performance evaluation of the power balance wind speed estimator ’s performance is provided in this section for620

the considered reference turbines, NREL-5MW and IEA-22MW, where for each turbine. Later on, the statistical assessments

of the numerical simulation results are provided at the end of this section.

Figure 14 depicts the time series results of the wind speed estimation for the NREL-5MW. For both the turbulent cases, it

is shown that both methods are able to capture the slow-varying component of the actual wind speed well, with the proposed

method showing less noisy results compared to I&I. This is mainly because the latter method, by default, does not contain625

any noise filtering feature, which can be added by low-pass filtering, for instance. Additional filtering would lead to additional

phase lags and, thus, a slower wind speed estimation. The proposed estimator, thus, demonstrates superior noise handling

capabilities over I&I, which obviates the need for additional filtering. However, as such a modification is not the main focus of

this work, the original I&I structure is retained.

An interesting behavior worth paying attention to from both wind speed estimation methods is the somewhat equal biases630

with respect to the actual wind speed. This is evident at the beginning of the low turbulent wind case and at 525 s and 625 s of
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Figure 14. Wind speed estimation time series for the NREL-5MW wind turbine. The proposed method (blue line) gives a smooth, less noisy

estimate compared to the I&I (green line) for both
:::
low

:::
(top

:::::
plots)

:::
and

::::
high

::::::
(bottom

::::
plots)

:
turbulent cases. The low-frequent component of

the wind speed is captured where biased estimation occasionally occurs, potentially due to an inaccurate Cp table utilized in both estimators

and an absence of dynamic inflow modeling in the estimators. The actual REWS, as outputted by OpenFAST, is shown in the gray line.

::::::::
Zoomed-in

::::
plots

::
of

:::
25-s

:::
time

:::::
spans

::
are

:::::::
provided

::
on

:::
the

::::
right

::
for

::::::
clearer

::::::::
observation

::
of
:::
the

::::::::
estimation

::::::::::
performance.

the high turbulent case. Such biases are potentially coming from the inaccuracy in the Cp table (Brandetti et al., 2022), which

was generated by steady-state simulations, which might not necessarily be accurate during transients. Additionally, the absence

of dynamic inflow effects in the estimator model could play a role in the appearance of such estimation biases (Knudsen and

Bak, 2013).635

Having the estimation results for the NREL-5MW presented, that of the IEA-22MW is showcased. The main goal of the

simulations with a larger turbine is to validate the performance differences when constant and tailored estimator gains are used,

the proof-of-concept of which was shown in the low-fidelity simulations of Section 4.2.2. Figure 15 depicts the time series

results of the wind speed estimation for the IEA-22MW wind turbine. For the constant gain case, the L2 aerodynamic power

estimator gain is based on the one tuned for the NREL-5MW turbine, whereas that of the tailored gain case is determined640

based on the inertia of the IEA-22MW turbine using (22b). Evident in the figure is the better performance of the proposed

method under tailored L2 compared to the constant L2—note the displayed lagged behavior of the latter. With respect to the

I&I results, the former performs similarly in terms of estimation quality of the low-frequent component in the wind speed with

the advantage of less noisy estimates. Similar to the NREL-5MW results previously, estimation biases are also observed in

the IEA-22MW case, which, again, are likely attributed to the inaccuracies in the Cp table of the corresponding turbine and645

absence of dynamic inflow modeling.

From the aforementioned simulations, aerodynamic power and wind speed estimation error histograms are provided for the

considered turbines. Figure 16 depicts the former, where the top row shows the histograms of the NREL-5MW turbine, and

the bottom row the histograms of the IEA-22MW. For all turbulent cases and estimators, the normalized aerodynamic power
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Figure 15. Wind speed estimation time series for the IEA-22MW wind turbine. The proposed method gives a smooth, less noisy estimate

compared to the I&I (green line) for both
:::
low

:::
(top

::::
plots)

:::
and

::::
high

::::::
(bottom

:::::
plots) turbulent cases. Constant L2 (dashed dark blue line) results

in lagged estimation compared to gain-tailored L2 (solid blue line). The actual REWS, as outputted by OpenFAST, is shown in the gray line.

::::::::
Zoomed-in

::::
plots

::
of

:::
25-s

:::
time

:::::
spans

::
are

:::::::
provided

::
on

:::
the

::::
right

::
for

::::::
clearer

::::::::
observation

::
of
:::
the

:::
estim

:::
ation

::::::::::
performance.

:

Figure 16. Histograms
::::::::::
Aerodynamic

:::::
power

:::::::
estimation

::::
error

:::::::::
histograms of the wind speed estimators’ aerodynamic power estimation errors.

Both the I&I and the proposed power balance wind speed estimator are shown to have similar aerodynamic power error distributions.

estimation errors, defined as (Pr − P̂r)/Pg,rated · 100%, are shown to be similar. Most errors of the I&I and the proposed650

methods (only shown for the tailored gain case) are concentrated at 0% with decreasing occurrences at larger percentages,

resembling a bell curve. At higher turbulence intensity, wider histograms are obtained, which is logical due to the limitation of

both estimators in capturing high-frequency contents of the actual REWS.
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Figure 17. Histograms
::::
Wind

::::
speed

::::::::
estimation

::::
error

::::::::
histograms

:
of the wind speed estimators’ wind speed estimation errors. Both the I&I and

the proposed power balance wind speed estimator are shown to have similar wind speed estimation error distributions. Subtle differences are

also shown for both the I&I and the proposed power balance wind speed estimator, where the former has slightly higher occurrences at the

histograms’ tails due to the higher noise level, while the latter has slightly higher occurrences at the center of the distributions.

Figure 17 shows the histograms of the normalized wind speed estimation errors, defined as (U − Û)/Uh · 100%. The current

figure sheds new light on the presence of skewed histograms. For the NREL-5MW turbine, the error histograms are right-655

skewed, indicating the wind speed tends to be underestimated. On the contrary, the IEA-22MW tends to be left-skewed;

that is, the estimators tend to overestimate the wind speed value instead. Given that such skewness is not observed for the

aerodynamic power estimation errors, that of the wind speed estimation might come from the inaccuracy of the Cp tables for

the corresponding turbines, as previously suspected. Online calibration of such a Cp table has been studied, e.g. in Mulders

et al. (2023a, b), which can be used to correct the wind speed estimation quality to minimize such skewness.660

Based on the higher-fidelity
:::::::::
mid-fidelity

:
simulation results reported above, the following conclusions of this section are

drawn. First, it has been shown that the mean values of both the power-based wind speed estimator and the I&I are identical.

Moreover, it has also been demonstrated that the use of steady-state information, i.e. by Cp tables, in a dynamic environment

can lead to skewness for both estimators. Dynamic inflow modeling might also be required for future improvements to the

current scheme. Nonetheless, under noisy measurement conditions, the former exhibits more noise resilience, whereas the665

latter requires additional filtering—complicating the design and potentially introducing phase lag. Finally, the convenience

provided by the gain-tailoring for the proposed method has allowed for performance calibration between the small and larger

wind turbines.
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7 Conclusions

In this work, an analysis framework and optimal design for a power balance REWS estimator have been proposed. The es-670

timator is subdivided into two subcomponents based on their role in the scheme, namely, the aerodynamic power estimator

and the wind speed estimate solver. Two aerodynamic power estimator techniques have been thoroughly analyzed, one based

on numerical derivative and another based on the Luenberger state estimation technique. Of the two potential aerodynamic

power estimators, the state estimation-based technique has been chosen due to its better resilience against noisy measurements.

Moreover, for the first time, a gain-tailoring method for performance calibration throughout a range of modern wind turbine675

sizes has been formalized. Regarding the wind speed estimate solvers, two options have also been considered, namely the

continuous and iterative single-step solvers. In this study, the former’s frequency-domain stability analysis
:
of

:::
the

::::::
former

:
has

been conducted in the continuous-time domain. Under the Forward Euler discretization, deteriorations in the stability prop-

erties of this solver have been identified and shown in the discrete-time domain. Despite the favorable stability properties for

the analyzed Backward Difference and Tustin discretization method, the more robust iterative single-step wind speed estimate680

solver has been chosen and, in combination with the state estimation-based aerodynamic power estimator, forms the optimal

power balance wind speed estimator structure. This optimal power balance wind speed estimator has been validated in the

mid-fidelity simulation environment OpenFAST, utilizing the NREL-5MW and IEA-22MW wind turbines, representing small

and large wind turbines in the considered range, respectively. The proposed method and the considered ‘baseline’ I&I wind

speed estimator have shown similar performance in estimating the low-frequent component of the wind speed, with the latter685

performing good REWS tracking, better noise resilience, and convenient estimator gain calibration across different turbine

sizes.

Zero-bias aerodynamic power estimations have been obtained for both estimators; however, time series and histogram analy-

ses have shown the appearance of biased wind speed estimations for both methods. Such biased estimations might be attributed

to the inability of the steady-state Cp data used to estimate the wind speed in a highly dynamic environment, excluding ef-690

fects such as dynamic inflow. However, learning algorithms to capture the true power coefficient during operation exist in the

literature and can be incorporated to improve the proposed method’s performance
::::::::::
performance

:::
of

::
the

::::::::
proposed

:::::::
method.

Future study will consider providing an optimal means for the estimator tuning, e.g., by Bayesian optimizationand ,
:
incor-

porating currently unmodeled dynamics, e.g., drivetrain torsion, tower dynamics, and dynamic inflow effects
:
,
:::
and

::::::::::
accounting

::
for

:::::
blade

:::::
pitch

::::::::::
information.695

Appendix A: Improved Immersion and Invariance Wind Speed Estimator

The improved Immersion and Invariance (I&I) wind speed estimator as studied in Liu et al. (2022) is provided in brief in this

section. Readers interested in the detailed derivations and analyses are referred to Liu et al. (2022).

The I&I estimator is described by the following torque balance equation

˙̂ωr(t) = Φ
(
ωr(t), Û(t)

)
− Tg(t)

J
, (A1)700

32



with the following nonlinearity

Φ
(
ωr(t), Û(t)

)
:=

ρAÛ(t)3Cp

(
λ̂(t)

)
2Jωr(t)

. (A2)

The wind speed estimate is the result of the minimization of the error between rotor speed and its estimate by a proportional-

integral compensator, that is

Û(t) =Kpeωr−ω̂r
(t)+Ki

t∫
0

eωr−ω̂r
(τ)dτ , (A3)705

with Kp as the proportional gain and Ki the integrator gain, where

eωr−ω̂r
(t) = ωr(t)− ω̂r(t) . (A4)
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