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Abstract. The size growth of modern wind turbines creates challenges in their control system design, particularly due to greater

wind variability across larger rotor areas. As modern turbine control systems rely on the availability of accurate wind speed

information, the increasing unrepresentativeness of pointwise measurement devices, such as anemometers, necessitates the in-

corporation of more representative rotor-effective wind speed (REWS) estimation. Classical REWS estimators, based on static

power relations, often fail to account for dynamic changes, leading to inaccurate estimation. To overcome these challenges, this5

paper introduces a power balance-based REWS estimation framework and splits the estimation problem into two modules: an

aerodynamic power estimator and a wind speed estimate solver. Two possible aerodynamic power estimation techniques are

discussed based on numerical derivative and state estimation. As state estimator calibration remained a challenge for varying

wind turbine sizes, a gain-tailoring method for the performance calibration throughout a range of modern wind turbine sizes

has been derived for the state estimation-based aerodynamic power estimator. Two types of wind speed estimate solvers are10

analyzed, namely the continuous and iterative single-step methods. From the two modules, the best-performing methods—the

state-estimation aerodynamic power estimator and iterative single-step wind speed solver—are chosen to form the optimal

power balance REWS estimator. The combined optimal estimator is validated through OpenFAST simulations of the NREL-

5MW and IEA-22MW turbines and compared against a baseline method. The proposed method demonstrates good tracking of

the REWS, better noise resilience, and convenient estimator gain calibration across different turbine sizes.15

1 Introduction

With the increasing demand for clean and renewable wind energy for the provision of electricity worldwide, there is a trend

to upscale wind turbine sizes (Global Wind Energy Council, 2024). Greater wind turbine rotor swept areas enable more wind

energy to be harnessable, resulting in increasing power production per unit turbine and effectively lowering the so-called

levelized cost of energy—thus making wind turbines more competitive in the energy market (Burton et al., 2011; Veers et al.,20

2019).

Regardless of the potential economic benefit, the task of controlling wind turbines with larger rotors is becoming more of a

challenge, especially when accurate information on wind speed is crucial to ensure high controller performance, e.g., for gain-

scheduling (Kumar and Stol, 2009; Koerber and King, 2013), feedforward(-feedback) control (Van Engelen and Van der Hooft,
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2003; Koerber and King, 2013; Lazzerini et al., 2024), or tip-speed ratio tracking (Bossanyi, 2000; Ortega et al., 2013; Abbas25

et al., 2022; Brandetti et al., 2022, 2023), to mention a few. This is mainly caused by the greater spatial variability across the

rotor-swept area for larger turbines. Thus, pointwise wind speed information, such as provided by anemometers downstream at

the nacelle, becomes increasingly unrepresentative, not to mention the presence of highly perturbed wind flow by the rotating

turbine blades (Soltani et al., 2013). On the other hand, being the main driving force of a wind turbine, the deduction of

more representative wind speed information via the turbine dynamics has been seen as a viable alternative (Boukhezzar and30

Siguerdidjane, 2011). To be more exact, other available measurements, namely rotor speed, generator torque signal, and blade

pitch position, can be made use of to provide the so-called rotor-effective wind speed (REWS) estimate (Østergaard et al.,

2007).

Early REWS estimation studies (see Østergaard et al. (2007); Soltani et al. (2013) and references therein), for a large part,

utilize the static relation between the produced power and the REWS by omitting the always-occurring dynamical changes in35

the rotor speed. Resultingly, these REWS estimators cannot provide accurate estimations of the aerodynamic torque in transient

conditions due to the neglected dynamic information.

To address the aforementioned shortcoming, later REWS estimation studies, incorporating the rotor acceleration informa-

tion in their framework, arose in the literature. In Bossanyi (2000), the REWS estimate is obtained by firstly estimating the

aerodynamic torque by reformulation of torque balance drivetrain dynamics, which account for rotor acceleration and drive-40

train inertial information. Then, given a priori knowledge of the aerodynamic torque coefficient table, it is possible to deduce

the information on the wind speed1. The work of Van Engelen and Van der Hooft (2003) and Boukhezzar and Siguerdidjane

(2011) adopt a similar estimation approach, where for the wind speed estimate solver, the Newton-Raphson algorithm, being

an iterative single-(time)step method, is utilized. In Ortega et al. (2013), an Immersion and Invariance method for the wind

speed estimation is employed and its global convergence guarantee is provided. This method seeks to nullify the error between45

measured rotor speed and its estimate, the latter being the integrated difference between (inertia-scaled) generator torque and

aerodynamic torque estimate, by a proportional compensator (plus an integrator, as extended by Liu et al. (2022)). Having

canceled the rotor speed estimation error, the wind speed estimate is then obtained in a continuous manner. The continuous

method, in comparison with the iterative method, is considered to be a multiple-time-step solving scheme.

Nevertheless, stability analysis of the continuous solver following a discretization has remained unaddressed, to the best of50

the authors’ knowledge. Moreover, the performance comparison between the two wind speed estimation solving methods has

received little attention in the literature.

With regard to the aerodynamic torque or power estimator, the work of Østergaard et al. (2007) is of particular interest.

Two ways to obtain the aerodynamic torque estimate are studied therein, namely by (filtered) numerical derivative or by

state estimation. The former is associated with the numerical differentiating method used to obtain rotor acceleration estimate55

from measured rotor speed. This provides a necessary ‘ingredient’ to reconstruct aerodynamic torque given a priori inertia

1In Bossanyi (2000), the information on the tip-speed ratio corresponding to the estimated aerodynamic torque is the main estimation output. Thus, given

rotor speed measurements, the wind speed estimate can be straightforwardly derived from this tip-speed ratio estimate (as explained in Østergaard et al.

(2007)).
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information and generator torque input. The latter method provides two cascaded observers. The inner loop estimates the

unmeasurable turbine states by Kalman filtering, while the outer one estimates the aerodynamic torque by a proportional-

integral compensator structure. Although performance comparisons of both methods are provided, little attention was paid

to the effect of noisy measurements on the aerodynamic torque estimators, which might deteriorate the ensuing wind speed60

estimation. To facilitate calibration of wind speed estimation by state estimation, the work of Moustakis et al. (2019) proposed

a machine-learning-based Bayesian optimization approach. Nonetheless, since it remained unclear how to properly tune such

a wind speed estimator, a Bayesian optimization approach, which is a global optimization machine learning algorithm, was

adopted in the study.

However, optimal wind speed estimator tuning for a single turbine might not necessarily translate into optimal performance65

when applied to a different turbine. Given the accelerated growth in modern wind turbine sizes, there is a need to derive a

calibration methodology to ensure optimal estimator tuning throughout these turbines.

Furthermore, based on the above literature review, four possible combinations of aerodynamic torque (or aerodynamic

power, as made clearer shortly) estimator and wind speed estimate solver can be constructed with the optimal combination left

undetermined. Moreover, validation in realistic simulation settings of such an optimal wind speed estimator combination—70

calibrated for wind turbines of various sizes—needs to be performed. It is also worth noting that the aforementioned works on

various wind speed estimator schemes are based on the torque balance modeling of the wind turbine drivetrain. While utilizing

such torque-based coordinates has been widely used for wind turbine control designs in the literature, employing power-based

terms to represent the wind turbine dynamics is commonly used within the industry (Hovgaard et al., 2015; Odgaard et al.,

2017; Brandetti et al., 2022; Mulders et al., 2023a; Pamososuryo et al., 2023). The current work thus provides a wind speed75

estimator framework, for a major part, in terms of power balance dynamics. That said, adopting this work into the torque

balance framework is straightforward. The following outlines the contributions of this work:

1. Provide a thorough analysis for numerical derivative- and state estimation-based aerodynamic power estimators given

noisy measurement settings;

2. Formalizing a calibration methodology for state estimation-based aerodynamic power estimator for a range of modern80

wind turbine sizes;

3. Deriving iterative and continuous wind speed estimate solvers, while providing frequency-domain stability analysis for

the latter mentioned method;

4. Identifying the optimal wind speed estimator structure out of the proposed aerodynamic power estimators and wind

speed estimate solvers;85

5. Provide a mid-fidelity validation of the selected optimal estimator under realistic conditions for multiple wind turbine

sizes.

The remainder of this paper is structured as follows: In Section 2, preliminaries required for this paper, being the notation

convention, key reference wind turbine properties, and assumptions used throughout the paper, are explained. Section 3 touches
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Table 1. Key physical properties of reference wind turbines. Those of the NREL-5MW are taken from Jonkman et al. (2009), the IEA-10MW

from Bortolotti et al. (2019), the IEA-15MW from Gaertner et al. (2020), and the 22MW turbine from Zahle et al. (2024).

Turbine parameter
Reference wind turbine

NREL-5MW IEA-10MW IEA-15MW IEA-22MW

Rated power, Pg,rated (MW) 5 10 15 22

Rotor diameter, D (m) 126 198 240 280

LSS-equivalent inertia, J (kg m2) 43,702,538 160,342,052 312,456,272 752,272,514.5

Gearbox ratio, G (−) 97 1 1 1

upon the closed-loop wind turbine model and the proposed power balance REWS estimation framework. Section 4 and 5 covers90

several potential options for the aerodynamic power estimator and wind speed estimate solver subcomponents, respectively,

where thorough analyses and low-fidelity numerical demonstrations are given. In Section 6, the proposed combination of the

aerodynamic power estimator and wind speed estimate solver subcomponents are validated using higher-fidelity wind turbine

simulation results. Finally, the conclusions and recommendations of this work are laid out in Section 7.

2 Preliminaries95

2.1 Notations

In this section, frequently used notations in this paper are defined. Time dependency in the continuous domain is indicated by

the time variable t and in the discrete-time domain by the time-step variable k. Quantities in the continuous frequency/Laplace

domain are indicated by s notation and those in the discrete z-domain with z. The first time-derivative of a signal is denoted

by ˙(•), the ˆ(•) notation indicates an estimated quantity, ¯(•) indicates a quantity at its steady-state, and ˜(•) denotes a signal100

corrupted by noise. Constants associated with the optimal power coefficient, design tip-speed ratio, and fine pitch angle are

indicated by (•⋆).

2.2 Key Reference Wind Turbine Properties

As mentioned earlier in Section 1, wind speed estimator calibration methodology for various wind turbine sizes is presented in

this work. Therefore, a wide range of wind turbine power capacities, which are at the present day represented by the available105

reference wind turbine models ranging from 5 to 22MW, is considered to showcase the applicability of the current study on a

wide range of relevant-sized wind turbines. For that purpose, several reference wind turbines are considered in this study and

their key physical properties are summarized in Table 1.

For later convenience, empirical relations have been derived between the rotor diameters D, power ratings Pg,rated, as well

as the low-speed-shaft equivalent inertias J of the turbines. By drawing such relations, it is possible to account for more110

turbine dimensions, power ratings, and inertias other than those of the reference turbines. To this end, the key properties of the
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Figure 1. Curve fitting results. Reference wind turbine datapoints are depicted by the dots and the fitted curves are indicated by the lines.

The top plot is the mapping from the rotor diameter to the inertia (left y-axis) and rated generator power (right y-axis). The bottom plot is

the mapping from the rated generator power to the inertia.

reference wind turbines in Table 1 are made use of to obtain the following fitted functions

J(D) =
(
2.581 · 106 · e0.02024D

)
kgm2 , (1a)

Pg,rated(D) =
(
1.491 · 106 · e0.009613D

)
W , (1b)

J(Pg,rated) =
(
9.979 · 107P 2

g,rated +2.843 · 108Pg,rated115

+2.424 · 108
)

kgm2 . (1c)

For the above fits, the coefficient of determination R2 > 0.99 is ensured.

2.3 Assumptions

Assumption 1. The power coefficient represents the exact steady-state aerodynamic characteristics of the actual rotor.

Assumption 2. In the low-fidelity simulations provided throughout this study, the power coefficient of all the considered120

reference wind turbines (see Table 1) is equal to that of the NREL-5MW reference wind turbine so as to enable a clear analysis

and comparison of the results between the various considered turbines.

Assumption 3. The drivetrain inertia value at the low-speed shaft side is assumed to be an a priori known parameter.

3 Closed-Loop Wind Turbine Model and Rotor-Effective Wind Speed Estimation Framework

Figure 2 presents the overall scheme considered in this work, in which the wind turbine is controlled by a partial-load controller125

along with a power balance wind speed estimator. The wind speed estimator, being the main focus of the analysis in this work,
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Figure 2. The general scheme of the power balance wind speed estimation considered in this study. The wind turbine (red block) is operated

in a closed loop with a Kω3
r controller (green block), whereas the power balance wind speed estimator (blue block) is in an open-loop

configuration with the turbine. The power balance wind speed estimator is subdivided into the aerodynamic power estimator (yellow block)

and wind speed estimate solver (purple block).

is connected in an open loop to the closed-loop system. The red block represents the wind turbine, the green block contains the

controller, and the blue block is the power balance wind speed estimator considered in this study.

Sections 3.1 and 3.2 provide the required theory used in this paper by outlining the first two subsystems, followed by defining

the wind speed estimator. Then Section 3.3 addresses the decomposition of the estimator into several subcomponents, providing130

a framework for the remainder of the work presented in this paper.

3.1 Single-Degree-of-Freedom Wind Turbine Model and Optimal Controller

In this work, single-degree-of-freedom power-balance drivetrain dynamics are considered as a simplified representation of a

wind turbine as follows

Jωr(t)ω̇r(t) = Pr(t)−Pg(t)/ηg , (2)135

where J ∈ R is the low-speed shaft (LSS) equivalent inertia, ωr ∈ R the rotor angular speed, and Pg ∈ R the generated power

with the corresponding generator efficiency factor ηg ∈ (0,1]. The aerodynamic power is given by the nonlinear relation

Pr(t) =
1

2
ρArCp(λ(t),β(t))U(t)3 , (3)

in which ρ ∈ R, denotes the air density, Ar ∈ R the rotor area, U ∈ R the REWS (Soltani et al., 2013), and β ∈ R blade pitch

angle. The power coefficient Cp : R2 → R is a nonlinear mapping from β and the non-dimensional tip-speed ratio (TSR),140

defined as

λ(t) =
ωr(t)R

U(t)
, (4)

with R ∈ R as the rotor radius.
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Remark 1. The power coefficient considered in this work does not take into account the aerodynamic effects due to structural

deformations, e.g., those associated with bend-twist coupling of the blades. Had this been the case, changes in local blade145

sections’ angle of attack are expected and different combinations of ωr and U , although they correspond to the same λ, might

yield different power coefficients. This would render the Cp : R2 → R mapping between λ, β, and Cp inadequate such that

Cp : R3 → R mapping is needed (i.e., Cp(ωr,U,β) instead of Cp(λ,β); see Lazzerini et al. (2024) and references therein).

Nevertheless, without loss of generality, the mapping of the former is adopted for the sake of clarity of the analysis of this

paper; thus, the Cp tables in this work are generated using rigid rotor assumption.150

The drivetrain system outputs ωr, which is then fed into the optimal torque controller (Bossanyi, 2000), often known as

the ‘Kω2
r ’ controller. Although controllers performing better than Kω2

r , e.g., during transients, are available in the literature,

partial-load controller design is not the main focus of this study. Hence, the Kω2
r controller is deemed sufficient for the goal

of this work. That said, this work is equally applicable to more advanced partial-load controllers available in the literature,

such as tip-speed ratio tracking schemes, e.g., Brandetti et al. (2023) and Lazzerini et al. (2024). Note must be taken, however,155

that in the latter scheme, blade pitching is active in partial load. As standard Kω2
r scheme does not utilize blade pitch control,

further study of the current estimation scheme under varying pitch angles is required and reserved for future work. Furthermore,

constant pitch at fine position β = β⋆ is used and, for the sake of brevity, the notation Cp(λ) := Cp(λ,β
⋆) is made use of for

the remainder of this paper. The Kω2
r controller, in its generator-power equivalence, is expressed as

Pg(t) = ηgKω3
r , (5)160

where

K =
πρR5C⋆

p

2λ⋆3
,

is the optimal control gain. The notation λ⋆ indicates the design TSR, corresponding to the optimal power coefficient, defined

as C⋆
p := Cp(λ

⋆). Based on the expression (5), in the remainder of this paper, as well as in Fig. 2, this optimal controller is

referred to as the ‘Kω3
r .’165

3.2 Power Balance Wind Speed Estimation General Concept

This section establishes the REWS estimation framework that forms a basis for the remainder of this paper. The rationale behind

the power balance REWS estimator presented herein lies in the retrievability of the wind speed information by asymptotic

minimization of an error term between the aerodynamic power and its estimate, in which Assumption 1 holds, that is

U(t) = lim
t→∞

argmin
Û(t)

|ep(t)| , (6)170

where Û ∈ R denotes the REWS estimate. The notation ep ∈ R is the said estimation error, defined as

ep(t) = Pr(t)−
1

2
ρArCp

(
λ̂(t)

)
Û(t)3 , (7)
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Numerical
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or or
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Power Balance Wind Speed Estimator

Figure 3. Power balance wind speed estimation partitioning. The left column contains the potential aerodynamic power estimators to be

connected with the potential wind speed estimate solvers within the right column, thereby creating four possibilities for combining the two

subcomponents.

where the second term on the right-hand side of the equation is the aerodynamic power estimate based on (3), utilizing Û in

place of U . The challenge of obtaining an estimate of Pr and solving the optimization problem of (6) is explained in further

detail in the next section.175

Remark 2. Note that (6) will not be achieved in the presence of discrepancies between the used and actual Cp tables. Such

disparities will lead to a biased wind speed estimate as reported in Brandetti et al. (2022). Readers interested in the details of

such ill-conditioning are thus referred to the study.

3.3 Wind Speed Estimator Subcomponent Partitioning

Now that the closed-loop controlled wind turbine and wind speed estimation problem has been defined, the power balance180

REWS estimator explained in Section 3.2 can be partitioned into two subcomponents to allow for both rigorous analysis and

effective estimation schemes: (i) aerodynamic power estimator and (ii) wind speed estimate solver. Figures 2 and 3 depict

this partitioning, the latter of which details the possible techniques to realize these two subcomponents. Similar separation

approaches have also been adopted in the literature, e.g., in Van Engelen and Van der Hooft (2003) and Østergaard et al.

(2007). The current study provides a more in-depth analysis of the subcomponents.185

The first block provides an estimate of the aerodynamic power, which—in contrast to the measured generator power—

is more challenging to obtain, as will be explained shortly. Fortunately, such information can still be obtained based on the

available measurements and is the concern of the orange blocks in Figs. 2-3. By rearranging (2) and replacing specific variables

8



with their estimated representations, one obtains

P̂r(t) = Jωr(t)ˆ̇ωr(t)+Pg(t)/ηg . (8)190

Note that P̂r and Pg/ηg are equal to each other in steady state; however, due to the variable nature of the wind and rotor speed,

omitting the rotor acceleration term entirely from this calculation means losing valuable dynamic information (Østergaard

et al., 2007; Soltani et al., 2013). Therefore, taking into account the dynamics by the utilization of the rotor acceleration and

the Jωrω̇r terms enhances the accuracy of REWS estimate during both steady-state and transient conditions.

In practice, however, the rotor acceleration is not directly measurable, not to mention that it is challenging to obtain a good195

estimate of this quantity, ˆ̇ωr, due to the noisy nature of measured signals in practice. To retrieve ˆ̇ωr, one may resort to numerical

derivative of ωr or state estimation methods as depicted in Fig. 3. Subsequently, the aerodynamic power estimate P̂r is obtained

by solving (8).

Remark 3. At this point, two aerodynamic power estimate terms have been introduced. One being P̂r, defined in (8) and

another being the second term on the right-hand side of (7). To prevent any confusion, the term ‘aerodynamic power estimate’200

is used to refer to the former, whereas that of the latter from hereon is referred to as the ‘Û -dependent aerodynamic power

estimate.’

Independent of how P̂r is retrieved, such information, together with ωr measurements, is then fed into the wind speed

estimate solver subcomponent indicated as the purple blocks in Fig. 3. Solving for the estimated wind speed is achieved in

two ways in this work: continuous (e.g., as used in Ortega et al. (2013) and Liu et al. (2022)) or iterative single-step manner205

(e.g., by Newton-Raphson methods as done in Van Engelen and Van der Hooft (2003) and Boukhezzar and Siguerdidjane

(2011)). A linear analysis of the continuous wind speed estimate solver in continuous time will be provided, in which the

stability properties of the linearized solver dynamics are derived. Furthermore, the effects of various discretization methods

on the system, especially on the mentioned stability properties, are evaluated. The single-step approach solves the wind speed

estimate in a similar way to the former without the need for high solver gains, potentially causing stability issues to obtain210

good estimation quality without phase lags. Its wind speed estimation quality is determined by the choice of error tolerance

parameters and iteration budget.

The aforementioned options for each of the subcomponents, therefore, allow for several possible combinations in which the

power balance wind speed estimator can be constructed, as illustrated in Fig. 3; however, the optimal combination is yet to be

found. To that end, in the respective Sections 4 and 5, the derivations of the two aerodynamic power estimators and the wind215

speed estimate solvers are provided, where also their performance is evaluated.

4 Aerodynamic Power Estimator

As discussed previously, reconstructing aerodynamic power from available measurements is an essential step in obtaining

an accurate REWS estimate in both steady-state and dynamic transient conditions. To this end, the most challenging part is

obtaining an accurate estimate of the rotor acceleration ˆ̇ωr, which is the main concern of this section. Two approaches are220
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considered herein; first, the numerical derivative-based method is examined in Section 4.1. Later in Section 4.2, the state

estimation-based technique is discussed. In Section 4.3, the numerical comparisons for both methods are evaluated.

4.1 Numerical Derivative-Based Technique

To obtain an estimate of the rotor acceleration, a numerical derivative is applied to the measured ωr. In the frequency domain,

this is represented as follows225

ˆ̇Ωr(s) = Fnd,c(s,τ)Ωr(s) , (9)

in which Ωr and ˆ̇Ωr, with a slight abuse of notation for the latter, are the respective Laplace-transformed variables of ωr and
ˆ̇ωr. The transfer function

Fnd,c(s,τ) =
s

τs+1
, (10)

in (9) is the filtered derivative2 in accordance with IEEE 421.5-2016 standard (IEEE, 2016), with a unity derivative gain. The230

parameter τ ∈ R≥0 is the time constant of the numerical derivative.

In its implementation, the numerical derivative (10) is discretized via the Backward Difference method. Thus, the discrete-

time transfer function of the filter is

Fnd,d(z,τ) =

(
1

τ

)
1− z−1

1+h/τ − z−1
, (11)

where h denotes the sampling time.235

As τ is the only tuning parameter for the filter (11) it plays a crucial role. For instance, setting τ = 0 casts Fnd,d into a pure

differentiator. This enables infinite amplification at the high frequencies (including noise), which is propagated to ˆ̇ωr, which is

undesired. Having too large τ is also unwanted as ˆ̇ωr and the subsequent P̂r may become less accurate despite the better noise

resilience. Calibration of τ is, therefore, a trade-off between having an accurate rotor acceleration estimate and good noise

suppression. In the following section, a numerical demonstration of such a trade-off is performed and analyzed.240

4.1.1 Time Constant Selection: Accuracy and Noise Propagation

As stated above, the choice of τ may be helpful in suppressing the effects of noisy measurements often encountered in real-

world scenarios. To provide a clearer picture on this aspect, Fnd,d is applied to the discrete-time rendition of (9), resulting in

the filtered and differentiated rotor speed

˜̂
ω̇r(k) =

ω̃r(k)− ω̃r(k− 1)+ τ
˜̂
ω̇r(k− 1)

τ +h
, (12)245

with

ω̃r(k) = ωr(k)+ vωr
(k) . (13)

2That is, a pure differentiator combined with a first-order low-pass filter.

10



Figure 4. The mean of the aerodynamic power estimate µP̂r
, normalized with respect to that of a noiseless case. It is shown that with a high

noise variance σ2
vωr

the noise propagated by the numerical derivative from ωr into ˆ̇ωr results in a high bias in P̂r. Nonetheless, the application

of τ lessened the severity of the increased aerodynamic power estimation bias, shown by lower µP̂r
as τ becomes higher.

as the noisy rotor speed signal, where vωr
∼ (0,σ2

vωr
) is an additive, Gaussian white noise with zero mean and variance σ2

vωr
.

The impact of the noise propagated from ω̃r will affect the aerodynamic power estimate, as made evident in the following

relation, obtained by substituting (12)-(13) into (8)250

P̂r(k) = Jω̃r(k)
˜̂
ω̇r(k)+Pg(k)/ηg . (14)

Note that the equation contains a multiplication between ω̃r and ˜̂
ω̇r. This implies that the noise the former contains is multiplied

with the one it propagated to the latter from the previous time step. This introduces a biased P̂r that varies on the noise variance

because the product of a noise sequence with itself, although it is of zero mean, will give a nonzero mean3. A chosen τ may

lessen the effects of such noise propagation but may deteriorate P̂r estimation performance and is a trade-off.255

To numerically demonstrate the effect of noisy measurements to (14), 400-second simulations, sampled at h= 0.02 s,

were run for time constants and noise variances of τ ∈ [0,10−1] s and σ2
vωr

∈ [10−6,10−2] rad2/s2, respectively. In addi-

tion, the inertia value of the NREL-5MW is used (see Table 1), under the steady-state operating conditions ω̄r = 0.8 rad/s and

P̄g = 1.548 MW, the latter of which is computed using (5) with C⋆
p = 0.469, λ⋆ = 6.53, and ηg = 0.94. Figure 4 summarizes

the statistical results of these simulations, where µP̂r
is the mean of the aerodynamic power estimate.260

It is apparent in the figure that greater noise variance leads to higher µP̂r
, representing added bias in the aerodynamic power

estimate; nevertheless, employing high τ values alleviates such deterioration to some extent. Also implied in this observation

is using τ = 0 s (i.e., using a pure differentiator) is not desirable, especially in highly noisy environments, as this would lead

to an infinite amplification of high-frequency components. In conclusion, attention needs to be paid to noisy ωr conditions as

the resulting biased P̂r may undermine the REWS estimation in the end.265

4.2 State Estimation-Based Technique

Besides the aforementioned numerical derivative technique to obtain ˆ̇ωr and, thus, P̂r, state estimation-based methods can also

be employed. Obtaining P̂r via state estimation can be proven to be more beneficial compared to the numerical derivative

3Consider this product to be νωr = v⊤ωr
vωr . The mean of νωr is thus equal to the variance of vωr , namely E[νωr ] = E[v⊤ωr

vωr ] = σ2
vωr

, where E is the

expected value operator (Verhaegen and Verdult, 2007).
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technique in the possessed freedom to trade-off sensitivity to noisy measurements with responsiveness by estimation gain

tuning, however, might be more challenging in its implementation and calibration.270

Despite the adopted power balance wind speed estimation framework, the state estimator employed in this section utilizes

an internal model based on the torque balance variant of (2). Retaining the power variables in (2) would lead to the internal

estimator dynamics being nonlinear such that it becomes necessary to obtain the Jacobians of the system—adding complexities

to the observer design. Therefore, to provide an aerodynamic power estimate, a reformulation is performed to obtain a torque-

based estimator. To this end, the internal model is described as the following dynamics275

ω̇r(t) =
Tr(t)−GTg(t)

J
, (15)

where G ∈ R+ is the gearbox ratio of the drivetrain, Tr = Pr/ωr is the aerodynamic torque, and Tg = Pg/(ηgωrG) is the

generator torque.

The dynamics (15) are then recast into the following discrete state-space form by employing Forward Euler discretization

xs(k+1) =Asxs(k)+Bs,uus(k)+Bs,dds(k)+wωr
(k) ,280

ys(k) = Csxs(k)+ vωr
(k) , (16)

with

xs = ωr, us = Tg, ds = Tr, and ys = ωr,

as the respective state, input, disturbance, and output, and the state space matrices

As = 1, Bs,u =−hJ−1G, Bs,d = hJ−1, and Cs = 1,285

where {xs,us,ds,ys} ∈ R and {As,Bs,u,Bs,d,Cs} ∈ R. Also included in (16) are the process noise wωr
∼ (0,σ2

wωr
) with vari-

ance σ2
wωr

and measurement noise vωr
∼ (0,σ2

vωr
) with variance σ2

vωr
, both assumed to be uncorrelated, zero-mean, Gaussian

white noise. The aerodynamic torque is considered to be an unknown input and, therefore, a subject of the estimation. Thus, it

is recast as a random-walk process (Verhaegen and Verdult, 2007) as follows

Tr(k+1) = Tr(k)+wTr
(k) , (17)290

where wTr
∼ (0,σ2

wTr
) is a zero-mean Gaussian white noise sequence with variance σ2

wTr
, uncorrelated to wωr

and vωr
. One

advantage of treating Tr as a random-walk process is in the ease of design as no a priori information, such as aerodynamic

torque coefficient, is needed. In particular, the Jacobian of this term is not necessary given that it is a nonlinear function of v

and ωr.
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Figure 5. Internal structure of the state estimation-based aerodynamic power estimator. Note that the aerodynamic power estimate P̂r is the

product of the rotor speed estimate ω̂r and aerodynamic torque estimate T̂r. See Remark 4 for more details.

The general state space expression for the state estimator—as depicted in Fig. 5, augmenting (17) to (16) and also including295

feedback from the measured system output y = ωr, is written as followsx̂s(k+1)

T̂r(k+1)


︸ ︷︷ ︸
x̂s,aug(k+1)

=

As Bs,d

0 1


︸ ︷︷ ︸

As,aug

x̂s(k)

T̂r(k)


︸ ︷︷ ︸
x̂s,aug(k)

+

Bs,u

0


︸ ︷︷ ︸
Bs,aug

Tg(k)

+

wωr
(k)

wTr
(k)


︸ ︷︷ ︸
ws,aug(k)

+L(y(k)− ŷs(k)) ,

ŷs(k) =
[
Cs 0

]
︸ ︷︷ ︸
Cs,aug

x̂s(k)

T̂r(k)


︸ ︷︷ ︸
x̂s,aug(k)

+vωr
(k) ,

(18)

with L= [L1,L2]
⊤ as the observer gain vector. This gain can be determined either by a pole placement (Luenberger approach)

or Kalman design, the latter of which is able to provide minimum-variance, unbiased state estimation by solving an algebraic

Riccati equation involving the noise covariance matrices. However, because the former provides more freedom to define the300

pole locations of the state estimator according to one’s own optimal performance criterion, in this study, L is determined by

pole placement.

Remark 4. Similar to the numerical derivative-based method, the state estimation scheme above can provide the aerodynamic

power estimate by making use of the relation P̂r = Jω̂r
ˆ̇ωr +Pg/ηg. Nevertheless, as in the state estimation-based scheme

considered in this section, the quantities ω̂r and T̂r are accessible directly from the augmented state vector x̂s,aug such that305

the aerodynamic power estimate can be computed straightforwardly via P̂r = ω̂rT̂r. Thus, this approach is considered for the

remainder of this study.
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In the aforementioned Luenberger approach, L needs to be designed such that As,aug −LCs,aug has stable eigenvalues.

Such a condition guarantees the convergence of y− ŷs to zero given observable (As,aug,Cs,aug). Evaluating this condition

confirms that it is satisfied for hJ−1 ̸= 0, which is always the case in practical scenarios.310

With regard to the estimator’s performance, having a closer look into the characteristic polynomial of As,aug −LCs,aug

may shed some new insights, e.g., how the design can be applied for different wind turbine power ratings. Furthermore, it is

also somewhat known that the power rating of a wind turbine is associated with its dimension and, thus, inertial properties (Ro-

driguez et al., 2007), which, in this particular case, is the most influential as h,G≪ J . This indicates that a selected L suitable

for a wind turbine might give a different performance when applied to another turbine with a different power rating. Therefore,315

it is crucial to find a gain-tailoring guideline in such a way that identical state estimator performance among different power

ratings or inertia values can be found.

The aforementioned considerations are addressed in the following sections: Section 4.2.1 provides the investigation into the

characteristic polynomial of the estimator. A numerical demonstration is presented in Section 4.2.2 to compare the performance

of the estimator with and without such a guideline.320

4.2.1 State Estimator Characteristic Polynomial

This section covers the analysis of the characteristic polynomial for the state estimation-based aerodynamic power estimator

laid out in the previous section. Investigation into such a characteristic polynomial informs one about how, for instance, a choice

of estimator gain influences the natural frequency and damping of the estimator. The characteristic polynomial is derived as

follows325

det(zI −As,aug +LCs,aug) = z2 + p1z+ p2 = 0 , (19)

in which the roots of the polynomial coefficients are parameterized as

p1 = 2(hω0ζ0 − 1) = L1 − 2 , (20a)

p2 = 1− 2hζ0ω0 +h2ω2
0 = 1−L1 +

h

J
L2 , (20b)

where ω0 and ζ0 are the respective natural frequency and damping ratio of the continuous-time characteristic equation4, which330

by further manipulation of (20) leads to

ω0 =

√
L2

hJ
, (21a)

ζ0 =
L1

2hω0
. (21b)

It is directly evident from the above equations that to maintain constant ω0 and ζ0 for a range of different turbines, the ratio

L2/J needs to be maintained constant under the assumption that L1 and h are equal for all turbines. Furthermore, it is more335

4That is, s2 +2ζ0ω0s+ω2
0 = 0. Applying Forward Euler discretization to this equation gives (19).
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insightful to express L1 and L2 in terms of ω0 and ζ0 by rearranging (21) as follows

L1 = 2hζ0ω0 , (22a)

L2 = hJω2
0 . (22b)

The relation above allows one to determine both gains based on specified ω0 and ζ0, but most importantly, it becomes clear

that L2 needs to be tailored based on the turbine inertia, especially if one desires to apply the estimator for different turbine340

sizes and power ratings as discussed in the previous section. In the following section, how this gain is tailored for a range of

wind turbine inertias is discussed, and a numerical demonstration is also provided.

4.2.2 Constant and Tailored Estimator Gain Comparison

To numerically demonstrate the performance difference between constant and tailored L2 over the considered range of turbines,

800-second simulations (sampled at h= 0.02 s) are performed with a turbulent wind with mean speed Uh = 7.5 m/s and345

intensity IT = 4%. The drivetrain dynamics (2) in closed-loop with the controller (5) are incorporated to represent the wind

turbine. Ten wind turbines within Pg,rated ∈ [5,25] MW range are considered and the inverse of (1b) is made use of to obtain

R=D/2 from the specified Pg,rated, e.g., to compute TSR and the optimal mode gain K.

Their estimator gains are subsequently obtained using (22), in which ω0 = 25 rad/s and ζ0 = 1 are chosen and, as will be

shown later, result in satisfactory estimator performance. The J values derived from (1c) for the selected Pg,rated range and are350

subsequently substituted to (22b) to adjust L2
5. For the constant gain case, the L2 computed for Pg,rated = 5MW is considered

for all turbines. No noise is assumed for ωr measurements for the sake of simplicity in this demonstration; nevertheless, similar

conclusions can be derived under noisy measurements.

Figure 6 summarizes the key statistical results of the simulations, being the absolute means (|µ(•)|) and standard deviations

(σ(•)) of the rotor speed, aerodynamic torque, and aerodynamic power estimation errors, ωr − ω̂r and Tr − T̂r, and Pr − P̂r355

respectively. In general, it is observed from the figure that, compared with the tailored gain case, the use of constant gain

deteriorates the absolute means and standard deviations as the power rating increases. However, an exception applies for

σTr−T̂r
and σPr−P̂r

where similar results are depicted for both cases.

The observation from the above demonstration motivates the need to set a new standard, i.e., by employing L2 tailoring

based on the power rating and consequent drivetrain inertia of the considered turbines, which provides a convenient means360

to calibrate state estimation-based aerodynamic power estimation. As will be shown later, such a gain-tailoring—and more

importantly, the state estimation-based aerodynamic power estimator—leads to faster (less phase lag) and more noise-resilient

wind speed estimation.

4.3 Aerodynamic Power Estimation Techniques Comparison

With the numerical derivative and state estimation approaches to estimate aerodynamic power already presented in the previous365

sections at hand, this section is now dedicated to comparing both methods. To this end, simulations with the same turbulent
5Alternatively, one may also use the previously obtained D followed by a substitution to (1a).
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Figure 6. Statistical assessment results of the constant (blue) and tailored (green) Luenberger estimator’s L2 gain based on the power rating

(and inertia) of the turbines. Absolute errors of the rotor speed, aerodynamic torque, and aerodynamic power estimates (left column) of the

constant L2 strategy tend to be much higher than the tailored gain. Significant difference in the standard deviation of these errors (right

column) is only shown for the the rotor speed estimation, whereas those of the aerodynamic torque and power are comparable. These results

imply that appropriate gain adjustment based on the power rating of the corresponding turbine is imperative.

wind setting in Section 4.2.2 are run, where a wind turbine of Pg,rated = 15 MW, representing a ‘mid-sized’ turbine in the

considered turbine range, is utilized. In addition, noisy rotor speed measurements are assumed, with σ2
vωr

= 10−6 rad2/s2.

Two strategies in obtaining P̂r are compared:

1. Using filtered derivative Fnd,d introduced in Section 4.1 to obtain ˆ̇ωr, followed by its substitution to (8), including ωr and370

Pg measurements with known J according to Assumption 3. A time constant of τ = 0.5 s is selected as it is considered

a good trade-off between noise correlation, quality of the derivative, and noise amplification limitation;

2. Directly retrieving P̂r by state estimation method explained in Section 4.2 by multiplying ω̂r and T̂r (see Remark 4). The

gain L is computed by setting ω0 = 25 rad/s and ζ0 = 1 as used in the previous section.

Figure 7 depicts the time series results of the simulation, where, for clarity, only chosen for the timestamp t= 200− 250 s.375

In the figure, the actual aerodynamic power as a ground truth is indicated by the gray line. It can be seen that the aerodynamic

power estimation result for the state estimation-based method excels that of the numerical derivative one in terms of less noise

propagation and phase lag.

Note that, for the latter, increasing τ will result in less noise but increasing phase lag (Østergaard et al., 2007) as this will

diminish and deteriorate the Jωrω̇r estimate such that P̂r ≈ Pg/ηg (i.e. information will be lost). The case where Jωrω̇r = 0380
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Figure 7. Comparison of aerodynamic power estimation methods. It is shown that the estimate obtained via the state estimation-based

technique (red line) has much less noise compared with that of the numerical derivative one (blue line) while still maintaining high estimation

accuracy. Also depicted is the aerodynamic power estimate determined only using the generated power (green line), which shows the worst-

case phase lag with respect to the other methods, demonstrating the loss of information if rotor acceleration information is absent.

such that P̂r = Pg/ηg is demonstrated by the green line, which evidently shows a phase lag with respect to those where the

information of Jωrω̇r is made available. It is concluded, therefore, that for the power balance REWS estimation scheme, the

state estimation-based aerodynamic power estimator is to be used for the remainder of this paper. Note that the performance of

the state estimation method can be improved by further tuning of ω0 and ζ0.

5 Wind Speed Estimate Solver385

Having a good estimate of the aerodynamic power is crucial for the second component of the overall power balance wind speed

estimation scheme, which solves the effective wind speed estimate (see Fig. 2). Alluded to earlier in Section 3.3 and shown in

Fig. 3, the two manners in which such a solver can be designed are detailed in the following sections. Section 5.1 discusses the

continuous solver, where the linear state-space derivation of the solver is done, followed by frequency-domain analysis. Then,

the stability of the solver in the discrete-time domain is discussed. Later, in Section 5.2, the iterative single-step algorithm is390

proposed as a promising alternative to the former.

5.1 Continuous Solver

This section presents an analysis of the continuous manner of solving the wind speed estimate, given that the aerodynamic

power estimate and rotor speed measurements are provided. Figure 8 depicts the internal structure of this continuous wind

speed estimate solver and is elaborated in the following.395

As laid out in Section 3.2, asymptotically minimizing the estimation error term ep returns the wind speed estimate Û , which

converges to the actual wind speed over time per the definition in (6). Such an integration operation enables the wind speed

estimate solver to be written as the following state transition equation

˙̂
U(t) =−KUep(t) , (23)
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Continuous Wind Speed Estimate Solver 

+

Figure 8. Internal structure of the continuous wind speed estimate solver.

with the integrator gain400

KU =
κ

Pg,rated
, (24)

determining the convergence rate. The notation κ ∈ R+ is a constant and the rated generator power Pg,rated ∈ R+ is used to

convert ep from wattage into the per-unit (p.u.) system.

As ep has a nonlinear analytic definition (7), the wind speed estimate solver in the continuous time is represented by the

following nonlinear dynamics405

S :

ẋ(t) = f(x(t),u(t)) ,

y(t) = g(x(t)) ,

with

x= Û, u=
[
P̂r, ω̂r

]⊤
, and y = Û,

as its state, input, and output vectors, respectively.

To proceed with the linear analysis, the first-order Taylor expansion of S is derived, resulting in the following linear state-410

space system

ẋ(t) =Ax(t)+Bu(t) ,

y(t) = Cx(t) ,
(25)

with the state, input, and output matrices defined by the following Jacobians

A=
∂f

∂x

∣∣∣∣
(x̄,ū,ȳ)

=−KU

2
ρAr

¯̂
U2

(
3Cp

(
¯̂
λ
)
− ¯̂
λ
∂Cp

∂λ̂

)
,

B =
∂f

∂u

∣∣∣∣
(x̄,ū,ȳ)

=−KU

[
1 − 1

2
ρArR

¯̂
U

2 ∂Cp

∂λ̂

]
,

C =
∂g

∂x

∣∣∣∣
(x̄,ū,ȳ)

= 1 ,

(26)
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respectively.415

Given the linearized dynamics above, it becomes compelling to examine the stability properties of the linear system. To this

end, the next subsections provide frequency-domain stability and discretization-method analysis utilizing the above-derived

linear system.

5.1.1 Frequency-Domain Stability Analysis

In the previous section, the nonlinear dynamics of the continuous solver have been described, followed by their linear state-420

space rendition. Here, the stability of the solver is assessed via pole location investigation. Solving for G(s) = Y (s)/U(s) =

C(s−A)−1B, one obtains the multiple-input single-output transfer matrix formulation of the state-space (25) as follows

G(s) =
N

D(s)
. (27)

The notations N =B and D(s) are the respective numerators and denominator of the transfer functions above, with the former

being a constant gain vector, hence the independence from s. The latter is of interest, especially with regard to stability analysis.425

The denominator of the transfer functions is

D(s) = s+
KU

2
ρAr

¯̂
U2

(
3Cp

(
¯̂
λ
)
− ¯̂
λ
∂Cp

∂λ̂

)
︸ ︷︷ ︸

p

, (28)

which, in order to guarantee stability, left half-plane pole location p < 0 must be satisfied such that

p=−KU

2
ρAr

¯̂
U2︸ ︷︷ ︸

pc

3Cp

(
¯̂
λ
)

︸ ︷︷ ︸
pa

− ¯̂
λ
∂Cp

∂λ̂︸ ︷︷ ︸
pb

< 0 , (29)

with pc > 0. The inequality (29) requires pa−pb > 0 to hold to ensure the pole stays within the left-half plane. This condition,430

which can be rewritten as

pa > pb ⇔ 3
¯̂
λ
Cp

(
¯̂
λ
)
>

∂Cp

∂λ̂
, (30)

is a well-known condition for global asymptotic stability in the (Improved) Immersion and Invariance wind speed estimator

works, e.g., Ortega et al. (2013) and Liu et al. (2022).

With the stability expression of (29)/(30) at hand, a stability map at different operating conditions is made. For this purpose,435

the Cp table of the NREL-5MW is taken. Figure 9 depicts the resulting stability region of the continuous wind speed estimate

solver. The stable region is shown in green, whereas the unstable region is in blue. The left subfigure illustrates how the Cp

contour is divided based on whether (29)/(30) is satisfied. The blue dot shows the location of C⋆
p , corresponding to the fine

pitch β⋆ (horizontal dashed line) and design TSR λ⋆ (vertical dashed line). The operating conditions at the β⋆ line are mapped

on the right subfigure, resulting in the stability region representation in terms of U and ωr. The blue solid line represents λ⋆ or440

Kω3
r line, where maximum power extraction occurs. As can be seen, the continuous wind speed estimate solver is stable for a
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Figure 9. Stability region of the continuous wind speed estimate solver in the continuous time G(s), where the condition p < 0 in (29) is

satisfied (indicated in green, otherwise in blue). The left subfigure shows the different Cp levels for the NREL-5MW turbine (white solid

lines), with C⋆
p indicated by the blue dot. The right subfigure shows the mapping of the stability region in terms of wind speed U and rotor

speed ωr for the fine pitch angle β⋆. The solid blue line is the partial-load regime, where the Kω3
r controller is active. Also shown for

completeness are the black dashed lines, indicating the lower and upper bounds for the rotor speed, as well as cut-in and rated wind speeds.

large part of the turbine operational domain and, more importantly, along the optimal Kω3
r line where the turbine operates in

partial-load in the steady state.

However, as far as practicality is concerned, the effects of discrete-time implementations should extend the above continuous-

time analysis. A discretization method, for instance, might not preserve the stability properties obtained in the continuous-time445

domain (Åström and Wittenmark, 2011). Moreover, different estimator gain κ values influence the stability region. These

aspects are the main concerns in the next section.

5.1.2 Solver Discretization and Instability

In this section, the stability of the continuous wind speed estimate solver (27) in the discrete time is discussed. The three most

common discretization methods are considered as follows (Åström and Wittenmark, 2011)450

1. The Forward Euler (FE) method, the s-to-z-domain transformation of which is as follows

s′FE =
z− 1

h
. (31)

2. The Backward Difference (BD) method, with the following transformation

s′BD =
z− 1

zh
. (32)

3. The Tustin (TU) method, with455

s′TU =
2

h

z− 1

z+1
. (33)

as the corresponding s-to-z-domain transformation.
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Substituting any of the above discretization methods into G(s) results in the following general discrete-time approximation

representation

G(s= s′) =H(z) =
P (z)

Q(z)
, (34)460

with P (z) denoting the numerators and Q(z) the denominator of the discrete-time transfer function H(z).

Similar to its continuous-time counterpart, discrete-time stability analysis only focuses on the poles of the system, i.e.,

whether they are within the unit disc, such that in the following study, only Q(z) is of interest (Åström and Wittenmark, 2011).

Explicit representations for H(z), obtained by the discretization methods (31)-(33), are, therefore, provided below and their

corresponding stability condition derivation follows465

1. Using s= s′FE for the FE method, G(s) becomes

HFE(z) =
Nh

z+KU,h
1
2ρAr

¯̂
U2(pa − pb)− 1

, (35)

with KU,h = hKU (or, similarly, KU,h = hκ/Pg,rated). From (35), the following inequality must hold for stability to

hold∣∣∣∣1−KU,h
1

2
ρAr

¯̂
U2(pa − pb)

∣∣∣∣< 1 . (36)470

2. For the BD method, s= s′BD is used and the following discrete transfer function is obtained

HBD(z) =
(Nh)z(

1+KU,h
1
2ρAr

¯̂
U2(pa − pb)

)
z− 1

, (37)

with the following condition for stability∣∣∣∣∣ 1

1+KU,h
1
2ρAr

¯̂
U2(pa − pb)

∣∣∣∣∣< 1 . (38)

3. Under the TU discretization, s= s′TU casts G(s) into475

HTU(z) =
Nh
2 (z+1)

z+KU,h
1
4ρAr

¯̂
U2(pa − pb)(z+1)− 1

, (39)

the stability of which is determined by the following inequality∣∣∣∣∣1−KU,h
1
4ρAr

¯̂
U2(pa − pb)

1+KU,h
1
4ρAr

¯̂
U2(pa − pb)

∣∣∣∣∣< 1 . (40)

Note that the stability properties may now be influenced by the choice of sampling time h and gain κ (as Pg,rated is constant).

Nevertheless, to illustrate better whether alterations in the stability region occur after discretization takes place, the stability480
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conditions (36), (38), and (40) are plotted in a similar manner as Fig. 9, as explained in the following text. Also considered are

two arbitrary operating points (OPs) along the Kω3
r line for a low and high partial-load wind speed being

OP 1:

x̄= ȳ =
¯̂
U = 4.5 m/s ,

ū=
[
¯̂
Pr, ω̄r

]⊤
= [3.263× 105 W,0.469 rad/s]⊤ ,

and

OP 2:

x̄= ȳ =
¯̂
U = 10.5m/s ,

ū=
[
¯̂
Pr, ω̄r

]⊤
= [4.145× 106 W,1.094 rad/s]⊤ ,

485

respectively, computed using the NREL-5MW properties.

First, the stability region for the FE method, with h= 1/50 s—constant for all evaluations, is examined. Figure 10 depicts

the resulting stability assessment, which illustrates the deterioration of the stability region of the FE method as κ increases,

affecting the partial-load operations (blue solid line), e.g., OP 2 (red dot). Although not shown in the figure, even higher κ

may affect low-wind speed operations. This observation, therefore, concludes that one’s choice of discretization method results490

in a performance limitation of the wind speed estimate solver in terms of an existing ‘upper bound’ for the magnitude of κ.

A compromise can be made, nevertheless, to improve the stability of the FE method by increasing sampling frequency (i.e.,

lowering h) proportional to the increase in κ to maintain constant KU,h. That said, increasing the sampling frequency does not

eliminate the presence of a κ ‘upper bound,’ not to mention the extent to which such a frequency can be increased is practically

limited as a result, e.g., hardware capabilities. Therefore, a more feasible solution is to adopt different discretization methods495

while leaving the sampling frequency unchanged.

Figure 11 makes clear that the BD method, in contrast to the FE method, does not result in the change of stability charac-

teristics of the continuous system into the discrete system for the considered κ values. Remarkably, if κ is further increased,

the pole of the discrete-time system HBD(z) moves away even more from the edge of the unit circle (as implied in (38),

theoretically leading to increased stability for increasing gains).500

Similar to the BD method, the TU method gain increase will lead the discrete-time pole to move closer to the origin, but

under the same gain, that of the TU method will be closer to the origin than the BD method. This is because with the TU

method, higher gains simultaneously lower the numerator and increase the denominator of the discrete pole, as can be implied

from (40). Regardless, for the considered κ, the stability region of the TU-discretized system HTU(z) is identical to that of

G(s). It is worth noting, therefore, that although Fig. 11 shows the stability characteristics of HBD(z) for the given gains, that505

of HTU(z) would give identical representations; therefore, no dedicated figure is provided for the latter for brevity.

To summarize, the BD and TU methods are the preferred discretization techniques for discrete-time implementations of

the continuous wind speed estimate solver in that the stability condition from the continuous-time system is preserved. Given

present-day computational resources and readily available discretization methods in popular software packages, the selection

for each of the methods is inconsequential from an implementation perspective. Therefore, later on in Section 5.3, a time-series510
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Figure 10. Unstable region (blue area) growth of HFE(z) with increasing κ= {200,300,400,500} using h= 1/50 s of sampling time and

the Forward Euler discretization method.

numerical comparison is performed to determine the most suitable approach, also including the iterative single-step solver

explained in the next section.

5.2 Iterative Single-Step Solver

Besides the continuous wind speed estimate solver in the previous section, iterative numerical methods can also be employed

to solve for the wind speed estimate. A well-known iterative method for this purpose is that of the Newton-Raphson, such as515

used in the work of Van Engelen and Van der Hooft (2003) and Boukhezzar and Siguerdidjane (2011). This iterative algorithm

finds the roots of a function given an initial guess and makes use of the gradient of the function. The reliance on such a

gradient, however, adds an additional layer of complexity in this case in that an extra look-up table other than that for the Cp

table is needed. Moreover, the use of this extra look-up table would increase the computational burden per iteration within

the algorithm. Luckily, the definition of the wind speed estimate, being an integration of the estimation error ep over time520

multiplied by a gain KU can be straightforwardly adopted in an iterative manner in such a way that Û can be obtained in a

single time step. Algorithm 1 describes the proposed iterative single-step wind speed estimate solving method.

First, the iterative single-step algorithm computes the TSR estimate based on ω̂r(k), available through the aerodynamic

power estimator in Section 4, and wind speed estimate Ui at the i-th iteration, namely λi. Having λi, the Ui-dependent aerody-

namic power estimate can then be computed, which is used to obtain the aerodynamic power error along with P̂r(k), available525
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Figure 11. Stability region of HBD(z) with increasing κ= {200,300,400,500} using h= 1/50 s of sampling time and the Backward

Difference (BD) discretization method. Identical graphical evaluation is obtained for the Tustin-discretized system HTU(z) for the selected

gains.

from the aerodynamic power estimator. Normalized by Pg,rated, this error (denoted ep,norm,i), is then used to update the i+1-th

wind speed estimate Ui+1. These steps are then repeated until the relative wind speed estimate error or the absolute, normalized,

aerodynamic power error falls within the tolerance bound ϵU ∈ R+ or ϵp ∈ R+, respectively. Otherwise, the algorithm stops

until the maximum allowed iteration imax ∈ Z+ is reached. Finally, the algorithm outputs the wind speed estimate Û(k) = Ui

from the last iteration. Note that, compared to the continuous wind speed estimate solver, the iterative method here employs530

κ= 1. Later, it will be shown that setting such a unity gain is sufficient to achieve fast convergence.

5.3 Wind Speed Estimate Solvers Comparisons

With the continuous and iterative single-step solvers explained in the previous sections, this section now compares both meth-

ods numerically. The optimal wind speed estimate solver is then picked and combined with the state estimation-based aerody-

namic power estimator, as discussed in Section 4.2. To this end, the same simulation setup in Section 4.3 is considered.535

First, the performance of the different continuous wind speed estimate solvers, discretized under the FE, BD, and TU

methods, are compared. The estimator gain is chosen to be κ= 400, which is a stable gain, especially for the FE discretization

at the considered operating condition (Uh = 7.5 m/s, under IT = 4%). Figure 12 shows the simulation results, which is focused

on t= 210− 230 s timestamp for clarity. As shown in the figure, the BD- and TU-discretized wind speed estimate solvers
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Algorithm 1 Iterative single-step method for solving wind speed estimate

Require: P̂r(k), ω̂r(k), Û(k− 1), imax, ϵU, ϵp

Ensure: U ≈ Û(k)

1: i← 1

2: Ui← Û(k− 1)

3: repeat

4: λi←
ω̂r(k)R

Ui

5: ep,norm,i←
P̂r(k)−

1

2
ρACp(λi)U

3
i

Pg,rated

6: Ui+1← Ui + ep,norm,i

7: Uold← Ui

8: i← i+1

9: until (i≥ imax) or
(∣∣∣ (Ui−Uold)

Ui

∣∣∣≤ ϵU
)

or (|ep,norm,i| ≤ ϵp)

10: Û(k)← Ui

11: return Û(k)

Figure 12. Actual wind speed U and wind speed estimates of the continuous wind speed estimate solver under different discretization

methods Û(•). The FE-discretized solver occasionally shows high-frequent oscillatory behavior, potentially due to combined nonlinearity

and aliasing effects, which is not the case for that of the BD and TU methods for the chosen estimator gain κ= 400.

show identical estimation performance, which is not the case in their FE-discretized counterpart. The unstable-like oscillations540

occurring in the beginning, middle, and end of the sequence of interest of the FE method are likely resulting from nonlinearity

effects in combination with frequency folding or aliasing (Åström and Wittenmark, 2011).

Figure 13 depicts the time-series comparison between the BD-discretized continuous solver and the iterative method. With

the same tuning parameters as the previous simulation for the former, the latter is configured with imax = 5 and ϵU = ϵp = 0.01,

which are as a good trade-off between accuracy and speed of the estimation. As evidently shown, both solvers demonstrate545

similar performance and accuracy for the presented case. However, in different scenarios, such as more noisy aerodynamic

power and rotor speed estimates, both solvers may show disparities.
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Figure 13. Actual wind speed U and wind speed estimates of the continuous and iterative single-step wind speed estimate solvers, the former

of which is discretized with the BD method. Identical responses indicate that the accuracy of the wind speed estimate solvers depends, to a

large extent, on the aerodynamic power (and rotor speed) estimation quality.

Noisy inputs would require the integrator gain of the continuous solver to be lowered, such that high-frequency components

in the input signals are attenuated but potentially resulting in lagged estimates. For the iterative solver, noisy inputs would

increase the computational cost in terms of the higher number of iterations to converge to a solution.550

Fortunately, as the role of the aerodynamic power estimation (with a bonus of rotor speed filtering) and wind speed estimate

solving are decoupled in this study, the task to ensure low-noise and accurate wind speed estimate relies mostly upon the tuning

of the former subcomponent. This way, few iterations and strict error tolerances of the iterative algorithm can be maintained.

Such a condition also benefits the wind speed estimate of the continuous solver; however, as it requires a high gain to maintain

good estimation quality, it is still prone to having the above-mentioned sampled-time system artifacts.555

Hence, for the final and optimal design of the power balance wind speed estimation in this work, the combination of the state

estimation-based aerodynamic power estimator and iterative single-step wind speed solver is chosen and is evaluated next in

mid-fidelity simulations.

6 Mid-Fidelity Simulation Setup and Results

With the power balance wind speed estimation design finalized, this section covers the mid-fidelity validation of the proposed560

algorithm. The details of the simulation setup are covered in Section 6.1, and the validation results are discussed in Section 6.2.

6.1 Simulation Setup

The simulation setup for the mid-fidelity wind speed estimator validation in this work uses the open-source simulation code

OpenFAST v3.5.3 (Jonkman et al., 2024), the development of which is led by the National Renewable Energy Laboratory

(NREL). OpenFAST couples several nonlinear aero-hydro-servo-elastic computational modules by which realistic and com-565

plex wind turbine dynamic responses can be simulated with high accuracy. For the validation purposes of this work, the

AeroDyn, ServoDyn, ElastoDyn, and InflowWind modules of OpenFAST are used. The BeamDyn module, capable of sim-

ulating blade structural dynamics including blade torsion and bend-twist coupling, is not considered in this work; otherwise,
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higher-dimensional coefficient tables would have been necessary, as discussed in Lazzerini et al. (2024) (see also Remark 1).

Future work shall include BeamDyn module usage, where higher-dimensional coefficient tables are required for validations.570

Concerning the degrees of freedom (DOFs) of the simulated wind turbines, the following are activated:

– generator;

– drivetrain rotational-flexibility;

– first and second flapwise blade modes;

– first edgewise blade mode;575

– first and second fore-aft tower modes; and

– first and second side-side tower modes;

Note that the drivetrain rotational-flexibility DOF is turned off when a direct-drive wind turbine is simulated.

Two wind turbines representing the respective low- and high-power ratings are simulated, namely the NREL-5MW and the

IEA-22MW turbines, as introduced in Section 2.2. In contrast to using equal Cp tables in the previous analysis sections, using580

the reference wind turbine models in OpenFAST leads to simulating the aerodynamic properties of the respective turbines. The

generator efficiency factors for both turbines are ηg = 0.94 for the NREL-5MW and ηg = 0.954 for the IEA-22MW.

With regard to the wind profile, Kaimal turbulent wind cases are considered for both turbines, with Uh = 7.5 m/s and

IT = {4,12}%, generated using TurbSim (Jonkman, 2014), and used as input for the aforementioned InflowWind module. The

simulations are run for 1060 s, in which the first 60 s is excluded to remove computational transients from the evaluation.585

The power balance wind speed estimator employs the state-estimation-based method for the aerodynamic power estimation

(Section 4) with its gain L computed using ω0 = 5.75 rad/s and ζ0 = 4.5. Note that, compared to the initial low-fidelity

simulations in Section 4.2.2, the lower frequencies and higher dampings of the estimator are chosen and considered to be

a good compromise between noise filtering and good performance in the mid-fidelity settings. Better performance might be

attained by the incorporation of more systematic tuning methods that are able to find the optimal gain via cost minimization590

(e.g., mean and variance of the wind speed estimate error), such as Bayesian optimization (Mulders et al., 2020) or genetic

algorithms (Lara et al., 2024). With regard to the measurement noise, that of the rotor speed vωr is assumed to have variance

of σ2
vωr

= 10−5 rad2/s2, i.e., one order of magnitude higher than that used in the low-fidelity simulations in Section 4.3.

Constant and tailored gain settings are considered, the first one being computed using the LSS-equivalent inertia of the

NREL-5MW for both turbines, similar to what was done in Section 4.2.2, whereas the second one is tailored on the actual595

LSS-equivalent inertia of the simulated turbines (see Table 1). For the two turbines considered in this section, the chosen ω0

and ζ0 result in stable aerodynamic power estimators for both constant and tailored gain cases.

For the iterative single-step wind speed estimate solver, imax = 10 and ϵU = ϵp = 0.005 are considered. Despite the tighter

convergence bounds compared to the low-fidelity simulations in Section 5.2, the wind speed estimate in the simulations of this

section only requires one iteration on average to solve.600
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The proposed method is also compared with an existing wind speed estimator, namely the Immersion and Invariance (I&I)

REWS estimator, based on the work of Liu et al. (2022), the brief derivation of which is provided in Appendix A. This estimator

is based on torque balance drivetrain dynamics, in which the internal model estimates the rotor speed and aims to minimize its

difference from the actual measurements. Resultingly, the error compensation by a proportional-integral (PI) structure gives the

wind speed estimate of this scheme. For both turbines in the low turbulence scenario, the I&I estimator gains are Kp = 15 m605

and Ki = 3.5 m/s, whereas for the high turbulence case, the gains are retuned to be Kp = 25 m and Ki = 5 m/s to match

the performance of the proposed method. Note that there have not been any studies yet in systematic tuning across a range

of turbine sizes for the I&I approach, to the best of the authors’ knowledge. Thus, the above PI gains are tuned heuristically

and equally for NREL-5MW and IEA-22MW. The next section covers the results from the OpenFAST simulations for the

aforementioned settings.610

6.2 Results

The time series performance evaluation of the power balance wind speed estimator is provided in this section for the considered

reference turbines, NREL-5MW and IEA-22MW, where for each turbine. Later on, the statistical assessments of the numerical

simulation results are provided at the end of this section.

Figure 14 depicts the time series results of the wind speed estimation for the NREL-5MW. For both the turbulent cases, it615

is shown that both methods are able to capture the slow-varying component of the actual wind speed well, with the proposed

method showing less noisy results compared to I&I. This is mainly because the latter method, by default, does not contain

any noise filtering feature, which can be added by low-pass filtering, for instance. Additional filtering would lead to additional

phase lags and, thus, a slower wind speed estimation. The proposed estimator, thus, demonstrates superior noise handling

capabilities over I&I, which obviates the need for additional filtering. However, as such a modification is not the main focus of620

this work, the original I&I structure is retained.

An interesting behavior worth paying attention to from both wind speed estimation methods is the somewhat equal biases

with respect to the actual wind speed. This is evident at the beginning of the low turbulent wind case and at 525 s and 625 s of

the high turbulent case. Such biases are potentially coming from the inaccuracy in the Cp table (Brandetti et al., 2022), which

was generated by steady-state simulations, which might not necessarily be accurate during transients. Additionally, the absence625

of dynamic inflow effects in the estimator model could play a role in the appearance of such estimation biases (Knudsen and

Bak, 2013).

Having the estimation results for the NREL-5MW presented, that of the IEA-22MW is showcased. The main goal of the

simulations with a larger turbine is to validate the performance differences when constant and tailored estimator gains are used,

the proof-of-concept of which was shown in the low-fidelity simulations of Section 4.2.2. Figure 15 depicts the time series630

results of the wind speed estimation for the IEA-22MW wind turbine. For the constant gain case, the L2 aerodynamic power

estimator gain is based on the one tuned for the NREL-5MW turbine, whereas that of the tailored gain case is determined

based on the inertia of the IEA-22MW turbine using (22b). Evident in the figure is the better performance of the proposed

method under tailored L2 compared to the constant L2—note the displayed lagged behavior of the latter. With respect to the
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Figure 14. Wind speed estimation time series for the NREL-5MW wind turbine. The proposed method (green line) gives a smooth, less noisy

estimate compared to the I&I (red line) for low (top plots) and high (bottom plots) turbulent cases. The low-frequent component of the wind

speed is captured where biased estimation occasionally occurs, potentially due to an inaccurate Cp table utilized in both estimators and an

absence of dynamic inflow modeling in the estimators. The actual REWS, as outputted by OpenFAST, is shown by the blue line. Zoomed-in

plots of 25-s time spans are provided on the right for clearer observation of the estimation performance.

I&I results, the former performs similarly in terms of estimation quality of the low-frequent component in the wind speed with635

the advantage of less noisy estimates. Similar to the NREL-5MW results previously, estimation biases are also observed in

the IEA-22MW case, which, again, are likely attributed to the inaccuracies in the Cp table of the corresponding turbine and

absence of dynamic inflow modeling.

From the aforementioned simulations, aerodynamic power and wind speed estimation error histograms are provided for the

considered turbines. Figure 16 depicts the former, where the top row shows the histograms of the NREL-5MW turbine, and640

the bottom row the histograms of the IEA-22MW. For all turbulent cases and estimators, the normalized aerodynamic power

estimation errors, defined as (Pr − P̂r)/Pg,rated · 100%, are shown to be similar. Most errors of the I&I and the proposed

methods (only shown for the tailored gain case) are concentrated at 0% with decreasing occurrences at larger percentages,

resembling a bell curve. At higher turbulence intensity, wider histograms are obtained, which is logical due to the limitation of

both estimators in capturing high-frequency contents of the actual REWS.645

Figure 17 shows the histograms of the normalized wind speed estimation errors, defined as (U − Û)/Uh · 100%. The current

figure sheds new light on the presence of skewed histograms. For the NREL-5MW turbine, the error histograms are right-

skewed, indicating the wind speed tends to be underestimated. On the contrary, the IEA-22MW tends to be left-skewed;

that is, the estimators tend to overestimate the wind speed value instead. Given that such skewness is not observed for the

aerodynamic power estimation errors, that of the wind speed estimation might come from the inaccuracy of the Cp tables for650

the corresponding turbines, as previously suspected. Online calibration of such a Cp table has been studied, e.g. in Mulders

et al. (2023a, b), which can be used to correct the wind speed estimation quality to minimize such skewness.
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Figure 15. Wind speed estimation time series for the IEA-22MW wind turbine. The proposed method gives a smooth, less noisy estimate

compared to the I&I (red line) for low (top plots) and high (bottom plots) turbulent cases. Constant L2 (dashed orange line) results in

lagged estimation compared to gain-tailored L2 (solid green line). The actual REWS, as outputted by OpenFAST, is shown by the blue line.

Zoomed-in plots of 25-s time spans are provided on the right for clearer observation of the estimation performance.

Figure 16. Aerodynamic power estimation error histograms of the wind speed estimators. Both the I&I and the proposed power balance

wind speed estimator are shown to have similar aerodynamic power error distributions.

Based on the mid-fidelity simulation results reported above, the following conclusions of this section are drawn. First, it has

been shown that the mean values of both the power-based wind speed estimator and the I&I are identical. Moreover, it has also

been demonstrated that the use of steady-state information, i.e., by Cp tables, in a dynamic environment can lead to skewness for655

both estimators. Dynamic inflow modeling might also be required for future improvements to the current scheme. Nonetheless,

under noisy measurement conditions, the former exhibits more noise resilience, whereas the latter requires additional filtering—
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Figure 17. Wind speed estimation error histograms of the wind speed estimators. Both the I&I and the proposed power balance wind speed

estimator are shown to have similar wind speed estimation error distributions. Subtle differences are also shown for both the I&I and the

proposed power balance wind speed estimator, where the former has slightly higher occurrences at the histograms’ tails due to the higher

noise level, while the latter has slightly higher occurrences at the center of the distributions.

complicating the design and potentially introducing phase lag. Finally, the convenience provided by the gain-tailoring for the

proposed method has allowed for performance calibration between the small and larger wind turbines.

7 Conclusions660

In this work, an analysis framework and optimal design for a power balance REWS estimator have been proposed. The es-

timator is subdivided into two subcomponents based on their role in the scheme, namely, the aerodynamic power estimator

and the wind speed estimate solver. Two aerodynamic power estimator techniques have been thoroughly analyzed, one based

on numerical derivative and another based on the Luenberger state estimation technique. Of the two potential aerodynamic

power estimators, the state estimation-based technique has been chosen due to its better resilience against noisy measurements.665

Moreover, for the first time, a gain-tailoring method for performance calibration throughout a range of modern wind turbine

sizes has been formalized. Regarding the wind speed estimate solvers, two options have also been considered, namely the con-

tinuous and iterative single-step solvers. In this study, the frequency-domain stability analysis of the former has been conducted

in the continuous-time domain. Under the Forward Euler discretization, deteriorations in the stability properties of this solver

have been identified and shown in the discrete-time domain. Despite the favorable stability properties for the analyzed Back-670

ward Difference and Tustin discretization method, the more robust iterative single-step wind speed estimate solver has been

chosen and, in combination with the state estimation-based aerodynamic power estimator, forms the optimal power balance

wind speed estimator structure. This optimal power balance wind speed estimator has been validated in the mid-fidelity sim-

ulation environment OpenFAST, utilizing the NREL-5MW and IEA-22MW wind turbines, representing small and large wind
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turbines in the considered range, respectively. The proposed method and the considered ‘baseline’ I&I wind speed estimator675

have shown similar performance in estimating the low-frequent component of the wind speed, with the latter performing good

REWS tracking, better noise resilience, and convenient estimator gain calibration across different turbine sizes.

Zero-bias aerodynamic power estimations have been obtained for both estimators; however, time series and histogram analy-

ses have shown the appearance of biased wind speed estimations for both methods. Such biased estimations might be attributed

to the inability of the steady-state Cp data used to estimate the wind speed in a highly dynamic environment, excluding ef-680

fects such as dynamic inflow. However, learning algorithms to capture the true power coefficient during operation exist in the

literature and can be incorporated to improve the performance of the proposed method.

Future study will consider providing an optimal means for the estimator tuning, e.g., by Bayesian optimization, incorporating

currently unmodeled dynamics, e.g., drivetrain torsion, tower dynamics, and dynamic inflow effects, and accounting for blade

pitch information.685

Appendix A: Improved Immersion and Invariance Wind Speed Estimator

The improved Immersion and Invariance (I&I) wind speed estimator as studied in Liu et al. (2022) is provided in brief in this

section. Readers interested in the detailed derivations and analyses are referred to Liu et al. (2022).

The I&I estimator is described by the following torque balance equation

˙̂ωr(t) = Φ
(
ωr(t), Û(t)

)
− Tg(t)

J
, (A1)690

with the following nonlinearity

Φ
(
ωr(t), Û(t)

)
:=

ρAÛ(t)3Cp

(
λ̂(t)

)
2Jωr(t)

. (A2)

The wind speed estimate is the result of the minimization of the error between rotor speed and its estimate by a proportional-

integral compensator, that is

Û(t) =Kpeωr−ω̂r
(t)+Ki

t∫
0

eωr−ω̂r
(τ)dτ , (A3)695

with Kp as the proportional gain and Ki the integrator gain, where

eωr−ω̂r(t) = ωr(t)− ω̂r(t) . (A4)
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