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Abstract. This note addresses the issue that several papers in the peer-reviewed literature of wind energy applications have

used an incorrect equation that equals the variance of wind speed (σ2
U ) to the sum of the variances of the wind components. This

incorrect equation is often used to calculate turbulent intensity (TI), which, as a consequence, is often incorrectly estimated

too. While exact analytical equations do not exist, here two approximate analytical equations are derived for σ2
U and TI, both

functions of the variances of the wind components. Both formulations are validated with samples from a prior field campaign5

and perform satisfactorily.

1 Introduction

The standard deviation of wind speed, which is the square root if the variance, is an important parameter in wind energy

applications because it is part of the definition of turbulence intensity used in the International Electrotechnical Commission

(IEC) standard (International Electrotechnical Commission, 2019), which wind turbines must comply with. Since wind turbines10

always face the wind, especially in the first experiments that were conducted in wind tunnels and in idealized simulations, the

convention has always been to align the x-axis along the wind direction. As such, the standard deviation of wind speed is simply

the standard deviation of the u-component of the wind, i.e., the component along x. By contrast, in geophysical applications,

such as meteorological field campaigns or simulations of weather events, the convention is to align the x-axis along the east-

west direction (and the y-axis along the north-south). Since the wind direction changes during the diurnal and seasonal cycles,15

the wind-aligned system of coordinates used in the wind energy community has become unpractical when studying real wind

farms. The geophysical system of coordinates, therefore, has been adopted for field measurements and simulations of wind

farms. As a consequence, the standard deviation of wind speed is no longer a simple function of the standard deviations of

the wind components. While an exact analytical equation is impossible to obtain, an incorrect expression is often found in the

literature, namely, the sum of the variances of the wind components, and often treated, incorrectly, as an exact definition. Since20

turbulence intensity is a function of the variance of wind speed, errors are introduced in the calculation of turbulence intensity

too. This note addresses this issue by proposing an analytical approximation for the wind speed variance and one for turbulence

intensity.

The issue of the relationship between the standard deviation of wind speed and those of the wind components is relevant

because turbulent kinetic energy, which is an important variable that is predicted by weather prediction models and that is25
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affected by wind farms, is a function of the standard deviations of the wind components, while turbulence intensity is a

function of the standard deviation of wind speed. Converting between the two is therefore important in validating model results

against observations, especially with reference to the IEC standard that uses turbulence intensity.

2 Definitions

Let us use the geophysical system of coordinates and, for the sake of simplicity, assume that wind is a two-dimensional vector.30

The two wind components along x and y are u and v, respectively, and the magnitude U is a non-linear function of both:

U = f(u,v) =
√

u2 + v2. (1)

The means ū, v̄, and U , calculated over a set of N measurements ut, vt, and Ut, each taken at time t, are:

ū =
1
N

∑

t

ut, (2)

35

v̄ =
1
N

∑

t

vt, (3)

Ū =
1
N

∑

t

Ut. (4)

The variances σ2
u, σ2

v , and σ2
U are:

σ2
u =

1
N

∑

t

(ut− ū)2 = (u− ū)2 = u2− 2uū + ū2 = u2− 2ū2 + ū2 = u2− ū2, (5)40

σ2
v =

1
N

∑

t

(vt− v̄)2 = v2− v̄2, (6)

σ2
U =

1
N

∑

t

(
Ut− Ū

)2 = U2− Ū2 = u2 + v2− Ū2 = σ2
u + σ2

v + ū2 + v̄2− Ū2. (7)

Eq. 7 may not be simplified analytically any further because:45

ū2 + v̄2 ̸= Ū2 =
(√

u2 + v2

)2

. (8)

As a consequence:

σ2
U ̸= σ2

u + σ2
v (9)
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and

TI2 =
σ2

U

U
2 ̸=

σ2
u + σ2

v

U
2 =

2 TKE

U
2 , (10)50

where:

TKE =
σ2

u + σ2
v

2
. (11)

In order to obtain an expression for the variance of wind speed, we first need to recognize that the wind is intrinsically

turbulent and therefore we can use the Reynolds averaging approach. The turbulent fluctuations, usually denoted with a prime

(′), in this case coincide exactly with the differences from the means (δ) as follows:55

ut = ū + u′t = ū + δut, (12)

and similarly for vt and Ut. Therefore the variances can be rewritten exactly as:

σ2
u =

1
N

∑
u′2t =

1
N

∑
(δut)2 = u′2 = (δu)2, (13)

and similarly for σ2
v and σ2

U .

3 Proposed formulation60

Following the approach of Ackermann (1983) and Baird (1962), we introduce the only approximation of this manuscript: that

the δ’s coincide with the differentials. This is equivalent to assuming that the fluctuations (and the δ’s) are smaller in magnitude

than their respective means, which is realistic, but may or may not be true in all atmospheric conditions. The goal is to derive

formulations for σ2
U and TI that depend only on statistics of the wind components.

First, we use the assumption that the δ’s can be approximated as differentials as follows:65

(δU)2 ≈
(

∂U

∂u

)2

(δu)2 +
(

∂U

∂v

)2

(δv)2 + 2
(

∂U

∂u

)(
∂U

∂v

)
δuδv. (14)

Note that, in Eq. 14, the partial derivatives are to be evaluated at the “point” of the function U = f(u,v) around which there

are the fluctuations, thus for the mean values of ū and v̄. Thus, the two partial derivatives are actually:
(

∂U

∂u

)
=

∂U

∂u

∣∣∣∣
ū,v̄

=
1
2

(
u2 + v2

)− 1
2 (2u)

∣∣∣∣
ū,v̄

=
ū√

ū2 + v̄2
, (15)

70
(

∂U

∂v

)
=

∂U

∂v

∣∣∣∣
ū,v̄

=
1
2

(
u2 + v2

)− 1
2 (2v)

∣∣∣∣
ū,v̄

=
v̄√

ū2 + v̄2
, (16)

which are not a function of time t. Replacing Eqs. 15 and 16 into Eq. 14 leads to the following expression for σ2
U :

σ2
U =

1
N

∑
(δU)2 = (δU)2 ≈ (17)
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∂U

∂u

∣∣∣∣
2

ū,v̄

(δu)2 +
∂U

∂v

∣∣∣∣
2

ū,v̄

(δv)2 + 2
∂U

∂u

∣∣∣∣
ū,v̄

∂U

∂v

∣∣∣∣
ū,v̄

δuδv =75

ū2

ū2 + v̄2
σ2

u +
v̄2

ū2 + v̄2
σ2

v + 2
ūv̄

ū2 + v̄2
σuv,

where σuv is the covariance of u and v, which can be positive or negative. Therefore:

σ2
U ≈

ū2σ2
u + v̄2σ2

v + 2ūv̄σuv

ū2 + v̄2
< σ2

u + σ2
v . (18)

Using σ2
u + σ2

v as an approximation for σ2
U generally causes an over-estimation of the variance of U , especially when ū and v̄80

are of opposite sign (e.g., in the second and fourth quadrants) and the covariance is positive, or vice versa when ū and v̄ are of

the same sign and σuv is negative.

If the two variables u,v were independent (but they are not), their covariance σuv would be zero; since σuv is often unknown,

it can be set to zero as an approximation:

σ2
U ≈

ū2σ2
u + v̄2σ2

v

ū2 + v̄2
< σ2

u + σ2
v . (19)85

Note that, when the wind turbine is yawed along the prevailing wind, v̄=0 and therefore σ2
U ≈ σ2

u from Eq. 18. This result

is technically incorrect because lateral fluctuations (i.e., δv) do contribute to σ2
U , but it is consistent with the derivation in

Appendix B by Larsén (2022).

To obtain an expression for TI , we derive an approximation for U as follows:

Ū =
√

(ū + u′)2 + (v̄ + v′)2 (20)90

=
√

ū2 + v̄2

√
(ū + u′)2 + (v̄ + v′)2

ū2 + v̄2
(21)

=
√

ū2 + v̄2

√
1 +

2u′ū + u′2 + 2v′v̄ + v′2

ū2 + v̄2
. (22)

The term under the square root can be simplified via the binomial approximation for α = 1/2:

(1 +x)α ≈ (1 +αx) , (23)

valid for |x|< 1 and |αx|<< 1, which are generally true in Eq. 22 due to the assumption that the fluctuations are small with95

respect to the means, as follows:

Ū ≈
√

ū2 + v̄2 1 +
u′ū + v′v̄
ū2 + v̄2

+
1
2

u′2 + v′2

ū2 + v̄2
. (24)

Using the Reynolds averaging properties, the final expressions for U and U
2

are:

Ū ≈
√

ū2 + v̄2

(
1 +

1
2

σ2
u + σ2

v

ū2 + v̄2

)
, (25)
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100

Ū2 ≈
(
ū2 + v̄2

)(
1 +

1
2

σ2
u + σ2

v

ū2 + v̄2

)2

. (26)

Since the term in parenthesis in Eq. 26 is greater than 1, not only is the inequality in Eq. 8 confirmed, but it can be further

expanded to:

Ū2 > ū2 + v̄2. (27)

One could be tempted to replace the expression for U
2

from Eq. 26 in Eq. 7, but doing so would cause the expression for the105

variance of wind speed to become negative because the error introduced by the binomial approximation, although small when

used for Ū , is amplified in Ū2, especially when it is used in a difference of terms of similar magnitudes as in Eq. 7. When used

in the denominator and alone, however, as is the case for TI from Eq. 10, Eq. 26 is acceptable and we obtain:

TI2 =
σ2

U

U
2 ≈

ū2σ2
u + v̄2σ2

v + 2ūv̄σuv

(ū2 + v̄2)2
(

1 +
1
2

σ2
u + σ2

v

ū2 + v̄2

)2 . (28)

4 Application110

Five-minute average measurements from the 10-m sonic anemometer mounted on the 49-m meteorological tower used during

the VERTEX (VERTical Enhanced fluX) field campaign (Archer et al., 2019; Wu and Archer, 2021), conducted in coastal

Delaware between September and November 2016, are used to demonstrate the validity of the proposed formulation for small

and large turbulent perturbations and compare its performance against that of the inexact equations discussed above. Two dif-

ferent time series of six hours on September 11, 2016 are considered. The first (Fig. 1a) is characterized by small perturbations115

of wind speed, u, and v components (i.e., standard deviation much lower than the mean). The second time period (Fig. 1b)

exhibits a decrease in the magnitude of the u-component with time, which causes a decrease in wind speed and introduces large

perturbations around the means (i.e., standard deviation larger than or about the same as the mean).

Several conclusions can be drawn after looking at Table 1. First, the proposed formulations for σ2
U (Eq. 18) and for TI

(Eq. 28) perform well in absolute terms, with percent errors lower than 11% in general and close to zero for σ2
U for the case120

with small perturbations. Using σ2
u + σ2

v as an approximation for σ2
U always causes an overestimation (i.e., positive error), as

mentioned earlier, with en error that is larger in magnitude than that of Eq. 18 (9.50% versus -0.28% for small perturbations

and 14.07% versus 3.30% for large). The error for TI is larger than that for σ2
U , due to the additional approximation introduced

by the division of Eq. 18 by Eq. 26. In all cases, the proposed formulations exhibit a lower percent error for small than for

large perturbations, as expected due to the assumption of small perturbations. TI is always grossly overestimated by using the125

approximation σ2
u+σ2

v

ū2+v̄2 because the numerator overestimates, while the denominator underestimates.
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a) b)

Figure 1. Time series of 5-minute average wind speed, u, and v components during the VERTEX field campaign on 11 September 2016 in

the VERTEX: a) a 6-hour period with small perturbations and b) another 6-hour period with large perturbations.

Small perturbations Large perturbations

Value Error (%) Value Error (%)

ū 2.32 m/s - -4.13 m/s -

v̄ -1.90 m/s - 0.49 m/s -

Ū 3.00 m/s - 4.20 m/s -

Ū2 9.00 m2/s2 - 17.63 m2/s2 -

σ2
u 0.10 m2/s2 - 2.50 m2/s2 -

σ2
v 0.10 m2/s2 - 0.47 m2/s2 -

σ2
U 0.18 m2/s2 - 2.60 m2/s2 -

σuv -0.08 m2/s2 - -0.92 m2/s2 -

TI2 0.0195 - 0.1476 -

Eq. 25: Ū ≈
√

ū2 + v̄2
(
1+ 1

2

σ2
u+σ2

v
ū2+v̄2

)
3.03 m/s 0.98 4.51 m/s 7.48

Eq. 26: Ū2 ≈
(
ū2 + v̄2

)(
1+ 1

2

σ2
u+σ2

v
ū2+v̄2

)2

9.17 m2/s2 1.97 20.36 m2/s2 15.52

Eq. 18: σ2
U ≈ ū2σ2

u+v̄2σ2
v+2ūv̄σuv

ū2+v̄2 0.18 m2/s2 -0.28 2.69 m2/s2 3.30

Eq. 28: TI2 ≈ ū2σ2
u+v̄2σ2

v+2ūv̄σuv

(ū2+v̄2)2
(

1+ 1
2

σ2
u+σ2

v
ū2+v̄2

)2 0.0191 -2.05 0.1320 -10.57

σ2
u + σ2

v 0.19 m2/s2 9.50 2.97 m2/s2 14.07
σ2

u+σ2
v

ū2+v̄2 0.0214 9.74 0.1719 16.46

Table 1. Statistics of the two observed cases of small and large perturbations during the VERTEX field campaign and performance of the

formulations discussed in Section 3.
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5 Conclusions

An analytical equation that approximates the variance of wind speed as a function of the variances of the wind components is

derived under the assumption that the turbulent fluctuations of the wind components are small with respect to their means. The

approximation for the variance of wind speed is then used, after a few steps, to derive another approximation for turbulence130

intensity. Although a through validation is beyond the scope of this note, both formulations appear to perform well against a few

samples of observations obtained during the VERTEX field campaign of 2016 and to outperform the two incorrect equations

that have been used at times in the literature.
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