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Abstract. This work proposes an uncertainty-aware approach to the inverse problem of damage identification in a Floating

Offshore Wind Turbine (FOWT). We design an autoencoder architecture, where the latent space represents the features of

the target damaged condition. The inverse operator (encoder) is a Deep Neural Network that maps the measurable response

to the parameters (means, variances, and weights) of a multivariate Gaussian Mixture model. The Gaussian Mixture model

provides a convenient distributional description that is flexible enough to accommodate complex solution spaces. The decoder5

receives samples from the Gaussian Mixture and maps the damaged condition (states) to the system’s measurable response.

In such a problem, and depending on the quantities being observed (sensor positioning), it is possible that multiple damaged

states may correspond to similar measurement records. In this context, the main contribution of this work lies in developing

a method to quantify the uncertainty within the context of a possibly ill-posed damage identification problem. We employ the

Gaussian Mixture to express the multimodal solution space and explain the uncertainty in the damaged condition estimates.10

We design and validate the methodology using synthetic data from a FOWT in the commonly adopted OpenFAST software

and consider two damage types frequently occurring in mooring lines: biofouling and anchor displacement. The method allows

for estimating the damaged state while capturing the uncertainty in the estimations and the multimodality of the solution under

the availability of a limited number of response measurements.

1 Introduction15

Floating offshore wind (FOW) is rapidly emerging as a leading form of renewable energy. Faster and steadier winds and

a much larger area for future deployment are only a few appealing aspects that make FOW intriguing for industry experts

and academics. While FOW’s current global capacity barely exceeds 180 megawatts, recent reports predict that FOW will

generate over 250 gigawatts by 2050 GWEC (2023). One of the critical barriers limiting the commercial viability of floating

offshore wind turbines (FOWTs) is their operational expense, which relates to inspection, monitoring, and faulty component20
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replacement. These tasks are troublesome and expensive in offshore environments, whose access is compromised by weather

conditions (Nava et al. (2022)).

One of the most critical components of FOWTS is the mooring system. Mooring systems, which inherit the characteristics

of similar devices conceived for the oil and gas industry (Årdal et al. (2014)), employ steel chains, wire, and cable spanning

dozens of meters to anchor the platforms to the seabed or to connect them. They operate under a broad range of environmental25

and operational conditions that may lead to damage due to corrosion, wear, and fatigue (Li et al. (2018); Liu et al. (2020)).

These phenomena affect the system’s behavior and may compromise the integrity of the platform if no action is taken. Ensuring

the safe and optimized performance of mooring lines is crucial to minimizing operational costs and maximizing the profitability

of FOWTs.

Condition monitoring of mooring systems is most often carried out on-site through visual underwater inspections (Martinez-30

Luengo et al. (2016)) and ultrasonic testing (Thibbotuwa et al. (2022)). Both methods are costly and often inefficient, owing to

the requirement for engaging qualified manpower and appropriate equipment. Companies must also wait for acceptable weather

conditions before deploying their crews on FOWT farms to comply with safety requirements. For these reasons, Structural

Health Monitoring (SHM) techniques have emerged as a solution to provide a continuous, efficient, and remote assessment of

these assets (Ciuriuc et al. (2022); Liu et al. (2023)). SHM typically targets an inverse problem solution that aims to identify35

the condition of a target system and possibly characterize associated damage based on the indirect information delivered via

measurements from an instrumentation system (Farrar and Worden (2013)). Two main approaches exist in the field of SHM

for FOWTs: model (or physics-based, also known as hybrid) and data-based schemes (Liang et al. (2024); Liu et al. (2022b)).

On the one hand, physics-based models of dynamic systems often employ complex ordinary or partial differential equations

(PDE) that govern the physical phenomena under study. While they require a deeper insight into the underlying physics, these40

techniques can achieve higher accuracy and generalization at the expense of computational effort (Jonkman (2007); Wang

(2015); Hall and Goupee (2015)).

On the other hand, data-driven techniques employ extensive datasets to fit the desired outcome (Martinez-Luengo et al.

(2016)). They can infer highly complex, nonlinear relations, provided that these are witnessed in the available data adopted for

training purposes. In the context of SHM for mooring systems, indirect response sensors such as gyroscopes, inclinometers, and45

GPS trackers have become increasingly attractive (Gorostidi et al. (2023); Coraddu et al. (2024)). These devices are relatively

inexpensive and easy to deploy while being sensitive to the presence of damage. Experimental data are noisy, constrained to

practically measurable quantities, and are often limited to a specific condition (e.g., the healthy state), which covers only a

subset of the inverse problem’s solution subspace. Simulations from a computational parametrization (e.g., a Finite Element

model) are often employed to complement experimental data and overcome this scarcity (Figueiredo et al. (2010); Zhang and50

Sun (2021); Fernandez-Navamuel et al. (2023)).

In the past few decades, Machine Learning (ML) algorithms have gained popularity thanks to advances in data acquisition

and transmission, informatics, and computational resources. Particularly interesting are Deep Neural Networks (DNNs), which

present advantageous properties such as satisfying the theorem of universal approximation (Hornik et al. (1989)) and enabling

the incorporation of physical knowledge (Rojas et al. (2024)). One key challenge in the resolution of inverse problems is han-55
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dling uncertainties. Many authors have already dealt with uncertainty when solving inverse problems in other fields. In civil

infrastructure, Betancourt et al. (Betancourt et al. (2021)) implemented a deep interval neural network to classify damage in

a benchmark bridge. Huang et al. (Huang and Beck (2015)) tested the performance of a sparse Bayesian probabilistic model

against incomplete data. Teimouri et al. (Teimouri et al. (2017)) designed a Gaussian process-based method to monitor the

integrity of a composite airfoil structure. In geophysics, Alyaev et al. (Alyaev and Elsheikh (2022)) implemented a mixture60

density network for the inversion of gamma-ray logs. Liu et al. (Liu et al. (2022a)) estimated subsurface rock and fluid prop-

erties using deep variational autoencoders. Rodriguez et al. (Rodriguez et al. (2023)) extended the loss formulation stated in

work (Shahriari et al. (2021)) and implemented a multimodal Variational Autoencoder (MVAE) to identify subsurface material

properties. In the field of wind energy, Mylonas et al. (Mylonas et al. (2021)) proposed a Conditional Variational Autoencoder

(CVAE) to deliver uncertainty-robust long-term fatigue predictions in a wind turbine blade based on Supervisory, Control, and65

Data Acquisition (SCADA) signals. Mclean et al. (Mclean et al. (2023)) employed Gaussian Processes (GP) to account for

the uncertainty present in power curve models as the damage-sensitive features. Other works propose the use of hierarchical

sparse Bayesian learning to solve the system identification problem through model updating using Gibbs sampling (Huang

et al. (2017a, b)). The authors validated their strategy numerically and experimentally using a relatively simple structure with

limited DOFs.70

Focusing on the application of SHM to assess FOWTs, a vast amount of literature exists using DNNs. For example, Chung

et al. (Chung et al. (2020)) fed Response Amplitude Operator (RAO) data into a DNN to detect anomalies in the cross-section

of mooring lines for a tension leg platform. Their research was continued by Lee et al. (Lee et al. (2021)), who extended

their approach to catenary lines and taut mooring systems. Janas et al. (Janas et al. (2021)) developed a condition-agnostic

convolutional neural network (CNN) to detect anomalies caused by the loss of one line in a floating oil and gas vessel, training75

their model with images of its horizontal displacement history. In recent work (Sharma and Nava (2024)), Sharma et al.

combined CNNs and Auto-Regressive (AR) models to detect biological fouling, corrosion, and anchor shift-related damage

in a floating platform’s mooring lines. Their study obtained AR coefficient matrices from displacements and rotations for the

DeepCWind OC4 platform’s surge, heave, and pitch responses fed as image inputs to the CNN.

Still, many existing works employ deterministic approaches, which suffer significant limitations when tackling real-life80

inverse problems, such as damage identification via monitoring data. Long-term instrumentation systems are often cheap and

very limited, suffering the availability of incomplete and noisy measurements. This context makes the solution to the inverse

problem highly non-unique and unstable (extremely sensitive to slight changes in the input data) (Adler and Öktem (2017)). Yet

in the deterministic scope, Shahriari et al. (Shahriari et al. (2021)) proposed a way to define the loss function of DNNs in the

measurement space rather than in the ill-posed solution space via an encoder-decoder architecture and a two-step training phase.85

With this strategy, they constrained the training and prevented undesired solutions. Based on this idea, Gorostidi et al. (Gorostidi

et al. (2023)) attempted to detect failures in the mooring system of a FOWT based on response measurements. They employed

statistics-based features from six Degrees Of Freedom (DOFs) to identify the level of biofouling and anchoring damage, using

synthetic data from a FOWT simulated in Openfast (Jonkman et al. (2022)). Although this approach aids in identifying a

physically plausible scenario, it neglects the multimodality of the solution (i.e., various damage scenarios producing the same90
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measured response). Addressing this ill-posedness requires moving from deterministic to probabilistic approaches to quantify

the uncertainty in the solution space and provide more reliable assessments.

However, there is still a considerable gap in implementing uncertainty-aware methods for the condition assessment of moor-

ing systems in FOWTs. This work intends to contribute to this direction. Here, we extend our previous work (Gorostidi et al.

(2023, 2022)) that aimed at inferring the underlying health condition of mooring systems using response measurements, which95

delivered a deterministic assessment. Following the recent work by Rodriguez et al. (Rodriguez et al. (2023)), we propose a

Bayesian approach for quantifying the uncertainty in the delivered damage estimates. Our proposal adapts the multimodal VAE

methodology introduced in (Goh et al. (2021); Rodriguez et al. (2023)) to solve the inverse problem of damage identification

of FOWT mooring systems. The core of the proposed methodology is to probabilistically describe the solution to an inverse

problem that may exhibit high multimodality. This situation frequently occurs when dealing with sparse instrumentation sys-100

tems, which is often the case in SHM applications (Teughels and De Roeck (2004); Oliveira et al. (2018a, b); Devriendt et al.

(2014); Adão da Fonseca and Bastos (2004)).

We design an encoder-decoder architecture to address ill-posed inverse problems within the context of damage identification.

According to the forward operator, the proposed methodology ensures that the estimated solutions are physically meaningful.

We describe the multimodal solution space (damaged condition) using a multivariate Gaussian Mixture. This parametrized105

distributional model is mathematically convenient to integrate into the differentiable scheme of DNNs and is sufficiently

flexible to accommodate complex distributions. The inverse operator (encoder) estimates the parameters (i.e., means, variances,

and weights) that build a corresponding Gaussian Mixture describing the distribution of the damage condition features. We draw

samples from the estimated posterior distribution model that are subsequently fed into the forward approximation (decoder).

With this strategy, we statistically describe the target damaged condition space, accounting for the multimodality of the solution,110

which occurs mainly when the instrumentation system comprises a limited amount of sensors.

Training the inverse produces the posterior distribution that describes the damaged condition given some input measure-

ments of the system’s response. In this work, statistical features of measured rotational DOFs are employed as the response

measurements. We employ rotations since these can be measured experimentally through low-cost, low-maintenance sensors,

similar to acceleration, but still delivering information that reflects the resulting response. A benefit of using rotations lies in115

delivering quantities that contain lower frequency information with respect to acceleration signals. This is useful when the

involved response includes lower-frequency components (e.g., rigid body motions and drifts). The loss function leverages two

terms; the first accounts for the measurement misfit, while the second drives the shape of the posterior distribution.

We analyze the effect of uncertainty in the delivered estimates of our proposed scheme in eight test examples that correspond

to representative damage scenarios. We further explore how using one single DOF increases the ill-posedness of the inverse120

SHM problem, demonstrating the strength of our proposed method in providing a more reliable diagnosis with poor instru-

mentation systems. Finally, we further investigate the robustness of the methodology to different measurement error levels.

Results demonstrate that our method successfully captures the uncertainty in the predictions, describing the multimodality of

the solution mainly in the absence of some response signals.
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Despite the successful results, this work suffers certain limitations that ought to be acknowledged. First, the methodology125

provides a way to describe the uncertainty that is inherent to the ill-posedness of the inverse problem. Such uncertainty induces

the multimodality of the output (i.e., the damage condition estimate). The method also reflects the effect of aleatory uncertainty

(noisy measurements) as it transfers from the measured data to the estimated condition. However, this work neglects the

epistemic uncertainty, which occurs when making a prediction on measurements that correspond to a damage condition that

is far from those employed in the training stage. Accounting for such uncertainty and disentangling both sources is beyond130

the scope of this work and requires further study. Second, since the Gaussian mixture is a parametric approach, it constrains

the outcome and prevents a complete characterization of the effect of uncertainty. Improving the distributional model requires

many components, which enormously increases the number of parameters to be estimated. This is an important limitation of

the method, mostly when scaling up to higher-dimensional spaces. Finally, due to the current scarcity of experimental data

from real operating FOWTs, this work is entirely restricted to synthetic data from computational simulations. Integrating135

experimental data with synthetic scenarios is a key challenge to proving the applicability of the suggested methodology in

real-field data.

The remainder of this article is structured as follows. Section 2 derives the mathematical formulation describing the inverse

problem. Section 3 presents the turbine-platform assembly and the excitation and damaged conditions employed in our simu-

lations. Section 4 describes the specifications of the proposed DNN architecture and training stage. Sections 5 and 6 discuss140

the method’s performance considering (i) three DOFs and (ii) a single DOF. Finally, Section 7 highlights the conclusions and

limitations of the proposed work and reveals future research lines.

2 Methodology

We describe the rigid body response of a FOWT platform in terms of six degrees of freedom (DOFs): surge (forward-backward

motion), sway (sideways motion), heave (vertical motion), roll (rotation about the longitudinal axis), pitch (rotation about the145

transverse axis), and yaw (rotation about the vertical axis) (Tran and Kim (2015)). Since transmission of time-domain signals

is extremely expensive, their content is often condensed in the form of statistical features, which is the typical approach to

storing SCADA data (Gorostidi et al. (2023)). Let m ∈M denote the platform’s response with M features extracted from the

time-domain signals of the six DOFs. This response relates to the loading and the system properties through a set of partial

differential equations (PDEs). These PDEs describe the aerodynamics, hydrodynamics, servodynamics, and elastodynamics of150

the coupled system operating under wind and wave excitation conditions w ∈W (Tran and Kim (2015)).

Damage in the mooring system affects its physical properties (e.g., stiffness). We denote by z ∈ Z the set of damage features

describing the condition of the FOWT mooring system. These features indicate the level of each possible existing damage and

succinctly represent the changes in the coefficients of the governing PDEs. We define F : Z×W →M as the forward operator

mapping the damage and loading conditions to the response of the system. Here, F includes the PDEs governing the response155

of the floating platform of the FOWT. The cartesian product of the domains Z and W , represents all combinations of damage

and loading conditions.
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2.1 Deterministic inverse operator

In damage identification, we seek for the inverse operator I :M×W →Z which, given some noisy response measurements

m under a prescribed excitation w, yields the system’s damaged condition z. This relationship is often unknown and highly160

nonlinear. Here, we approximate I using Deep Neural Networks (DNNs). DNNs have remarkable power in approximating

complex nonlinear functions (Hornik (1991)). Moreover, once trained, such models produce evaluations in milliseconds. These

particularities render DNNs appealing in many areas, including damage identification. Let Iθ be the DNN described by pa-

rameters θ that approximates the inverse problem I. For a certain observed input [m,w], we define a loss function to measure

the discrepancy between the estimates of the approximate inverse Iθ and the true damaged condition of the system, z:165

LZ(θ) = ∥z−Iθ([m,w])∥22, (1)

where we employ the squared l2 norm as the discrepancy metric. We can find the optimal parameter set θ by minimizing the

loss function in Eq. 1 over a training dataset that contains D labeled responses D = {mi,wi,zi}Di=1.

However, in real physical problems, the instrumentation system is often sparse and thus not fully sensitive to the targeted

damage scenarios. This situation renders the forward operator F non-injective, i.e., more than one system state (damaged170

condition) may produce the same response (Tarantola (2004)). Consequently, the inverse problem is ill-posed, meaning it

might have multiple solutions for the same noisy input. Given this ill-posedness of the inverse problem under incomplete

and noisy data availability, minimizing LZ(θ) may produce an infeasible outcome that simply results by averaging possible

candidate solutions. Thus, defining the loss on the space of the damaged conditions Z is inconvenient. To overcome this

issue, we adopt an encoder-decoder strategy, where the encoder approximates the inverse problem (given the measurements175

m, estimate the damage condition features z), and the decoder corresponds to the forward operator. With this architecture, the

damage condition estimates are enforced to satisfy the forward operator (governing ordinary or partial differential equations)

and thus are consistent with the underlying physics describing the system’s behavior. This composition of the forward with the

inverse, which constitutes the identity mapping, enables expressing the loss function on the space of the measured responses,

M:180

LM(θ) = ∥m−F ◦Iθ([m,w])∥22, (2)

using the l2 norm. Minimization of this loss function ensures that the DNN will report one out of all feasible solutions.

The main bottleneck when minimizing the loss function in Eq. 2 owes to the effort required to massively evaluate the

forward operator F . We define a DNN Fϕ described by parameters ϕ that approximates the forward operator F . Once trained,

Fϕ provides computationally efficient system responses that substitute the expensive forward evaluations. Figure 1 graphically185

describes the connection of the forward with the inverse operator using a fully connected architecture.

We adopt a two-step training strategy proposed and employed in previous works (Shahriari et al. (2021); Rodriguez et al.

(2023); Gorostidi et al. (2023)). The contribution of these works and their connection with the present approach is extensively
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Figure 1. DNN architecture connnecting the forward Fϕ with the inverse Iθ . The output of the entire DNN yields the reconstruction of

the input measurements, m̂i = Fϕ ◦Iθ(mi). This architecture permits defining the loss function on the measurements space, M. The wind

and wave excitations w are fed to both the forward and the inverse. For representation feasibility, we depict the distribution as a bi-variate

Gaussian mixture

described in section 1. We first obtain the optimal forward parameters ϕ∗:

ϕ∗ := argmin
ϕ

∥m−Fϕ([z,w])∥22. (3)190

Then, we find the optimal inverse parameters θ∗:

θ∗ := argmin
θ

∥m− (F∗
ϕ ◦ Iθ)([m,w])∥22. (4)

The second step incorporates F∗
ϕ as a non-trainable architecture.

After the two-step training, we essentially are interested in using Iθ∗ to estimate the damaged condition z of the FOWT

from the measured responses m and operational conditions w. In this deterministic framework, the inverse operator outputs a195

single-value estimate for each damaged condition given an input [m,w]. This approach precludes adequate interpretation of

the uncertainty in the estimates, which are assumed to be 100% confident. However, despite ensuring that the provided estimate

corresponds to one of the possible solutions (assuming an adequate and successful training process), this might differ from the

actual condition of the system.
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2.2 Bayesian inverse operator200

In this work, we overcome the limitation of the deterministic solver by adopting a Bayesian approach to approximate the in-

verse operator I (Rodriguez et al. (2023); Goh et al. (2021)). Since the physical law governing the system is deterministic,

we consider the forward as a deterministic operator. We assume that uncertainty resulting from recording noisy measurements

propagates from the data to the predicted damage condition estimates (through the inverse operator). Hence, instead of map-

ping the measurements to the damaged condition, we seek the operator that maps the input probability distribution (of the205

measurements) to the distribution of the damaged condition. The distribution of the damaged state features is conditioned on

the measured data, i.e., we search for a conditional probability distribution.

Let us assume that the measured response, loading conditions, and unknown system’s damaged conditions are represented

as random variables. Vectors m, w, and z, correspond to realizations of each of these sets of random variables. Considering

the existence of additive noise that is inherent to the data acquisition process, we express the forward problem as:210

m= F(z,w)+ ϵ, (5)

where we substitute F by its optimal approximation Fϕ∗ , and ϵ is the unknown measurement error with known statistics

described by a Probability Density Function (PDF) ϵ∼ p(ϵ). Although z is unknown, we can represent its uncertainty using

a conditional probability distribution considering its relationship with the measured variables, p(z|m,w). For any damaged

condition z, the conditional PDF p(z|m,w) is the target posterior distribution that forms the estimated target of the inverse215

problem I under the use of a Bayesian approach. We employ Bayes’ theorem to express it by the following proportionality:

p(z|m,w)∝ p(m|z,w) · p(z), (6)

where p(z) represents the prior PDF of the unknown damaged condition z, and p(m|z,w) is the likelihood model that expresses

the interrelation between the measurements and the damaged condition.

Due to the intractability of the true posterior (usually an unknown non-parametric PDF), we define an inverse operator Iθ220

that estimates the parameters of an approximate PDF for each damaged condition in z, given the response measurements m

and operating loads w. Since we have no prior knowledge, we approximate this PDF by a flexible one, given by a mixture of

multivariate Gaussian functions (Deisenroth et al. (2020)), such that:

qθ(z|m,w)∼GMM(µ,σ) =

K∑
k=1

αkN (z|µk,Σk);

N (z|µk,Σk) =
1

(2π)Z/2|Σk|1/2
exp

(
−1

2
(z−µk)Σ

−1
k (z−µk)

)
,

(7)

where the PDF qθ(z|m,w) is a Gaussian Mixture Model (GMM) dependent on the parameters θ of the DNN Iθ, αk is the225

weight of the k-th Gaussian in the mixture, and N (z|µk,Σk) is the corresponding multivariate Gaussian distribution with mean

vector µk and diagonal covariance matrix Σk = diag(σk) for k = 1, ...,K Gaussians. Compared to the deterministic approach,

instead of a single value estimate, now the output of the inverse operator Iθ spans to produce the set of properties describing
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the mixture, namely the vector GMMprops = {µ1, ...,µK ,σ1, ....σK ,α1, ...,αK}. This results in an output of K(2×Z +1)

dimensions. For simplicity in notation, we have omitted the dependency of the GMM properties on the DNN parameters θ.230

Realizations from qθ(z|m,w) represent samples of the damaged condition z that are likely produced by the unknown

true posterior p(z|m,w). All the realizations {zh}Hh=1 share the same operating conditions w. Recovering the strategy of

composing the forward with the inverse (see Figure 1), we feed the samples to the optimal forward operator Fϕ∗ trained in Eq.

3. Figure 2 schematically represents the architecture in the Bayesian approach.

mi ∈ M

wi ∈ W wi ∈ W

zi ∈ Z
Draw H
samples

m̂i ∈ M

Iθ Fϕ

m1
i

m2
i

mM
i

µ1
i

µZ×k
i

σ1
i

σZ×k
i

α1
i

αZ×k
i

z1 z2

w1
i

wW
i

z1,hi

z2,hi

zZ,h
i

w1
i

wW
i

m̂1
i

m̂2
i

m̂M
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Figure 2. DNN architecture in the adopted Bayesian approach. The output of the inverse operator produces the parameters that describe the

PDF of the damaged condition z. A sampling layer draws H random samples from the distribution, which are then fed to the optimal forward

operator Fϕ∗ . The output of the entire DNN yields the reconstruction of the input measurements, m̂i = Fϕ ◦ Iθ(mi).

We aim at minimizing the discrepancy between the true posterior p(z|m,w) and the approximate posterior qθ(z|m,w)235

obtained from Iθ. We first assume that noise ϵ is mutually independent with respect to the unknown damaged condition z

(Goh et al. (2021)). Thus, according to Eq. 5, we can express the likelihood as:

p(m|z,w) = p(m−F([z,w])) , (8)

We then assume the noise follows a Gaussian distribution, p(ϵ) =N (0,Γ), where Γ = diag(βF([z,w]))2 is a vector that

contains the non-zero elements of a diagonal matrix, and the parameter β corresponds to the noise level. This allows us to240

rewrite Eq. 6 as:

p(z|m,w)∝ p(m−F(z,w)) · p(z) = 1

(2π)M/2|Γ|1/2 exp
(
−1

2
(m−F([z,w]))tΓ−1(m−F([z,w]))

)
, (9)
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where p(z) is the prior distribution of the damaged condition properties, which can follow any PDF. The Kullback-Leibler

divergence (KL) is defined as a statistical measure of the distance between two PDFs (Deisenroth et al. (2020); Asperti and

Trentin (2020)). KL assumes a null value when the compared PDFs are equal and can be defined as:245

KL[p(x)||q(x)] =
∫

p(x) log
p(x)

q(x)
dx, (10)

where x indicates a realization of the random variable X , and p(x) and q(x) are the two different PDFs. Here, we use the KL

metric to evaluate the distance between the true posterior p(z|m,w) and its approximation estimated by the inverse operator

Iθ, denoted as qθ(z|m,w), yielding:

KL[qθ(z|m,w)||p(z|m,w)] =

∫
qθ(z|m,w) log

qθ(z|m,w)

p(z|m,w)
dz. (11)250

However, the KL divergence term exhibits certain shortcomings that weaken its strength as a distance metric; it is asymmet-

ric, it does not satisfy the triangle inequality, and it produces an intractable term (the evidence of the data distribution p(m))

(Blei et al. (2017)). Instead, a lower bound is calculated for the evidence, known as the Evidence Lower BOund (ELBO) (Blei

et al. (2017)). ELBO is the loss function commonly employed in Variational Autoencoders (VAEs) to account for the discrep-

ancy between the two distributions (Goh et al. (2021); Rodriguez et al. (2023)). We obtain the ELBO loss by exploiting the KL255

expression and isolating the intractable terms::

KL[qθ(z|m,w)||p(z|m,w)] =

∫
qθ(z|m,w) log

qθ(z|m,w)

p(z|m,w)
dz

=

∫
qθ(z|m,w) logqθ(z|m,w)dz−

∫
qθ(z|m,w) logp(z|m,w)dz

= Eq[logqθ(z|m,w)]−Eq[logp(z|m,w)] =

= Eq[logqθ(z|m,w)]−Eq[log
p(m,w,z)

p(m,w)
]

= Eq[logqθ(z|m,w)− logp(m,w,z)] + logp(m,w). (12)

In Eq. 12, we employ the relationship between the joint distribution and the posterior: p(z|m,w) = p(m,w,z)
p(m,w) . We rearrange

the terms and define the ELBO as:

ELBO = logp(m,w)−KL[qθ(z|m,w)||p(z|m,w)] = Eq[logp(m,w,z)− logqθ(z|m,w)]

= Eq[log(p(m|w,z)p(w)p(z))]−Eq[logqθ(z|m,w)]

= Eq[logp(m,w|z)] +Eq[logp(z)]−Eq[logqθ(z|m,w)], (13)260

where we assume that the operating conditions w and the damage properties z are independent (i.e., p(w,z) = p(w) · p(z)).
Hence, we can remove p(w) in the second line of the equation, as it is independent of z.

For a certain observation {m,w}, we draw H samples from the posterior and approximate the ELBO loss function as

LELBO(θ)≈
1

H

H∑
h=1

[logp(m,w|zh)︸ ︷︷ ︸
Likelihood

+logp(zh)︸ ︷︷ ︸
Prior

− logqθ(z
h|m,w)]︸ ︷︷ ︸

Approx. posterior

. (14)
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By substituting the likelihood from Eq. 9 into Eq. 14, we finally express LELBO as:265

LELBO(θ)≈
1

H

H∑
h=1

[−1

2
(m−F([zh,w]))tΓ−1(m+F([zh,w]))+ logp(zh)− logqθ(z

h|m,w)]. (15)

Here, the first term accounts for the data misfit, which is the error between the true measurements and the reconstructions

provided by Fϕ∗ . The second term refers to the prior, which we assume to follow a bounded uniform distribution p(z)∼
U [blow,bup] with lower and upper bounds blow and bup, respectively. The last term measures the probability that the h-

th sample belongs to the estimated distribution qθ(z|m,w). The second term can be neglected by directly constraining the270

Gaussian mixture density function to the desired interval (according to the assumption of uniform distribution). Note that

minimizing the Kullback Leibler divergence between the original and the estimated posteriors (KL[qθ(z|m,w)||p(z|m,w)])

is equivalent to maximizing LELBO or minimizing its negative. For a training dataset D with D labeled observations (D =

{mi,wi,zi}Di=1), and H drawn samples from the estimated PDF, we obtain the optimal parameter set θ∗ by minimizing the

negative of LELBO:275

θ∗ := argmin
θ

1

D ·H
D∑
i=1

H∑
h=1

[
1

2
(mi −F([zhi ,wi]))

tΓ−1(mi −F([zhi ,wi]))+ log qθ(z
h
i |mi,wi)

]
. (16)

3 Case study

We consider the use case of the 5MW FOWT designed by the National Renewable Energy Laboratory (NREL) (Jonkman et al.

(2009)) mounted atop the DeepCWind semi-submersible platform (Robertson et al. (2014a)). The model was developed as part

of the Offshore Code Comparison Collaboration Continuation (OC4) project, which aimed to verify the accuracy of offshore280

wind turbine dynamics simulation tools through extensive code-to-code comparisons. This involved contributions from numer-

ous organizations worldwide, ensuring a robust and well-validated design. The semisubmersible floater for OC4 was specifi-

cally designed to serve as a benchmark for offshore wind energy research and development purposes (Robertson et al. (2014b)).

The motivation for adopting such a turbine-floater assembly in this study lies in its computational availability and popularity

within the FOW research community. Moreover, the OC4 model underwent experimental validation. The validation process285

included comparisons between numerical simulations and experimental data from wave tank tests (Borisade et al. (2018)). The

OC4 floater, depicted in Figure 3, provides stability to the turbine facing unsteady and unpredictable sea conditions thanks to

three partially ballasted base cylindrical columns. A set of pontoons and cross braces connects each column to the others and

to the main tower. The platform is held in place by three catenary mooring lines located 120 from one another. The selected

measurements describing the platform’s response include features from the three rotational DOFs: roll, pitch, and yaw. From a290

sensory perspective, these measurements can be experimentally obtained using inclinometers, cheap and reliable devices often

used in long-term monitoring, currently also effectuated via Micro-Electro-Mechanical System (MEMS) technologies. Given

the mechanical symmetry of the system due to the geometrical properties as well as the force and load distributions. Compared

to acceleration signals, which are often measured in the field of FOWT condition assessment, displacements (and coupled

rotation DOFs) tend to be more sensitive under low-frequency dynamics, such as floating platform responses. In the recent295
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Figure 3. 5MW NREL FOWT mounted atop the DeepCWind OC4 semi-submersible platform.

work by Sharma et al.(Sharma and Nava (2024)), the authors analyzed the sensitivity of acceleration and displacement signals

under mooring system damage (anchoring), highlighting the potential of displacements over accelerations even for low-level

damage.

Figure 4 describes the response under common environmental conditions. We extract a set of modal statistics from these

responses, which we assume are sufficiently descriptive of the platform’s movement.300

As observed in Figure 4, owing to the system’s symmetry, rotations in roll DOF are harmonic oscillations around the mean

position with an energy content associated with the surge and roll natural periods, while pitch exhibits a more colorful PSD

being affected by the external excitation.

From the time-domain responses (see Figures 4(a), 4(c), and 4(e)), we compute the mean displacement as:

x̄=

tf∫
t0

xdt≈ 1

N

N∑
i=1

xi, (17)305
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Figure 4. Response amplitude operator (RAO) of the FOWT for roll response in (a) time, and (b) frequency domain; for pitch response in

(c) time, and (d) frequency domain; and for yaw response in (e) time, and (f) frequency domain.

where N indicates the total number of data points. We further compute the standard deviation of the response as

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2. (18)
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We assume the time domain response to be stationary by neglecting its transient state. To obtain the frequency spectra (see Fig-

ures 4(b), 4(d), and 4(f)), we compute the Power Spectral Density (PSD) of the signals, which describes the power distribution

across a frequency range as (Theodoridis (2020)):310

Sx(f) = lim
T→∞

E
[
|Fx(f)|2

]
2T

, (19)

where Fx(f) is the Fourier Transform of the time-domain signal for any DOF x. Finally, we identify two dominant peak

frequencies as

f1 = argmax
f∈[0,fthresh]

Sx(f), (20)

f2 = argmax
f∈[fthresh,∞]

Sx(f). (21)315

One of the peaks for each DOF usually matches the platform’s natural frequency. In contrast, the further spectral peaks reflect

the influence of external conditions, e.g., wind, current, and waves, in the system’s response (Benitz et al. (2014)). We have

split each DOF’s natural and excitation frequencies using threshold frequencies fthresh to ensure both peaks are identified.

To assess the magnitude of the peaks and the intensity of all the frequencies in the spectra, we also measure the zero-th

momentum as (Sundar (2017)):320

m0 =

ωf∫
0

ωSxdω, (22)

where ω is the angular frequency in radians per second. These are the five features we employ to describe the time-domain

response of the platform. These statistics are ultimately the inputs of our neural network. This method allows for a significant

reduction in the number of inputs required to assess the health status of mooring lines’ integrity while maintaining high physical

accuracy.325

In this work, we use NREL’s open-source wind turbine simulation tool OpenFAST (OpenFAST Documentation (Year of

Access)), which evaluates the influence of aerodynamic (Jonkman et al. (2015); Platt et al. (2016)) and hydrodynamic (Jonkman

et al. (2014)) excitations on the response of the floating platform. The number of deployed real-scale FOW turbines is limited;

moreover, the data related to the performances of these devices are proprietary, and even if they were publicly available, the

amount of labeled data under damaged conditions in the mooring systems might be extremely reduced, given the short life of330

these platforms. The current lack of operational data from such devices demands solutions that may exploit simulation tools

in the delivery of predictive models. OpenFAST is regarded as a highly accurate and reliable tool for numerical simulations of

FOWTs in wind-wave environments (Yang et al. (2021); Reig et al. (2024); Rinker et al. (2020)) owing to existing validation

efforts using experimental data (Coulling et al. (2013); Robertson et al. (2017)). The OC4 model, in particular, has been

validated in OpenFAST against experimental data for free decay tests (Gorostidi et al. (2023); Liu et al. (2019)).335
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Our simulations aim at solving the system of equations given by:

(M +A∞)q̈+Kq =
∑

F (t,ω), (23)

where M is the system’s mass matrix, A∞ is the added mass matrix, and K is the hydrostatic stiffness matrix. Terms q and q̈

encompass the system’s position and acceleration, respectively (Faltinsen (1993)). The force term can be split into components

reflecting the contribution of wave, wind, viscous, mooring, and radiation-damping forces (Jonkman and Matha (2011)).340

The simulation process follows the same structure as that presented by Gorostidi et al. (Gorostidi et al. (2023)). We assign

the environmental conditions for each simulation by selecting a combination for significant wave height HS ∈ [2,15] (m) and

peak period TP ∈ [1,15] (s). The decision to use these features is motivated by their common availability in real practice since

Supervisory Control And Data Acquisition (SCADA) systems typically include such measurements.

We have defined evenly-spaced values for both HS and TP within their feasible interval, and one combination is randomly345

selected for each simulation using Monte Carlo sampling. These two variables define a Pierson-Moskowitz spectrum, which

estimates the distribution of the energy of ocean waves based on their frequency using the empirical correlation proposed

by (Pierson Jr and Moskowitz (1964)). The integration of this spectrum defines the temporal evolution of the wave force

component of the total force in Equation 23. We select wind velocity WV in a similar manner, with speeds ranging from 1 to

30m/s. In this work, we have considered uniform wind speed profiles350

We then introduce damage to the mooring lines in MoorDyn, OpenFAST’s mooring line dynamics module (Hall (2020)). In

this work, as shown in Figure 5, we distort one of the lateral mooring lines of the platform.

Most failures in the mooring system occur during the operational phase, according to a survey focused on FPSOs platforms

for the Oil and Gas sector (Fon (2014)). Pitting corrosion, fatigue due to cyclic loading, and abrasion with the seabed may

represent some of the most frequent causes leading to critical failure of the mooring systems. In the present study, we analyze355

the effect of degradation caused by two other common forms of damage: biological fouling (Decurey et al. (2020)) and anchor

point slippage (Liu et al. (2021b); Sharma and Nava (2024)). These damage mechanisms affect the mechanical properties of

the platform’s mooring lines, e.g. mass, stiffness, and buoyancy, and may accelerate wear or cause premature failure (Spraul

et al. (2017)). Biofouling, in particular, is a slow process that affects the mass and drag of the mooring system, affecting the

performance and stability of the platform. Anchor slipping, moreover, drastically affects the stiffness of the system (Liu et al.360

(2021a)).

We simulate biofouling by modifying the mass per unit length and diameter of a segment located at the center of the mooring

line. We consider the maximum biofouling damage to increase these properties by 10%. We induce anchoring damage by

displacing the line’s anchor points x and y coordinates, which we assume to have an effect on the line’s stiffness, causing

alterations in the response of the platform. We consider the maximum anchoring damage at 20 m in parallel to its baseline365

orientation of 240 with respect to the x direction. To label the scenarios, we employ two severity coefficients, one for each

damage type, where the maximum damage level corresponds to a value equal to one, and healthy mooring line scenarios

are assigned null coefficient values. Any intermediate damage coefficient reflects mild degradation, which modifies the line’s

properties following a linear interpolation. We sample these coefficients by sampling from a folded Gaussian distribution
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located around zero, with a standard deviation of 0.35. The rationale behind this is that we seek a training dataset containing370

mostly low-severity scenarios, much more frequent in common operation (Gorostidi et al. (2023)).

For any scenario, we first sample the damage coefficients describing the damage condition. We subsequently use Monte

Carlo to sample the loading conditions and assign different sea states. With this approach, we build a large dataset with cases

that include milder or more energetic sea states for all the considered damage scenarios. Each scenario involves a simulation

recreating 30 minutes of FOWT dynamics, computing platform responses every 0.025 seconds, and subsequently extracting the375

selected features. In summary, any scenario is defined by (i) three features describing the loading conditions, namely HS , TP ,

and WV , (ii) 15 response features, five for each of the three considered DOFs, and (iii) the two damaged condition coefficients.

We produce 60,000 samples in parallel batches using 120 Intel Xeon (R) E5-2680, 2.70GHz CPUs (Donostia International

Physics Centre (2022)), taking approximately 42 hours.

4 Neural Network design and training380

We employ TensorFlow 2.13 to treat the datasets and train the Bayesian DNN for damaged condition assessment (Abadi et al.

(2015)). We split our dataset into training (Dtrain), validation (Dval), and testing (Dtest), each containing 70, 20, and 10% of

Figure 5. Top view of the OC4-DeepCWind semi-submersible platform. The mooring line exposed to damage is highlighted in red.
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the total samples, respectively. We then use the MinMax scaler (Scikit Learn (2024)) to constrain the environmental conditions

and response features to the interval [0,1] so as to ensure that high-order features do not outweigh lower-order ones in the

training process. The rescaling function is based on the training data and applies to the three datasets.385

Next, we specify the DNN architecture and the hyperparameters describing the training routine. There are no general guide-

lines regulating the pursuit of an optimal configuration. Numerous hyperparameters exist in this case, pertaining to the model

definition and its training process, including layer counts, types, and sizes, activation functions, and regularization techniques,

among others. This renders the search space virtually infinite. As a common practice, developers usually test the performance

of a range of candidate architectures designed on educated guesses and experience, aiming to strike a balance between compu-390

tational efficiency and prediction accuracy.

In this work, we employ a combination of hyperbolic tangent (Namin et al. (2009)) and Rectified Linear Unit (ReLU)

(Agarap (2018)) functions for the hidden layers. We implement the weight initialization method proposed by Aldirany et

al. (Aldirany (2024)), who suggested TensorFlow’s default Glorot Uniform initialization scheme (Glorot and Bengio (2010))

to be unsuitable for non-differentiable and non-zero mean functions, such as ReLU. Instead, we apply the He Uniform ini-395

tialization (He et al. (2015)) to the ReLU layers. At the output layer, we use three different activations for the properties of

the multivariate Gaussian Mixture: the sigmoid function (Han and Moraga (1995)) for the means, as we seek for a smooth

function to estimate damaged condition coefficients in the interval [0,1]; the softplus function (Zheng et al. (2015)) for the

variances, as a smooth equivalent of ReLU to enforce positive values; and the softmax function (Goodfellow et al. (2016)) for

the weights, so that their sum is equal to one and each value ranges into [0,1]. We have observed adequate training perfor-400

mance when using the parameters shown in Table 1. However, other configurations may also provide satisfactory results. For

the Multivariate Gaussian Mixture PDF, we assign k = 5 Gaussian components. We have no prior knowledge of the optimal

number of Gaussians to reflect the uncertainty of the damage condition properties. The larger the number, the more flexible the

mixture will be. However, the number of Gaussians directly affects the number of parameters to be estimated; thus, it hampers

the training process. After some trial and error analysis, the authors reached adequate results using five Gaussians. We draw405

H = 10 samples to be fed into Fϕ∗ . A larger number of samples accelerates convergence at the cost of more time-consuming

iterations. Finally, we consider a noise parameter β equal to 0.076, which roughly corresponds to noise levels of up to approx.

8.5% (Bishop (2006)). The value of β is critical to leverage the contribution of both loss terms in Eq.16 during training and

thus to properly describe the uncertainty in the solutions.

We follow the two-step training procedure described in Section 2. We first find the optimal forward operator Fϕ∗ by mini-410

mizing Eq. 3, as described in our previous work (Gorostidi et al. (2023)). We pre-train the decoder to approximate the physical

law of the system, since this enables access to the derivative quantities that are needed when training the encoder, according to

the loss function in Eq.16. In this manner, the decoder serves to impose the known physical law as a type of inductive bias. A

further benefit of this approach is that by specifying fewer unknowns (only those corresponding to the encoder), we reduce the

difficulty of the inference task; in particular, we decrease the number of local minima.415
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Encoder

Layers 100, 250, 300, 300, 200, 150, 100

Activations ReLU, ReLU, Tanh, ReLU, Tanh, ReLU, Tanh

Weight init. GU, GU, HU, GU, HU, GU, HU

Initial LR 10−5

Batch size 1024

Epochs 200

Sampling layer

µ activation Sigmoid

σ activation Softplus

w activation Softmax

Num. Gaussians 5

Num. samples 10

Decoder

Layers 10, 30, 50, 70, 80

Activations Tanh, ReLU, ReLU, ReLU, ReLU

Weight init. GU, HU, HU, HU, HU

Initial LR 5 · 10−3

Batch size 512

Epochs 500

Table 1. Specifications of our Gaussian Mixture autoencoder. Tanh: Hyperbolic Tangent; ReLU: Rectified Linear Unit; GU: Glorot Uniform,

HU: He Uniform.

We present the evolution of the decoder’s loss in Figure 6. The parameters of Fϕ∗ are frozen for the next training step. We

obtain the optimal inverse operator Iθ∗ by minimizing the ELBO loss described in Eq. 16. Figure 7 depicts the evolution of

the loss function during training, including the total loss value, and the two participating terms.

5 Results with three DOFs

This section analyzes the damage identification performance using the test dataset Dtest unseen during training and validation420

tasks. Here, we select eight damage scenarios from Dtest to visualize the results. The eight data points represent different

damaged conditions and are summarized in table 2.

The deterministic approach employed in (Gorostidi et al. (2023)) minimized the data misfit (LM), producing a single value

estimate for each input measurement. However, despite being a feasible solution, it might be far from the true one when

multiple solutions coexist. For any response measurement m, we can identify the feasible solutions as those producing a425
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Figure 6. Evolution of training and validation losses for the forward operator Fϕ∗

Table 2. Properties of the selected examples

Scenario z1 z2

1 0.20 0.65

2 0.82 0.44

3 0.34 0.74

4 0.00 0.00

5 0.15 0.60

6 0.05 0.25

7 0.34 0.10

8 0.00 0.40

reduced value of LM. Accordingly, these solutions must produce a high probability value in the estimated posterior PDF,

qθ(z|m,w). Figures 8 and 9 depict the solution space comparing two contour maps within the solution space: (i) the density

value over qθ(z|m,w), and (ii) the LM value for the eight test example scenarios. The contour plot of data misfit reveals the

existence of multiple damage scenarios producing similar responses (measurements), i.e., producing a small value of LM. Both

contours must ideally be identical for the posterior to show all the feasible solutions. However, the constraints and assumptions430

imposed for the posterior to be tractable (parametrization of the distribution to a Gaussian mixture, diagonal covariance matrix

assumption, etc.) restrict the shape of the PDF. For comparison purposes, the figures include both the ground truth and the

deterministic solutions produced in work (Gorostidi et al. (2023)).

In the figures, we have constrained the contour maps of LM to enable proper visualization of the targeted regions. Despite

the shape limitations of the estimated posterior distributions, the resulting contours (left-hand figures) exhibit a clear correspon-435
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(a) qθ(z|m,w) for test case 1 (b) LM for test case 1

(c) qθ(z|m,w) for test case 2 (d) LM for test case 2

(e) qθ(z|m,w) for test case 3 (f) LM for test case 3

(g) qθ(z|m,w) for test case 4 (h) LM for test case 4

Figure 8. First four test examples: The left-hand figures represent the contour plot of the estimated posteriors qθ(z|m,w). The right-hand

figures represent the data misfit (LM) value.
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(a) qθ(z|m,w) for test case 5 (b) LM for test case 5

(c) qθ(z|m,w) for test case 6 (d) LM for test case 6

(e) qθ(z|m,w) for test case 7 (f) LM for test case 7

(g) qθ(z|m,w) for test case 8 (h) LM for test case 8

Figure 9. Last four test examples: The left-hand figures represent the contour plot of the estimated probability density functions qθ(z|m,w).

The right-hand figures represent the data misfit (LM) value.
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dence with the expected solution space described by LM. Thus, the contour plot of the estimated posterior PDF qθ(z|m,w)

describes the uncertainty in the solution space.

We observe that, in most cases, the shape accommodates close to a bi-variate Gaussian distribution, indicating the existence

of a dominating mode. These results suggest that the selected sensing system and the extracted features suffice to uniquely

identify the damaged condition causing the observed measurements. Analyzing the deterministic solution, we observe that440

it lies close to the true damaged condition, indicating acceptable predictions. However, as we will explore in subsection 6,

employing an incomplete sensing system (fewer DOFs available) might contribute to the ill-posedness of the inverse and thus

result in a much more uncertain damaged condition.

In this work, we have made two main assumptions in the training dataset to constrain the scope of the analysis. On the

one hand, the results presented in this section assumed the availability of some loading condition features describing the wind445

and wave excitation. Although SCADA systems are frequently found in FOWTs, such measurements may be inaccessible or

be subject to failures. Appendix A describes the results obtained when training the inverse operator without any information

regarding the loading conditions.

On the other hand, we have particularized the methodology to the damaged condition of one single mooring line. As a

proof of concept, we assume that only one mooring line may suffer damage at a time. However, in real practice, simultaneous450

damage may happen in two or more components of the target system (e.g., two mooring lines). Appendix B presents the results

obtained for a new case study where we consider anchoring damage co-occurring at two mooring lines.

Given the computational limitations of simulating damage scenarios, a relevant aspect that needs to be considered relates to

the capability of the DNN to provide a reliable outcome for a certain scenario that was unseen during training (although of the

same nature/type as those used for training). Appendix C analyzes such a situation via two different studies to demonstrate the455

ability of the distributional model to approximate the true solution and inform about the uncertainty origin.

5.1 Exploring robustness to noise

One critical issue to tackle when dealing with data from real operative systems is the effect of noise. We represent the mea-

surement error as an additive noise with Gaussian distribution. We assume the covariance matrix to be a diagonal matrix

Γ = (βF([z,w]))2, where the scalar β affects the variances of the noise components. A low value of β indicates almost null460

noise in the data, and the total loss value is mainly owed to the data misfit term. Contrarily, a larger value of β is associated

with higher noise levels and an increase in the contribution of the distributional term. We can relate β with the signal-to-noise

ratio (SNR), which is given by (see (Johnson (2006))):

SNR= 10log10
E(S2)

E(n2)
, (24)

where S represents the measured signal, and n the noise. For white Gaussian noise with a null mean, we substitute the expec-465

tation of the noise by its variance. As an indicative value of the noise level based on the training dataset, assigning β = 0.05

corresponds to a SNR≈ 26dB.
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We explore increasing noise levels by modifying the value of β. Figure 10 depicts this effect for the first test example in

Table 2. Analogous results are observed for the other examples. Results reveal the sensitivity of the estimated PDF to the noise

(a) β = 0.025 (SNR≈ 32dB) (b) β = 0.050(SNR≈ 26dB)

(c) β = 0.075 (SNR≈ 22.5dB) (d) β = 0.1 (SNR≈ 20dB)

Figure 10. Analysis of noise effect in the qθ(z|m,w) results for the first test example. Increasing noise levels according to β =

[0.025,0.050,0.075,0.10]

level. We observe that for β = 0.1 (SNR≈ 20dB), the entire solution space is feasible for the biofouling damage represented470

by z1. This demonstrates a limited sensitivity of the measured features to this damage compared to anchoring (z2), which can

still be estimated. These results support the robustness of the method in the presence of high noise levels.

6 Results with one DOF

To highlight the potency of the proposed method, we explore the multimodality of the solution space when the instrumentation

system is sparse (limited number of sensors). This situation is very common when low-cost, long-term sensing devices are475

installed. Measuring accelerations is also an extended and cost-effective practice. Damage in the mooring elements affects the

dynamics of the entire FOWT system (including the six degrees of freedom). However, the dynamics of the mooring system

correspond to low frequencies and strongly exciting sway DOF, which is coupled with the rotation DOF roll. Compared to

accelerations, displacements (and coupled rotation DOFs) tend to be more sensitive to damage in the mooring systems, such

as anchor displacements, in terms of signal power (Sharma and Nava (2024)). To explore the multimodality in the damaged480
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condition estimates, we have selected roll DOF as the only available signal since it is particularly sensitive to damage given

the mechanical symmetry of the system and the unidirectionally of the external excitation, and aids in the visualization of the

results.

In this case, we employ only five response features - those associated with roll - as the input data for the DNN. We adapt the

architecture of Iθ described in Section 4 to accommodate the new input dimensions and repeat the training step to minimize485

LELBO. Figures 11 and 12 show the results for the eight damage scenarios.

The data misfit (LD) contour maps on the right-hand side of Figure 12 reveal a much more spread range of plausible damaged

conditions across the solution space for any given input measurement. The contour plots of the estimated probabilities (left-

hand figures) match with the LD map. Given that the uncertainty has increased in the solution space (ill-posedness), the results

reveal a more clear multimodality in the solution space. Compared to Figures 8 and 9, where the deterministic solution was490

pretty close to the ground truth, now we observe a considerable separation. This discrepancy already informs on the existence

of multiple solutions. For example, for the test case 1 (see Figures 11a and 11b), we clearly observe how the Gaussians try to

adopt the tube-shaped contour map of minimal LD values that seem to connect the ground truth and the deterministic solution.

Figures 9 through 12 qualitatively illustrate the multimodal nature of the solution to our inverse problem. Next, we further

quantify the performance of our network using common metrics. Table 3 reports the root mean square error (RMSE) of the495

estimations using both deterministic and probabilistic models. The table’s left half presents the RMSE values for the 3-DOF

case, while its right half displays the RMSEs for the case of incomplete instrumentation with roll DOF only. RMSEs were

calculated using ten samples from the Gaussian mixture autoencoder. Since the deterministic model provides a point prediction,

the RMSEs of the deterministic predictions are equivalent to the absolute error between the ground truth and the model’s

estimation.500

The 3-DOF errors in Table 3 concur with the contour plots presented in Figures 8 and 9, which proved the selected instrumen-

tation sufficient for the deterministic model to accurately estimate mooring degradation. Table 3 shows that the deterministic

model’s predictions using 1-DOF are poorer, with our Bayesian approach exhibiting improved behavior, especially in Scenarios

1, 3, and 7. These cases, as shown in Figures 11 and 12, reflect a highly multimodal solution and prove that the deterministic

model does not accurately estimate the true solution but rather captures one of the plausible solutions.505

These results support the capacity of the proposed method to provide an uncertainty-aware assessment in the form of the

probability value for each pair of damaged conditions. In such cases, postprocessing can be applied to extract the relevant

information from the multivariate contour map, such as defining extrema or establishing a threshold to select the most likely

scenarios. Statistical data compression techniques (e.g., Principal Component Analysis (PCA)) could be applied to produce a

lower-dimensional representation of the space that enables visualization.510

7 Conclusions

This work proposes a Bayesian Deep Learning strategy to achieve an uncertainty-aware assessment of the condition of the

mooring system in a Floating Offshore Wind Turbine (FOWT). To remedy this, we employ a mixture of multivariate Gaussians
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(a) qθ(z|m,w) for test case 1 (b) LM for test case 1

(c) qθ(z|m,w) for test case 2 (d) LM for test case 2

(e) qθ(z|m,w) for test case 3 (f) LM for test case 3

(g) qθ(z|m,w) for test case 4 (h) LM for test case 4

Figure 11. First four test examples for one DOF: The left-hand figures represent the contour plot of the estimated probability density functions

qθ(z|m,w). The right-hand figures represent the data misfit (LM) value.
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(a) qθ(z|m,w) for test case 5 (b) LM for test case 5

(c) qθ(z|m,w) for test case 6 (d) LM for test case 6

(e) qθ(z|m,w) for test case 7 (f) LM for test case 7

(g) qθ(z|m,w) for test case 8 (h) LM for test case 8

Figure 12. Last four test examples for one DOF: The left-hand figures represent the contour plot of the estimated probability density functions

qθ(z|m,w). The right-hand figures represent the data misfit (LM) value.

27



3-DOFs 1-DOF

Deterministic Gaussian Mixture Deterministic Gaussian Mixture

Scenario RMSEz1. RMSEz2 RMSEz1 RMSEz2 RMSEz1. RMSEz2 RMSEz1 RMSEz2

1 0.011 0.013 0.114 0.041 0.355 0.494 0.330 0.357

2 0.010 0.023 0.133 0.062 0.133 0.062 0.131 0.107

3 0.006 0.004 0.181 0.148 0.180 0.183 0.149 0.185

4 0.053 0.002 0.103 0.032 0.052 0.051 0.151 0.153

5 0.002 0.005 0.200 0.093 0.021 0.090 0.137 0.118

6 0.141 0.071 0.161 0.136 0.126 0.077 0.112 0.180

7 0.095 0.004 0.091 0.135 0.164 0.374 0.123 0.210

8 0.012 0.020 0.210 0.066 0.014 0.034 0.046 0.018

Table 3. RMSE values for 3-DOF and 1-DOF cases using both deterministic and Gaussian mixture autoencoder models.

to track how the uncertainty is propagated from the available measurements to the estimated health condition diagnostics,

providing more robust and reliable estimates. We test the performance of the method using measurements from three degrees515

of freedom and explore the robustness against increasing noise levels, with successful results. We also analyze the benefits of

the method when dealing with sparse sensor scenarios, such as measuring at only one degree of freedom, revealing the ability

of the method to reveal the multimodal nature of the solution in ill-posed scenarios.

In line with the limitations and challenges stated in Section 1, we determine here future research lines and challenges to

be addressed. Scaling up the methodology to more complex damage spaces (e.g., simultaneous damage in all mooring lines,520

different directions of the anchor displacements, corrosion effect) is one of the key challenges to be addressed. Given the

intractable dimensionality increase in the number of parameters of the Gaussian mixture, we will explore alternate distributional

models, such as random fields (Birmpa and Katsoulakis (2021)), Gaussian Processes (GPs) (Li et al. (2019)), or Copulas and

vine Copulas (Letizia and Tonello (2022)).

We further consider a future research line to focus on more exhaustive feature extraction that includes more refined system525

identification features, including the transmissibility and transmittance, or autocorrelation features, as they may enhance the

damage identification task. Also, to achieve a higher level assessment, we will investigate clustering techniques to separate the

different types of uncertainty according to the nature and properties of the existing sources (e.g., multimodality of the estimate,

measurement noise, model uncertainties, extrapolation over unknown measurements). Kamariotis et al. (2024).

Finally, it is a core priority of the authors to validate the proposed methodology for a case study where both experimental530

and synthetic data can be combined. Experimental data will present important limitations, including a strong concentration

around a reduced region of the domain (mostly the undamaged condition and other unlabeled damage scenarios). Hence, it is

mandatory to find an adequate strategy to complement these data with synthetic simulations, accounting for the computational

limitations in terms of time and resources. In this sense, covering the entire range of possible damage scenarios is computa-
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tionally prohibitive unless it is carefully tackled. Active Learning methods enable an efficient design of the synthetic dataset535

required for the training stage, as they guide the simulation process to enrich the most poorly characterized regions.

Finally, given the potential of the proposed methodology to be applied to different inverse problems, the authors are currently

exploring its application to the field of damage identification for bridge structures. The main challenges arising in this context

relate to the high dimensionality of the damage condition space, which will require more efficient distributional models such

as copulas.540
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Appendix A: Exploring results when loading conditions are unavailable

This appendix considers the case when the loading condition features describing the wind and wave excitation are unavailable.

We train our Inverse model Iθ ignoring these features for the case where only Roll DOF is available. The design and training

specifications are similar to those summarized in Table 1 Figure A1 presents the results obtained for the first four test case

scenarios. Analyzing the results, we observe that, although the distributional model partially captures the damage condition770

in some cases (see e.g., Figures A1a A1c A1g), in other scenarios it is far from producing reliable outcomes. The lack of

information regarding the loading conditions misleads the condition estimates, mainly for variable z1 (anchoring). For example,

in Figures A1b and A1e, we observe that the distributional model spreads along the anchoring axis (z1) with no identification

of the existing multimodality.

Appendix B: Exploring results for simultaneous damage in two mooring lines775

In this appendix, we analyze the detection capability of simultaneous damage occurring in two different mooring lines. To

remain in the two-dimensional space, we consider only anchoring damage. In particular, this section explores anchoring damage

to a lateral mooring line, as well as the downstream line parallel to surge motion. The parameterization of anchoring degradation

for the platform’s lateral line remains unchanged with respect to the main body of this study. Anchoring damage displaces the

anchor of the floater’s downstream line up to 20 m further in the direction of the wind-wave excitation. Figure B1 presents the780

probability and data misfit distributions for four test cases, considering as input data the three rotation DOFs (roll, pitch, and
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yaw). The figure shows the robust performance of the model to concurrent damage in various mooring lines. However, if we

constrain the input data to roll DOF only, we find that the measured features are unable to identify the damage in the second

mooring line. Figure B2 illustrates this for one test scenario. The results highlight the importance of selecting damage-sensitive

features to capture the different modes of failure that may occur in the system.785

Appendix C: Exploring the generalization capability for unseen damage scenarios

This appendix explores the potential of our proposed method in evaluating damage scenarios different from the training cases.

Given the extrapolation limitations of Neural Networks, we study scenarios of the same nature (the same type of damage occurs,

namely, anchoring and biofouling), although with a remarkable reduction in severity. We perform two different analyses for

the inverse: (i) training only with scenarios where damage z1 (anchoring) is always ≥ 20% and testing with scenarios with790

z1 < 20%, and (ii) training only with scenarios where damage z2 (biofouling) is always ≥ 20% and testing with scenarios with

z2 < 20%. In both cases, we consider using the three rotation DOFs as the input measured signals (roll, pitch, and yaw).

Figure C1 shows four randomly selected test cases for the first analysis (anchoring kept ≥ 20% during training). We observe

that the distributional model successfully approximates the true solution, with the uncertainty spreading mostly in the direction

of the constrained feature (i.e., anchoring) within acceptable thresholds. Hence, the developed method can inform on the795

damage condition and indicate the uncertainty direction even for cases where the evaluated scenario lies outside the training

domain.

Analogously, Figure C2 shows four test scenarios for the second analysis (biofouling kept ≥ 20% during training). The

results reveal that the highest density values concentrate close to the true solution, although with some error (see, e.g., Figure

??, where the highest PDF values are shifted towards smaller anchoring damage, but the level of biofouling damage is well800

captured).

In summary, the results demonstrate that despite these not being included during the training phase, the DNN successfully

identifies damage scenarios with lighter severity. The analyses demonstrate the generalizability of the method for damage

scenarios that have the same nature but are significantly different in severity from those considered during training, as well as

the potential of the distributional model to indicate the direction of the uncertainty.805
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(a) qθ(z|m,w) for test case 1 (b) qθ(z|m,w) for test case 2

(c) qθ(z|m,w) for test case 3 (d) qθ(z|m,w) for test case 4

(e) qθ(z|m,w) for test case 5 (f) qθ(z|m,w) for test case 6

(g) qθ(z|m,w) for test case 7 (h) qθ(z|m,w) for test case 8

Figure A1. First four test examples for one DOF when omitting wind and wave condition measurements in the inverse training stage.
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(a) qθ(z|m,w) for test case 1 (b) LM for test case 1

(c) qθ(z|m,w) for test case 2 (d) LM for test case 2

(e) qθ(z|m,w) for test case 3 (f) LM for test case 3

(g) qθ(z|m,w) for test case 4 (h) LM for test case 4

Figure B1. Four test cases for simultaneous anchoring damage on two mooring lines considering roll, pitch, and yaw motion.
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(a) qθ(z|m,w) for test case 1 (b) LM for test case 1

Figure B2. Test case for simultaneous anchoring damage on two mooring lines considering only roll motion.

Figure C1. Posterior PDF (qθ(z|m,w)) contour plots for four test scenarios when training with anchoring (z1) scenarios ≥ 20%
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Figure C2. Posterior PDF (qθ(z|m,w)) contour plots for four test scenarios when training with biofouling (z2) scenarios ≥ 20%
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