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Abstract.

As the first commercial floating wind projects are about to enter the market, numerous operational challenges are still to

be addressed. One significant challenge is the Operations and Maintenance (O&M) cost, which currently represents 30% of

the overall cost of energy. While reducing this cost is essential for all wind turbines, it is especially critical for floating wind

due to the increased complexity and logistical challenges of maintaining turbines in deeper, more remote offshore locations.5

Consequently, a significant part of recent developments in the wind industry focus on the condition monitoring of mooring

systems, which are crucial for the structure’s integrity. Failures in mooring systems are often due to fatigue damage, which

can be monitored using real-time methods to improve maintenance predictions and repair planning. However, the high cost of

the sensors, along with their reliability issues, such as frequent recalibration needs, can prevent their adoption at a commercial

scale. Thus, this paper presents a methodology to develop machine learning-based surrogate models designed to predict, in10

real-time, hourly fatigue damage accumulation in the catenary chain mooring lines of floating wind turbines. This prediction

is based on hourly measurements of five metocean variables: wind speed, wind direction, wave height, wave period, and wind-

wave misalignment. Typically, the literature only accounts for the first three variables, assuming co-linear wave and wind,

which can lead to unrealistic failure likelihood predictions for mooring systems. Additionally, the effects of corrosion and mean

loads on chain fatigue damage are also considered, as they significantly affect the chain fatigue lifetime. The proposed tool is15

intended for predictive maintenance applications, which has been identified as a key area for cost reduction in floating wind,

and can also be applied to reliability assessment purposes. In this paper, we describe the construction of a site-agnostic synthetic

database of metocean conditions and corresponding fatigue damage values. This database is designed to be computationally

efficient while also extensive enough to ensure that the surrogate model achieves strong performance. The advantage of using

a site-agnostic metocean database is that it enables a simpler implementation while still accounting for the interdependencies20

of metocean variables, unlike site-specific databases that require deriving joint metocean distributions It also enables testing

the fatigue of the same technology developed for different sites. To evaluate the tool’s potential for existing projects, we

quantified the uncertainties arising from both the model approximation and the statistical nature of the inputs. The methodology

is applied to the mooring lines of the IEA 15MW UMaine semi-submersible. Training data is generated through the post-

processing of tension time-series, extracted from OpenFAST simulations. Results demonstrated that hourly fatigue damage25

can be predicted using a gradient-boosted decision tree surrogate model, achieving an R2 value of 0.928 with the defined
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tuning strategy. This limitation in the R2-value is a consequence of the seed-to-seed uncertainty and this can be reduced further

with the integration of more realizations. Indeed, from the uncertainty quantification, it was found that the phase resolution is

driving the accuracy of the model. The prediction is completed in less than 0.01 seconds, making it suitable for real-time asset

monitoring. The model’s strong capabilities in terms of prediction speed makes it also particularly well-suited for surrogate-30

assisted reliability-based design optimization (RBDO). Unlike deterministic design optimization (DDO), RBDO incorporates

design uncertainties by including the reliability index as part of the objective function. Using such surrogate models drastically

reduces the computational cost associated with evaluating fatigue reliability during each iteration of the optimization process.

Additionally, this approach effectively accounts for the most critical environmental variables influencing fatigue, ensuring a

comprehensive and realistic assessment of structural performance under uncertain conditions.35

1 Introduction

In order to achieve the hoped-for carbon neutrality by 2050, the European Union has pledged to support the development of

the offshore wind industry. The objective is to ramp up Europe’s offshore wind generation capacity, aiming for a minimum

of 60 GW by 2030 and 300 GW by 2050 (European Commission (2020)). This would constitute 25% of its electricity pro-

duction. Compared to fixed solutions, floating wind turbines offer a promising solution by enabling projects to be deployed in40

deeper waters, farther from the shore, and in areas with stronger winds, significantly expanding the potential sites for turbine

installation.

However, several obstacles still need to be addressed to fully capitalize on these opportunities. Mooring systems play a

critical role in the integrity of floating offshore wind assets. Traditionally, the assessment of reliability and failure of mooring

systems for Floating Offshore Wind Turbines (FOWTs) relies on data and methods from the Oil & Gas (O&G) sector, where45

historical records indicate relatively high rates of mooring failures. Though, unlike traditional floating marine structures from

O&G, the mooring systems of FOWTs endure increased and fluctuating loads due to the turbine’s dynamic effects. These,

along with additional loads from the growing sizes of turbines, contribute to significant uncertainties regarding project risks.

To mitigate the risk of potential mooring line failures, designers typically opt to incorporate higher levels of redundancy or

conservatism in mooring system design, which can lead to increased Capital Expenditure (CAPEX). However, introducing50

such a high level of conservatism could bring challenges for commercial-scale floating wind projects, as it could make them

economically unviable. In order to reduce this conservatism, an interesting solution to mitigate the risk and prevent a failure

is the real-time monitoring of the mooring lines condition. While some events or accidents are hard to prevent and anticipate,

degradation mechanisms such as fatigue damage in the chains (which is the most prevalent cause of failure in chain mooring

systems during operations (Fontaine et al. (2014))) can be tracked and quantified. This is usually done through the processing55

of mooring line tensions, which are measured or derived from on-site sensors. However, the cost of tension sensors and their

low reliability, and the computational cost of fatigue calculations (if they have to be done for a large database throughout the

turbine lifetime), challenges the application of this strategy. To address this problem, an important number of papers have been

proposing solutions to both issues through the use of surrogate models. A surrogate model is a method used when the system
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of interest cannot be easily modelled or computed, then an approximate mathematical model of the outcome is used instead.60

Focusing on papers related to offshore wind, Jayasinghe et al. (2023), Walker et al. (2022) and Angulo et al. (2017) developed

such models to predict tensions based on the platform motions and metocean conditions. When it comes to accelerating the

computation of the damage lifetime, several approaches have been developed (Müller et al. (2017), Teixeira et al. (2017)

and Dimitrov et al. (2018)) combining the use of surrogate models to predict equivalent loads and then response surface or

Kringing methods to derive the lifetime of the asset. All previous papers agreed on the potential of using surrogate models65

to derive damage lifetime. However, there is limited literature on the application of these models for condition monitoring

and digital twin technologies. Additionally, in the recent publication tackling reliability analyisis of mooring lines (Hallowell

et al. (2018), Zhao et al. (2023) and Safari et al. (2024)), authors agree on the influence of wind and wave directions on short

and long term fatigue damage, whereas they are often assumed to be co-linear, which can lead to unrealistic failure likehood

predictions for mooring systems.70

In this paper, we present a methodology for developing a surrogate model that accurately predicts real-time fatigue dam-

age accumulation in the mooring lines of a floating offshore wind turbine (FOWT), based on on-site measurements of five

governing metocean variables: significant wave height, wave peak period, mean wind speed, wind direction and wind-wave

misalignment. The proposed methodology aims to design a training database that ensures the accuracy of the surrogate model

while minimizing computational costs, implement a tuning and training strategy to prevent overfitting and ensure robust model75

performance, and quantify the uncertainties introduced by both the model and the training data composition. This method-

ology is then applied to a straightforward example using the open-source IEA 15MW turbine with the UMaine VolturnUS

semi-submersible floater and catenary chain mooring lines. The positive results obtained demonstrate the potential of using

robust surrogate models for real-time asset monitoring as well as for reliability assessment problems. The novelty of this work

lies in the consideration of five metocean variables, instead of the usual three, which often neglect the influence of wind and80

wave directions. Additionally, the model is site-agnostic, making it adaptable to different locations, and particular attention is

given to the uncertainties introduced by the construction of the training database.

2 Reference System

This work examines the International Energy Agency (IEA) 15-megawatt reference offshore wind turbine, used with the Uni-

versity of Maine (UMaine) VolturnUS steel semi-submersible floater. The mooring system is composed of three chain catenary85

lines, each 850 meters in length. They are initially designed for the Gulf of Maine at 200 meters water depth. The properties of

the turbine can be seen in Table 1, and the properties of the floater in Table 2.
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Table 1. Key parameters for the IEA Wind 15-MW Turbine (Gaertner et al. (2020)). The rated wind speed is given at hub height.

Parameter Unit Value

Power Rating MW 15

Turbine Class - IEC Class 1B

Rated Wind Speed m/s 10.59

Rotor Diameter m 240

Hub Height m 150

Table 2. UMaine floater and mooring systems properties (Allen et al. (2020)).

Parameter Unit Value

Draft m 20

Platform Mass t 17839

Mooring system type - Chain Catenary

Line Type - R3 Studless Mooring Chain

Number of lines - 3

Anchor depth m 200

Nominal Chain Diameter mm 185

In order to minimize the loads on the mooring lines, the system is aligned so that the mooring line 1 is facing the main

incoming wave direction of the site.

3 Generation of the synthetic database90

As presented in the introduction, this work aims to provide a methodology for developing a surrogate model that predicts

accumulated fatigue damage over one hour periods based on a given set of statistical metocean variables. The first challenge lies

in defining the appropriate inputs and corresponding outputs needed to construct the database. The loads on the mooring lines

are primarily governed by the motions of the floater, which are influenced by hydrodynamic wave loading and aerodynamic

forces on the turbine and tower. These wave and wind conditions are characterized by the following metocean variables:95

– U10: wind speed measured at a height of 10 meters. The wind speed at hub height will be extrapolated from the power

law profile to be used as input for the time-domain simulations (International Electrotechnical Commission (2019)).

– Hs: significant wave height,
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– Tp: wave peak period,

– θwind: wind direction,100

– θmis: wind-wave misalignment angle.

These variables are typically provided by on-site metocean measurement buoys on an hourly basis. Since the inputs are statis-

tical properties rather than time-series data, the output of interest in this paper is the prediction of accumulated fatigue damage

in the mooring line sections corresponding to the given metocean conditions.

Figure 1 illustrates the overall methodology used to achieve the paper’s objectives. The left column describes the model’s105

training process, which includes database generation and model training. The right column describes the deployment of the

model on-site once it is tuned and trained. This has not been addressed in this work.

The process described in subsection 3.1 represents the first step of the training workflow outlined in Figure 1. This step

focuses on creating an efficient Design of Experiments that samples the input space more effectively, requiring fewer samples

compared to methods like grid-based sampling. The next step, outlined in subsection 3.2, involves calculating synthetic damage110

values for each defined sample point through the post-processing of high-fidelity time-domain simulations. Finally, section 4

refers to the last step in the left column, where the surrogate model’s hyperparameters are defined and the model training is

conducted.

3.1 Variable space definition and Experimental Design

The challenge in defining the space of input variables lies in its significant influence on the quality of the surrogate model’s115

training and performances. The aim is to avoid training the model for conditions it might never encounter, while ensuring it

performs well under the most likely conditions. Therefore, two concurrent goals are faced: creating the most extensive training

database that our computational capabilities allow to ensure the model performs well across the entire design space, while

reducing the number of training points to save time and increase efficiency. This challenge has been addressed in the literature

through sampling and Design of Experiment (DoE) theories (Leimeister and Kolios (2018)). DoE is an approach used in120

scientific research and industry to plan, conduct, and analyze experiments efficiently and effectively. The goal of DoE is to

obtain reliable and statistically valid results while minimizing the number of experiments required and controlling for sources

of variability. Then, this section will cover the definition of the input space, the sampling method used and how correlation

between variables is accounted for.

3.1.1 Defining the range of input variables125

The choice of ranges for variation in the input variables needs to balance two objectives: covering as much as possible potential

sites of deployment, and ensuring that the selected samples are physically meaningful. Indeed to define input ranges of surrogate

models’ training database, two approaches, discussed by Dimitrov et al. (2018), can be followed:

– Site-specific training: Data points are selected from a specific site, so the model will only be able to predict damage for

that particular location.130
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Figure 1. Overview of the methodology used (graph inspired by Dimitrov et al. (2018)).
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– Non-site-specific training: Training data ranges are gathered from a variety of sites across a broader region, such as the

North Atlantic. This approach allows the model to be applied to multiple locations within the entire region, rather than

being specific to a single site.

In this study the second approach was chosen, to enable a wide deployment of the final model. Thus, metocean data over 25

years (which is the typical wind farm lifetime) is gathered from different sites in a given region. Then, lower and upper bounds135

are defined for each variable (which can be conditional on other variables, depending on the correlation between them) so that

between 99.7%-99.9% of the data are included in the bounds. This ensures properly capturing the majority of conditions driving

fatigue accumulation, as well as capturing a range of extreme conditions without putting too much emphasis on extremely rare

events.

3.1.2 Sampling procedure140

Once these conditional boundary boxes have been defined, points must be strategically selected within this space to gather data

for building an accurate and representative model. A key requirement is to maintain the correlation between different variables

during this selection process, in order to constrain the variables ranges. Then, these two main objectives in this sampling

procedure can be summarized as:

– Select points to efficiently and representatively fill the space, with more points in the most probable areas and fewer in145

the extreme zones.

– Select points so that a chosen set of (U10,Hs,Tp,θwind,θmis) is realistic and preserves the correlation between the

variables.

Generating correlated samples that account for this dependence can be achieved using transformations like Nataf or Rosen-

blatt, which are commonly used to sample from multiple correlated random variables. In this work, a Rosenblatt transformation150

is applied, assuming wind speed is independent of other variables and follows a Weibull distribution, while the other variables

follow uniform distributions within their defined conditional bounds.

To achieve the first goal of efficient point selection, the method for sampling from the defined distributions is crucial. Various

sampling methods are used in the literature. For example, Murcia et al. (2018) use a quasi Monte-Carlo (MC) approach with

a low-discrepancy sequence. Quasi-random Monte Carlo sampling, is a method used to generate sample points in a multi-155

dimensional space. Compared to traditional Monte Carlo methods that use purely random sampling, quasi-random methods

aim to distribute sample points more uniformly across the space. This leads to faster convergence and more accurate estimates

in numerical integration for instance. Müller et al. (2017) use Latin Hypercube Sampling to train an artificial neural network

model for deriving damage equivalent loads for tower bending moments and fairlead tension. Tang et al. (2023) use uncertainty

sampling for metocean data. Latin Hypercube Sampling and uncertainty sampling are also two methods that ensure a more160

uniform sampling than a complete random sampling.

In the present study, the space filling method that will be used is the quasi Monte-Carlo sampling. This method has been

chosen from its very low discrepancy (when evaluated to random sampling (Dimitrov et al. (2018))) and its simplicity to under-
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stand. The low-discrepancy sequence used is the Halton sequence (Faure and Lemieux (2009)), widely used in the literature,

partly due to its intuitive nature and ease of implementation. The Halton sequence is applied by sequentially taking all points165

in the quasi-random series without omission or repetition.

3.2 High-fidelity simulations and damage computation

Fatigue damage of chains is derived from the tension history. In the absence of available data from operational floating wind

units, primarily due to a scarcity of open-source information, a history of time-domain tensions over various meteocean con-

ditions has been generated using software simulations. Among the suite of aero-hydro-servo-elastic softwares, OpenFAST has170

been selected for this project because of its provision of open-source models for existing turbines and floaters, and its important

user community. OpenFAST (OpenFAST Developers (2023)) is an open-source software package developed at the National

Renewable Energy Lab (NREL).

3.2.1 Transient time

Transients effects and run-in-time have been investigated by Müller et al. (2018) for the LIFES50+ project. Summarizing the175

results, for floating wind turbines under DLC 1.2 conditions, transients are expected to be between 500−1000s, provided cor-

rect initial conditions1 regarding wind turbine performance, and with or without correct initial conditions regarding positioning

and displacements. In this project, having pre-computed the initial conditions, the transient time is then chosen to be equal to

600s, in order to agree with the bounds. The initial conditions of the following DOFs are considered: rotor speed, blade pitch

angle, and platform surge, sway, heave, roll, pitch and heave positions.180

3.2.2 Simulation time length

From DNV-ST-0119 (Det Norske Veritas (2021b)), in order to adequately capture the effects associated with the natural fre-

quencies of floating support structures when loads and responses are to be determined, a sufficient length of the involved

simulations must be ensured. Then, a minimum of 3 hours simulation is recommended to adequately capture effects such as

nonlinearities, second order effects, and slowly varying responses, and to properly establish the design load effects on moor-185

ing lines. These recommendations are confirmed by Müller et al. (2018). These standards and reports (DNV-ST-0119 and

LIFES50+) recommend as well the use of 6 seeds per realization for wind and waves generation , in order to account the phase

randomness. A seed in wind and wave simulations is a random number used to generate different realizations of turbulent wind

or wave conditions, allowing for variability in environmental inputs while maintaining the same overall statistical characteris-

tics. However, in the literature, the dominant trend is to run for 1 hour of simulation, which is seen as a compromise between190

capturing the nonlinearities and managing computational time. This approach has been followed by Jayasinghe et al. (2023),

Li et al. (2018), Zhao et al. (2021) and Cevasco et al. (2018). In this paper, the same compromise will be made regarding the

1Initial conditions are defined as the initial positions or conditions of the system depending on the mean wind speed or other environmental conditions

whose mean value is different from 0.
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simulated time, while still maintaining six realizations per metocean point to represent the phase variation of the loads. Table 3

summarizes these time settings.

Table 3. Simulation time settings

Parameter Unit Value

Simulation time length s 4200

Transient time s 600

Number of seeds - 6

3.2.3 Damage computation workflow195

Fatigue failure, caused by cyclic stress, is a common occurrence in materials. This type of failure typically begins with the

formation of micro-cracks due to stress concentration effects at surface irregularities (Adedipe et al. (2017)). Fatigue assess-

ment of offshore mooring systems is required by relevant rules and standards (Det Norske Veritas (2021a)), to demonstrate a

satisfactory level of resistance under exposure to cyclic loads. It is typically recommended that the fatigue analysis should be

based on S-N curves and the linear damage hypothesis2. S-N curves illustrate the relationship between cyclic stress (S) and the200

number of cycles until failure (N) for a given material (Kolios et al. (2019)). These curves are typically generated through lab-

oratory testing, where samples are subjected to constant amplitudes until failure occurs. Recently, DNV introduced an updated

version of these curves for use in the fatigue design of offshore steel structures Det Norske Veritas (2024).

Typically, an S-N curve is expressed as:

N = a ·S−m (1)205

Where:

– S in the given cyclic stress.

– N in the number of cycle until failure corresponding to the cyclic stress S.

– a in the intercept parameter and m in the slope parameter. Both depends on the material considered.

These curves are based on fatigue tests of new chains, considering a fixed value of mean load of 20% of the minimum break-210

ing load (MBL). Then, in the following fatigue calculations, the actual value of the mean load in the considered environment

is neglected. However, Gabrielsen et al. (2019) showed that an increasing mean load could significantly reduce the fatigue life

time of a mooring line. There is then an important interest in taking this effect into account when assessing the fatigue.

From Fontaine et al. (2014) and Scheu et al. (2019), it was seen that the corrosion phenomena accounts for an important part

of the observed failures. Indeed, the crack propagation can be accelerated by the corrosion which concentrates stresses (pitting215

2Under this hypothesis, the different contributions of the damaging cycles can be summed up to get the total damage value over the considered time.
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effect). In the current standards, corrosion models are simply based on a reduction of the chain diameter using a constant rate

per year. However, these simple models disregard the pitting effect, which was shown to have an important effect on the fatigue

lifetime of the mooring lines (Gabrielsen et al. (2019)), more than the standards are actually predicting.

Hence, Lone et al. (2021) proposed an extended S-N curve formulation to include mean load and corrosion effects, by

expressing the intercept parameter of the S-N curve model as a function of the mean load and a corrosion grade indicator. They220

accessed the impact of including realistic corrosion levels compared to the designs codes, and highlighted the importance of

take them into account in order to avoid non-conservative fatigue damage estimates. The updated formulation is the following:

logN = b0 + b1 · g1(σm) + b2 · g2(c)−m · logS (2)

Where:225

– (bj)j∈{0,1,2} are empirical coefficients, estimated from full scale fatigue tests of both used and new chains, tested under

various conditions.

– g1(σm) and g2(c) are functions of the mean stress σm and a corrosion grade c respectively. The corrosion grade is defined

according to a custom scale from 1 (new chain or mild corrosion) to 7 (severe corrosion), from Lone et al. (2021).

Based on full scale fatigue test data for used and new chains used in Lone et al. (2021) the following extended S-N design230

curve formulations have been found to provide the best and most reasonable fits to the data set:

logN = 11.904− 0.0507 ·λm− 0.106 · c− 3.0 · logS (3)

Which λm the mean load ratio, expressed in % of the MBL.

As the environmental loading are varying in amplitude with time, the cyclic stress amplitude is not constant. In order to

account for the fatigue effect of each stress cycle, one method to compute the resulting damage over a given period of time is235

to use the Palmgren-Miner hypothesis on linear accumulation:

D =
∑

i

ni

N(σm,i, ci)
(4)

Where D is then the fatigue damage and ni the number of cycles with the stress range si, mean stress σm,i and corrosion grade

ci, and N the corresponding number of cycles until failures under these conditions, derived from Equation 3.

In this work, the chosen workflow to compute the short-term fatigue damage is the time-domain approach based on a240

counting procedure (rainflow counting in this study) and a cumulative damage rule (Palmgren-Miner’s rule) from stress time

histories. Rainflow counting is a method to determine the number of fatigue cycles present in a load-time history.

3.3 Structure of the training database

From the described sampling procedure above, nsamples sets of (U10,Hs,Tp,θwind,θmis) will be sampled. Due to the computa-

tional cost of OpenFAST simulations and the required number of seeds, the number of metocean sampled points is limited to245
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Figure 2. Structure of the built database

1000. However, to satisfy the requirements in terms of seeds, 6 simulations will be performed per sampled points (6 different

seeds for wind and wave generation for each sampled point) resulting in the 6 damage values per point. To mitigate the influ-

ence of the phase of the loads on the damage values, the mean values of the damage over these six realizations will be used for

the training database. Figure 2 illustrates the structure of the resulting database.

4 Surrogate models: definition and training strategy250

The methodology described above for computing fatigue damage from the tension time series is time-consuming, involving

OpenFAST simulations and rainflow counting. Therefore, there is a significant interest in speeding up the process, moving

directly from the inputs (such as metocean conditions) to the resulting damage value. This can be achieved through the use of

functions that are mapping the behavior of the system, called surrogate models. Once these models are trained on a dataset,

damage can be predicted over time. The advantage of this method is that the computationally expensive simulations are only255

performed once during the training phase. During model deployment, only the tuned hyperparameters are used as inputs,

and the prediction of the damage accumulation over one hour can be generated in less than one second, compared to 40

minutes using the complete workflow of OpenFAST simulations and damage computation. In this section, five surrogate model

aletrnatives will be trained and compared to identify the best performer for the studied case. The first subsection will introduce

the chosen models. The second subsection will present the tuning and training strategies. The third subsection will detail260

the evaluation of the models’ performances to select the best one. Finally, the last subsection will discuss how to assess the

uncertainties of the selected model.

4.1 Models definition

Five different regression models have been chosen for comparison, ranging from the simplest to the more complex: Gaussian

Process Regression (Wilkie and Galasso (2021)), Support Vector Regression, Random Forest Regression (James et al. (2023)),265

LightGBM (Ju et al. (2019)), and XGBoost (Trizoglou et al. (2021)). The last two models are gradient-boosted decision tree

models. In the choice of the model alternatives, tree-based models have been prefereed to neural networks as they have a better

explainability and potentially better computational time (Zhang and Dimitrov (2024)). In supervised machine learning, models

learn from training data to predict outcomes on unseen datasets, but they need to be tuned using hyperparameters. Properly

tuning these hyperparameters is crucial, as they can significantly affect both the training process and the model’s performance270
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on unseen data. Table 4 summarizes all the main characteristics, advantages and disadvantages of the five models described

above.

Table 4. Main advantages and disadvantages of the five selected surrogate models.

Method Main Characteristics Advantages Disavantages

Gaussian Process

Regression

Probabilistic prediction.

Uses kernel to handle the

non-linearity of data.

Confidence intervals can be

easily computed from the

probabilistic prediction.

Lose efficiency with increas-

ing amount of data.

Support Vector Re-

gression (SVR)

Uses kernel trick to han-

dle non-linear data. Supports

various kernels (linear, poly-

nomial, RBF, sigmoid).

Effective in high-

dimensional spaces. Robust

to overfitting with the right

kernel.

Requires careful tuning of

hyperparameters. Computa-

tionally expensive for large

datasets.

Random Forest Re-

gression

Ensemble method using

multiple decision trees.

Each tree is trained on a

random subset of the data.

Handles non-linear data

well. Reduces overfitting by

averaging multiple trees.

Can be less interpretable

than single decision trees.

Requires more memory and

computational power.

Gradient Boost-

ing Regression

(XGBoost)

Sequential ensemble method

that builds trees in a stage-

wise fashion to correct er-

rors of previous trees.

High performance and ac-

curacy. Handles non-linear

data well. Robust to overfit-

ting with proper tuning.

Can be computationally ex-

pensive. Requires careful

tuning of hyperparameters

LightGBM Gradient boosting frame-

work that uses tree-based

learning algorithms. Fo-

cuses on speed and effi-

ciency

Fast training speed and

high efficiency. Handles

large datasets and high-

dimensional data well.

Sensitive to overfitting if

not properly tuned. Requires

categorical features to be

preprocessed.

4.2 Training strategy

Using the same data to both derive the parameters of a prediction function and test its performance is a methodological

malpractice. This approach could result in a model that perfectly reproduces the known values but fails to generalize to new,275

unseen data, a phenomenon known as overfitting. To avoid this issue, it is common practice in supervised machine learning to

set aside a portion of the available data as a test set. Typically, 70%-80% of the database is used for training and validation,

and the remaining 30%-20% of the database is used for the test. The points that constitute this portion are chosen randomly.

When evaluating different sets of hyperparameters for models, there is still a risk of overfitting on the test set, as the hy-

perparameters will be tuned until the model reaches its optimal performance. Then, the model’s capability to generalize will280
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be significantly reduced. To address this issue, another portion of the dataset can be reserved as a validation set. Initially, the

model is trained on the training set, and then its performance is assessed on the validation set. After the experiment demon-

strates success on the validation set, the final evaluation is be conducted on the test set.

However, by partitioning the initial database in three, its size is drastically reduced and the resulting hyperparameters might

be very dependent on the chosen training, test and validation sets. To avoid again this, a solution is to perform a cross-validation285

(CV), where a test set is always retained for the final evaluation but no validation set is required (James et al. (2023)). There

are several cross-validation procedures, but the most classic one is the k-fold cross-validation: the training dataset is split into

k subsets. Then, the following procedure is followed for every fold k:

– The model is trained using k− 1 of the folds as the training data.

– The resulting model is validated on the remaining part (the k-th fold is used as a test set)290

The performance metric resulting through k-fold cross-validation is the mean of the values calculated during each iteration

of the process.

To evaluate all possible combinations of hyperparameters and find the optimal configuration, Bayesian optimization has

become a popular method for hyperparameter tuning. This approach uses probabilistic models to predict the performance of

different hyperparameter sets, selecting the next set to evaluate based on past results to minimize the number of evaluations295

needed. Bayesian optimization is especially useful when evaluating each hyperparameter configuration is time-consuming.

However, in this study, the number of hyperparameters per alternative model is limited, and evaluations are fast, so simpler

methods like Grid Search and Random Search will be used. Grid Search systematically evaluates all possible combinations

within specified ranges, while Random Search samples hyperparameters randomly from predefined distributions, offering a

more resource-efficient approach. In the case of several hyper-parameters to be tuned (for SVR, RF and gradient boosted300

decision trees for instance), this method will be preferred. The training strategy applied in this work is illustrated on Figure 3,

and Figure 4 represents the cross-validation process.

4.3 Evaluate the performance of the models

After tuning the hyperparameters and training the resulting model, it undergoes testing on the test dataset, followed by perfor-

mance evaluation. Performance evaluation involves comparing predicted values ŷi to actual values yi through the computation305

of residuals ϵi for each point:

ϵi = ŷi− yi (5)

Analyzing the distribution of residuals, including their mean and variance, provides insights into prediction quality and

identifies potential overfitting or underfitting. Further metrics enhance understanding of model performance. The R-squared

value (R2), a widely used metric, measures the goodness of fit of a regression model, ranging from 0 to 1; a value of 1 indicating310

a perfect fit. The residuals analysis offer insights into the magnitude of differences between actual and predicted values. The R2

is only sensitive to correlation between variables (between target values and predictions), but does not capture bias. Residuals
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Figure 3. Flowchart of the cross-validation workflow performed in the model training phase.

Figure 4. Illustration of the tuning strategy of the model’s hyperparameters and performances evaluation
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are sensitive to both correlation and bias, but can’t distinguish between the two. The mean absolute pourcentage errors (MAPE)

is sensitive to bias, but because it is in absolute terms, it also provides some information about the error variance. Hence, the use

of combination of R-squared and MAPE gives the possibility to both look at the correlation and the bias, and diagnose whether315

bad performance could be due to lack of correlation or high bias. However, these metrics lack information on error sign and

variability. Therefore, studying error spread, sign, and variance is essential for comprehensive performance assessment. MAPE

will be computed as follows:

MAPE =
1
n

n∑

i=1

|ŷi− yi|
ŷi

· 100 (6)

4.4 Uncertainties quantification320

To deploy the developed model effectively, it is crucial to quantify its uncertainties (Sullivan (2015)). Besides real-time mon-

itoring, this model can also be used in probabilistic design approaches for reliability analysis. In such cases, due to the small

target failure probabilities, the tails of the distributions, not just the bulk, become highly significant. The use of a surrogate

model to approximate complex models and reduce computational time introduces additional uncertainties, amplifying any po-

tential inaccuracies of the surrogate model. In this context, it is assumed that the simulations perfectly represent real-world325

system, enabling to remain focus on uncertainties originating from the surrogate modeling process itself rather than discrepan-

cies between simulations and reality.

Let’s consider the inputs of our surrogate model, x, and the output, y. The true relationship between x and y is represented by

a function g̃(x), which is approximated by the surrogate function g(x). g(x) can be any of the five surrogate models described

earlier, and then does not achieve a perfect mapping of the true function. Thus, there will be an error ϵg when comparing the330

outcomes of g(x) to g̃(x):

y = g̃(x) = g(x,θ) + ϵg (7)

Where θ represents a finite set of parameters of the function g. ϵg , represents the so-called model error. It is an example

of epistemic uncertainty, which is uncertainty that results from the approximation and that can be reduced by improving the

accuracy of the model. On top of model uncertainty, uncertainties can also arise from the inputs and outputs. In this study, as335

numerical simulations are used to create the database there are no measurements errors. However, from the stochastic nature

(seed-to-seed variability) of OpenFAST, an aleatory uncertainty can arise from the output, which is called ϵy . Then the true

values can be expressed as: y = ŷ + ϵy . With leads to the expression:

ŷ + ϵy = g(x̂,θ) + ϵg (8)

4.4.1 Model uncertainty340

In order to give an estimate of ϵg , an ensemble modelling approach will be used (Dimitrov et al. (2022)). It is a technique

that combines multiple machine learning models to improve overall predictive performance. The basic idea is that a group
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Figure 5. Illustration of the bagging process

of weak learners can come together to form one strong learner. An ensemble model typically consists of two steps: first

multiple machine learning models are trained independently; then, their predictions are aggregated in some way, either by

voting, averaging, or weighting. This ensemble is then used to make the overall prediction. From these multiple predictions,345

the variance can as well be derived, which will provide an estimate of the model uncertainty. Here the ensemble model method

used is the so-called bagging, which is an acronym for Bootstrap Aggregating (James et al. (2023)). Bagging is a technique

in which a number of examples of the same base model are trained on distinct portions of the training data. The subsets are

generated via bootstrapping, which is defined as a random sampling of the training data with replacement. Each base model is

trained on its own bootstrapped subset of data. Each of the models’ predictions is then integrated using a voting or averaging350

procedure to produce the final prediction. Figure 5 illustrates this bagging procedure, where nmodels is the number of models

that will be trained. The initial dataset is composed of mtotal points and the bootstrap samples are composed of mb points.

In this project, an ensemble modeling approach is employed to determine model uncertainties. Following the ensemble

modeling theory defined above, the following steps need to be followed to derive the model uncertainties for this approach:

1. To isolate the effect of model uncertainty from aleatory uncertainties, the training data consists of the average output355

value ȳ of multiple realizations at the same input value combinations. The number of realizations is denoted Nk.

2. The database is split in a training and a test subset. The number of points in the test dataset is referred as mtest.

3. From the training subset, an ensemble of n models are trained on nmodels different training subsets, generated through

bootstrapping of the initial training database.

4. Predictions of the nmodels models are made on the test database.360
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5. The residuals of the ith model in predicting the output averaged over all the realizations from the input point xj is

denoted ϵg,ij , and defined as:

ϵg,ij = ȳj − gi(xij ,θi) for i = 1, . . . ,nmodels, for j = 1, . . . ,mtest (9)

6. For each point xj, the model uncertainty is represented by the standard deviation σϵg,j
of the residuals ϵg,ij across all

indices i = 1, . . . ,nmodels, for the given value of j.365

4.4.2 Aleatory uncertainty of the output

The surrogate model used in this thesis was trained on averaged damage values across six realizations. This approach was

chosen based on the assumption that averaging would reduce the variation in damage values for a given data point, which is

caused by the phase randomness of the loads. To validate this approach, a comparison similar to that in Dimitrov et al. (2022)

will be performed: the resulting aleatory uncertainty in the output, σϵȳ
, will be compared to the aleatory uncertainty from a370

model trained on a single realization per data point, σϵy
.

σϵy
=

√∑Nk

k=1(yk − ȳ)2

Nk
(10)

σϵȳ =
σϵy√
Nk

(11)

These resulting quantities will be described in the results section.

5 Environmental conditions375

To design the input variable space for building the Design of Experiments, data spanning 25 years from various sites are

collected to establish conditional bounds for the five selected metocean variables. Eight locations along the European coast of

the North Atlantic are chosen based on existing or planned floating wind farm projects and summarized in Table 5. Additionally,

a depth filter is applied, focusing only on sites with water depths around 100 meters to ensure consistency in wave behavior and

similar oceanographic conditions. For this work, the metocean data have been taken from the hindcast model of ResourceCODE380

developed by Ifremer (Raillard et al. (2022)). ResourceCODE wave hindcast model is based on a high-resolution unstructured

grid extending from the south of Spain to the Faroe Islands and from the western Irish continental shelf to the Baltic Sea.
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Figure 6. (a) Wave directions rose from the eight aggregated sites. (b) Layout of the reference mooring system.

Table 5. Description of selected sites

Name Location Latitude [◦] Longitude [◦] Depth [m]

Projet Bretagne Sud AO5 France 47.25 −3.5 75− 100

WindFloat Atlantic Portugal 41.75 −9.25 100

Hywind Scotland Scotland 57.25 0.25 95− 100

Erebus Floating Wind demo England (Celtic Sea) 51.50 −5.75 70

N2 Scotland 59.00 −5.50 98

MarramWind Scotland 58.25 −0.50 111

Arven (NE1) Scotland 60.25 0.00 100

Ayre (NE2) Scotland 58.75 −2.25 70

In order to minimize the loads on the mooring lines, the system is aligned so that mooring line 1 is facing the main incoming

wave direction of the site. In the case studied here the prevailing wave direction from the eight considered sites is the West.

This approach of using variation ranges and conditional bounds makes the generated metocean database non-site-specific. To385

develop a site-specific database, however, the approach would need to use the joint distribution of metocean variables specific

to the site. . For more than three variables, deriving these joint distribution functions requires significant effort. Parametric

approach is the prevalent method employed in the literature to derive the joint probability of metocean variables. Parametric

methods involve assuming specific probability distributions (e.g., Weibull for wind speed, Rayleigh for wave height) and

coupling them through copulas, which model the correlation between variables (Fazeres-Ferradosa et al. (2018), Li and Zhang390

(2020)). Another widely used approach is the conditional modeling method (Vanem et al. (2024)), where each variable (e.g.,

wave height) is modeled conditionally on others (e.g., wind speed). In the joint distribution developed by Vanem et al. (2024),
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Figure 7. Pairwise scatter plots of wind and wave data (represented by blue dots, with darker shades indicating higher occurrence over the

observed period). The distribution of each metocean variable is displayed in dark.

simplified conditional models are considered in their approach: wind direction, significant wave height, and wave direction

are modeled as conditional only on wind speed, while peak wave period is modeled conditional on significant wave height. A

similar approach is followed in Det Norske Veritas (2021a). Accordingly, the same simplified models will be adopted in this395

study.

On Figure 7 the distributions and the bivariate plots of the extracted metocean from ResourceCODE variables over 25 years

at the eight sites selected in Table 5 are displayed. Table 6 resumes the selected conditional bounds for each variable.
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Table 6. Bounds of variation for the variables considered

Variable Lower bounds Upper bounds Distribution

U10 0[m · s−1] 25 [m · s−1] Weibull

Hs 0.132 +0.009 ·U2
10 [m] 5.0 +0.15 ·U10 + 0.004 ·U2

10 [m] Uniform

Tp 1.169275 ·Hs [s] 18.5[s] Uniform

θwind

for U10 ∈ [0,15] [m]: −180[◦] 180[◦]

Uniform

for U10 ∈ [15,25] [m]: U1.79802
10 − 326.227[◦] −U1.79802

10 + 326.227[◦]

θmis

for U10 ∈ [0,15] [m]: −180[◦] 180[◦]

Uniform

for U10 ∈ [15,25] [m]: 180√
25−15

√
U10− 15− 180[◦] − 180√

25−15

√
U10− 15 +180[◦]

6 Results

This section describes the results of the model selection, training, and uncertainty quantification. In this work, a surrogate400

model is specific to:

– A mooring line.

– A segment within this mooring line.

– A corrosion grade c ∈ [[1,7]].

Therefore, this section will present results only at the fairlead of the mooring line 1 (Figure 6), for the corrosion grade 3. The405

database used for these purposes is composed of 1000 sampled points, each with their corresponding damage value averaged

over 6 realizations (6 different seeds for wind and wave generation for each sampled point).
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In this entire section, the damage values are raised to the power of 1/m (where m = 3, the Wöhler coefficient from the

S-N curves of the chains). Indeed, damage values can vary widely, and by taking the cubic root, this range of variation is

compressed, reducing variance and making the data more uniform. This transformation helps achieve better model training.410

Additionally, reducing the range of variation of the inputs can reduce the impact of potential outliers. Therefore, throughout

this part, the damage values will be raised to this power.

6.1 Model selection and evaluation

Following the flowchart of Figure 3, the initial database is first split into a training set of 800 points and a testing set composed

of the remaining 200 points. For each set of hyperparameters to be tested, the model’s performances will be assessed using415

k-fold cross-validation over the training set. The number of folds is set to 10. In the literature, the number of folds varies

between 5 and 20. Choosing k = 10 balances the computational time required for performance evaluation over all folds and

avoids having overly large folds in an already small dataset. These settings are summarizes in Table 7.

Table 7. Settings for the models’ training and tuning

Parameter Value

Number of points in the dataset 1000

Number of seeds considered in the averaged damage value (Nk) 6

Size of the test dataset (mtest) 200

Number of folds (nmodels) 10

The five selected surrogate models are tuned according to the strategy defined earlier. The ranges of the hyperparameters to be

tested are first defined broad and then refined to reached the best estimation of the optimal set. The optimal R2 values resulting420

from the tuning can be found in Table 9 and the corresponding optimal parameters are given in Table 8. The LightGBM

and XGBoost models present the best results, with coefficients of determination over 0.9. These R2 values from the cross-

validations are a good way to evaluate the accuracy performance of a model over any unseen dataset. Indeed, as explained in

the methodology section, the coefficient of determination is calculated as the mean of all the R2 values from the predictions

over all the folds of the k-fold cross-validation. This provides a good indication of which model will perform the best overall.425
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Table 8. Optimal hyperparameters of the five considered models after tuning.

Model Hyperparameter Value

Gaussian Process Regression Length Scale 6.00

Support Vector Regression
ϵ 0.001

C 10

Random Forest Regression

min_samples_leaf 2

max_leaf_nodes 100

max_features 5

XGBoost Regression
Learning rate 0.081

n_estimators 500

LightGBM Regression

Learning rate 0.125

max_depth 8

num_leaves 16

Table 9. Resulting R2-values from the cross-validation over the training database for the five tested models.

R2 from the CV

Gaussian Process Regression 0.798

Support Vector Regression 0.858

Random Forest Regression 0.899

XGBoost Regression 0.916

LightGBM Regression 0.928

In addition of the R2 coefficient, other quantities need to be evaluated to complement the information in order to perform a

well-informed selection over the models. These tuned models are trained over the training database and deployed on the test

set where their prediction is compared with the actual values of damage of the test dataset. Figure 8 presents these predictions

of the five models and Figure 9 the residuals distributions. It can be observed that the best results are achieved with the most

complex models (LightGBM and XGBoost), whereas the Gaussian Process and Support Vector models do not capture well430

the high non-linearity of the system. The three best performer models (RFR, LightGBM and XGBoost) perform well at low

damage values, which correspond to mild environmental conditions that are more represented in the training dataset due to the
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Figure 8. Plots comparing the damage values predicted by the models over the test dataset to the actual damage values from this test set.

sampling procedure. At higher damage values, the predicted values tend to diverge a bit more from the actual values, with even

some very well marked outliers. Having a look on the residuals, they are centered on 0 as expected, with a significant smaller

standard deviation for the RFR, XGBoost and LightGBM than for the two first ones. XGBoost is slighlty shifted to the negative435

values. The outliers can be clearly seen on the fat-tail of the LightGBM residuals.
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Figure 9. Distributions of residuals from models’ predictions compared to actual mean damage values across the test dataset. Each plot

includes the mean residual value and its standard deviation.
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Figure 10. Absolute residuals for all tested models
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Figure 11. Absolute residuals for the LightGBM model
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Figure 10 shows the accuracy of the predictions of the five considered models through the statistical analysis of the absolute

residuals. Each box extends from the first quartile (Q25) to the third quartile (Q75) of the data, with a line at the median. The

outlier values are plotted as circles. These statistical values are resumed in Table 11. LightGBM has the lowest median absolute

residual (8.92%), indicating it has the best performance among the models in terms of median error. The spread of absolute440

residuals (indicated by the box and whiskers) varies among the models, with GPR and SVR showing a wider spread compared

to RFR, XGBoost, and LightGBM.

The selection of the model will primarily consider the R2 value from cross-validation to gauge its potential for generaliza-

tion. However, practical factors such as training and prediction times will also strongly influence the decision. Specifically,

preference will be given to models that offer high accuracy and low prediction times over those with the highest accuracy but445

longer prediction times. Results are detailed in Table 10, showing training and predicting times across a training database of

800 mean damage values from six seeds, and a test database of 200 points. The GPR and LightGBM models demonstrate

significantly faster training times, approximately ten times quicker than other models. Additionally, the LightGBM model

achieves predicting times around ten times faster than the GPR model.

Table 10. Performances of the five models over the testing database.

Training Time [s] Predicting Time [s] RMSE Standard Deviation

Gaussian Process Regression 0.036 0.010 0.001084 1.168 · 10−6

Support Vector Regression 0.378 0.017 0.000957 9.110 · 10−7

Random Forest Regression 0.295 0.016 0.000696 4.836 · 10−7

XGBoost Regression 0.353 0.003 0.000658 4.844 · 10−7

LightGBM Regression 0.047 0.001 0.000668 4.435 · 10−7

Table 11. Statistics over the absolute pourcentage residuals distribution for each model.

Mean [%] Median [%] 25th percentile [%] 75th percentile [%]

Gaussian Process Regression 25.88 17.58 7.73 31.18

Support Vector Regression 21.59 13.76 6.77 26.39

Random Forest Regression 14.12 10.95 4.68 19.94

XGBoost Regression 12.79 9.80 4.56 16.12

LightGBM Regression 12.72 8.92 4.20 18.12

In the previous paragraphs, the models have been compared over their accuracy and their computational times. It results450

from this study that the model which matches the best coefficient of determination with the smaller computational time is the
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LightGBM model. Therefore, this model will be used in the following sections, for the uncertainties quantification and model

deployment.

6.2 Estimation of the uncertainties

To quantify both the model uncertainties of the tuned LightGBM model and the aleatory uncertainties arising from realization-455

to-realization variability, the methodology outlined in subsection 4.4 is applied.

6.2.1 Model uncertainties

The settings that are used to derive the model uncertainty in this work are summarized in Table 12.

Table 12. Settings of the ensemble modeling approach used to derive the model uncertainty

Parameter Value

Number of points in the dataset 1000

Number of realizations (Nk) 6

Size of the test dataset (mtest) 200

Number of models in the ensemble (nmodels) 15

Figure 12 illustrates the distribution of the model uncertainties, derived from a bagging analysis over 15 bootstrap samples

of the dataset. The model uncertainties are centered on zero and the tail is not significant. Moreover the order of magnitude of460

the model uncertainties is 10−8 which is very small (can be almost considered as 0). The uncertainties brought by the model

not matching perfectly the system behavior are actually very small, and can be then considered are not significant. On top of

that they are expected to reduce with a bigger dataset.

6.2.2 Aleatory uncertainties

Figure 13 depicts the seed-to-seed uncertainties alongside with the aleatory uncertainties from the database, after averaging465

the damage values over six realizations. The seed-to-seed uncertainties are computed by comparing tow-by-two the damage

values resulting from time-domain simulations using two different seeds to generate the loads. They present a mean value of

6.834 · 10−4. However, when using an averaged database, the aleatory part of the output uncertainty is reduced by a factor

of
√

6≈ 2.45. This reduction can be seen on Figure 13. In this work, to limit the computational time, only six seeds were

considered to compute the averaged database. Thus, the more realizations will be accounted for in the mean damage calculated470

the most this value of uncertainty will be reduced. The mean aleatory uncertainties fall within the range of the calculated

RMSE for the LightGBM model (Table 10). This indicates that the prediction errors observed earlier are primarily due to the

variability introduced by seed-to-seed differences.
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7 Discussion

This work presents a methodology for designing and generating a synthetic database of mooring line fatigue damage values475

based on corresponding five governing statistical metocean conditions. Emphasis is placed on the selection process of the

surrogate model and the quantification of uncertainties introduced by this approach.

Five surrogate model alternatives were tested for this specific problem, with the best performers being tree-based models,

known for their resistance to overfitting and minimal need for hyperparameter tuning. Among these, gradient-boosted decision

trees (GBDT), such as LightGBM and XGBoost, outperformed Random Forest models. GBDT builds trees sequentially, with480

each tree correcting the mistakes of the previous one, which reduces bias and improves accuracy. In contrast, Random Forest

builds trees independently and averages the results, which can sometimes make them less accurate than a well-tuned GBDT.

However, none of the models achieved an R2-value exceeding 0.93, primarily due to seed-to-seed uncertainty in turbulence and

wave seeds—a statistical variability that, over time, averages out to converge on long-term damage if the model is unbiased.

In other words, this R2 limitation is due to short-term fluctuations caused by realization-to-realization uncertainty, though485

in the long run, performance depends more on model bias. Given this, it is unlikely that another surrogate model would

significantly outperform using the same database. Improving the database would be necessary to reach greater accuracy. The

very low model uncertainties compared to the aleatory uncertainties indicate that improving the training database - and thus the

surrogate model’s performance - depends more on using additional seeds to compute averaged damage values than on merely

increasing the sample size. However, LightGBM and XGBoost models still demonstrated good performances, on the limited490

database generated for the study. And on top that, they demonstrated great time performances, regarding the prediction time,

which highlight their potential for real-time monitoring applications. Nevertheless, the median absolute residuals of LightGBM

predictions remain high, raising concerns for its use in reliability assessment frameworks. Improvements are required before

deployment. Comparing with models from the literature, Gradient Boosted Trees (GBDTs) have gained popularity especilaly

when it comes to wind and wind power prediction, showing excellent accuracy. For instance, Sobolewski et al. (2023) reported495

MAE reductions from 8.20% to 3.84% for 48- to 248-hour wind power forecasts using meteorological data. Similarly, Park

et al. (2023) achieved normalized MAE between 5% and 6% for wind power forecasting. GBDTs have seen limited application

in loads assessment. Recently, Wang et al. (2025) used LightGBM to predict DELs for the NREL 5MW turbine, achieving

an R-squared of 0.995 and mean absolute errors between 4% and 8% for tower loads. This suggest that there is potential

improvements of our model using a larger database, with a better inclusion of extreme values and performing some preparation500

work on the inputs.

Beyond surrogate model performances, a key novelty of this work is the integration of wind and wave directions as inputs for

mooring line fatigue damage computation, whereas most studies typically assume aligned wind and waves for conservatism.

While the conservative assumption of aligned wind and waves is well-documented, a global sensitivity analysis using tech-

niques like Sobol indices could help refine the surrogate model by identifying other key environmental and operational factors505

that influence mooring line fatigue, as the current and marine growth.
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The surrogate model developed in this study is based on simulation results rather than real-world damage data, which in-

troduces certain limitations. While this simulation-based approach demonstrates the feasibility of the method, its application

to real-world scenarios requires further validation. The most robust approach involves using a database of measurements col-

lected from operational systems. However, obtaining such measurements can be challenging due to data scarcity and practical510

limitations. In cases where simulation data must be used, it is essential to validate the model predictions using field measure-

ments of fatigue damage obtained from structural health monitoring systems, such as strain gauges or load sensors installed on

actual structures. This validation ensures that the simulation model accurately reflects the real system’s behavior under varying

environmental conditions. By comparing predicted and observed damage over time, the model’s reliability and accuracy can be

assessed. When measurement data is limited, insights from existing measurements can still enhance simulation-based models515

through techniques like physics-informed machine learning or transfer learning, as proposed by Schröder et al. (2022). These

methods improve the performance of the model, bridging the gap between simulated and real-world scenarios, ensuring greater

accuracy, and increasing applicability in practical settings.

The model’s robustness could also be evaluated by applying it to multiple sites with varying metocean conditions and across

different wind turbine and floater designs. Consistently accurate predictions across a range of systems would demonstrate520

its generalizability and reliability for real-world applications. Through these validation efforts and iterative improvements,

the surrogate model has the potential to evolve from a simulation-based tool into a valuable component of real-world design

optimization, reliability assessments, and operational monitoring frameworks.

A limitation of the methodology is its reliance on statistical data rather than phase-resolved data, which contributes to

significant uncertainties. Moreover, the model has not been tested on unseen environmental conditions, and it primarily captures525

fatigue during normal power production, excluding scenarios like start-ups and shutdowns that may also contribute to fatigue.

An important characteristic of this work is the design-specific nature of the developed surrogate model, which depends on

the wind turbine, floater, and mooring system design. If it were to be applied to a different floater or turbine, the surrogate

model would need to be rebuilt using simulation data (or measurements, if available) for the new system. This limitation is not

restrictive for reliability assessments or condition monitoring. With improvements in accuracy, the final surrogate model could530

indeed be used to assess the fatigue reliability of the VolturnUS mooring system at various sites across the North Atlantic, ac-

counting for site-specific conditions. However, if this surrogate model were to be used in a design optimization framework with

reliability as a constraint or objective, design variables would need to be included as inputs. Such models could significantly

enhance Reliability-Based Design Optimization (RBDO) by reducing computational burden.

Then with further development, the outputs of this work could have multiple applications. The surrogate model could be535

used in digital twin applications for predictive maintenance, efficient repair scheduling, and managing component end-of-

life, potentially reducing OPEX costs. Additionally, the fatigue reliability index of the mooring system could be derived at a

reasonable computational cost, offering more site- and technology-specific failure rates, thus reducing the need for conservative

risk margins in project planning. The site-agnostic approach offers several valuable use cases for early-stage project risk

evaluation by specific floater design. This method allows for transferability without extensive re-parameterization, enabling540

cost-effective quantitative analysis for various applications. One key application is the evaluation of high-level CAPEX costs
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and the selection of floater concepts, which can aid in choosing OEM preferred supplier agreements and potentially even enable

commercial strategies such as framework agreements. From an OEM perspective (FOU + WTG), the site-agnostic approach

aids parametric studies and scalability, allowing for site-agnostic decisions. This also touches on scalable Reliability-Based

Design Optimization (RBDO) as mentioned earlier. Additionally, the site-agnostic approach allows for the direct deployment545

of Digital Twins, incorporating a feedback learning loop from continuous sensor data. This enables the setup of predictive

maintenance and reduces costs from the start, rather than waiting months or years into operations when data becomes available.

This approach is cost-effective due to time savings and can be scaled across a wind farm fleet (i.e., positions) and wind farm

portfolio (geographics).

8 Conclusion550

The methodology developed in this paper demonstrated that fatigue damage in chain mooring lines can be predicted using a

gradient-boosted decision tree surrogate model, achieving an R2 value of 0.928 through a well-defined tuning strategy. With

prediction times of less than 0.01,s, the model is suitable for real-time asset monitoring and efficient fatigue reliability assess-

ments. Two major sources of uncertainty were identified and quantified: model uncertainty, which reflects the model’s ability

to map the system’s behavior, and aleatory uncertainty, arising from variability in environmental loads across different seeds.555

Model uncertainty was found to be on the order of 10−8, underscoring the reliability of the surrogate model for deployment on

assets. In contrast, aleatory uncertainty, which was roughly 10,000 times higher, emerged as the dominant contributor to overall

uncertainty. Importantly, this uncertainty was shown to decrease with additional realizations, following a reduction factor of
√

n, where n is the number of realizations used for averaging damage values.

This methodology would benefit from further research in several key areas. The model presented in this study relies on560

statistical quantities such as Hs and Tp, whereas industry practices often utilize phase-resolved signals from turbine motions

and time-series metocean data. Future work should explore the impact of excluding phase information from the load data.

Additionally, as stated in the discussion, the model could be refined by identifying key environmental and operational factors

that influence mooring line fatigue, through sensitivity analysis. Finally, extending this research to include reliability analysis

and failure rate assessments is crucial. By considering five metocean conditions instead of the traditional three, the model565

could reduce conservatism and provide more accurate failure estimates, alongside confidence intervals derived from quantified

uncertainties.

The findings of this study provide key recommendations for the use of surrogate models in predictive maintenance. The

uncertainty analysis highlights the importance of using a high number of realizations per input point to minimize aleatory

uncertainty, suggesting that prioritizing multiple realizations is more effective than simply expanding the dataset. Additionally,570

the time-efficient performance of the surrogate model makes it highly suitable for failure rate assessments and probabilistic

design of floating systems.

In conclusion, this paper proposes a robust methodology for defining a database and selecting a surrogate model that in-

corporates multiple statistical variables to predict fatigue damage accurately. Its low computational cost shows great potential
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for predictive maintenance applications and realistic failure rate assessments, offering a cost-effective approach to managing575

floating wind farms.
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