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Abstract. This paper introduces innovative optimization and deep learning techniques to enhance the prediction of complex

wake dynamics in the downstream wind velocity of tilted wind turbines. Traditional methods for calibrating the Bastankhah

wake model often lead to increased errors in wind velocity distribution due to overfitting local wake characteristics. To address

this, we propose an additional global optimization step to reduce errors in wind velocity predictions with respect to various

wake parameters. Despite this improvement, the Bastankhah model’s axisymmetric Gaussian wake shape limits its accuracy5

for complex wake structures. Therefore, we also propose a deep learning approach, which demonstrates promising results

by accurately modeling complex wake shapes across a broader range of tilt angles with minimal computational cost. The

deep learning approach achieves near-identical predictions to high-fidelity large-eddy simulations, representing a promising

advancement in wake modeling.

Copyright statement. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable10

Energy, LLC, for the U.S. Department of Energy (DOE) under contract no. DE-AC36-08GO28308.

The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a

nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for

U.S. Government purposes.

1 Introduction15

As the world continues to pursue renewable energy goals, it is increasingly important to improve the efficiency of wind farms.

Floating offshore wind farms have great potential to contribute to the overall renewable energy portfolio; however, they can be

costly. The U.S. Department of Energy has a goal to reduce the cost by 70 % by 2035 (U.S. Department of Energy (2022)). One

of the main contributors to reduced energy production is the overlapping of upstream turbine wakes over the rotor swept areas

of downstream turbines. Wind farms lose between 15% and 20% of energy production for a typical wind farm throughout20

the year because of wake interference between turbines (Barthelmie et al. (2007); Briggs (2013); Barthelmie et al. (2009);

Barthelmie and Jensen (2010); Jensen (1983); Voutsinas et al. (1990)). To reduce the impact of wake interference, upstream

turbine orientation can be coordinated to redirect the wake away from downstream turbines (Kheirabadi and Nagamune (2019)).
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Bastankhah and Porté-Agel (2016) developed an analytical wake model that is capable of accurately modeling the horizontal

deflection in the wake of a yawed turbine using an axisymmetric Gaussian description of the wind speed distribution. However,25

floating offshore wind turbines can also redirect the wake vertically based on the platform tilt (Wisatesajja et al. (2019)).

Additionally, a downward deflected wake interacts with the ground and can begin to exhibit more complex behavior (Johlas

et al. (2022)). A key challenge in enhancing the efficiency of floating offshore wind farms is developing and refining wake

modeling to accurately capture more complex wake dynamics such as tilted wind turbine wakes. The Bastankhah wake model

has undergone several additions and modifications to account for varying yaw angles and turbulence intensities (Niayifar and30

Porté-Agel (2016); Bastankhah and Porté-Agel (2016)). This study introduces an improvement to the current approach of

building the capabilities of the Bastankhah wake model (2016) as well as a novel deep learning approach to modeling complex

wake dynamics. The improvements and limitations of these approaches are demonstrated in the modeling of a tilted wind

turbine’s wake for various tilt angles.

The Bastankhah wake model was derived by applying conservation of mass and momentum to a Gaussian distribution de-35

scription of the wake velocity deficit (Bastankhah and Porté-Agel (2014)). This approach to wake modeling can accurately

predict the far wake for varying wind speed, turbulence intensity, and rotor size. The main assumption of the model is that the

wake maintains a Gaussian description in both the horizontal and vertical velocity distributions. However, for large deflections

in the wake trajectory, the wake begins to form a kidney bean shape, and therefore the Bastankhah wake model is only appli-

cable to a limited range of wake deflection (Bastankhah and Porté-Agel (2016)). For horizontal deflection, this limited range is40

sufficient for modeling yaw angles that would be applied in wind farm control strategies (Bastankhah and Porté-Agel (2019)).

However, when tilted turbines deflect the wake downward, the interactions with the ground deform the wake significantly more

than yawed turbines. Thus, the range of tilt angles that the Bastankhah wake model can accurately model are smaller than the

range of yaw angles. Additionally, the effect of the ground is not accounted for in the application of conservation of mass and

momentum in the original derivation of the Bastankhah wake model.45

Nanos et al. (2020) observed wake shape and deflection for tilted turbines using particle image velocimetry (PIV) calibrated

computational fluid dynamics (CFD) simulations. Their results show that when a turbine is deflected toward the ground, the

wake compresses vertically as it expands horizontally. Thus, to account for the effect of the ground, the definition of wake

expansion in the Bastankhah wake model must account for vertical compression and horizontal expansion with increasing tilt

angle. The approach used to account for yaw in the Bastankhah wake model can be applied to also account for tilt (Bastankhah50

and Porté-Agel (2016)). This approach involves analyzing the patterns of wake growth and deflection in high-fidelity simu-

lations of tilted turbines. When analyzing yaw, there is an assumed insignificant deflection in the vertical direction; thus, the

analysis of wake growth and deflection can be based on stream-wise slices of the flow field. However, for tilt, there is a signifi-

cant amount of both vertical and horizontal deflection as the wake approaches the ground (Porté-Agel et al. (2020)). Therefore,

in this study, we analyze and define deflection and wake growth based on cross-stream slices of the stream-wise velocity at55

varying downstream locations. We used SOWFA (Simulator fOr Wind Farm Applications) to simulate the wake of a 5-MW

National Renewable Energy Laboratory (NREL) reference turbine over varying fixed tilt angles (Churchfield et al. (2012)).

Based on the analysis of cross-stream slices, we can define a range of tilt angles that holds the assumption of a Gaussian
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distribution description as well as any necessary additional empirical relationships for variables dependent on tilt. Then local

optimizations can be conducted to reduce the error of the wake growth and deflection predictions with respect to the parameters60

of the empirical relationships. Although constrained to a limited range of tilt angles, this approach can define and calibrate the

necessary additions and adjustments to the Bastankhah wake model to account for tilt.

To improve upon this approach, this study introduces a novel additional step of optimization that significantly improves the

accuracy of the wind distribution prediction. The main objective of wake modeling is to accurately predict the wind speed dis-

tribution. However, current wake modeling approaches focus on various local optimizations in order to accurately predict wake65

growth and wake deflection. This can lead to over-fitting the relationships that define wake growth and deflection (Farajpour

and Atamturktur (2012); Li et al. (2016)). Thus, after defining the analytical and empirical relationships of the wake model, an

additional optimization step can be conducted to reduce the root mean squared error between the SOWFA velocity field and

the model predictions with respect to the local parameters that define wake growth and deflection.

The additions and adjustments defined in this study are not generalizable across varying turbine types. However, the mod-70

eling and optimization approach described in this paper will allow these and other modifications to be more generalizable,

provided there is sufficient data. The additions and adjustments were calibrated on data representative of normal working

conditions with a wind speed of 8.0 m/s and a turbulence intensity of 0.08. However, even with more data, the Bastankhah

wake model is incapable of modeling the kidney bean shaped wake that occurs at large tilt angles; therefore, the additions

and adjustments are only valid for platform tilt angles less than 15◦ (Churchfield et al. (2016)). Throughout this paper the tilt75

angles specified can be assumed to represent an initial wake deflection angle of equal magnitude in the opposite direction. For

example, 15◦ of tilt would results in an initial wake deflection angle of -15◦.

Therefore, in this study we additionally demonstrate a novel deep learning approach that can develop a model capable of

handling complex wake structures and large tilt angles. The objective of the optimization within the deep learning approach is

the same as the suggested additional optimization step, except the neural network can model complex wake structures without80

the time typically required to quantify the wake deflection and growth (Ti et al. (2020)).

Recently, applying deep learning to wake modeling has become an important topic of study due to the capability of deep

learning to model high-fidelity wake characteristics at a fraction of the computational cost (Zhang and Zhao (2020); Ti et al.

(2020); Pawar et al. (2022)). A majority of these approaches involve multi-fidelity deep learning where the results of the

Bastankhah wake model are correlated to high-fidelity simulation results. These approaches demonstrate the ability to train a85

neural net to generate accurate high-fidelity results. However, these approaches are limited to learning a fixed stream-wise slice

of data, which can only be applied to determine a vertical or horizontal velocity profile of the wake at a downstream turbine.

In this study, the proposed deep learning approach learns to predict the cross-stream slice of the wake of a tilted turbine at any

downstream distance for any tilt angle, rather than a stream-wise slice. Thus, this deep learning approach is able to resolve the

wake in three-dimensional space for any tilt angle of an upstream NREL 5-MW turbine. This approach provides the velocity90

predictions necessary to determine accurate overlap of a tilted turbine wake with any downstream turbine.

The paper is organized as follows. The observations, analysis, and definitions of key parameters in modeling tilted turbine

wakes for the optimization and deep learning approach are detailed in Sect. 2. The calibration and optimization of model
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additions and adjustments as well as the training of the deep neural net are detailed in Sect. 3. Comparison of the predicted

velocity field with the various modeling techniques is detailed in Sect. 4. A summary of results and future work is presented in95

Sect. 5.

2 Analysis of tilted turbine wakes in large-eddy simulations

The first step in determining the appropriate modifications and additions to the Bastankhah wake model is observing the

behavior of the tilted wind turbine wake. Then the variables and empirical relationships necessary to model wake growth and

deflection can be defined and calibrated. In this initial stage of analyzing the high-fidelity SOWFA data, the velocity field was100

compiled into training data for both the additional optimization and deep learning approaches. The training data consists of

cross-stream slices of the velocity field at several downstream distances (see Fig. 1).

2.1 Tilted turbine wake analysis

A 5-MW NREL reference turbine was simulated in SOWFA over varying degrees of tilt at a wind speed of 8 m/s, low turbulence

intensity of 0.08, coefficient of thrust (CT ) of 0.8, shear of 0.15, and a neutral atmospheric boundary layer (Churchfield et al.105

(2012)). The flow field results were averaged over the run time of 2,500 seconds where the flow converged. The turbine hub-

height was set to 90.0 meters with a rotor diameter of 126.0 meters. A majority of the simulations were focused on positive tilt

in order to thoroughly analyze the effect of the ground on the wake (see Fig. 1b). Overall, the results of the SOWFA simulations

confirm similar trends to previous studies of tilted turbines (Annoni et al. (2017); Johlas et al. (2022); Bay et al. (2019)). When

the wake approaches the ground, it expands horizontally and compresses vertically (see Fig. 1b), and when the wake is directed110

upward, it stretches vertically and gradually expands horizontally (see Fig. 1a).
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Figure 1. Cross-stream slice of the velocity deficit at 12 x/D downstream of a turbine tilted -15◦(a) and 12.5◦(b). z* represents the vertical

position normalized with the hub height (90 meters).

A common method for analyzing wake deflection and expansion involves observing the stream-wise velocity profiles. These

profiles are obtained from vertical and horizontal slices of the velocity field, taken at the center of the turbine rotor (Bastankhah
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and Porté-Agel (2016); Annoni et al. (2017)) (see Fig. 2). Although this method may suffice for small tilt and yaw angles

(Fleming et al. (2014)), there is a significant amount of horizontal and vertical deflection in the wake for larger tilt angles (see115

Fig. 1a).
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Figure 2. Stream-wise slice of the velocity deficit centered at a 2.5◦ tilted turbine (simulated in SOWFA). z* represents the vertical position

normalized with the hub height (90 meters).

The observed vertical deflection of the wake can be inaccurately estimated when pulled from the stream-wise slice of the

flow field. There are more reasonable and accurate results when the vertical deflection is based on the true wake center from the

cross-stream slices. When comparing the vertical deflection of the wake estimated from stream-wise slices and cross-stream

slices, it is evident that analysis of a stream-wise slice leads to significant inaccuracies (see Fig. 3). Observing downstream120

vertical velocity profiles based on a stream-wise slice of the flow field can be misleading due the horizontal deflection displacing

the true center of the wake out of the stream-wise plane (see Fig. 1a).
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Figure 3. Deflection of tilted turbine wakes as observed from cross-stream slices in SOWFA (marked with points) and the deflection observed

from a stream-wise slice in SOWFA (marked with solid lines).

For this analysis, the vertical and horizontal velocity profiles are based on the point of maximum velocity deficit at each

observed cross-stream section of the wake (see Fig. 1b). For each vertical and horizontal velocity profile a normal Gaussian fit

was used to determine the standard deviations (σz and σy respectively). In the Bastankhah wake model, the standard deviations125
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are a measure of the wake width in order to define the growth of the wake as it moves downstream (Bastankhah and Porté-Agel

(2016)). Equations 1 and 2 define σy and σz as having a linear relationship with the downstream distance (x−x0

d ) where the

slope (ky and kz), or commonly referred to as the wake growth rate, is determined by applying a linear fit to σy and σz . In

the Bastankhah wake model, σy and σz are used as inputs for the velocity deficit (△Û

Û∞
) (see Eq. 3). These relationships and

equations originate from the original Bastankhah wake model derivation where CT is the coefficient of thrust, γ is turbine tilt,130

D is the rotor diameter, yh is the hub-height, α is the veer in the incoming wind distribution, and δy and δz are the horizontal

and vertical deflections respectively (Bastankhah and Porté-Agel (2016)).

σy

D
= ky

x−x0

D
+σy0 (1)

σz

D
= kz

x−x0

D
+σz0 (2)135

△Û

Û∞
=

(
1−

√
1− CT cos(γ)

8(σyσz/D2)

)
exp
[
− 0.5

(y− yh + δy +x tan(α)
σy

)2]
exp
[
− 0.5

(z− zh − δz
σz

)2]
(3)

2.1.1 Model limitations

There are limitations on the abilities of the Bastankhah wake model to capture complex wake shapes. The main foundational

assumption in the Bastankhah wake model assumes a normal Gaussian shape in the vertical and horizontal velocity profiles.140

However, when the wake compresses vertically it forms a skewed Gaussian shape (see Fig. 4). Skewed Gaussian shapes have

also been observed in analyses of yawed turbine wakes; however, the skew was insignificant enough to maintain the assumption

of a normal Gaussian shape (Bastankhah and Porté-Agel (2016)). Similarly, for small positive tilt angles, the skew is negligible

and a normal Gaussian fit sufficiently defines the wake shape and wake growth. However, with the presence of the ground,

the skew can not be ignored for large tilt angles. A skewed Gaussian fit would be better suited to approximate the vertical145

velocity profile; however, this would conflict with assumptions used to derive the Bastankhah wake model (Bastankhah and

Porté-Agel (2016)). Although the skew becomes more prominent for large tilt angles, the deflection of the center of the wake

places the bottom portion of the wake away from the rotor swept areas of downstream turbines (assuming the same hub height).

Therefore, a normal Gaussian fit can still be used as long as it accurately approximates the upper portion of the vertical velocity

profile for large tilt angles (see Fig. 4).150
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Figure 4. Vertical velocity profile at 14 x/D downstream of a turbine with 12.5◦ of tilt.

In order to focus on accurately estimating the upper portion of the vertical velocity profile the profile is split at the point of

max velocity deficit, at the peak of the gaussian shape (see Fig. 4). Then the upper portion of the velocity profile is mirrored

across the point. For example, observing Figure 4, this would entail removing the portion of the SOWFA data that is less than

a z∗ value of around 0.81. Then mirroring the remaining SOWFA data across z∗ = 0.81. This forms a normal Gaussian shape

where a normal Gaussian fit is used to find σz . In order to accurately define the relationship between σz and tilt, SOWFA155

simulations were run for a single turbine at tilt angles of 2.5◦, 5◦, 7.5◦, 10◦, and 12.5◦ (see Fig. 5a). A normal Gaussian fit

without any required mirroring of the data was used to measure σy (see Fig. 5b). Similar to what has been observed with

turbine yaw, σz and σy can be observed to increase linearly with respect to the downstream distance even for larger angles

of tilt. Bastankhah and Porté-Agel (2016) observed that the rate at which σy increased was constant over varying yaw angle.

However, the rate at which σz and σy increase is variable over varying tilt angles. Thus, empirical relationships are necessary160

to define the change in slope over varying tilt angles for both σz and σy .

In addition to the challenges of modeling the skewed wake shape there are limitations on modeling large deformations in

the wake due to large tilt angles. When the turbine is tilted beyond 15◦, a kidney bean shape begins to form (see Fig. 6). The

kidney bean shape would require a double Gaussian shape to approximate, whereas the Bastankhah wake model derivation

relies on a single Gaussian shape description (Johlas et al. (2022)). Therefore, the calibrated analytical wake model described165

in this paper is bounded to tilt angles less than 15◦. This limit is reasonable as it is in line with limits set for fixed offshore

platform tilt (Ramachandran et al. (2017).
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Figure 5. σz for the mirrored upper portion of the vertical velocity profile (a) and σy (b) measured over a range of turbine tilt angles and

downstream distances.
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Figure 6. Velocity deficit from SOWFA simulation at 14 x/D downstream of a turbine tilted 25◦.

2.1.2 Positive tilt deflection

The deflection term in the original derivation of the Bastankhah wake model is dependent on σz and σy; however, when

implementing σz and σy from Figs. 5a-5b, the vertical deflection does not come close to matching the deflection observed in170

the SOWFA simulations, presumably due to wake interactions with the ground (see Fig. 7).
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Figure 7. Deflection of tilted turbine wakes as observed in the SOWFA data (marked with points) and the deflection predictions of the

Bastankhah wake model (marked with solid lines).

Therefore, a surrogate model is utilized to define vertical deflection as a function of tilt (see Eq. 4-5). The surrogate model

was chosen such that a simple linear least squares solution could be used to solve for the coefficients analytically and accurately

(Martins and Ning (2021)) (see Eq. 6-7). Figure 8 shows the calibrated surrogate model results (marked with solid lines) and

the SOWFA data points used for calibration in the vertical (on the left) and horizontal (on the right) directions.175
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Figure 8. Deflection of tilted turbine wakes as observed in the SOWFA data (marked with points) and the deflection predictions of the

calibrated surrogate deflection models (marked with solid lines).
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D
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D
+ c7

( x

D

)2
γ+ c8 (4)
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δy
D

= d1γ+ d2γ
2 ++d3

x

D
+ d4

x

D
γ+ d5γ

2 x

D
+ d6

( x

D

)2
γ+ d7 (5)

c1, c2, ..., c8 = 2.0921, −7.9725, −0.0854, 0.0041, −0.3663, 0.9701, 0.0045, 0.2840 (6)

d1,d2, ...,d7 =−1.7558, 2.4323, −0.0125, 0.3187, −0.3131, −0.0081, 0.0212 (7)

Since this deflection surrogate model is calibrated to match the behavior of the NREL 5-MW wind turbine, it may be used for180

turbines with a similar hub height to rotor diameter ratio (0.75). However, for turbines with significantly different hub height

to rotor diameter ratios, the deflection surrogate will need to be recalibrated. This can be fast and accurate due to the simplicity

of the surrogate model chosen.

This analysis has shown that in order for the Bastankhah wake model to be able to predict the behavior of a tilted turbine

wake, the deflection definition requires a replacement surrogate model and σy and σz need additional empirical relationships185

in order to define their dependence on tilt.

3 Model calibrations

To account for tilt in the Bastankhah wake model, the dependence of wake growth on tilt is defined by determining the

appropriate empirical models and fitting them to the observed patterns of wake growth. To further improve the accuracy of

the modified Bastankhah wake model, a simple additional step of optimization is implemented where the main objective is190

defined to minimize the root mean square (RMS) error between the SOWFA data velocity field and the model predictions

with respect to the coefficients of the additional empirical relationships. For the deep learning approach, the same objective

of the additional step of optimization is maintained, but instead with respect to the weights of a neural net. This allows the

optimization to explore asymmetric wake shapes outside the constraints of the Bastankhah wake model in order to further

reduce the RMS error.195

3.1 Empirical definitions

In studies of horizontal wake deflection, ky and kz (see Eqs. 1-2) have been observed to be constant across varying yaw

angles (Bastankhah and Porté-Agel (2016)). However, ky and kz change significantly enough across varying tilt angles to

assume dependence (see Fig. 9). As the turbine’s tilt increases positively, ky increases and kz of the upper portion of the

wake decreases. To define the dependence of kz and ky on γ, local optimizations are implemented to fit a parabolic and linear200

definition to kz and ky data, respectively (see Fig. 9).

The decreasing kz for the mirrored upper portion of the wake would eventually result in negative kz and therefore eventually

define σz to be negative, resulting in a square root of a negative value in the velocity deficit equation (see Eq. 2). However, this
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would be well out of the range of reasonable tilt angles. For comprehension, Fig. 9 displays the tilt angle in degrees; however,

γ is defined in radians in the relationship for ky and kz .205

2.5 5.0 7.5 10.0 12.5
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0.020

0.022

0.024

0.026

0.028
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0.032
kz = 0.563 2 + 0.108 + 0.027

ky = 0.048 + 0.018

k-value

Figure 9. Empirical relationships between kz and ky and turbine tilt (γ).

The change in σz0 across varying tilt angles is also significant enough to require a definition for σz0 as a function of tilt

(see Fig. 10). In previous studies of wake deflection, σy0 has been assumed to be constant at around 0.354; however, for our

analysis, Fig. 10 shows that σy0 is constant at around 0.266 (Bastankhah and Porté-Agel (2016)). Figure 10 also shows that as

tilt increases, σz0 of the upper portion of the wake begins to converge at around 0.2. In order to define the dependence of σz0

on tilt, a local optimization is conducted to fit a logarithmic definition to the σz0 data. Again, it is important to note that the210

definitions for kz , ky , σy0, and σz0 are functions of tilt in radians.
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Tilt (degrees)

0.20
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z0 = 0.168 0.014ln( * )

y0 = 0.266

0

Figure 10. σz0 and σy0 for varying angles of turbine tilt. Note that γ∗ = γ− 0.0419.
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3.2 Additional optimization

In order to further improve the accuracy of this modified Bastankhah wake model, an additional optimization is conducted to

minimize the RMS error between the SOWFA data velocity field and the model predictions with respect to the parameters that

define the relationship between wake shape and γ (see Eq. 8).215

minimize RMS

w.r.t. b1, b2, b3, b4, b5, b6, b7, b8, b9, b10

subject to 0.35≤ σz,σy ≤ 1.0

(8)

σy and σz are functions of γ through the definitions of ky , kz , σz0, and σy0. From Figs. 9 and 10, we can define ky , kz , σz0,

and σy0 with the following:

kz = b1γ
2 + b2γ+ b3 (9)

220

ky = b4γ+ b5 (10)

σz0 = b6 − b7 ln(γ− b8) (11)

σy0 = b9 (12)225

α= b10 (13)

The coefficients b1 to b9 define σy and σz , and b10 represents α, the incoming wind angle, which is a measurement of the

change in incoming wind angle over the rotor swept area of the tilted turbine. The incoming wind angle is used in Eq. 3 to

account for veer in the wake shape and is kept constant over varying tilt angles, assuming that there is no significant difference230

in α over varying γ. The coefficients b1 to b10 are the variables that the optimization modifies in order to reduce the error

between the model predictions and SOWFA (see Eq. 8). The model predictions are defined by Eq. 3, where the velocity deficit

(∆U ) is a function of γ, σy , σz , α, δz , and δy . The coefficients for δz and δy are not modified in the optimization because

deflection is a physical measurement that accurately defines the trajectory of the wake center as opposed to σy and σz , which

are estimates of the wake’s general shape.235
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The definitions of σy and σz are based on measurements that are highly dependent on the ability of a normal Gaussian fit

to accurately define the horizontal velocity profile and the upper portion of the vertical velocity profile. Therefore, σy and σz

are rough estimates of the expansion of the wake in the horizontal and vertical directions, respectively, and as such should not

be treated as concrete measurements. Results from observations of σy and σz are used to define the empirical relationships

between wake shape and γ. Then the additional optimization step can fine-tune the coefficients to further reduce the RMS error240

of the wake model’s flow field predictions.

The objective of the optimization is defined as the normalized sum of the RMS error of the difference between a vertical 2D

velocity slice (U ) from SOWFA and the model prediction of the same area (Um) over varying tilt angles (γ) and downstream

distances (x/D). The RMS portion of the objective is defined in Eq. 14, where Ny and Nz are the total number of points in the

horizontal and vertical directions over the cross-stream velocity slice, respectively (see Fig. 1b for an example of the cross-245

stream velocity slice area). The objective for the optimization is defined in Eq. 15, where Nx/D and Nγ represent the total

number of downstream distances and tilt angles used in the optimization. The span of the tilt angles and downstream distances

are defined in Eqs. 16 and 17.

In order to guide the optimization to reach reasonable results, σz and σy are constrained to be greater than 0.35 and less than

1.0 based on observations in Figs 5a and 5b.250

RMSij =

√∑Ny

k=1

∑Nz

l=1 |∆Û2
kl −∆Ûm2

kl|2
NyNz

(14)

RMS =

∑Nx/D

i=1

∑Nγ

j=1 RMSij

Nx/DNγ
(15)

γ = 2.5◦, 5.0◦, 7.5◦, 10.0◦, 12.5◦ (16)

x/D = 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 (17)

3.2.1 Optimization results255

When comparing the RMS error of the original locally optimized coefficients, to that of the additional optimization coefficients

there was an overall reduction in RMS error by about 17% (see Fig. 11). This is a significant reduction in the RMS error that

only requires a simple additional step of optimization.
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Figure 11. Percent difference between the RMS error with the original coefficients and the RMS error with optimized coefficients.

Overall, there was a 10% to 20% reduction in the RMS error for tilt angles ranging from 2.5◦ to 10.0◦ (see Fig. 11). However,

beyond 10.0◦ there was an increase in RMS error by about 5%. This could be due to the normal Gaussian shape assumption260

being unable to accurately capture the deformation in the wake shape at 12.5◦ of tilt due to ground effect. Therefore, another

benefit of this additional optimization step is being able to test the limits of the model. Initial observations suggested the wake

began to form a kidney bean shape at around 15◦. However, the optimizer could only reduce the overall RMS error by reducing

the RMS error from 2.5◦ to 10.0◦, while increasing the RMS error of 12.5◦ tilt. This suggests that this modified Bastankhah

wake model is limited in accuracy for 12.5◦ of tilt. The limited accuracy is potentially due to the wake beginning to form a265

slight double Gaussian shape. This additional optimization step helps identify a limit for allowable tilt angles. Initially, the

upper limit was estimated to be 15◦; however, from the optimization, the limit should be around 10◦.

In terms of analyzing what specifically the optimizer adjusted in σy and σz , Fig. 12 reveals that ky stayed essentially the

same whereas kz was adjusted significantly in order to reduce the RMS error. The decrease in kz means the optimizer reduced

the RMS error by reducing the vertical stretching of the wake (see Fig. 13a). When observing only the SOWFA data, kz was270

observed to rapidly decrease as the tilt increased; however, the optimizer found greater accuracy in defining kz as converging

to a value of 0.025.
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Figure 12. ky and kz defined by the locally optimized (blue) and the additional optimization (black) coefficients.
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Figure 13. Measured σz and σy (marked with points) and optimized σz and σy (marked with lines) over varying tilt angles and downstream

distances.

Figure 13b shows that σy was also reduced, which means the horizontal expansion was lessened as the wake moved down-

stream. The overestimate in the measurements of σy and σz reveals a potential bias in our initial analysis. The results for σy0

and σz0 were essentially the same as what had initially been defined, with a σy0 of 0.255 and a decreasing σz0 over increasing275

tilt angle (see Fig. 14).
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Figure 14. σz0 defined by the locally optimized coefficients (marked with blue) and the additional optimization coefficients (marked with

black).

The additional step of optimization helps identify the limits of the modified Bastankhah wake model as well as improve the

overall accuracy of its predictions. Therefore, considering the simplicity of this additional step, it is beneficial to include in

future analytical wake modeling endeavors.

3.3 Deep learning training280

Although the additional step of optimization significantly reduced the RMS error of the modified Bastankhah wake model,

the model became limited to a small range of feasible tilt angles and required extensive analysis. To improve the modified

Bastankhah wake model, there would need to be significantly more analysis of varying tilt angles over varying wind speeds

and hub heights. However, this could take a significant amount of time and would continue to remain limited to a small

range of tilt angles. The most extensive portion of this process comprised analyzing and defining the relationships between tilt,285

deflection, and wake growth. Therefore, implementation of a deep learning approach could remove the need to define deflection

and wake growth. Instead, a neural net can learn to define the relationship between tilt and a downstream cross-stream slice

of the flow field. Additionally, a deep learning approach would be unhindered by the limitations of assuming a Gaussian wake

shape and therefore capable of modeling complex wake features when the wake interacts with the ground.

In this study we implemented a simple neural net with four layers. After each layer, we normalized the batch and used290

rectified linear unit (ReLU) activation functions. The four layers take in the tilt angle and downstream distance, then expand

the size of the first layer from 2 to 128, 128 to 256, 256 to 512, and finally 512 to an image that is 31x51 pixels (SOWFA data

resolution for cross-stream slice).

In order to thoroughly train our neural net, we used 1,850 cross-stream slices from the SOWFA data velocity field over

varying tilt angles ranging from -35◦ to 25◦. The SOWFA data used holds the same turbine characteristics and flow field295

conditions as the data used to define the empirical relationships and implement the additional optimization step for the modified

Bastankhah wake model. The 1,850 images were then randomized into separate training and validation datasets using PyTorch’s
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randperm function, which implements the Mersenne Twister pseudorandom number generator (Imambi et al. (2021)). Although

this data set is split into training and validation datasets it does not mean this model is generalizable. In future work, a more

expansive training and validation data set that spans varying turbine types and flow field conditions would enable the model300

to be generalizable. However, for the purpose of comparing different approaches of analytical wake modeling we have limited

the training and validation dataset to the working conditions detailed in section 2.1.

Our deep learning approach involves two loss functions, SSIM (Structural Similarity Index) and RMS error (Shrestha and

Mahmood (2019)). The RMS error is defined the same as in Eq. 14, except that it only compares one cross-stream slice at a

time. The SSIM objective is used to initially train the neural net in order to remove noise and capture the general shape of the305

wake (Nilsson and Akenine-Möller (2020)). The SSIM objective alone results in an overly averaged version of the wake due

to the Gaussian averaging in the SSIM objective. Thus, additional training with the RMS error objective allows the neural net

to further generate finer structures in the wake. Our training consisted of 2,500 epochs of training with the SSIM objective

followed by 2,000 epochs of training with the RMS error objective (see Fig. 15).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Epoch

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

RMS

SSIM

RMS

Figure 15. Reduction in RMS error of the generated image and SOWFA over 2500 epochs with an SSIM objective followed by 2000 epochs

with an RMS error objective.

This approach resulted in a nearly 95% reduction in the RMS error from the optimized modified Bastankhah wake model.310

Figure 16 demonstrates that there is no significant difference between the generated cross-stream slice of the wake (see Fig. 16b)

and the SOWFA data (see Fig. 16a) for a turbine tilted -20◦. The main inaccuracy is near the center of the wake, with an overes-

timate of the velocity deficit by about 0.15 m/s (see Fig. 16c). However, the inaccuracy is insignificant, with a maximum RMS

error of about 5% localized at the center of the wake. With this simple neural net, the power of a downstream turbine could be

estimated as accurately as a SOWFA simulation at a fraction of the time it takes to run a SOWFA simulation. Depending on315

computing power and resources, a SOWFA simulation of one tilted turbine can take up to 10 hours, whereas this trained neural

net would take a few milliseconds to generate the flow field.
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Figure 16. SOWFA data image (a) compared to the neural network’s generated image (b) at 7.5 x/D of a turbine tilted -20◦. The absolute

difference between these images is displayed in (c).

4 Comparison of results320

In this section, the results of each wake modeling approach are compared and contrasted in order to understand the benefits

and constraints of each approach. Figure 17 visually compares the ability of the deep learning approach (see Fig. 17b) and

the optimized Bastankhah wake model (see Fig. 17c) to accurately predict the cross-stream velocity profile at 12.0 rotor

diameters downstream when the upstream turbine is tilted 7.5◦. According to Fig. 11, the optimized wake model approach

greatly reduced the RMS error at 12.0 rotor diameters downstream with 7.5◦ of tilt. However, the trained neural net is able to325

generate essentially identical results to SOWFA.

Although the optimization approach to calibrating the Bastankhah wake model does not perform as well as the deep learning

approach, there are benefits to the optimization approach. The optimized Bastankhah wake model seamlessly integrates into

various wind farm optimization tools without requiring significant workflow modifications and, when provided with sufficient

training data, incorporates more effectively into existing workflows compared to the deep learning wake model under identical330
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Figure 17. Comparison of the deep learning and additional optimization approach to predicting the velocity deficit of the wake of a 7.5◦

tilted turbine at 12.0 rotor diameters downstream.

training conditions. Thus, this approach is useful in calibrating existing and future additions and modifications to wake models

used in wind farm optimization workflows. Figure 18 reveals physically where the optimized coefficients improved accuracy in

the velocity field prediction. These cross-sections are the sum of |∆Û |2 for each point in the cross-stream slices over all the tilt

angles and downstream distances used in the optimization. |∆Û |2 = |Û − Ûm|2, where Û is the SOWFA stream-wise velocity

deficit and Ûm is the velocity deficit predicted by the modified Bastankhah wake model. The most reduction in error occurred335

in the area around −0.5 y/D and ±0.5 z*. There is a slight increase in error in part of the wake using the coefficients from the

additional optimization step, as can be seen in the area around 0.5 y/D and −0.6 z*. Overall, the additional optimization step

improved the model’s ability to accurately represent the tilted wake.

Figure 16c shows that the main inaccuracy in the neural net predictions is near the center of the wake; however, this error

is insignificant when compared to the |∆Û |2 of the optimized Bastankhah wake model (see Fig. 18). Compared to the perfor-340

mance of the local optimization and additional optimization approaches, the deep learning approach has no perceivable error

(see Fig. 18c).

5 Summary and future work

This comparative analysis of wake modeling approaches for tilted wind turbines underscores the advancements and effective-

ness of both traditional optimization methods and deep learning techniques. The process of optimizing the modified Bastankhah345

wake model, which involved refining its coefficients to better align with empirical relationships for wake behavior, significantly

improved the model’s accuracy. This optimization process focused on calibrating the model to account for the tilt angle, de-

flection, and wake growth, effectively reducing the RMS error by about 15% within a defined range of tilt angles.

The optimization approach entailed an extensive analysis of the relationships between tilt angle, wake deflection, and wake

growth. By calibrating the coefficients of the modified Bastankhah model, the approach addressed some of the inaccuracies350
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Figure 18. Sum of |∆Û |2 for each point in the cross-stream slices over all the tilt angles and downstream distances used in the optimization.

|∆Û |2 = |Û−Ûm|2, where Û is the SOWFA stream-wise velocity deficit and Ûm is the velocity deficit predicted by the modified Bastankhah

wake model (a and b) and the deep learning model (c). (b) uses the optimized coefficients to predict Ûm, and (a) uses the locally optimized

coefficients.

associated with the original model’s assumptions about wake shape. This method yielded a notable reduction in RMS error and

demonstrated an improved representation of wake dynamics. However, this approach remained limited by the constraints of a

Gaussian wake description and the need for significant computational resources and time for analysis.

In contrast, the introduction of deep learning techniques marks a significant advancement in wake modeling. A neural

network was designed with four layers, featuring batch normalization and ReLU activation functions, and was expanded from355

an initial input layer to a final output of 31x51 pixels. This architecture enabled the network to capture complex wake structures

with high precision. The training involved 2,500 epochs with the SSIM objective followed by 2,000 epochs with the RMS

error objective, resulting in a 95% reduction in RMS error compared to the optimized Bastankhah model. The SSIM objective

facilitated initial training by reducing noise and capturing the general wake shape, while subsequent RMS error training refined

the model to generate more accurate wake structures.360

The deep learning model’s performance, which produced wake predictions in milliseconds as opposed to the 10 hours

required for SOWFA simulations, highlights its efficiency and practical applicability. The model’s ability to closely match

SOWFA data, with only minor inaccuracies near the center of the wake, demonstrates its robustness in handling complex wake

phenomena.

While the optimized Bastankhah model continues to offer value, particularly in integrating with existing wind farm opti-365

mization tools, the deep learning approach provides a more precise prediction. This advancement offers significant potential

for enhancing wake prediction accuracy and efficiency for floating offshore wind farms, where the movement and size of the

turbines develop unsteady wakes that cannot be accurately described by traditional wake models. Future research should aim

to further refine neural network performance and explore its broader application across diverse wind farm scenarios.
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