Developing an atlas of rain-induced leading edge erosion for wind turbine blades in the Dutch North Sea
Abstract. To support the ongoing development of offshore wind energy in The Netherlands and to maintain the current assets, it is essential to provide wind farm operators accurate estimates of wind turbine blade erosion. Unfortunately, there is currently a shortage of information on wind turbine erosion risk, especially in offshore regions. In this work, we developed an atlas detailing rain-induced leading edge erosion for wind turbine blades in the Dutch North Sea, using weather simulations spanning a decade. These weather simulations were validated using recent offshore and onshore measurements and incorporated into a fatigue-based damage model, linking weather conditions to blades’ leading edge erosion. The results reveal that the erosive impact of rainfall on wind turbine blades varies across the Dutch North Sea. The estimated average incubation period, which indicates the leading edge protection system's lifespan, ranges from 8 to 9 years in the southwestern region, decreasing to 6 to 7 years in the northeastern area. This is due to both the higher average wind speeds and greater rainfall amounts occurring in the northeastern locations compared to the southwestern ones. This paper emphasizes that the northeastern regions of the Dutch North Sea, which are being examined for potential wind farm developments post-2030, will encounter higher erosion risks compared to those currently operating in southern locations, possibly requiring enhanced mitigation strategies.