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Abstract. Scanning lidars enable the collection of spatially distributed measurements of turbine wakes and the
estimation of wake properties such as magnitude, extent, and trajectory. Lidar-based characterizations, however,
may be subject to distortions due to the observational system. Distortions can arise from the resolution of the
measurement points across the wake, the projection of the winds onto the beam, averaging along the beam probe
volume, and intervening evolution of the flow over the scan duration. Using a large-eddy simulation and simu-
lated measurements with a virtual lidar model, we assess how scanning lidar systems may influence the proper-
ties of the retrieved wake using a case study from the Perdigão campaign. We consider three lidars performing
range-height indicator sweeps in complex terrain, based on the deployments of lidars from the Danish Technical
University (DTU) and German Aerospace Center (DLR) at the Perdigão site. The unwaked flow, measured by
the DTU lidar, is well-captured by the lidar, even without combining data into a multi-lidar retrieval. The two
DLR lidars measure a waked transect from different downwind vantage points. In the region of the wake, the
observation system reacts to the smaller spatial and temporal variations of the winds, allowing more significant
observation distortions to arise. While the measurements largely capture the wake structure and trajectory over
its 4–5D extent, limited spatial resolution of measurement points and volume averaging lead to a quicker loss of
the two lobes in the near wake, smearing of the vertical bounds of the wake (< 30 m), wake center displacements
up to 10 m, and dampening of the maximum velocity deficit by up to a third. The virtual lidar tool, coupled with
simulations, provides a means for assessing measurement capabilities in advance of measurement campaigns.
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1 Introduction 10

Scanning lidars are increasingly employed in the collection
of spatially distributed measurements of wind turbine wakes
(Menke et al., 2019; Bodini et al., 2017; Moriarty et al.,
2020), which are characterized by reduced wind speeds and
increased turbulence. Lidar measurements may be used to 15

diagnose key metrics such as the magnitude of the veloc-
ity deficit, the spatial extent of the wake, and the trajec-
tory followed by the wake. Building from promising early
deployments for wake measurements in the early 2000s
(Käsler et al., 2010), scanning lidars have become a staple 20
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Figure 1. Plan-view topographic map of the Perdigão site over the
inner LES domain. The inset of the valley details locations of the
turbine, 100 m towers, and scanning lidars with corresponding tran-
sect planes.

in many field campaigns for assessing wind turbine wakes
(Aitken et al., 2014; Aitken and Lundquist, 2014; Barthelmie
and Pryor, 2019; Bodini et al., 2017; Brugger et al., 2020;
Gottschall, 2020; Iungo et al., 2013; Menke et al., 2018;
Smalikho et al., 2013; Wildmann et al., 2018b) and other5

complex flow features like recirculation zones (Menke et al.,
2019) or urban flow features (Newsom et al., 2008).

Investigations of turbine wakes with lidar were initially
conducted in fairly simple terrain (e.g., Käsler et al., 2010;
Aitken et al., 2014; Bodini et al., 2017). For a detailed sum-10

mary of lidar measurements of wakes, see Gottschall (2020).
More recent studies have explored the variability of wakes
in complex terrain. The Perdigão field campaign (Fernando
et al., 2019) was a seminal study at a site featuring paral-
lel double ridges and a single 2 MW turbine, the wake of15

which was captured through an extensive array of scanning
lidar (Fig. 1). The wake behavior at the highly complex site
using the lidar data and different scanning strategies are ex-
plored in Wildmann et al. (2018b), Menke et al. (2018), and
Barthelmie and Pryor (2019).20

Wake characterizations based on lidar data, however, may
be subject to distortions due to inherent properties of the ob-
servational system. Even assuming perfect calibration and

sufficient air quality to ensure adequate backscatter signals,
the measurements are subject to the spatial resolution of re- 25

trieval points, projection of the winds onto the lidar beam, av-
eraging along the beam probe volume, and intervening evolu-
tion of the flow over the scan duration. Possible measurement
and scan techniques have grown in complexity in part to ad-
dress some of these issues, e.g., combining multi-lidar mea- 30

surements to correct for projection (Wildmann et al., 2018b;
Vasiljević et al., 2017) and automated synchronization to fol-
low the wake meandering (Barthelmie and Pryor, 2019).

Additionally, progress in deployments of scanning lidar
and work with observations has begun to be supported by 35

“virtual lidar” models acting on simulations of waked flow.
Thus far, virtual lidar studies assessing error behavior in
wake scans have typically considered idealized, flat condi-
tions and focused on isolated effects. Doubrawa et al. (2016)
investigate how the spatially and temporally disjunct nature 40

of the lidar wake measurements affect the retrieval and high-
light the need for adequate spatial distribution of the sampled
points. Using three-dimensional, stacked-sector scans per-
formed over 12 min by a lidar colocated with the turbine, ob-
servational and virtual measurements are analyzed. The mod- 45

eled scans are performed in an idealized large-eddy simula-
tion (LES) scenario (inflow based on a laterally periodic LES
of the boundary layer) and omit probe volume averaging by
the lidar. Meyer Forsting et al. (2017) focus on the effect of
averaging over the lidar probe volume, finding the strongest 50

influence on the radial velocities to be in the high-gradient ar-
eas around the wake edges. Nacelle-based, continuous-wave,
and pulsed lidar retrievals of horizontal and vertical planes
are modeled in an idealized LES case using a prescribed
shear wind profile. The spatial and temporal resolutions of 55

the scans are not addressed.
In this study, we assess the influence of scanning lidar

retrievals on the properties of the retrieved wake at a com-
plex site following a real case study from the Perdigão field
campaign. A mesoscale–microscale nested LES provides re- 60

alistic inflow conditions for the case study in which we
model range-height indicator (RHI) scans made from the
ridge downwind of the turbine using a virtual lidar model
(Robey and Lundquist, 2022). The simulated measurements
in this complex setting are leveraged to perform novel anal- 65

ysis disaggregating and attributing contributions to error in
the measured wake due to multiple sources (spatial–temporal
resolution of the measurements, averaging over the probe
volume, and contamination of the horizontal velocity due to
projection of vertical velocities onto the beam) and to address 70

the overall impact on key wake metrics.
Section 2 describes the Perdigão site, selected case studies,

and data processing, with the setup of the LES and virtual li-
dar models in Sect. 3. Section 4 describes how the collected
wake data are processed into vertical profiles and fitted to 75

quantify the wake trajectory, strength, and extent. Section 5
presents results of the virtual LES measurements and distor-
tions and goes on to compare measurements from real obser-
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vations. A discussion of the results and summary of the key
conclusions are given in Sects. 6 and 7.

2 Perdigão campaign and selection of case studies

The Perdigão field campaign, conducted near the Vale do
Cobrão in central Portugal, comprised an extensively instru-5

mented investigation of flow over parallel ridges with the in-
tensive observation period spanning from May to June 2017
(Fernando et al., 2019). Dominant climatology at the site fea-
tures winds perpendicular to the 2 km long ridges. Combined
with the symmetry of the ridges and valley, the winds re-10

semble that of idealized, two-dimensional valley flow. Scan-
ning lidars deployed at the site provide insight into the spa-
tial structure of flow dynamics and phenomena. The col-
lected data reflect atmospheric processes appropriate to the
regime, including low-level jets, stable mountain waves, and15

recirculations in the valley (Menke et al., 2019). On the up-
wind ridge is a single 2 MW Enercon E-82 turbine (78 m hub
height, rotor diameter D = 82 m), the wake of which was
captured as it propagated over the valley in southwesterly
flow conditions.20

We refine a set of stable case studies with winds at op-
erating speeds perpendicular to the ridges so that a signif-
icant portion of the wake may be expected in the scanning
transect. Using 1 min averaged data from the upwind ridge
tower (tw04, Fig. 1), the data are filtered such that the 100 m25

winds are perpendicular to the ridges (southwesterly, 200–
230°) and at turbine operating speeds (> 4.5 m s−1, cut-in at
2 m s−1). We identified three case study periods with good li-
dar data that match these conditions for more than 2 h consec-
utively (Table 1, Fig. 2). Standard deviation values are given30

with respect to the minute-averaged wind speed and direc-
tion values. The final case overlaps with the high-resolution
Weather Research and Forecasting (WRF) LES period from
03:30 to 05:30 UTC on 14 June 2017 (Sect. 3.1).

Stability conditions are diagnosed from the Obukhov sta-35

bility parameter, z/L, at three towers across the ridges and
valley at 10 and 100 mTS1 (Fig. 2). The Obukhov length, L,
is defined as

L=−
u3
∗20

κgw′θ ′
, (1)

where u∗ is the friction velocity (m s−1), 20 is the aver-40

age surface potential temperature (K), κ = 0.4 is von Kár-
mán’s constant, g = 9.81 m s−2 is the acceleration due to
gravity, and w′θ ′ is the heat flux (K m s−1). Turbulent heat
and momentum fluxes are computed with a standard eddy-
covariance approach from 20 Hz sonic anemometer and 1 Hz45

air temperature sensor data over a 30 min averaging window.
The dimensionless z/L parameter indicates stability follow-
ing the classifications in Rodrigo et al. (2015), symmetrically
extending those of Sorbjan and Grachev (2010): nearly neu-
tral (|z/L|< 0.02), weakly stable (0.02< z/L < 0.6), and50

very to extremely stable (0.6< z/L). Over the complex to-
pography of the site, significant variations in the stability pa-
rameter can occur, reflected by the variation in the values re-
ported at the different towers. The selected cases are mostly
neutral to stable (Fig. 2), which are conditions under which 55

the wake is expected to be more coherent and detectable (Bo-
dini et al., 2017).

From the available instrumentation, we narrow our fo-
cus to three Leosphere WindCube 200S systems perform-
ing vertical-slice RHI scans of transects across the ridges 60

(Fig. 1). The positions and scan configurations of the Dan-
ish Technical University (DTU) lidar and two German
Aerospace Center (DLR) lidars analyzed in this study are
detailed in Table 2 (Mann, 2019; Wildmann, 2019). Two li-
dars operated by DLR scan a transect intersecting the turbine 65

(Wildmann et al., 2018a). With one instrument in the valley
and the other on the northwest ridge (Fig. 3), the DLR scans
collect data on the waked flow in the perpendicular transect
from different vantage points. The final WindCube 200S is
part of the DTU long-range wind scanner system (Vasilje- 70

vić et al., 2016; Menke et al., 2019) and covers a compara-
ble unwaked transect separated from the turbine transect by
∼ 125 m.

Alternate scanning approaches are possible, including hor-
izontal planes through the wake and other coordinated scans 75

deployed at Perdigão, that are not treated here. In fixed-
transect scans such as the ones we use, meandering of the
wake can impede measurements as the bulk of the wake may
move out of the observed transect. By constraining the cases
to those perpendicular to the ridges, we increase the expec- 80

tation that a substantial portion of the wake is present in the
transect. Acknowledging that the reference truth of the winds
in the transect may not represent the full wake in the three-
dimensional space, our analysis focuses on the potential ob-
servational distortion of the wake as it exists in the transect. 85

To control the quality of the lidar data, measurements
from all instruments are filtered by the carrier-to-noise ra-
tio (CNR), requiring CNR>−24 dB. The scans are further
averaged over 5 min before use (see Sect. 4.1).

3 Simulation of flow and lidar instrumentation 90

3.1 Case study simulation

To better understand the dynamics and action of the li-
dar systems on the flow, we employ a simulation of the
flow field during 2 h of the 14 June 2017 case study com-
bined with a model of the instrument retrieval. The simu- 95

lation uses the WRF LES model (Skamarock et al., 2019)
and is a reproduction of a validated simulation of the case
study with the model (Wise et al., 2022). We follow the
configurations therein, updated for WRFv4.3 mesoscale-to-
microscale (MMC) model and outputting high-frequency 100

(1 Hz) output on which to run the virtual lidar model. As
in Wise et al. (2022), five domains are used to nest down
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Table 1. Summary of selected case study periods

Case 1 Case 2 Case 3

Start time (dd/mm) [UTC] 21/05 21:30 13/06 04:30 14/06 00:00
End time (dd/mm) [UTC] 22/05 01:30 13/06 07:00 14/06 07:30
Duration [h] 4 2.5 7.5
Mean wind speed [m s−1] 6.1 5.7 5.6
Wind speed standard deviation [m s−1] 1.2 0.7 0.9
Mean wind direction [deg] 218 218 218
Wind direction standard deviation [deg] 8 11 9

Figure 2. The 1 min averaged wind and 30 min averaged stability metrics for the three selected case studies. Red and blue shading indicate
areas in which the Obukhov stability parameter is unstable and stable, respectively. The gray shaded region within Case 3 indicates the
simulation period.

from the mesoscale, forced by Global Forecast System re-
analysis data (National Centers for Environmental Predic-
tion, National Weather Service, NOAA, U.S. Department of
Commerce, 2015), down to fine LES scales. This mesoscale–
microscale modeling approach allows realistic boundary in-5

flow and forcing in the LES, driven by coarser models of the
larger weather systems (Haupt et al., 2019, 2023). The nests
refine the horizontal resolution from the outer mesoscale do-
mains with 6750 and 2250 m horizontal grid size to increas-
ingly fine LES resolution with 150, 50, and finally 10 m grid10

spacing in the innermost domain. The outer two domains
were allowed to spin up for 9 h before starting the inner do-
mains. These in turn spin up for an additional 30 min before
the simulation data are used.

For land input, we use 1 arcsec terrain from the Shuttle15

Radar Topography Mission (Farr et al., 2007) and 100 m land

use data from the CORINE Land Cover 2006 raster dataset
(Bossard et al., 2000). We follow adjustments in Wise et al.
(2022) to the roughness length of mixed shrubland–grassland
to 0.5 m. The turbine feedback on the flow in the finest do- 20

main is represented via the generalized actuator disk model
in the MMC release (Mirocha et al., 2014). The lift and drag
coefficients for the 2 MW E-82 Enercon turbine at the site are
not publicly available, so a representative turbine with simi-
lar parameters is used in the simulation (Arthur et al., 2020). 25

Inner-domain LES winds are output every second, and the
winds on the waked and unwaked transect planes are ex-
tracted as a “truth” reference against which to compare the
virtual lidar measurements. To represent the raw velocity
fields in as unadulterated a way as possible, the velocities are 30

interpolated in the horizontal directions to positions along
the transect, with the vertical grid unchanged (Fig. 3). The
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Figure 3. Waked transect cross section with LES horizontal winds and the layout of the turbine and DLR lidars. Sample lidar beams with
elevation angles, target retrieval points, and range-gate weighting function (RWF) probe scale are shown for reference. The top axis shows
distance in rotor diameters, D.

Table 2. Placement and scan parameters of the three lidar systems.

DTU LRWS3 DLR1 DLR2

Instrument height a.m.s.l. [m] 452.3 323.2 458.2

Instrument position 39° 42′48.69′′ N 39° 42′44.83′′ N 39° 42′52.31′′ N
7°43′49.68′′W 7°44′6.41′′W 7°43′52.12′′W

Instrument placement unwaked waked waked
downwind ridge valley downwind ridge

Azimuth angle θ [deg] 235 237 237
Minimum elevation angle φ0 [deg] −6 6 −12
Maximum elevation angle φN [deg] 30 160 90
Elevation angle interval 1φ [deg] 0.75 1 1
Beam accumulation time [s] 1φ [deg] 0.5 0.5 0.5
Scan sweep duration [s] 24 77 51

stretched vertical grid provides sufficient resolution across
the wake with 20 points in the lowest 200 m above the sur-
face.

3.2 Virtual instrument model and configuration

To represent the lidars in the simulation, virtual instruments5

are placed in the finest LES domain following deployment
locations and scan parameters from the campaign (Table 2).
The virtual lidar model mimics the wind retrieval and scan-
ning pattern of the instrument; details can be found in Robey
and Lundquist (2022), but we briefly summarize the key10

points here.

Table 3. WindCube 200S lidar parameters.

Fast Fourier transform points M [no.] 64
Digitization frequency fs [MHz] 250
Range gate τm [ns] 256
Pulse full width at half maximum τ [ns] 200
Probe full width at half maximum 1p [m] 44

Coherent Doppler lidars measure wind speeds at target dis-
tances by diagnosing the Doppler shift in laser light that is
backscattered by suspended aerosols. Scanning lidars per-
form an RHI scan by sweeping their beam through a vertical 15

slice of varying elevation angle in time. For the simplified



6 R. Robey and J. K. Lundquist: Lidar wake retrieval in complex terrain

virtual model, we assume uniform and adequate aerosol dis-
tribution, omitting aerosol type, size, and density distribution
and the influence of conditions like humidity, fog, or precip-
itation on the return signal (Aitken et al., 2012; Boquet et al.,
2016; Rösner et al., 2020).5

The virtual lidar model can be considered a series of
stages: interpolation and selection at the location of the re-
trieval points, projection of the velocities onto the elevated
beam, averaging over the probe volume, and advancement
of the beam position over the scan duration. References for10

the beams, retrieval points, elevation angles, and the probe
volume weighting are shown in Fig. 3. Note that each of the
stages performs a linear operation on the wind field, and er-
ror in the estimated horizontal velocity incurred by each is
directly additive. The impact of each of the stages on the re-15

trieval may be separated out via partial models using only a
subset of the stages.

1. Interpolation. Once the lidar geometry (position and
scanning angles) sets the beam location, the wind com-
ponents are interpolated to points along the lidar beam20

using linear barycentric interpolation from a Delaunay
triangulation of the LES grid (Virtanen et al., 2020;
Amidror, 2002). At the retrieval points, this is what
the lidar would measure if it could perfectly collect 3D
winds.25

2. Projection. The wind velocity vector, u= (u,v,w), is
projected onto the beam unit direction vector, b̂. The
lidar senses only the radial (line-of-sight) velocity, vr
(Eq. 2),

vr = b̂ ·u= uh cosφ+w sinφ, (2)30

where uh = usinγ +v cosγ is the horizontal velocity in
the transect of the azimuthal angle, γ , and φ is the ele-
vation angle of the beam above the horizon. Under this
convention, positive radial velocities move away from
the instrument.35

3. Range-gate weighting (RWF). Due to the lidar measure-
ment process, the radial velocity measured by the lidar
at target distance r0, vr(r0), is not a point value but an
average of winds in a probe volume along the beam. The
averaging is well-represented by a convolution of the40

projected wind velocities along the beam with a range-
gate weighting function, ρ(s) (Eq. 3).

vr(r0)=

∞∫
−∞

ρ(s)vr(r0+ s)ds (3)

Both DTU and DLR systems considered in this study
are WindCube 200S lidar systems; we correspondingly45

use a model for a pulsed RWF (Eq. 4) based on the
convolution of the pulse with the range-gate observa-
tion window (Banakh and Smalikho, 1997; Cariou and

Boquet, 2010).

ρ(r)=

erf
(

4
√

ln2
cτ

r + τm
√

ln2
τ

)
− erf

(
4
√

ln2
cτ

r − τm
√

ln2
τ

)
cτm

(4) 50

Here, c (0.29979 m ns−1) is the speed of light and τ =
200 ns is the full-width half-maximum (FWHM) of the
Gaussian pulse used by lidar system. The range-gate ob-
servation time, τm, arises from the window for the fast
Fourier transform (FFT) used for the frequency diagno- 55

sis. With M points of a signal digitized at a frequency
of fs, the range-gate window is τm =Mf−1

s . We use
consistent sampling settings across all three WindCube
200S systems based on the values reported in the DTU
lidar data files and summarized in Table 3 (Mann, 2019). 60

The temporal window corresponds to a spatial probe
length, 1p, over which the contributions to the signal
originated. An estimate of 1p is given in Banakh and
Smalikho (1997) as the estimate of the FWHM of the
RWF (Eq. 5). 65

1p ≈
cτm

2erf(
√

ln(2) τm
τ

)
(5)

For this system, 1p ≈ 44 m, which aligns with visual
inspection of the modeled RWF curve (shown for ref-
erence in Fig. 3). Probe lengths of 30 m have been re-
ported by Menke et al. (2019), which may arise from 70

altered parameters or different approaches to the RWF
model and estimation.

In the virtual lidar model, the weighting integral of the
radial velocities by the RWF (Eq. 3) is approximated by
a discrete weighted average using interpolated veloci- 75

ties at positions sk along the beam, spaced every 1 m
(Eq. 6).

vr(r0)≈
∑
k

hkρ(sk − r0)∑
ihiρ(si − r0)

vr(sk) (6)

When the probe volume intersects a hard object, the
strike can corrupt the wind data; the model accounts for 80

blocking of the beam due to terrain by requiring valid
points reaching 80 % of the RWF volume. Contamina-
tion due to hard strikes of the turbine, which do occur in
the actual data, are not replicated.

4. Time staggering. The sweep of the beam over the du- 85

ration of the scan is realized in time by staggering the
retrieval of the radial velocities over the high-frequency
(1 Hz) LES output. Some of the real instruments ad-
justed the beam every 0.5 s, and linear interpolations
between the LES output are used for these intermedi- 90

ate times. We further note that this model does not cur-
rently include continuous scanning collecting data from
over the arc of travel; the beam retrievals reflect fixed
incremented positions.
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4 Wake fitting

4.1 Construction of deficit vertical profiles

Our analysis concerns distortions of the wake in the two-
dimensional transect plane. In order to quantify and char-
acterize the wake and allow for comparison of true and ob-5

served behavior, we construct vertical profiles of the horizon-
tal velocity deficit downwind of the turbine. Construction of
the vertical deficit profiles entails estimation of the horizontal
velocities from line-of-sight velocities, interpolation of the
irregular data to the vertical profiles, and time averaging to10

allow for a robust comparison between waked and unwaked
transects to isolate a wake deficit. Processing of the wake
is identical for virtual and (quality-controlled) observational
data.

To estimate the horizontal velocity from radial velocities,15

vr, the projection of the vertical velocity is assumed to be
negligible, meaning that the radial velocities are purely a pro-
jection of the horizontal velocity. Equation (7) solves for the
horizontal velocity under this assumption:

uh,lidar =
vr

cosφ
= uh+w tanφ, (7)20

where φ is the beam elevation angle. The assumption is ro-
bust so long as uh� w tanφ. Significant vertical velocities
do occur, given the complex terrain and wake, and can lead
to error in the estimate due to the inclusion of non-negligible
projection of the vertical velocity. When relying on a sin-25

gle lidar, limiting the elevation angles of the beams can help
to constrain the degree of contamination from vertical ve-
locities. Here, the beams scanning the upwind ridge in the
area of the wake typically have elevation angles of φ < 20°
(tan20°≈ 0.36).30

We prescribe vertical profiles along the transect every 20 m
(∼D/4) downstream of the turbine with 2 m resolution ver-
tically. The lidar-recovered horizontal velocities are linearly
interpolated to the profiles from the irregular retrieval points
using a Delaunay triangulation as in Iungo and Porté-Agel35

(2013). Vertical profiles for the unwaked transect are also
computed.

To determine the wind deficit, we leverage the symmetry
of the campaign site and define the unwaked transect to be
the freestream velocity, uh,unwaked. To obtain a more robust40

profile and temper localized variations in the flow between
transects, the data are time-averaged. We found, with both
LES and observational data, that a 5 min average is suffi-
cient to find good agreement between the vertical profiles in
the waked and unwaked transects and produce well-defined45

wake deficits. The period corresponds to about 3 RHI sweeps
for DLR1, 6 for DLR2, and 13 for the reference DTU3 (and
300 snapshots in the 1 Hz LES wind field). Only full RHI li-
dar sweeps are used; for a given 5 min window, if any beams
have a timestamp within the window, the whole sweep is in-50

cluded in the average. Longer averaging windows (e.g., 10 or

30 min) are possible, but a shorter window preserves more of
the fast dynamics of the wake.

Aligning the transects, we compute the velocity deficit
(Eq. 8) from the corresponding time-averaged vertical pro- 55

files of uh:

1uh =

(
1−

uh,waked

uh,unwaked

)
× 100%, (8)

where 1uh is the percent reduction in wind speed.
The true LES wake deficit is also defined by the difference

in flow between the waked and unwaked transects so that 60

wake errors arise purely from the influence of the observa-
tion system. Here, the raw representation of LES flow field is
designed to be as minimally processed as possible; the winds
are only horizontally interpolated to the locations of the ver-
tical profiles along the transect and left on the native vertical 65

grid. Time averages occur across constituent 1 Hz output and
determination of the deficit is performed via a difference be-
tween waked and unwaked transects as with the lidar data.
The profile construction process standardizes the LES, vir-
tual measurements, and observations into the same format 70

with the deficit profiles reflecting the wake.

4.2 Wake-fitting algorithm

To distill and quantify the behavior of the wake and facili-
tate intercomparison, both against the LES truth and between
measured wakes, we fit Gaussian models (Eqs. 9–10) to the 75

vertical profiles and extract the magnitude, center height, and
vertical extent of the wake following the approach in Aitken
et al. (2014).

As the winds flow past the turbine and interact with the
aerofoil blades, we can sketch the wake. Maximum drag on 80

the wind field typically occurs midway along the blade, lead-
ing to two distinct local maxima in the wind deficits close to
the rotor (the near wake) (Martínez-Tossas et al., 2015). As
these lobes propagate downstream, they expand and mix with
the ambient turbulent flow and eventually merge and become 85

indistinguishable (the far wake). The deficit diminishes and
the wake finally dissipates. To capture the range of behavior
over the wake extent, a combination of Gaussian models is
used.

In the far wake where the lobes have merged, the vertical 90

deficit profile is modeled as a single Gaussian (Eq. 9).

g1(z)= a exp
[
−

1
2

(z− zc)2

σ 2

]
(9)

Here, a is the maximum magnitude of the deficit and zc is
the vertical location of the center of the wake. The width of
the Gaussian is controlled by the parameter σ ; we take the 95

corresponding vertical extent (width) of the wake to be the
full width at which g1 has decayed to 5% of the maximum,
i.e., 2

√
2ln(20)σ .
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In the near wake, where two separate wake lobes are
present, the deficit profiles are better represented by the su-
perposition of two symmetric Gaussians (Eq. 10):

g2(z)= a
(

exp

[
−

1
2

(z− zc+
1
2zsep)2

σ 2

]

+ exp

[
−

1
2

(z− zc−
1
2zsep)2

σ 2

])
, (10)

where the center of the wake, zc, is the mean between the5

centers of the two lobes, separated by a distance zsep. The
parameters a and σ control the amplitude and width (ver-
tical extent) of the component Gaussian curves. We define
the wake maximum deficit to be maxz|g2(z)| (not necessar-
ily equal to the parameter a as the separation between the10

two lobes shrinks). Consistent with the single Gaussian fit,
the vertical extent is defined as the full width at which g2 has
decayed to 5% of maximum (note that this definition is not
trivially expressed as a constant multiple of the parameter σ
and is estimated iteratively from the fitted function g2).15

We deviate slightly from previous approaches in our for-
mulation of the wake fit. The double Gaussian (Eq. 10) is
expressed in terms of the full wake center, zc, and separa-
tion between the lobe centers, zsep, in order to more eas-
ily place bounds on these parameters. The definitions of the20

wake magnitude and extent for the double Gaussian fit g2
also differ from previous estimates; we try to keep the defini-
tions intuitively consistent with the behavior of the wake and
the single Gaussian at the expense of having simple expres-
sions in terms of the fit parameters a and σ (see Appendix A25

for details).
A nonlinear least-squares fit is performed for both of the

Gaussian models (Eqs. 9–10) on each of the vertical veloc-
ity deficit profiles, moving sequentially downstream of the
turbine. To isolate potential wake behavior we use the pro-30

file data below 700 m where the deficit falls between −10 %
and 100 %. The first profile fit is seeded with hub-height
center, zc, and an amplitude of a = 40%. The single Gaus-
sian uses a seed σ = 0.5D, while the double Gaussian uses
σ = 0.3D and lobe separation zsep = 0.5D. The fitted param-35

eter values are then used to seed the subsequent profile fit
downstream. We constrain the parameter space toward find-
ing physical wake behavior as follows. We restrict a to lie be-
tween 0 % and 90 % (Porté-Agel et al., 2020) and the center
height zc between 20 and 200 m above the ground. The first40

profile fit is pinned more closely to the hub height by taking
zc to be within 10 m at 20 m downstream for the LES and
within 50 m at the first profile 100 m downstream in obser-
vations. For the single Gaussian we confine σ between 0 and
D[0,1.5D] and for the double Gaussian we use σ ∈ [0,0.5D]45

and zsep ∈ [0,0.75D]. To encourage the fit to follow a co-
hesive wake structure, we restrict the parameters so that the
wake center is within 10 m of the previous fit and the height
of the wake is within 80 %–120 % of the previous fit. We em-

phasize that utility in the wake fitting is in providing an ac- 50

curate quantification of the wake characteristics and choices
in parameter ranges are imposed to nudge the Gaussian fit
toward the evident wake structures that occur in the datasets.

Each profile is classified as near wake, far wake, or having
no credible wake detected. Rather than determining the pres- 55

ence of distinct double lobes by a statistical F test, requiring
the double Gaussian fit to be significantly better (Aitken and
Lundquist, 2014), we take a different approach based on the
idea of the physical convergence of the lobes. When the two
Gaussian lobes become so close relative to their width that 60

they have merged, set heuristically here by zsep/w < 2.2, it is
considered to be part of the far wake (see Appendix A). The
wake is considered to have dissipated once the deficit magni-
tude decays to 5 % of maximum. Any profile further down-
stream from where a fit has reached a ≤ 5%, or a has oth- 65

erwise reached a minimum, is classified as having no wake
with fits considered spurious.

Thus, each profile is given a preliminary individual clas-
sification as (2) near wake with two lobes, (1) far wake with
a single lobe, or (0) no wake based on its Gaussian fit. In 70

order to determine coherent wake regions, treating the set
of profiles as a whole, the preliminary profile classifications
are fitted to a two-tiered logistic function (Eq. 11) using the
nonlinear least-squares method. We use a variation of logis-
tic regression, which is used in binary classification methods 75

(e.g., Spitznagel, 2007), to help create a map between the
downstream distance and wake region classifications that ad-
here to the physical transition from near to far to no wake
(Fig. 4c).

`(x)= 2−
1

1+ exp[−k(x− x0)]
−

1
1+ exp[−k(x− x1)]

(11) 80

To ensure a sharp transition between two profiles, we take
k = 10 to be fixed. The parameters x0 and x1 are determined
from the functional fit and give the distances at which the
wake transitions from near to far and far to dissipated, re-
spectively. Note that the fitting process helps to filter out 85

non-physical variations in the preliminary classification of
the individual profiles (e.g., Fig. 4c around 220 and 320 m
downstream).

The completed wake fit and corresponding wake charac-
teristics (center position, vertical extent, and deficit magni- 90

tude) use the fitted Gaussian model for the determined wake
region, i.e., the double Gaussian fit for profiles in the classi-
fied near wake and the single Gaussian fit for profiles in the
classified far wake.

5 Results 95

5.1 LES evaluation of wake observation

In the raw LES flow field, a resonant mountain wave forms
over the ridges, much as was observed in the field, and the
generalized actuator disk turbine model produces a wake
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Figure 4. Example wake fit. Single and double Gaussian wake models fitted to (a) the first few vertical wind deficit profiles and (b) over the
larger wake, moving left to right, highlighting the wake center and extent. (c) Classifications of the individual vertical profiles are fitted into
cohesive wake regions.

with relatively detailed structure (Fig. 3). The maxima in the
drag profile of the blade aerofoils lead to the characteristic
dual-lobe structure in the near wake, which merges into the
far wake before dissipating. The wake trajectory roughly fol-
lows the terrain with the tail of the wake occasionally detach-5

ing and lofting a little higher.
In the unwaked transect, the single DTU lidar captures the

background flow well, placing the mountain wave and recir-
culation zones accurately and reproducing all but the most
extreme velocity magnitudes (not shown). Errors in the hor-10

izontal velocity profiles around the reference region for the
wake are consistently small (< 0.1 m s−1). The accuracy of
these measurements is contingent on the smaller spatial and
temporal scales in the undisturbed flow compared to those of
the lidar probe volume and sweep time, as well as the low15

beam elevation angles. Because the background flow is cap-
tured with high accuracy, it is expected that distortions in the
detected wake arise primarily from the measurement of the
waked flow itself.

As opposed to flow structures in the freestream transect,20

smaller spatial scales similar to the lidar probe length of 44 m
and more rapid variations on the order of minutes pervade the
wake and are more prone to producing error in all of the com-
ponents of the observation system. Separating the linearly
additive stages of the virtual lidar model (Sect. 3.2), we can25

assess the influence of the resolution of the retrieval points
over the wake, the beam projection angle, the RWF probe
weighting, and the sweep duration on the measured horizon-
tal velocity profile. Figure 5 shows the linear contribution to

the total error in the horizontal velocity profiles downwind of 30

the turbine due to each of these sources. Errors are computed
with respect to the “true” underlying LES flow field. Each
of the stages reacts to the wake in a way not seen with the
background flow.

The largest contribution to the error in the horizontal ve- 35

locity profile is due to the spatial resolution of the lidar mea-
surement points, with values as large as 1 m s−1, and occurs
most strongly at the edges of the near wake (Fig. 5a). Aver-
aging effects of the RWF over the probe volume reach up to
0.5 m s−1 and are most pronounced around the upper wake 40

boundary (Fig. 5c). Error incurred due the duration of the
scan sweep can occasionally be as large as 0.5 m s−1, peak-
ing around the edges and tail of the wake and during more
transient conditions early in the case study (Fig. 5d). The er-
ror contribution from the projection of the vertical velocity is 45

generally less than 0.2 m s−1 near the wake (Fig. 5b), where
the magnitude of the error grows higher up in the profiles
where the elevation angles of the beams are greater.

Differences in the positioning and geometry of the two
DLR lidar scans provide insight into the variation between 50

altered configurations (reflected in the red and blue lines in
Fig. 5). Larger interpolation errors using the DLR2 system
evidence the wider spacing between range gates (20 m ver-
sus 10 m) and further downstream distance (1000 m versus
1400 m), enlarging the distance between beams at the same 55

angular resolution (1°). We estimate DLR2 to have a den-
sity of about 0.002 retrieval points per square meter in the
area of the wake compared to 0.006 points per square me-
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Figure 5. Representative snapshot of contributions to error in lidar-derived horizontal velocity profiles due to (a) the position of the lidar
retrieval points, (b) contamination by projection of vertical velocity onto the beams, (c) averaging over probe volume through the RWF, and
(d) the duration of the scan sweep. Background contours of the LES horizontal (a, c, d) and vertical (b) winds show the wake for reference.
Lidar retrieval points, beam elevations, and the RWF are shown for reference in (a), (b), and (c), respectively.

ter for DLR1. The positioning of the lidar also consequently
changes the angle of the beams intersecting the wake and
therefore the projection and the behavior of the RWF, with
the probe volume cutting through and incorporating distinct
parts of the wind field. Errors due to the scan duration are5

marginally larger for DLR1, which takes 77 s to arc across
the entire valley to the other ridge compared to DLR2, which
only sweeps to vertical over 51 s. Overall, though differences
in the configurations impact components of the error in un-
derstandable ways, the geometries are not radically dissimi-10

lar, and much of the behavior is echoed across the two sys-
tems.

Even moderate systematic errors in the velocity field can
distort the perceived wake behavior, quantified via the fitted
deficit magnitude, vertical extent, and height of the wake cen-15

ter. For a single 5 min window, we compare the fitted wakes
from the time-averaged LES profiles with those from the vir-
tual lidar data (Fig. 6). The wake fits after incorporating each
observation stage to the lidar model are compared to eluci-
date their effect on the retrieved wake. While informative,20

we caution that the fit operation is nonlinear, so the contri-
bution from the observation stages can no longer be consid-
ered additive. In the overall structure of the wake, we ob-
serve that the distinction of the two lobes in the near wake is
lost too early in the lidar retrievals (Fig. 6). The early tran-25

sition exists in the lidar model using only interpolation and
may be explained primarily by insufficient resolution of the

retrieval points. For DLR1, which has finer resolution than
DLR2, RWF averaging also contributes. The DLR1 beams
cut through the wake at a steeper angle that may cause more 30

significant smoothing along the vertical axis, blurring the dis-
tinction of the lobes.

The wake deficit magnitude, vertical extent, and center po-
sition are shown in Figs. 7–10, plotting the lidar-retrieved
values against the LES truth as well as directly against one 35

another and showing the error in the retrievals over the wake
extent. The root mean square deviation (RMSD) between the
compared retrievals and metrics for the best-fit least-squares
lines are summarized in the first columns of Table 4.

Using the full lidar model, we show the comparisons of 40

the wake characteristics in aggregate. The wake deficit mag-
nitude, vertical extent, and center position are shown in
Figs. 7–9, plotting the lidar-retrieved values against the LES
truth as well as directly against one another and showing the
error in the retrievals over the wake extent. The root mean 45

square deviation (RMSD) between the true and measured
wakes and metrics for the best-fit least-squares lines are sum-
marized in the first columns of Table 4.

The maximum velocity deficit magnitude is consistently
underestimated by both lidars. Figure 7 compares the recov- 50

ered deficit against LES in aggregate and tracked over the
length of the wake. In the bulk of the wake, only around
0.85 of the maximum wake deficit is reflected in the lidar
retrieval (Fig. 7, Table 4). The disaggregation of the stages
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Figure 6. (a) Vertical deficit profiles for true LES wake and those measured using the DLR lidars along with the detected wake center line
and width. Comparison of detected (b) maximum magnitude of the wake, (c) vertical extent of the wake, and (d) height of wake center
relative to terrain-following hub height. Vertical lines show where the fit transitions from a double to single Gaussian, i.e., near to far wake.

Figure 7. Magnitude of the wake deficit with darkest to lightest hues indicating increasing distance from the turbine comparing (a) the
DLR-recovered value plotted against the LES truth and (b) DLR instruments plotted against one another with the least-squares best-fit lines.
(c) Fraction of maximum LES wake deficit magnitude captured by the two DLR lidars over wake extent for each 5 min window.
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(Fig. 6b) suggests that much of the loss of the peak has al-
ready occurred due to the limited resolution of points across
the wake and is exacerbated by the further RWF averaging
effects over the probe volume. Conversely, elongation and
overestimation of the deficit can occur at the tail of the wake,5

driven by the probe volume (RWF); measurements made at
target points beyond the wake can incorporate slower waked
winds from upstream, causing unwaked points to appear to
be waked and blurring the wake bounds. The DLR2 system
on the far downwind ridge consistently experiences greater10

deficit loss in the near and middle wake, likely driven by the
coarser spatial resolution of the retrieval points identified in
the horizontal velocity error. Because both systems underes-
timate the magnitude, the difference between the two is mi-
nor compared to the initial loss in the maximum deficit.15

The vertical extent of the wake in the retrieval is partic-
ularly subject to the error noise in the horizontal velocity
that occurs around the wake bounds. The wake measured by
DLR2 has a height inflated by about 12 m relative to the ref-
erence LES, whereas DLR1 is more accurate with errors typ-20

ically less than 13 m (Fig. 8, Table 4). Interpolation from re-
trieval points explains most of the difference for DLR2. With
DLR1, the distortion is mostly in the tail of the wake and
seems to arise once projection effects have been incorporated
(Fig. 6c).25

The trajectory of the wake, tracked via the center of the
deficit Gaussian, is the most accurate of the metrics and has
the least variability between the two systems (Fig. 9, Ta-
ble 4). The retrieved position is often offset less than 5 m
from the LES reference and rarely exceeds 10 m. Differences30

between the two systems are minor. DLR2 does suggest a
slightly higher trajectory than DLR1 in the tail of the wake
and appears to be more sensitive to how the RWF probe vol-
ume cut through the wake. The positioning of the wake tail
by DLR1 is more significantly affected by the longer scan35

time, likely due to the more transient behavior of this part of
the wake (Fig. 6d).

5.2 Comparison of observations in field data retrievals

Using data from the three field campaign case studies,
spanning 840 min in total (168 5 min windows), the same40

wake data processing successfully yields well-defined wake
deficits. For observations, a truth reference is not available,
but the independent retrievals from the two DLR lidars may
be compared against one another to estimate potential varia-
tion due to system configuration (Fig. 10). A similar inter-45

comparison can be done using the virtual instruments (as
shown in panel b of Figs. 7–9) so that the approach can si-
multaneously validate the model as a representation of the
behavior of the real data.

We note that the unwaked reference measured by the DTU50

lidar is used throughout, so the comparison isolates differ-
ences in how the two DLR lidar scans collect the wake. In
the LES analysis, important distortions, such as the system-

atic underestimation of the wake deficit magnitude, existed
similarly across both systems and are not evident in the in- 55

tercomparison between systems.
Over the course of the selected cases, the observational

data reflect a wider range of wind speeds, more transitory
conditions, and greater variety of wake behavior than is cov-
ered by the limited simulation period. Evident wake structure 60

in the deficit profiles occurs in about 86 % of the 5 min win-
dows. The wake in Case 1 typically follows the terrain line at
just above hub height but occasionally lofts higher. Velocity
deficits are high and the wake often persists far downstream
(up to 7D). There are frequent instances of the wake extent 65

growing with distance, a case neglected in the LES, where
the wake almost universally tapered to dissipation. Case 2 is
qualitatively similar to Case 1 though it experiences shorter
wakes and weaker initial velocity deficits. Case 1 features the
fastest wind speeds; the wake appears to be completely de- 70

tached from the terrain variation and lofts out directly from
the hub height.

The comparisons of the observational wake characteristics
are noisier due to the nature of the raw data and imperfec-
tions in the wake fitting algorithm. The observational deficit 75

profiles are subject to additional noise from the lidar sys-
tems due to factors like pointing accuracy of the lidar beams,
small-scale turbulent behaviors unresolved by the LES, and
complex aerosol distributions affecting returns, among other
complexities. While the fitting algorithm produces good fits 80

about 90 % of the time, it does have shortcomings in robustly
handling the full range of behavior in the observations. Fre-
quent issues are the lack of a clear truncation point in low-
deficit regions and apparent deficit behavior near the surface
due to differences in the transect terrain, which causes the 85

fitted center to track low or the wake signal to be obfuscated.
The wakes retrieved by the two DLR systems show

marked differences. Trends comparing wake magnitude,
height, and position largely align with those of the modeled
lidar in the LES (Fig. 10, Table 4). Predictably the best agree- 90

ments are with Case 3, which most closely matches the con-
ditions in the LES and has the best quality and quantity of
observational data. The consistency provides confidence in
the ability of the model to predict wake measurement behav-
ior in these conditions. 95

In the deficit magnitude, Cases 2 and 3 reflect predictions
from the virtual instruments in which DLR1 reads slightly
higher maximum deficits in the near wake and slightly lower
in the far wake (Fig. 10a). In Case 1, DLR1 consistently re-
trieves wakes with a significantly lower deficit throughout. 100

As in the simulations, the correlations between instruments
are strong, though the overall variability between the two is
higher (6 %–17 % compared to about 3 % RMSE).

The vertical extent of the wake experiences the most vari-
ability between DLR1 and DLR2, even more so than seen in 105

the LES (Fig. 10b). Because of the large variations, the linear
fits are less representative. In Case 3, deviations between the
two retrieved wakes often reach 30 m, a value consistent with
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Table 4. Root mean square deviation (RMSD) and linear least-squares fit metrics for comparisons of wake magnitude, height, and center
using virtual and observational retrievals.

Simulated Case 3 Observation DLR1 vs. DLR2

LES vs. DLR1 LES vs. DLR2 DLR1 vs. DLR2 Case 1 Case 2 Case 3

Magnitude

Fit intercept [%] −0.95 0.03 0.88 −1.54 9.46 7.74
Fit slope [–] 0.87 0.83 0.96 0.79 0.80 0.86
Correlation coefficient r [–] 0.97 0.95 0.97 0.83 0.94 0.95
RMSD [%] 6.84 7.69 2.76 16.53 6.64 8.63

Height

Fit intercept [m] 1.16 11.83 15.65 74.52 77.10 53.61
Fit slope [–] 0.99 1.12 1.08 0.76 0.55 0.67
Correlation coefficient r [–] 0.92 0.89 0.90 0.52 0.71 0.79
RMSD [m] 12.41 29.86 29.26 84.10 51.70 31.95

Center

Fit intercept [m] −7.34 19.69 24.36 −38.65 55.58 34.23
Fit slope [–] 1.02 0.97 0.96 1.05 0.89 0.94
Correlation coefficient r [–] 1.00 1.00 1.00 0.72 0.85 0.96
RMSD [m] 2.54 3.81 3.14 18.60 12.06 6.25

Figure 8. Vertical extent of the wake with darkest to lightest hues indicating increasing distance from the turbine comparing (a) the DLR-
recovered value plotted against the LES truth and (b) DLR instruments plotted against one another with the least-squares best-fit lines.
(c) Fraction of LES wake height captured by the two DLR lidars over wake extent for each 5 min window.

the virtual lidar comparison. The other cases see even more
dramatic discrepancies and are marginally correlated.

The trajectory of the wake center in the retrievals agrees
well as anticipated. The correlation is high and the linear fits
have slopes close to unity. In Case 3, differences are typically5

within about 6 m compared to 3 m with the virtual instru-
ments. Case 2 is similar with a larger spread. Differences are
more substantial in Case 1, and we note that for some win-
dows, the differences in positioning and behavior are evident
in the raw deficit profiles.10

6 Discussion

All of the components of the lidar observation system – the
resolution of retrievals in space and time, projection onto the
beam, and RWF averaging over the probe volume – are prone
to more significant error when measuring the heterogeneous15

wake than the more homogeneous background flow as the

spatial and temporal scales of the wake compete with those
of the lidar system and additional vertical velocities are in-
duced in the wake. We caution that the particular distortion
behavior is specific to the wake dynamics of any particular 20

time and the geometry of the scan, but insights and gener-
alizable trends can be drawn from the results. Further, the
virtual lidar methodology presented here could be applied to
other scan types and geometries.

Insufficient spatial resolution of the retrieval points and 25

the smoothing effect of the RWF, which incorporates faster
winds in the probe volume, can cause the lidar to miss the
largest velocity deficits, underestimating the strength of the
wake. Particularly close to the turbine, these underestimates
can be significant. In the far wake, the trend can flip and 30

the lidar sometimes overestimates the magnitude of the wake
deficit. Especially near the tail of the wake, the RWF captur-
ing much slower points upwind prevents the measured wake
from decaying as quickly as it does in reality. Correspond-
ingly, this effect can cause the measured wake to be longer 35
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Figure 9. Height of the wake center with darkest to lightest hues indicating increasing distance from the turbine comparing (a) the DLR-
recovered value plotted against the LES truth and (b) DLR instruments plotted against one another with the least-squares best-fit lines.
(c) Difference in the LES wake center height and that captured by the two DLR lidars over wake extent for each 5 min window.

Figure 10. Comparison of wake (a) maximum deficit magnitude, (b) vertical extent, and (c) center height position retrieved by DLR1 and
DLR2 in the observational case studies. Darkest to lightest hues indicate increasing distance from the turbine. The black lines show the best
fit from the virtual instruments in the LES subcase.

than in reality when the probe volume still contains waked
winds.

In context with other error sources, we highlight the po-
tentially dominant contribution to error in horizontal veloc-
ity measurements due to under-sampling the wake region.5

Though in a more complex setting and a different, and faster,
scan approach, we find as in Doubrawa et al. (2016) that di-
agnosis of the wake center is typically less sensitive to the
coarser sampling than other features of the wake. The re-
trievals by DLR1 compared to DLR2 illustrate how an in-10

creased sampling density can improve the fidelity of the mea-
sured wake. The advantage is clear despite larger beam ele-
vation angles and a longer scan sweep. We emphasize that
the DLR scans both included large angular sectors and corre-
sponding long scan durations (51, 77 s); the balance of errors15

suggests that long scans performing spatially dense sweeps
may be a reasonable trade-off.

For our downwind measurement scenario, the error con-
tribution from the RWF averaging effects echoes those in
Meyer Forsting et al. (2017) with nacelle-based scans in that20

the largest RWF averaging effects occur near the large gra-

dients at the edges of the wake. The RWF can smooth the
edges of the wake, inflating the measured bounds and making
it seem taller and longer. While different configurations and
technologies (pulsed vs. continuous wave) exist that impact 25

the shape and scale of the RWF, practical considerations in
obtaining robust velocity measurements impose hard lower
limits on achievable probe volumes. Potential effects of the
probe volume and RWF should be taken into account, partic-
ularly in areas with large velocity gradients and spatial scales 30

similar to those of the probe.
The observational comparison of independent, concurrent

retrievals by the two DLR demonstrates the impacts of dif-
fering lidar configurations and underscores the variation that
can arise in the measured wakes. The intercomparison of 35

the instruments roughly coincides with expectations from the
virtual instruments and builds confidence in the ability of
the model. Some of the additional variability and deviations
compared to the simulations, especially in Cases 1 and 2,
can likely be ascribed to the wider range of conditions and 40

wake behaviors not reflected in the LES period. For exam-
ple, the geometry shifts when the wake lofts or the vertical
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extent expands rather than shrinking and can produce distor-
tion effects that may differ from the simulated ones. The bulk
of the LES period is also remarkably stationary and possible
transitory effects may be understated in its results.

7 Conclusions5

We consider potential distortions in the measurements of
a single turbine wake made by scanning lidar during the
Perdigão campaign. By employing virtual scanning lidar in-
struments in a case study simulation, we highlight the distor-
tions that can occur in the retrieval of turbine wakes due to10

the observation system and compare the behavior with ob-
servational data. We focus on RHI scans of a waked transect
perpendicular to the parallel ridges at the site by two inde-
pendent WindCube 200S lidars and use an offset, unwaked
transect collected by a third lidar for reference to compute15

the wake deficit. The center, vertical extent, and deficit mag-
nitude of the wake are extracted using Gaussian fits of the
deficit profiles.

Even with a single lidar, the background unwaked flow is
generally well captured (error less than 0.1 m s−1 in reference20

region) assuming the scanning geometry constrains the beam
elevation angles to less than 7° from horizontal and vertical
velocities less than 3 m s−1. Biases therefore arise from the
measurement of the wake itself that are particular to the lidar
scanning configuration.25

Our findings emphasize the overall effectiveness of li-
dar for wake observations, even with a relatively simple
scan configuration. The measurements largely capture the
wake structure over its 4–5D extent. Compared with the
background flow, however, the lidar system responds more30

strongly to the scales of the wake and introduces larger er-
rors that can systemically affect the measured behavior of
the wake. This analysis suggests where biases may be present
and how they arise.

The wake distortion can be largely understood as smooth-35

ing effects on the wind field due to sampling resolution and
probe volume averaging. The lidar-retrieved wake dampens
the extreme velocity deficits, prematurely loses the distinc-
tion of the near-wake double lobes, and can blur the wake
bounds and extent. For this configuration, both lidars per-40

sistently underestimate the maximum velocity deficit by a
factor of 0.7–0.8. The lidar on the downwind ridge (DLR2)
inflates the vertical extent of the wake by a factor of about
1.2; the valley-based lidar (DLR1) is typically more accurate
(< 10 m). Both lidar systems most accurately capture the tra-45

jectory of the wake center, maintaining errors of typically
less than 5 m.

The findings using the virtual LES are reinforced by the
observational data. Intercomparison of DLR1 and DLR2
wake metrics displays similar behavior using real and virtual50

lidar data, suggesting that the model is able to capture how

the systems measure the wake and the resulting differences
between the two configurations.

The decomposition of the lidar system into stages, enabled
by the model, provides insight that can inform potential im- 55

provements to scanning strategies. For the Perdigão case,
the limitation of the beam elevation angles around the wake
proves largely effective at minimizing error due to contam-
ination by projected vertical velocities. Instead, the limited
spatial resolution emerges as a leading cause of wake mea- 60

surement error. We recommend scanning configurations that
increase the density of retrieval points over the wake by re-
ducing the spacing between range gates and placement or
angular resolution to reduce the distance between beams; the
performance of DLR1 compared to DLR2 evidences some of 65

the potential benefits. This virtual lidar tool can help enable
quantification of possible errors due to scanning geometries
and scanning strategies to enable optimal field experiment
planning and instrument deployment.

Appendix A: Double Gaussian wake characteristics 70

The section presents an illustration of the behavior of the
double Gaussian functions fit to the deficit profiles (Eq. 10,
Fig. A1). Representing the properties of maximum deficit
and the vertical extent of the wake cannot always be done
as a simple, closed-form function of the input parameters (a, 75

σ , zsep). When the two Gaussian lobes overlap more closely,
zsep becomes smaller relative to the widths of the individual
Gaussian lobes, σ , they add in a more complex way.

To be consistent with the single Gaussian properties and
to accurately reflect the physical behavior we care about, we 80

directly estimate the maximum value of g2 and where it de-
cays to 5 % of its maximum to determine the amplitude and
width. These estimates are done with evaluation of the func-
tion at many points rather than a direct calculation with the
input parameters. 85

The transition from near to far wake is determined by the
double Gaussian fit. The merging of the individual lobes is
reflected in a smaller separation relative to the width of each
lobe so that they are no longer distinct. An empirically picked
threshold of zsep = 2w is used as a cutoff (Fig. A1a). 90
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Figure A1. (a) Double Gaussian curves, g2(x), with varying zsep and fixed amplitude a = 1 and width σ = 1 showing the transition of
classification from near-wake (purple) to far-wake (green) fits using an empirically picked threshold of zsep = 2σ (black). The corresponding
(b) maximum and (c) width of the double Gaussian as a function of zsep.

Code and data availability. The WRF MMC source code is
available from https://github.com/a2e-mmc/WRF/tree/mmc_
update_v4.3 (Skamarock et al., 2019). Virtual lidar code
may be found at https://doi.org/10.5281/zenodo.13786964
(Robey, 2024) TS2 . Observational lidar data are avail-5

able as part of the Perdigão campaign database at
https://doi.org/10.17616/R31NJMN4 (Mann, 2019TS3 ) (note
that the lidar designated by DLR2 was swapped on 3 June at
19:20 UTC from instrument number 85 to 89 in the archive). The
namelist used for the simulation, the virtual lidar data collected10

from the LES, and corresponding fitted deficit profiles analyzed
here are archived at https://doi.org/10.5281/zenodo.10652098
(Robey and Lundquist, 2024).
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Menke, R., Vasiljević, N., Hansen, K. S., Hahmann, A. N., and 105

Mann, J.: Does the wind turbine wake follow the topography? A
multi-lidar study in complex terrain, Wind Energ. Sci., 3, 681–
691, https://doi.org/10.5194/wes-3-681-2018, 2018.

Menke, R., Vasiljević, N., Mann, J., and Lundquist, J. K.: Charac-
terization of flow recirculation zones at the Perdigão site using 110

multi-lidar measurements, Atmos. Chem. Phys., 19, 2713–2723,
https://doi.org/10.5194/acp-19-2713-2019, 2019.

Meyer Forsting, A., Troldborg, N., and Borraccino, A.: Mod-
elling Lidar Volume-Averaging and Its Significance to Wind
Turbine Wake Measurements, J. Phys. Conf. Ser., 854, 012014, 115

https://doi.org/10.1088/1742-6596/854/1/012014, 2017.
Mirocha, J. D., Kosovic, B., Aitken, M. L., and Lundquist, J. K.:

Implementation of a Generalized Actuator Disk Wind Turbine

https://doi.org/10.1117/1.1455013
https://doi.org/10.3390/atmos11030245
https://doi.org/10.5194/amt-12-3463-2019
https://doi.org/10.5194/amt-10-2881-2017
https://doi.org/10.1175/JTECH-D-15-0057.1
https://www.eea.europa.eu/publications/tech40add
https://www.eea.europa.eu/publications/tech40add
https://www.eea.europa.eu/publications/tech40add
https://doi.org/10.5194/wes-5-1253-2020
https://doi.org/10.5194/wes-5-1253-2020
https://doi.org/10.5194/wes-5-1253-2020
https://upwind.eu/images/d6.1.1.pdf
https://doi.org/10.5065/D6RX99HX
https://doi.org/10.3390/rs8110939
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1175/BAMS-D-17-0227.1
https://doi.org/10.1175/BAMS-D-17-0227.1
https://doi.org/10.1175/BAMS-D-17-0227.1
https://doi.org/10.1007/978-3-030-05455-7_55-1
https://doi.org/10.1175/BAMS-D-18-0033.1
https://doi.org/10.5194/wes-8-1251-2023
https://doi.org/10.5194/wes-8-1251-2023
https://doi.org/10.5194/wes-8-1251-2023
https://doi.org/10.5194/asr-10-71-2013
https://doi.org/10.5194/asr-10-71-2013
https://doi.org/10.5194/asr-10-71-2013
https://doi.org/10.1175/JTECH-D-12-00051.1
https://doi.org/10.1175/2010JTECHA1483.1
https://doi.org/10.17616/R31NJMN4
https://perdigao.fe.up.pt/datasets/thredds/catalog/upperAir/Lidar/DTU%20Scanning%20Lidar%20Data/netcdf/transect/WS3/catalog
https://perdigao.fe.up.pt/datasets/thredds/catalog/upperAir/Lidar/DTU%20Scanning%20Lidar%20Data/netcdf/transect/WS3/catalog
https://perdigao.fe.up.pt/datasets/thredds/catalog/upperAir/Lidar/DTU%20Scanning%20Lidar%20Data/netcdf/transect/WS3/catalog
https://perdigao.fe.up.pt/datasets/thredds/catalog/upperAir/Lidar/DTU%20Scanning%20Lidar%20Data/netcdf/transect/WS3/catalog
https://perdigao.fe.up.pt/datasets/thredds/catalog/upperAir/Lidar/DTU%20Scanning%20Lidar%20Data/netcdf/transect/WS3/catalog
https://doi.org/10.1002/we.1747
https://doi.org/10.5194/wes-3-681-2018
https://doi.org/10.5194/acp-19-2713-2019
https://doi.org/10.1088/1742-6596/854/1/012014


18 R. Robey and J. K. Lundquist: Lidar wake retrieval in complex terrain

Model into the Weather Research and Forecasting Model for
Large-Eddy Simulation Applications, J. Renew. Sustain. Ener.,
6, 013104, https://doi.org/10.1063/1.4861061, 2014.

Moriarty, P., Hamilton, N., Debnath, M., Herges, T., Isom, B.,
Lundquist, J. K., Maniaci, D., Naughton, B., Pauly, R., Roadman,5

J., and Shaw, W.: American WAKe ExperimeNt (AWAKEN)
(NREL/TP-5000-75789), Tech. Rep. NREL/TP-5000-75789,
National Renewable Energy Lab.(NREL), Golden, CO, USA,
https://www.nrel.gov/docs/fy20osti/75789.pdf (last access: 18
September 2024), 2020.10

National Centers for Environmental Prediction, National Weather
Service, NOAA, U.S. Department of Commerce: NCEP
GFS 0.25 Degree Global Forecast Grids Historical Archive,
https://doi.org/10.5065/D65D8PWK, 2015.

Newsom, R., Calhoun, R., Ligon, D., and Allwine, J.: Linearly Or-15

ganized Turbulence Structures Observed Over a Suburban Area
by Dual-Doppler Lidar, Bound.-Lay. Meteorol., 127, 111–130,
https://doi.org/10.1007/s10546-007-9243-0, 2008.

Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-Turbine
and Wind-Farm Flows: A Review, Bound.-Lay. Meteorol., 174,20

1–59, https://doi.org/10.1007/s10546-019-00473-0, 2020.
Robey, R.: Virtual Lidar Tool in Python, Zenodo [code],

https://doi.org/10.5281/zenodo.13786964, 2024.
Robey, R. and Lundquist, J. K.: Behavior and mechanisms of

Doppler wind lidar error in varying stability regimes, Atmos.25

Meas. Tech., 15, 4585–4622, https://doi.org/10.5194/amt-15-
4585-2022, 2022.

Robey, R. and Lundquist, J. K.: Supporting simulation and obser-
vation files for “Influences of lidar scanning parameters on wind
turbine wake retrievals in complex terrain”, Zenodo [data set],30

https://doi.org/10.5281/zenodo.10652098, 2024.
Rodrigo, J. S., Cantero, E., García, B., Borbón, F., Irigoyen,

U., Lozano, S., Fernande, P. M., and Chávez, R. A.: Atmo-
spheric Stability Assessment for the Characterization of Off-
shore Wind Conditions, J. Phys. Conf. Ser., 625, 012044,35

https://doi.org/10.1088/1742-6596/625/1/012044, 2015.
Rösner, B., Egli, S., Thies, B., Beyer, T., Callies, D., Pauscher,

L., and Bendix, J.: Fog and Low Stratus Obstruction of
Wind Lidar Observations in Germany – A Remote Sensing-
Based Data Set for Wind Energy Planning, Energies, 13, 3859,40

https://doi.org/10.3390/en13153859, 2020.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu,

Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker,
D. M., and Huang, X.-Y.: A Description of the Advanced
Research WRF Model Version 4, Tech. rep., UCAR/NCAR,45

https://doi.org/10.5065/1DFH-6P97, 2019 (code available at:
https://github.com/a2e-mmc/WRF/tree/mmc_update_v4.3 TS4 ).

Smalikho, I. N., Banakh, V. A., Pichugina, Y. L., Brewer, W. A.,
Banta, R. M., Lundquist, J. K., and Kelley, N. D.: Lidar Investi-
gation of Atmosphere Effect on a Wind Turbine Wake, J. Atmos.50

Ocean. Tech., 30, 2554–2570, https://doi.org/10.1175/JTECH-
D-12-00108.1, 2013.

Sorbjan, Z. and Grachev, A. A.: An Evaluation of the Flux – Gradi-
ent Relationship in the Stable Boundary Layer, Bound.-Lay. Me-
teorol., 135, 385–405, https://doi.org/10.1007/s10546-010-9482- 55

3, 2010.
Spitznagel, E. L.: 6 Logistic Regression, in: Handbook of Statis-

tics, edited by Rao, C. R., Miller, J. P., and Rao, D. C., Epi-
demiology and Medical Statistics, vol. 27, Elsevier, 187–209,
https://doi.org/10.1016/S0169-7161(07)27006-3, 2007. 60
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