Comment reviewer 1	Response	Manuscript change
At some points the	We come from a slightly	Changed the
wording and parameters	different field (therefore we	occurrences of
seem a bit away from what	have used a different	"azimuthal torque" to
the wind energy	notation), but agree that the	"yaw torque", "azimuthal
community uses.	wording should be adapted	misalignment" to "yaw
E.g. azimuthal rorque (yaw	to match what is common in	misalitnment", and
moment),	the wind energy community.	"wind strength" to "wind
wind strength (ambient		speed".
wind speed), or full		
operation up to very high		
wind speeds (50 m/s)		
instead of the typical shut		
down at around 25 m/s.		
windturbines -> wind	Yes, this should be two	Changed the
turbines	words.	occurrences of
		"windturbine" to "wind
		turbine".
efficiency -> efficiently in	Agree.	Changed "efficiency" to
line 20.		"efficiently" in line 20.
Regarding line 21: Smaller	After investigating other	Changed line 21 to
blades have less inertia,	literature such as	"[]utilize the spatially
but also less rotor area.	https://ntrs.nasa.gov/api/cita	varying wind field.
The lock number, as an	tions/19740008659/downloa	Authors such as
indicator should not	ds/19740008659.pdf and	Jamieson2011Inno
change with a smaller	https://www.nrel.gov/docs/fy	vation,
blade of same design as a	21osti/80125.pdf	Jamieson2014Structural
bigger one. Therefore,	regarding the loads, and not	,
please check, whether	finding any comments about	Sandhu2018Performanc
your assumption of better	how the radius affects the	e} have investigated and
temporal adaptations due	temporal adaptability to the	discussed other aspects
to less intertia is true.	wind we choose to remove	of rotor scaling and
		multirotor setups."
multirotor -> multi rotor	While it seems that both	Changed all
	forms are used, a quick	occurrences of
	search reveals that multi-	"multirotor" to "multi-
	rotor is preferred in the	rotor".
How will this (furling)	Adrop it should be evaluated	Undated lines 29, 40
How will this (lurting)	Agree, it should be explained	Updated times 38-40
Mouldn't a furling rates		"Eurling for a multi-rate"
crash into the space		wind turbing oon bo
frame corning the reter?		achieved by rotating the
A visualization/skotch of a		whole support structure
furling multi retor would		to produce a yow offset
he good to understand		as indicated by \$\nsi\$ in
how this works		Fig. 1This technique will
1000 0115 00165,		rig. This technique will

considering each rotor to		be used to illustrate an
be attached to a space		intriguing operation
frame or other sort of		scheme for when the
support structure.		multi-rotor wind turbine
		needs to limit its power
		output."
Please relate to a	We are referring to the torque	Updated line 47 to be
reference or two, where	control that is proportional to	clearer:
MPPT is seen as the	the rotational velocity	This is typically achieved
typical strategy for wind	squared, and yes, it is a bit	by using the well-known
turbines under partial	unclear in the text.	Maximum Power Point
load. Isn't the typical		Tracking (MPPT)
approach a torque control		controller that dictates a
proportional to the rotor		generator torque
speed?		proportional to the
		rotational velocity
Or are you referring to the		squared, as discussed in
yaw control here?		Johnson et al. 2006.
M/hatiatka waaarii ta		No obonce
what is the reason to	we have chosen this turbine	No change.
chose a small turbine,	as it seems to be an	
turbing size?	design bening that most	
There are other virtual	readers have knowledge of it	
research turbines	Teaders have knowledge of it.	
available in higger size un		
to 20+MW.		
wind strength -> wind	Agree, already fixed.	Already fixed earlier.
speed		
In case you mean a force, I	Ok.	Changed thrust force "f"
would recommend "F"		to "F".
instead of "f".		
Lacking specification of	Yes, this could be explained	Added "[] losses, such
losses in line 79.	better, even though it is not	as the drivetrain and
	essential here.	generator losses, []"
If you create your own	Yes, good idea.	Added sentence on line
definition of TSR, then you		107:
would also define your		"At the optimum, where
optimal TSR values? In line		momentum theory
104.		predicts \$v=W
		\cos{\psi}}{3}\$, the
		modified TSR becomes
		\$3/2\$ times the
		traditional TSR."
Please clarify, whether you	Agree, and use different	Specified that the TSR in
apply your definition of	symbol/notation for the	line 147/148 is the
	modified TSR.	traditional one, and

TSR or the typical		renamed the modified to
definition here. Line 149.	A	\hat{\lambda}.
closes -> closest, line 167	Agree.	Changed "closes" to "closest".
To save space, figure 7 and 8 could be next to each other. Fig. 9: Units (m/s?) are missing. With flow you mean wind speed? It would be good to give this a variable name and highlight it in figure 4 for better understanding. Further it would be good to see the same figure for the perfectly aligned rotor.	And some of the other figures could too, but from what I can see the journal uses a double-column format, which will fix the spacing issues. Agree to lacking units. The net flow means the wind speed after the induced flow has been subtracted. Highlighting this is a good idea.	No change, as this will be fixed with the double- column format. Added caption: "Mean axial wind speed (W cos ψ – v) in ms–1 with 45° yaw misalignment."
Fig. 10. The difference in power for optimal and DMPPT are very small, whilst the differences in torque are very significant. Can you explain that?	This is an interesting question. The optimal solution creates a more uniform thrust distribution across the rotor array, because this reduces the losses that are aggregated from the upstream rotors. The wake of upstream rotors will affect all downstream rotors, thus reducing the thrust on the upwind-most rotors, one can extract more energy from all downwind rotors. Power is shifted around the array directly, while the thrusts are weighted by their horizontal displacement to form the torque. Thus the small redistribution of power results in small changes in thrust which in the torque are magnified by the horizontal displacement of the rotors	Added after end of sentence on line 181: "The leveraging of the interactions also has the effect of reducing the yaw moment drastically for intermediate misalignments, as the optimal solution is to reduce the power on the upwind rotors so that the wind has more kinetic energy available for the downwind rotors. This results in a more even thrust distribution, which drastically affects the yaw moment because the thrusts are weighted by the horizontal distances to the center of the wind turbine. "

Fig. 19. Wouldn't it lead to	In this case, the rotors must	Added before last
the same bending	limit their power, and they do	sentence in line 235:
moment, but higher total	this by decreasing their TSRs.	"The relation between
power, when all rotors on	When the bending moment	power and thrust in the
top row are equally	constraint is introduced, this	current case, where
constrained?	it is desirable to operate with	power is limited by
	the highest possible power	reducing the TSR,
	per thrust possible. The	enforces an L1 penalty
	model predicts that this is	on the system, favoring
	achieved by reducing the	sparsity rather than
	power as little as possible in	reducing the power
	an L1 fashion. In other words,	equally on all rotors."
	turning off one rotor yields a	
	higher total power than if all	
	rotors are slightly limited,	
	because then all rotors	
	operate at a lower power per	
	thrust.	
Fig. 21. Wouldn't it be	That would depend on the	No change.
more efficient to constrain	objective function. As stated	C
all three rotors on the far	in the text, the uppermost left	
left side?	rotor gives the greatest	
	reduction in vaw moment	
	and bending moment, which	
	in this case is preferred.	
	Additionally, similarly to the	
	bending moment constraint	
	comment above, operating at	
	max power per thrust is	
	desired and when only	
	controlling the TSR in a	
	power-constrained case, the	
	L1 sparse allocations are	
	predicted to be better.	
Why is the range of axial	The range is so large in order	No change.
flow so high, when typical	to make sure all operating	
wind turbines shut down	conditions were covered by	
at ambient wind speed of	the model, but admittedly, 50	
ca 25 m/s?	m/s might be too much.	
	Nevertheless, we do not	
	loose anything by including it.	
Line 298. Please explain.	Furling reduces the thrust	Added "[] but also the
why furling reduces the	loading by reducing the axial	thrust loading, as the
loads.	component of the wind.	axial component of the
It reads like a general		wind is reduced."
statement, j.e. also		
considering dynamic		

loads. Dynamic loads might be severe under heavy yaw misalignement.		
And the typical "slowness" of furling might make it difficult to properly react on gusts.		
pending -> bending	Agree.	Changed "pending" to "bending".

Comment reviewer 2	Response	Manuscript change
I think this paper reveals and	Yes, a more thorough	Added in line 30:
very smartly addresses the	discussion might help the	"[] is believed to be
fundamentally important	reader. Then we can also	significant based on
aerodynamic effects of rotor	highlight that the multi-	their significance for
interaction in a multi rotor	rotor setup allows one to	multi-rotor
system. This arises when	more efficiently adapt to	helicopters Johnson
adjacent rotors responding to	the flow field.	(1994). Additionally, a
local wind conditions		multi-rotor setup with
operating at different loads		many smaller rotors
(thrust coefficients) modify		will be able to better
the flow field and create		adapt to the local
oblique average local flow		flow conditions than an
angles. It also arises		equivalently big single
fundamentally as with a single		rotor system. Thus, a
rotor because the flow		multi-rotor can sample
diverges across the system as		the wind field with
a whole. If we consider a		greater fidelity
single actuator disc/rotor, the		than a single rotor
streamlines diverge		system. This sampling
increasingly from the center of		gives rise to further
the disc when the disc is		interactions that are
loaded. The inflows are		assumed to be of
consequently yawed across		importance. The
the surface of the disc . If you		present
imagine the same disc size		work will include a
then filled with multiple		simplified model []".
smaller discs/rotors, then,		
even if they are all loaded		
identically and in uniform far		
upstream flow, there will be		
angled inflow to all the rotors		
except in the center - with ever		
more complex interactions if		

the multi rotors are not		
uniformly loaded. It may help		
the reader if some discussion		
equivalent to what is just		
mentioned is included in the		
introduction. I think this would		
be better than the isolated		
statement (lines 29,30)		
asserting that the interactions		
are likely to be important in		
view of that being the case		
with multirotor helicopters		
which can be far different from		
wind turbines in their		
operational envelop.		
In Section 3, Modelling, it is	For large-scale rotors we	No change.
understandable to use the	agree with the idea that	
NREL 5 MW as an extremely	rotors with opposing	
well documented design in the	rotational directions will	
public domain and, as a	be plausible. However, if	
simplification, to eliminate the	one uses high quantities	
overall effect of torque	of small rotors the extra	
reaction on the structure by	cost of mirrored blade	
counter-rotation of adjacent	production can arguably	
turbines. At a later stage, the	be neglected in my	
NREL 5 MW would be	opinion (without being an	
inadequate for comparisons of	expert on the field).	
multi rotor systems with the		
largest single rotor systems. It		
is also unlikely that rotors		
would be designed for rotation		
in both directions. Blade		
production for example would		
then divide with one half of the		
population being of opposite		
hand to the other and with		
added manufacturing costs		
Implicit.		Ohen red line CE ter
It is asserted (line 65) that the	Ine power and swept area	Changed line 65 to:
net rateu power or SMW IS	is equally divided, and the	
equally divided among all the	blockage effect is hot	power of 5 MVV, and
Corovample is it on the basis	motuded as the millow	divided equally among
of equal total active event	these offects in the	
or equal local active swept	these effects in the	au the turbines []".
area: II So, Much prior	present simple	Added offer line C7:
analysis, modelling, Wind	parametrization. Ine	Audeu arter line 6/:
tunnet test and very limited	DIOCKAge effect is an	пе вюскаде

field testing indicates there is	interesting phenomenon	effect as evaluated in
a blockage effect (applicable	and I agree that it should	McTavish et al. (2015) is
also to tidal turbine arrays)	be commented on.	not included, as this
such that the power of the		would require a more
multi rotors will exceed the		complex model."
power of the equivalent (active		
area) single rotor. According to		
prior analyses, theoretical and		
numerical (CFD, vortex		
methods etc.) limited wind		
tunnel testing and minimal		
field experiments (Vestas) on		
wind turbines this is due to a		
blockage effect (recognized		
also as applying to tidal		
turbine arrays) which is		
predicted to be significant (
power gains ~ 10% and thus		
possibly in a range more		
significant than the		
differences between		
independent MPPT power		
control of the turbines and		
optimized power control of the		
array) for a multi rotor system		
with many closely spaced		
rotors. I assume this is not		
accounted in your modelling		
as I cannot see how training		
data could be produced		
except say by extensive CFD		
analyses of the test case		
array? I think this needs some		
discussion or at least an		
acknowledgement whether		
the blockage affect is		
accounted.		
vertical variation in the angle	The skew angle is	Added after the text on
of the net flow incident on	unfortunately only taken	
each rotor is both innerent in	as an average over the	ine simplified model
the array being finite vertically	whole array, so the vertical	uses a global skew
and that variation is	variation is not included. I	angle, computed on the
augmented in the case of	agree, this should be	average wind speeds of
unierential rotor loading	made clear in the text.	au rotors. While this
caused by wind snear which is		can be seen as a
tater discussed. Regarding the		somewnat crude
statement (lines 94-95)		approximation, it is

and Figure 4 in section 3, is		believed to be suitable
this vertical variation		for the simplified
accounted? It would be useful		analysis presented in
to have text fully clarifying this.		this work. "
In Section 3.2, I would advise	Agree.	Changed the modified
against the re-definition of tsr	-	TSR to use a hat.
with the usual lambda		
symbol. Purely for clarity it is		
better to preserve the		
established definition and talk		
about local tsr with some		
prime/subscript or other		
modifier on the lambda		
symbol or some other symbol.		
In Section 4.3, line 175, the	The array size is seen in	Modified and added
peak restoring moment is	the pictures, but yes, the	on/after line 175:
described as equivalent to a	results can be elaborated	"[] 3 m, slightly more
3m upwind movement of the	on to make it clearer.	than 2% of the
center of thrust. It is hard to		multirotor width,
interpret the significance of		upwind. A torque of
this. Maybe mention the height		similar magnitude can
and width of the array or		be obtained by turning
maybe the restoring moment		off one of the upper
could be compared to the		and outermost rotors
maximum moment that can be		when the wind-turbine
generated with all the turbines		is aligned with the
on one side at rated thrust and		wind."
all on the other switched		
off? The discussion in Section		
4.3 about azimuthal stability is		
nevertheless very interesting		
and it is encouraging that yaw		
moments on the misaligned		
system are restoring.		
In Section 6.1, line 290 to end,	Yes, the "more or less	Changed 291 from "[]
I think that "performs	aligned" can be	multirotor problem, as
identicallyturbine is	substituted for "the main	long as the turbine is
more or less aligned" is too	operating conditions" or	more or less aligned
modest! Single large turbines	something along those	with the wind." to "[]
would usually be controlled to	lines to make the efficacy	multirotor problem for
keep alignment within ranges	clearer.	all main operating
like ±10 or ±15 deg and maybe	<u>-</u>	conditions."
shut down as in a fault case if	The blade design and	
the error exceed 30 deg. Thus	loading considerations are	Added at the end of
based on Fig 28, the SMPPT	very interesting, but not	353:
controller performs identically	the main focus of this	"Other consequences
over the whole range of	work, so we have decided	of furling such as

practical interest and this	to not include this here as	support structure and
could be said. A reason for	this would require higher	blade designs would
avoiding operating at large yaw	fidelity models. This would	also benefit from
error, in addition to incurring	be a nice idea for future	scientific attention."
an obvious drop in power, is	work!	
that cyclic loads in yaw and		
stall dynamic effects cause		
additional blade and system		
fatigue which may be		
unacceptable. That thought		
suggests that it would be		
interesting to see (as figures or		
tables) the distributions of		
resultant wind and skew		
angle χ over the multi rotor		
array in the aligned case. It		
would also be interesting to		
see what difference results		
when the aligned case is		
optimally controlled v MPPT on		
each turbine. An inference		
regarding the skewed flows		
may be that the rotors of a		
multi rotor system need to be		
designed for fatigue loading		
additional to what would apply		
if the same rotors were		
operated in isolation.		